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Abstract

INCONSISTENCIES IN AB INITIO EVALUATIONS OF NON-ADDITIVE
CONTRIBUTIONS OF DNA STACKING ENERGIES

by

Qin Ken

The main research methods on biomolecules are experiments at present. How-
ever, experimental methods are challenging to describe the microscopic details of
biomolecules, including molecular-level dynamics and basic functional states. For
drug development, such as cancer-targeted drugs, precise matching of biological
targets is required. Therefore, computer simulation plays an essential role in
understanding and studying the structure and biological function of biomolecules.
The description and reproduce of the bonding itself, due to intermolecular forces,
is a considerable challenge for ab initio methods. The non-additivity in the
interactions is expected in intermolecular bindings due to the induced polarization
by quantum fluctuations, such as van der Waals (vdW) forces. Non-additivity
is a more difficult subject than intermolecular interaction itself, and it has long
been far from the mainstream research field and has not been well analyzed yet.
We evaluated the non-additive contributions in the intermolecular interactions in
B-DNA stacking by using fixed-node diffusion monte carlo (FNDMC) methods.
DNA molecules are the basis of biological, genetic variation. In the previous
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calculation methods, standard Density Functional Theory (DFT), Hartree-Fock
(HF), the sign of the non-additive contribution is positive. While the Self-
Consistent Field (SCF) level non-additivity is mostly positive and tiny, the non-
additive contributions described by FNDMC are both positive and negative signs.
The negative sign is found to be reasonable, which might be supported by a simple
model analysis based on the London theory. It would, however, be premature
to draw a conclusion that the FNDMC non-additivity reveals the truth. This is
because the Watson-Crick base-pair involves the charge transfer caused by the H-
bonds. First of all, the evaluation result in dispersion interaction by the standard
SCF methods was proved failed due to the lack of dispersion term. And the
dispersion correction works well sometimes in the interaction itself, but not in
the non-additivity. Second, even the coupled-cluster with singles, doubles, and
perturbative triples (CCSD(T)) method still evaluates the non-additive contribu-
tion of dispersion interaction as the SCF-level, which will never happened in the
binding itself, because of the practical handling of complete basis set correction
(CBS) at the feasible level with second order M�ller-Plesset perturbation theory
(MP2). Finally, although the wavefunction evaluation is trustworthy for the DMC
method itself, the FN method cannot be ruled out to cancel the approximation
error when the sign problem occurs, because we still divide the system according
to the H-bond in the non-additive evaluation.

Keywords: B-DNA, Stacking energy, Non-additivity, Quantum Monte Carlo,
ab initio methods
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Chapter 1

Introduction

With the continuous development of science, our exploration of micro is getting
deeper and deeper. However, nature shows us not simple truths, but the unknown
challenges that are constantly emerging. The computer simulation establishes
a bridge between the theoretical model and the real world. Then an accurate
description of the physical theory is essential. In this chapter, the limitations of
traditional computer molecular simulations are analyzed in the background of the
discovery of biomolecules. Starting from this background, the research motivation
of this thesis is brought forward. The problems solved in this study were defined,
and the main findings and contributions of this study were briefly explained. The
structure of this thesis is explained at the end of this chapter.

1.1 Background

The discovery of DNA double helix [7] and the determination of its 3D structure
have opened the door to life science at the molecular level. Since then, the
study of the properties of biological macromolecules has become an important
topic in academic research. From the DNA molecules to the transcription of
proteins, the microscopic effects of these magical molecules are the “central rule”
and key points to uncover the mysteries of life. Life relies on DNA molecules
to store genetic information and relies on the basic substances of replicating
DNA molecules for the transmission of genetic information. The information
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hidden in DNA is transcribed into mRNA by the action of transcriptase, and the
corresponding amino acid is transported to the ribosome by tRNA according to the
codon-anticodon pairing principle. The basic units of these proteins are arranged
in a sequence following the encoding of mRNA, and further proteins are formed.
Protein is the basis of all life activities and can be defined as materials with a
certain spatial structure formed by the folding of polypeptide chains composed
of amino acids in an “dehydration condensation” manner. The complex and
subtle geometry of a protein is the structural basis for its realization of different
biological functions. Protein has a four-level structure from micro to macro [8,9]:

1. The primary structure refers to the order in which amino acids are arranged
on a protein polypeptide chain.

2. A secondary structure refers to a specific spatial structure in which a
polypeptide chain is crimped or folded under the action of intermolecular
forces.

3. Based on the secondary structure, the polypeptide chain will further form a
more complex tertiary structure according to the specific spatial structure.

4. Finally, the quaternary structure of the aggregate is formed in a certain
spatial arrangement.

The spatial structure of proteins is an important guarantee for their biological
functions. If the protein molecule is in its specific three-dimensional structure,
only specific biological activities can be obtained. There is a great significance
for drug design and exploration of biochemical principles to study the spatial
structure changes of proteins, their functions, and the relationship between protein
and ligand action mechanism. In one word, in molecular systems, the Dynamics
of structure is determined by intermolecular interactions. Suffice it to say that
intermolecular forces explain the stability of important compounds such as DNA
and RNA, and also play a vital role in biological behavior such as muscle
contraction. [10]

The current main research methods on biomolecules are experiments, includ-
ing X-ray diffraction (XRD) and nuclear magnetic resonance (NMR). As with
other materials science studies, experimental methods are difficult to describe
the microscopic details of biomolecules, including molecular-level dynamics and
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basic functional states. Especially in the study of the dynamic mechanism of
proteins, the folding mechanism is particularly difficult. During protein folding,
there are many forces involved, including some structural steric hindrance, van
der Waals forces (vdW), hydrogen bonding interactions (H-bond), hydrophobic
interactions, ionic interactions, and ruthenium-driven folding resulting from the
interaction of the polypeptide and surrounding solvents. For drug development,
such as cancer-targeted drugs, precise matching of biological targets is required.
Generally, screening of target compounds requires high-throughput experiments,
but this is costly. Therefore, computer simulation plays an important role in
understanding and studying the structure and biological function of biomolecules
compared to traditional experimental methods.

Since 1977, McCammon [11] published the first article on protein molecular
dynamics simulations in Nature, opening the era of biomolecular modeling. With
the increasing computing power, the rise of large-scale parallel computers [12],
and the emerging computing methods, simulation has become one of the impor-
tant research methods of biomolecules, not just an auxiliary method to explain
experiments. With the combination of quantum chemical calculation methods
and molecular modeling in recent years, it has become possible to study complex
and special biological molecules.

Computer simulation of molecular or molecular systems, also known as
molecular modeling, is based on understanding the relationship between molec-
ular structures and properties, the establishment of mathematical models, the
inductive laws, and the predictive properties. Molecular simulation can not only
study the structures and properties of known molecules but also simulate the
structural properties of unknown or unsynthesized compounds. It also could
be applied to the study of the structural properties, and guiding the design of
necessary molecules with specific structural properties.

Molecular simulations can be regarded as experiments on the computer.
Through computer numerical simulation, the information about molecular could
be obtained from atomic-level interactions, including their structure, kinetics,
thermodynamics, and the relationship between this physical property information
and molecular function. Molecular simulation can be used to detect the prop-
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erties that are difficult to measure directly by experimental methods and to fill
in microscopic details during the experiment. Calculation helps us understand
experimental phenomena, provide information that is not available in experiments,
and even predict experimental results.

Due to the large system size response of proteins and nucleic acids, current
experimental methods often fail to achieve the required accuracy. Computational
software can simulate complex, large-scale reaction systems, visually describe
complex biochemical processes, which there are great advantages in the analysis
process. These advantages are expressed as:

1. Computer simulation method can simulate the actual system through a
series of complex systems, thus providing a reference standard that can be
used to compare approximation theory;

2. Computer simulation can compare simulated models with experiments and
provide a means to assess whether the models are correct;

3. Computer simulation can also strengthen the combination of theory and
experiment. Many physical properties are experimentally impossible or
difficult to obtain accurate values but can be calculated by simulation.

Molecules are composed of individual atoms, each of which is in an energy
state, and what kind of force is received, and formulating these is the so-called
molecular force field. As early as 1970, there were already calculation methods
based on classical mechanics, namely, force field molecular dynamics. [13] The
method calculates various properties of molecules based on the force field of
molecules. According to Born-Oppenheimer approximation, the movement of
electrons in the calculation is neglected and considered as a force field. The
potential energy of the system is considered as a force function of the position
of the nucleus. The parameters in the force field of the molecule are obtained
by quantum mechanical methods or by experimental methods, that so-called
empirical field method. [14]
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1.2 Empirical force field

If we introduce quantum mechanics, considering each quantized electron motion,
the calculation will be much more complicated, due to the calculations of electron-
electron, electron-nucleus interactions and electron kinetic energy will make the
computational complexity increase exponentially(If the number of electrons is
N, O

(
N5∼6

)
). Compared with the quantum mechanical method, the empirical

field method is much simpler in the calculation and can quickly obtain various
properties of the molecule. In some cases [15–17], the results are almost identical
to those obtained by high-order quantum mechanical methods, but the calculation
time is much shorter than the calculation of quantum mechanics. So with the right
precision, the advantages of molecular dynamics are obvious:

1. Calculation speed is fast;
2. A system capable of calculating large molecules or containing many

molecules;
3. No high-performance computing resources are required.

On the other hand, the molecular force field function is given by the empirical
parameter, which causes the molecular force field to be accurate only for the
molecules of the structure. Then the force field is applied to other functions,
and the force field function cannot be completely Trustworthy. If the chemical
bonds in the molecule change, the electron distribution within the molecule will
change accordingly, and the energy and structure calculated using such molecular
force fields are obviously not correct. Moreover, since the motion of electrons is
neglected, the properties related to electron density or molecular orbital cannot be
calculated.

However, the force field model constructed by empirical data limitate the
simulation results. Because the empirical field does not directly describe the elec-
trons, and different interactions usually form the force field in the real situation,
the empirical parameters can only describe the force field in the current state of
a target system. When the condition changes, the chemical bond changes due
to the change of the state of electrons, and this change are not self-consistent
with the geometry. Correspondingly, the excited state and transition state of
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electrons affect the accuracy of the force field. The core problem is that the
empirical force field is an approximate model from different experimental data,
which is also the reason why the simulation of the force field is fast (which could
calculate larger systems than electronic state calculations). On the other hand,
empirical data is not credible, and any empirical field simulation results require
experiments to verify. Namely, the simulations can now be performed on systems
containing millions of atoms and in microseconds. Another increasingly popular
method is to combine the quantum mechanical potential energy calculation with
the molecular force field. Although this semi-empirical hybrid method utilizes
quantum mechanical potential energy to solve most of the defects of classical
potential energy accurately, these difficulties still exist in the force field part
of the calculation. Therefore, many researchers have proposed corresponding
improvement methods, such as X-POL force field [18].

Since the molecular force field method, more force fields have been applied to
biochemical, molecular systems, polymer compounds, metals, and non-metallic
materials. These methods have greatly improved the accuracy of complex com-
putational systems, as well as their thermodynamics and Physical properties.
However, particles do not just contain potential energy. When we need to look at
the evolution of the system over time from a dynamic perspective, kinetic energy
needs to be taken into account. Molecular dynamics simulation (MD) is a com-
putational method developed using these force fields or electron orbit to calculate
the potential energy and calculate the ion kinetic energy based on classical motion
mechanics. Particle motion in molecular dynamics simulation has the correct
physical basis. Therefore, the accuracy is higher, the dynamic and thermodynamic
statistics of the system can be obtained, and it can be widely applied to various
systems and various characteristics. However, molecular dynamics simulation has
certain limitations. Since the calculation requires reference to the mathematical
integration method, it is only possible to study the motion of the system in a short
time range, and it is impossible to simulate long-term motion problems (such as
protein folding).

In macromolecular systems, intermolecular forces within many-body system
cannot be ignored. But most force field potential function based on pairwise
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function, which means only consider the superposition interactions between two-
body. Therefore empirical force field parameters cannot accurately describe the
quantum fluctuations in many-body (more than two-body) molecular systems.
Due to the interaction between molecules, in a many-body system, electrons will
induce polarity with the force field, which will cause orbital deformation, resulting
in weakening of the intermolecular interactions. Nevertheless, the interaction
between molecules is significant for the properties and actions of molecules, such
as protein folding and DNA stacking. Ignoring the electron movement in the
empirical field also ignores this incentive, which makes the interpretation of the
reaction mechanism at the microscopic level inaccurate.

In many-body systems, the empirical force field cannot consider the non-
additivity of force field superposition. Unlike classical mechanics, the force field
superposition of quantum systems cannot be added by the instantaneous polariza-
tion caused by quantum fluctuations. Therefore, it has a non-additive effect. The
non-additivity in the interactions is expected in inter-molecular bindings due to
the induced polarization by quantum fluctuations, such as vdW forces.

The description and reproduce of the bonding itself, due to intermolecular
forces, is a huge challenge for ab initio methods. Non-additivity is a more difficult
subject that has long been far from the mainstream research field and has not
been well analyzed yet. At present, most molecular force fields are implemented
by assuming a superposition of two physical forces, which are widely used in
a large number of biomolecules for self-organization simulation [19–26]. This
assumption is partially demonstrated, for example, in the report [1], confirming
the good agreement between the empirical field, such as AMBER force field [27],
and the stacking energy predicted by high-precision quantum chemistry methods.
The ab initio quantum chemistry theory is a good description of the natural
stacking energy, which allows reliable energy to be found on any base structure.
Calculations, in any case, need to be done at a sufficient theoretical level. For
example, standard DFT, HF, and semi-empirical methods all fail in the description
of base stacking because they cannot correctly capture the dispersion effect [28].

Based on the above discussion, we need a high-precision method to simulate
the molecular system. Of course, the high-precision method coupled-cluster with
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singles, doubles, and perturbative triples (CCSD(T)/CBS) [29] is a widely used
method called “gold standard” for quantum chemistry. CCSD(T) is a calculation
method based on the HF method and adding electron correlations functions.
However, the full electronic correlation calculation makes the calculation cost
increase rapidly with the increase of the number of particles O

(
N7

)
. It is

impossible to calculates large systems due to its exponential growth computa-
tional cost. Recent advances in accurate calculation methods, especially through
Diffusion Monte Carlo (DMC) calculations, make it possible to handle larger
systems. [28, 30–41] However, some work applied to systems consisting of
weakly constrained subsystems shows that non-additiveness is much larger than
we expected. [42, 43] Although there is non-additivity in larger molecules, if
the non-additive contribution is positive, then there is no research significance. If
so, it will only make minor corrections to the C6 (the coefficient of 1/R6deciation
interactions) force without any qualitative impact.

1.3 Problem Statement

The subject studied in this thesis is the non-additivity of non-covalent interactions
between large molecules such as B-DNA systems. Due to quantum fluctuations,
the non-additiveness of the interaction forces between macromolecules is always
expected. The interaction between the molecules of a living organism is in the
formation of its structure. It plays an important role in biochemical reactions.
DNA molecules are the basis of biological, genetic variation. The most basic ten
kinds of B-DNA molecular structures are composed of two kinds of purines and
pyrimidines. For DNA molecules, the number of atoms is around 10, and the
weak force between many-body molecules itself is the challenge in the field of
quantum chemistry. The non-additive study of the forces between molecules is
at the edge of the research field. In the previous calculation methods, the sign
of the non-additive contribution is positive. Recent studies have shown that in
the calculation using the fixed node diffusion monte carlo (FNDMC) method,
and negative values appear in the results of non-additive contributions. First
of all, the appearance of this phenomenon makes the evaluation result of the
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SCF methods in dispersion interaction non-additivity doubtful. Second, even the
CCSD(T) method, known as the “Gold standard”, still evaluates non-additivity as
the SCF-level, which will never happen in the dispersion interaction itself. Finally,
although the calculation is trustworthy for the DMC method itself, the Fixed-Node
method cannot be ruled out in the cancel the approximation error occurs when the
symbolic problem occurs, because, in the non-additive evaluation, we still divide
the system according to the H-bonds. Therefore, discussing the correctness and
rationality of this result is the problem to be solved in this study.

1.4 Contributions

In this study, we performed ab initio calculations for the selected many-body
molecular systems, B-DNA stacking systems. We investigate non-additivity in B-
DNA “systematically” for the first time. A variety of different methods were used
to compare stacking energy and non-additivity contribution in different B-DNA
combinations. These methods include the simplest HF method, the addition of
electronically associated LMP2, CCSD(T), SAPT methods, and several common
functional standard DFT methods (LDA, hybrid functionals(B3LYP) and Meta
hybrid GGA (M06-2X)), as well as the DFT methods with dispersion correction
(B3LYP-D3, CAM-B3LYP-D3, wB97X), and FNDMC, one of the widely used
QMC methods. We will explain in detail the theoretical implications, differences,
and computational processes of these methods in the theoretical chapters that
follow. Detailed data and results, as well as a detailed discussion, will be presented
later, summarizing the main findings of this study. Our evaluation of binding
energies come up to common expectations for the methodologies. However, the
expected result of binding energy does not occur equally in the non-additive
contribution of binding energy:

1. FNDMC and “CCSD(T)” results are inconsistent with each other in the
non-additive contribution (here we use “CCSD(T)” instead of CCSD(T) for
some reason described below);

2. “CCSD(T)” gives almost the same results as B3LYP and HF at an SCF-
level in the non-additive contribution, which hardly occurs when evaluating
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binding energy;

3. In the inconsistent part of the non-additional contribution, we can find that
the FNDMC has a significant negative non-additive contribution, and the
London theory naturally expects the negative value of this part;

4. In the non-additive contribution of another part of the positive sign, the
value of FNDMC is far higher than other methods, and these trends are
strictly related to the structural asymmetry of the system. We found the
law of this part after analyzing the Hydrogen bonding bridging arrangement
(parallel or anti-parallel) in the system.

Only the FNDMC captures the negative values in non-additive contribu-
tions, which illustrates the significant advantage of this high-precision calculation
method in the calculation of intermolecular interactions. For the quantum many-
body system, the approximations based on the two-body superposition cannot
achieve an accurate description of the non-additivity of dispersion forces at all,
even if the dispersion force correction is increased. Then the reliability of the
correction of the dispersion force is questionable, that is, whether the approx-
imations of superposition can describe the induced polar dispersion force with
sufficient accuracy. The conclusion that readers most easily misunderstand this
study is that the non-additive contribution of CCSD(T) only stays at an SCF-level.
These conclusions are not due to our careless choice of calculation specifications
or statistical calculation errors. However, more fundamental points – practical
approximations used in DMC and CCSD(T), are very effective for evaluating
binding energy, but not for the non-additivity contribution results. In the former
case, we can see that many previous works are reporting the cancellation of fixed
node biases between the entire system and its constituent molecules, which can be
well evaluated for binding energy [35–37]. On the other hand, such cancellation
has not been investigated yet. In the latter case, we note the fact that “CCSD(T)”
applied to B-DNA systems is actually “CCSD(T) with CBS at the MP2 level” [1].
We conclude that this practical approximation can be attributed to the fact that
there are the same trends in non-additivity as B3LYP that is not believed to be
capable of reproducing vdW interactions [36].
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1.5 Outline of thesis

This thesis contains six chapters, where Chapter 1 gives an introduction to the
research. The introduction mainly describes the current situation of molecular
simulation, as well as the shortcomings of traditional methods in high-precision
simulation of large molecular systems, and explains the motivation of the the-
sis. Moreover, the structure of the article and the main contributions are also
described.

Chapter 2 combs the theoretical framework of the method of ab initio methods
calculation. This chapter starts with the most basic Hartree-Fock (HF) method
and goes to Post-HF methods. The DFT methods, which are widely used, and the
QMC methods applied in this research, are briefly described. Different methods
were compared, including the theoretical and algorithmic processes are provided.

Chapter 3 gives the problem we solved and described the target system. B-
DNA systems are typcal samples for non-additivity studies. In order to compare
the differences in precision between different methods, we have tried from the
widely used DFT methods to the high-precision methods. The details of how
to perform the calculation are described. Finally, we also analyze the parallel
efficiency of two different algorithms (SCF and MC).

Chapter 4 presents the results of the non-additive nature of stack energy and
discusses the results. The categories of molecular action and the mechanism
of superposition and non-additive action are elaborated in detail. This study
applied the QMC method in a macromolecular 4-body system and a monoatomic
molecular four-body system.

Among them, the non-addition result of QMC is found to be much larger than
other traditional methods, which is discussed by two simplified models in Chapter
5.

Finally, the conclusion and the recommendations for future studies are dis-
cussed in Chapter 6.

The main content of thesis have already been published in Chemical Physics
in 2019 as “Inconsistencies in ab initio evaluations of non-additive contribu-
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tions of DNA stacking energies” [44]. And it also been published in arXiv
as https://arxiv.org/abs/1807.04168. Part of the results were presented in the
following conferences:

1. APS March Meeting 2019, R31, Boston, USA, Mar/07/2019;

2. QMCPACK users workshop 2019, Oak Ridge, USA, May/14/2019;

3. Workshop on Crystal Structure Prediction: Exploring the Mendeleev Ta-
ble as a Palette to Design New Materials — (smr 3267), Trieste, Italy,
Jan/14/2019;

4. APS March Meeting 2018, A34, Los Angeles, USA, Mar/05/2018.

1.6 Summary

This chapter sets out the current state of molecular simulation from the develop-
ment of biomolecules as background. It also illustrates the traditional empirical
field defects and further gives the importance of high-precision quantum chemical
simulation. With the rapid development of the computer industry, especially the
computational power of massive-scale parallel computers, molecular simulation
has shown a very bright prospect in the fields of revealing biological effects and
computer-assisted drug design. However, it is difficult to achieve a balance be-
tween high-precision calculations and reasonable computational costs. However,
the precise description of the intermolecular interactions is an essential part of
molecular modeling. The research demand of larger systems is also a challenge
in the conventional computing methods. In recent years, the QMC method
based on numerical statistics has achieved good results in the calculation of
long-range intermolecular forces, which demonstrates the dawn of high-precision
quantum chemical calculations. Although the QMC method is far more costly
in computational complexity than conventional ab initio methods. Fortunately,
parallel computers are better at solving statistics-based calculations such as QMC
than the widely used methods based on determinant numerical integration. In
this study, the QMC method is used to study the non-additivity of intermolecular
interactions. The results show that the QMC method can capture non-additive
contribution more than expected which is difficult to capture by other ab initio
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calculations. This important discovery demonstrates the unparalleled potential
of the QMC methods in high-precision large-scale biomolecular simulations. It
raises reasonable questions about the approximations methods based on the two-
body superposition in the traditional methods, which provides a valuable reference
for later research. Finally, this chapter concludes the main contributions and the
chapter arrangement structure of this thesis.

13



14



Chapter 2

Theoretical framework

ab initio calculation is derived from Latin, meaning “from the beginning”, is a
description of physicochemical properties of molecules, periodic crystals, etc.
using microscopic quantum mechanics theory, which is an important methodology
to solve many-electron state problems currently. This chapter begins with the
simplest Hartree-Fock (HF) method for solving the Schrödinger equation and
expands to the Post-HF methods with the electronic association. The theoret-
ical methods and computational details of the density functional theory (DFT)
methods, which are currently widely used, are briefly described in the following
sections. However, for these methods, there are some limitations. For large
system molecular systems, the Post-HF methods with the addition of electronic
correlation are too complex to handle large many-body systems. For DFT
methods, the lack of dispersion interactions term makes them seem to be unable to
deal with the role of weak intermolecular interactions. Therefore, high-precision
methods that can handle large systems are indispensable. Compared with the
usage of approximation to improve the calculation speed, it is an important
idea to use randomly statistical methods to solve energy integrals. Finally, the
main algorithms of the quantum monte carlo (QMC) methods mainly applied in
this thesis, including variational monte carlo (VMC) and diffusion monte carlo
(DMC), is explained in detail.
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2.1 Mean field approximation

2.1.1 Hamiltonian and N-body Schrödinger equation

In condensed matter physics, both atoms and molecules, as well as periodic
crystals, consist of elementary particles, electrons, and nucleuses. The description
of these particles is based on fundamental theoretical methods in terms of quantum
mechanics and statistical mechanics, expressed by the wave functionΨ , and |ψ|2 is
the probability of the particle.. For a variety of properties on a system that contain
ions and electrons, the relationship can be expressed in terms of Hamiltonian.
With this Hamiltonian, all properties of systems can be obtained by solving the
time-independent Schrödinger equation in principle. Suppose a system contains n

particles, for time-independent N-body Schrödinger equation can be presented as
follow:

Ĥ Ψ = E · Ψ
(
~r1,~r2, · · · ,~rn

)
, (2.1)

where Ĥ is the Hamiltonian operator to obtain properties and E is the eigenstates
of Ĥ and Ψ is the wave function of the particles in position ~r1,~r2, · · · ,~rn.

In general, not for any value of E, there is a non-zero solution that satisfies
the natural condition. In order for such a solution to existing, E can only take
certain values. The solution of E is an eigenvalue of Hamiltonian Ĥ, which is
a real number that satisfies the eigenvalue equation. If we consider further like
particles in a box or harmonic oscillator, there are N electrons and M nuclei in this
system, and the electrons in the space vector position ~r use i, j, · · · to represent.
The atomic nucleus is represented by A, B, · · · , and the distance between them is
the vector difference of their position. The mass of electrons m is much smaller
than the mass of the nucleus M, and ZA is the atomic number of nucleus. Then the
complete Schrödinger description is as follow:− }2

2m

N∑
i=1

∇2
i −

}2

2MA

M∑
A=1

∇2
A −

N∑
i=1

M∑
A=1

ZAe2

riA
+

N∑
i=1

N∑
i< j

e2

ri j
+

M∑
A=1

M∑
A<B

ZAZBe2

rAB

Ψ = E ·Ψ,

(2.2)
where the first term of Hamiltonian in left is the set of kinetic energy of elec-
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trons; the second part represents the kinetic energy of the nuclei, and ∇2 is the
Laplacian operator representing the differential of spatial coordinates; the third
term represents the interactions between atomic nucleus A and electron i, and riA

represents the distance between electron and nucleus, riA =
∣∣∣~ri − ~rA

∣∣∣, this item can
be represented by the V function; the fourth term electron and electron correlation,
ri j represents the distance between electrons, ri j =

∣∣∣~ri − ~r j

∣∣∣, also expressed as
U(~ri,~r j); the last item is the correlation between different nuclei.

It should be noted that, based on a conservative system, in the case of Ĥ for
total energy, V(~ri) is only a function related to spatial coordinates. Ψ (~r1, · · · ,~rn)is
the electronic wave function of the n particles on each position coordinate. If each
particle is in the ground state, then the eigensolution E of the Hamiltonian is the
total system ground state energy under this state. It is unrealistic to solve this
equation completely for a large enough system; therefore, how to get a solution
within the acceptable accuracy range is being discussed in the next sections. The
first is a reasonable approximation, omitting items of a small order of magnitude.
The second is to use the idea of division to reduce the time complexity. The
electron wave function is the equation on each coordinate, which belongs to all N

electrons. The reasonable idea is to map this many-body interacting problem to
a set of one-body noninteracting problem (Kohn-Sham equations). This will be
explained and described below in detail.

2.1.2 Born-Oppenheimer approximation

The mass of the nucleus is 103 ∼ 105 times larger than the electron, therefore in
the molecular system, the displacement of nuclei is much smaller compare to elec-
trons at a certain time scale. This means that electrons always move around nuclei,
and the electrons have an appropriate state of motion under the arrangement of any
determined nucleus. In turn, the relative motion between nuclei can also be seen
as the average effect of the electronic movement. Hence, to a good approximation,
the electrons movement in molecules can be considered as moving in the potential
field around fixed nuclei. This simplification of the motion of many-body systems
is called the Born-Oppenheimer (BO) approximation. Without considering the
interaction between spin and orbital, the interaction between spin and spin, and the
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case of relativity and so on. According to the discussion in the previous section,
the system’s Hamiltonian Ĥ can be expressed as five items: the kinetic energy
of electrons, the kinetic energy of nuclei, the attraction energy of electrons and
nuclei, the repulsive energy between electrons, and the repulsive energy between
nuclei. In order to separate the electronic motion from the nuclear motion, it
is necessary to make an approximation after omitting terms of a small order of
magnitude, and to separate the wave function Ψ as Ψ

(
~ri,~rA

)
= v

(
~rA

)
· u

(
~ri,~rA

)
,

where u is the wave function of electrons statement and v is wave function of
nuclei. The approximated formula after separation is obtained as follow:− ~2

2m

N∑
i=1

∇2
i + V(~ri,~rA)

 u = E(~rA) · u(~ri,~rA)− ~2

2M

M∑
A=1

∇2
A + E(~rA)

 v = ε · v(~rA).

(2.3)

The upper formula is the Schrödinger equation for electrons movement, the lower
formula is for nucleus movement. The full version of the formula takes into
account the state of thermal motion, including electronic, vibrational, rotational,
and translational energy. And when we isolate the movement of the nucleus,
we will no longer consider the vibration rotation problem, focusing only on the
electronic problem. Therefore, we remove the variables caused by the position of
the nucleus, considering only the electronic Hamiltonian and the electron wave
function.

2.1.3 Hartree-Fock theory

The Hartree-Fock (HF) method was proposed in the 1930s to calculate the atomic
structure and then gradually used to calculate the molecular structure [45], which
is the basis of molecular orbital (MO) theory. HF theory is one the simplest
approximate theories for solving the many-body Hamiltonian. According BO
approximation discussed in the previous section, the Hamiltonian could be given
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as follow:

Ĥ = −
}2

2m

N∑
i=1

∇2
i −

N∑
i=1

M∑
A=1

ZAe2

riA
+

N∑
i=1

N∑
i< j

e2

ri j
. (2.4)

Same as the previous formula, except that this time, we omitted the kinetic energy
of the nuclei. Because BO is used and the nucleus coordinates are constant, the
repulsive force between the nuclei is constant, so the solution of the wave function
of the original equation is not affected, and the difference in the feature value is
constant. The electron kinetic energy (the first term) and the potential energy of
the electrons attracted by the nuclei (the second term) can be decomposed into
the sum of the single-electron Hamiltonian operators. However, the interaction
between electrons cannot be ignored. Hartree proposes an approximation method
that considers the interaction between electrons. If this repulsion is averaged over
all positions of one of the two electrons, the result will be only a function of
another electronic coordinate. Thus, the entire system can be decomposed into a
single-electron stationary Schrödinger equation:

ĥi ψi = εi · ψi. (2.5)

Expand into a form containing non-local potential U and local ionic potential V:

−
1
2
∇2ψi(~r) + V(~r)ψi(~r) + U(~r)ψi(~r) = εi · ψi(~r). (2.6)

The many-electron system is the same Fermi sub-system, and the stationary
wave functions the Slater should be written as the Slater determinant as follow in
order to satisfy the antisymmetric:

Ψ (q1, q2, · · · , qN) =
1
√

N!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
ψ1 (q1), ψ1 (q2), · · · , ψ1 (qn)

ψ2 (q1), ψ2 (q2), · · · , ψ2 (qn)
...

...
...

ψn (q1), ψn (q2), · · · , ψn (qn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (2.7)

where the variables q include the coordinates of space ~r and spin. Since ĥi only
acts on the corresponding wave function, the orthogonal normality of the single
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electron wave function ψi can be utilized. According to the variational principle,
after averaging the average of the Hamiltonian operators, it can be found that the
definite integral is independent of the integral variable so that the Fock energy
formula can be finally obtained:

E =
∑

k

∫ ψ∗k(qi)

− ~2

2m
∇2

i −

M∑
A=1

ZAe2

riA

ψk(qi)

 dqi

+
~2

2m

∑
kk′

∫ |ψk(qi)|2
e2

ri j

∣∣∣ψk′(q j)
∣∣∣2 dqidq j

−
~2

2m

∑
kk′

∫ ψ∗k(qi)ψ∗k′(q j)
e2

ri j
ψk′(qi)ψk(q j)

 dqidq j.

(2.8)

The first summation represents the total kinetic energy of attraction between
all electrons and electron-nucleus. The second term represents the electrostatic
repulsion energy of these two electrons, according to Coulomb’s law. Alterna-
tively, called Hartree term, which is the simply electrostatic potential, including
an unphysical self-interaction of electrons when j = i. The third term is the
exchange term, which always appears as a negative sign, which can reduce the
interaction energy between parallel spintronics in different orbitals and stabilize
the system, also called spin-parallel term.

However, the specific form of ĥi contains integral terms for electronic wave
functions: ∑

j

∫ ψ2
je

2dr j

ri j
. (2.9)

In other words, it should be included an electronic wave function, and the solution
to this problem is as follows: Starting with N wave function ψi, the zero-order
approximation function is represented by ψ(0)

i , and these functions are used to
establish the corresponding ĥ(0)

i . By solving a single electronic equation, a new
set of wave functions is obtained, and so on repeat, until the last cycle loop, the
obtained wave function can be equal or infinitely close to the exact wave function
we need. Such a process is called a self-consistent field (SCF).
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2.2 Describing electronic correlation

The HF method considers spin correlation but does not consider the Coulomb
correlation. Due to Coulomb repulsion between electrons, two electrons cannot
appear in the same position in space, and the probability of being close is
also small. This dynamic correlation energy also needs to be corrected in the
calculation.

2.2.1 Configuration interaction

Configuration interaction (CI) [46,47] uses the lowest energy n molecular orbitals
in the system to form a Slater determinant for describing the ground stateΨ0:

Ψ0 = |Ψ1Ψ2 · · ·Ψe · · ·Ψn| , (2.10)

where Ψe is the lectronic excitation orbitals. These wave functions are all single
electronic wave functions that are at occupied orbitals.

If there is an electronic excitation to an empty orbital, each excitation cor-
responds mapped to a certain Slater determinant, which is referred to as an
activated configuration. If only one electron is excited from the occupied orbital
to an empty orbital, and |S 〉 is configured for single-electron excitation. Two
electrons are excited from the occupied orbitals to the empty orbitals, and |D〉 is
configured for the double-electron excitation. Three electrons are excited from the
occupied orbitals to the empty orbitals, and |T 〉 is configured for the triple-electron
excitation. Express the exact wave function of the system as a linear combination
of Slater determinant wave functions:

|ΨE〉 = C0 |Ψ0〉 + CS |S 〉 + CD |D〉 + CT |T 〉 + · · · . (2.11)

Starting from a complete set of single electron wave functions {ψi}, a complete set
of Slater determinant wave function {Ψi} sets is constructed. The multi-electron
wave function ΨE of the system is expanded to the complete determinant wave
function. In principle, the exact solution of the Schrödinger equation can be
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obtained by this way, ie. full CI method.

Where {ψi} is the space of orbitals, and {Ψi} is the space of configurations. The
CI method calculates the excited states so that each excited state configuration
contains many empty orbitals in the original ground state. Thus the probability
of distribution of other electrons around each electron becomes smaller as the
excitation configuration increases. Thereby the correlation effect becomes smaller
and smaller, so the Coulomb correlation can be corrected.

2.2.2 Coupled-cluster method

Coupled cluster (CC) method was first applied in the field of nuclear physics, and
Cizek et al. [48] used it for the electronic structure calculation of molecules. The
most basic equation is:

ΨE = eTΨHF , (2.12)

where ΨE is the non-relativistic exact wave function for multi-electron systems;
ΨHF is the HF ground state wave function of the system, as the reference state
of CC method; T is a cluster operator, which is actually the total excited state
generation operator, which can be expressed as the sum of the generator states Ti

for each excited state:

T = T1 + T2 + T3 + · · · =
∑

i

Ti. (2.13)

The general n-order cluster operator could be shown as :

Tn =
1

(n!)2

Occupied∑
i1,i2,...,in

Unoccupied∑
a1,a2,...,an

ti1,i2,...,in
a1,a2,...,an

T a1T a2 . . . T anTin . . . Ti2Ti1 , (2.14)

where i stands for occupied and a for unoccupied orbitals, T means that the
excited electrons from the occupied spin orbitals to the unoccupied spin orbitals,
ti1,i2
a1,a2,...,an means the corresponding expansion factor is called the cluster amplitude.

Solving for the unknown coefficients, cluster amplide, is necessary for finding the
approximate solution |Ψ〉.
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The exponential operator may be expanded as a Taylor series. After expanding
eT into a series, we can get the wave function expression obtained by combining
the terms of the excited electrons:

ΨE =

[
1 + T1 +

(
1
2!

T2
1 + T2

)
+

(
1
3!

T3
1 + T1T2 + T3

)
+ · · ·

]
ΨHF . (2.15)

It can be seen that the common CI method is an approximation of the CC method.
For example, in the case of two-electron excitation, the CC method includes 1

2T 2
1 ,

which is not in the CI method. For multi-electron correlation, it can be divided into
connected clusters; that is, electrons are directly related, and disconnected clusters
are disconnected, meaning that the clusters of electrons are related in different
areas of space. Tn represents n-electron correlation and can be considered as a
connected cluster, while the other items T m

n are unconnected clusters, representing
the correlation of electrons in different regions of space. The probability that all
electrons will get together at the same time is tiny, but the probability that electrons
are made into different sets and then correlated with each other is much greater.

According to the number of items of T , the level of the CC method is
expressed as follows:

CCD :T = T2

CCSD :T = T1 + T2

CCSDT :T = T1 + T2 + T3.

(2.16)

CCSD(T) indicates that the cluster amplitude tabc
i jk of T abc

i jk is not calculated in the
iteration, and the coefficients of single excitation and double excitation are used
to calculate the triple-electrons term. It is shown that the calculation of the three
electrons correlation is an approximation.
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2.2.3 Many-body perturbation theory

It is assumed that the Hamilton of the system can be decomposed into a part E

before the perturbation and a part W that is subjected to the perturbation.
Ĥ =E + W

|H′〉 =|0〉 + |1〉 + |2〉 + · · ·

H′ =E′ + a1 + a2 + · · · ,

(2.17)

where the upper formula represents the eigenvector, and the following represents
the corresponding eigenvalue. And |0〉, E′ represents a zero-order approximation,
and the following items are first-order corrections, second-order corrections, and
so on. This formula can be transformed into a formula that is solved step by step:

(
E′ − E

)
|0〉 = 0(

E′ − E
)
|1〉 + a1|0〉 = W |0〉(

E′ − E
)
|2〉 + a1|1〉 + a2|0〉 = W |1〉.

(2.18)

These equations can be solved by a stepwise approximation, that is, the first-order
approximation equation is solved, and |0〉, E′ is obtained, and then it is used to
solve the approximation equation of the next stage. In principle, it can be solved
indefinitely, but in practice, if W is good selected, the second-order is enough.

M�ller-Plesset Perturbation (MP) [49] is a type of many-body perturbation
method. When using this method to solve the correlation energy, the HF method
is first used as the unperturbed reference of the system. In this case, the sum
of the single-electron Fock operators F is taken as the zero-order perturbation
Hamiltonian:

Fψr = εrψr, (2.19)

where ψr is a single-electron orbital wave function, and εr is the energy. The
energy eigenvalue at this time, ie the energy of the unperturbed system, is equal
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to the sum of the orbital energy:

E′ =

Occupied∑
r

εr. (2.20)

In this way we can use the single-electron wave function to construct the determi-
nant wave function of the system, Ψ0. After considering the first-level correction,
you can get the energy as:

E1 = E′ + a1 = 〈Ψ0 |E|Ψ0〉 + 〈Ψ0 |W1|Ψ0〉 . (2.21)

It can be noted that this is the total energy in the HF method. Let us consider using
this structure to construct a first-order correction of the wave function:

Ψ1 =
∑

i

〈
Ψ0,i |W1|Ψ0

〉
E′ − a1,i

Ψ0,i. (2.22)

By analogy, we can get higher order corrections step by step. The energy sought
after this secondary-order correction is called MP2. Obviously, the larger the n of
MPn, the more accurate the calculation, but the workload will also increase. MP2
is the most widely used level. In general, it can calculate the correlation energy of
80-90%, which is obviously not accurate enough for the weak interactions.

local electron correlation methods at the second-order perturbation theory
level (LMP2) [50] can calculate the intermolecular interactions at the level close
to MP2 results without the basis set superposition error (BSSE). That is to say,
LMP2 can handle larger systems or use a higher level of the base set due to
its computational cost varies linearly with the size of the target system [51].
Another method that has been shown to handle intermolecular forces efficiently is
symmetry-adapted perturbation-theory (SAPT) method with energy components
up to the second-order in V [52,53]. SAPT is also a method based on many-body
perturbation theory to solve non-covalent bonds between molecules directly, and
its calculation accuracy increases with the increase of level. These methods are
all applied to the superposition energy calculation of the B-DNA system.
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2.3 Density functional theory

According to the HF method, the energy E is regarded as an integral function
Eq. 2.8 of the wave function ψ, and then the energy E is found to be extreme
value according to the variational principle.

E =

∫
ψ∗Ĥψdτ∫
ψ∗ψdτ

(2.23)

Since ψ itself is a function, E is a function of the function, called a functional,
which is a process of finding the extremum of a functional. Density functional
theory (DFT) [54, 55], by means of statistical averaging, represents the electron
density near a spatial point, using electron density ρ(~r) to represent energy E(ρ).
The advantage of the energy density functional E(ρ) instead of E(ψ) is that it
greatly reduces the computational complexity. For a multi-electronic system
of N electrons, an electron has four coordinates, spatial coordinates, and spin
coordinates. The wave function is considered to be able to describe any state
of the particle in quantum mechanics, so a system’s wave function requires 4N

coordinates as independent variables. Considering the antisymmetry, the wave
function formed as Slater determinant will become very large. If we consider
configuring the interaction (CI), multiple Slater determinants will be used. The
electron density is only a function of the spatial coordinates, and the magnitude
of the variables can be reduced from 4N to 3. Besides, the wave function
is observable, and the electron density is a considerable measure and can be
determined experimentally. This is the basic idea of DFT, and further Hoheberg-
Kohn theory lays the theoretical foundation of DFT. The Kohn-Sham equation
gives a concrete form of the ground state properties using electron density.

2.3.1 Hohenberg-Kohn theorem

In 1964, Hoheberg and Kohn published a milestone article in the “Physical
Review” [56] and began to establish the theoretical foundation of DFT. Hoheberg-
Kohn theory includes two principles:

26



1. The ground-state electron density of the system always mapped with the
external potential field. Therefore the properties can be completely deter-
mined.

2. For any density function ρ(~r), if the condition ρ(~r) ≥ 0,
∫
ρ(~r)dτ = N is

satisfied where N is the number of electrons, then E[ρ(~r)] ≥ E0, E0 is the
ground energy of the system.

The first principle of HK indicates that the ground state energy of the system
is only a functional of electron density. The second principle states that the
variational principle of E[ρ(~r)] is established, and the ground state of the system
can be obtained by applying the variational principle. The ground state energy of
the system can be obtained by applying the variational principle.

2.3.2 Kohn-Sham Equation

For the total energy of the system, the kinetic energy of the electron, the interac-
tion energy between the electrons, and the energy of the electron in the potential
field V can be expressed as a functional of the density function ρ(~r) as follow:

E(ρ) = T (ρ) + Eee(ρ) +

∫
ρ(~r)V(~r)d~r. (2.24)

In order to solve the specific computational problems, Kohn and Sham proposed
not to pursue the kinetic energy exact formula of the real system with the electron
density ρ as the variable, but to introduce the noninteracting reference frame
to establish the expression of the calculated kinetic energy. The use of a non-
interactive reference frame means that the electrons are still Fermi, but the electron
Coulomb force is not considered when calculating the kinetic energy. Therefore,
the universal functional of the real system can be decomposed into the following
form:

T (ρ) + Eee(ρ) = Ts(ρ) + J(ρ) + Exc(ρ), (2.25)

where Ts(ρ) is kinetic energy in a non-interactive reference frame; J(ρ) is classical
electron-electron coulomb exclusion energy calculated separately. It is worth
noting that the kinetic energy of the real system is not the same as the kinetic
energy in the reference frame, and the interaction energy of electrons is also
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different from the Coulomb force. These gaps are defined as a functional Exc(ρ)
that exchange-correlation (XC) energy. If a good enough electron orbital (KS
orbital) was selected, then Exc(ρ) can be small enough to handle the approximation
error. DFT is precise in principle, and the key question is how to find “good
enough” Exc(ρ) and V .

Then we can get the one-electron equation in DFT, the Kohn-Sham equa-
tion [57]: −1

2
∇2 −

Λ∑
p=1

Zp∣∣∣~rp − ~r
∣∣∣ +

∫
ρ
(
~r′
)∣∣∣~r − ~r′∣∣∣d~r′ + ∂Exc

∂ρ

 φi = εiφi, (2.26)

where the first term in the Hamiltonian expression on the left is the electron kinetic
energy, the second term represents the attraction potential of the atomic p to the
electron, and the third term is the Coulomb potential, and the last term is the
exchange-correlation potential energy. If the XC function is determined, then we
can solve the SCF solution in the same way as the HF method. φi can also be
written as a linear combination of the basis function set {χk}:

φi =
∑

k

ckiχk, (2.27)

here {χk} can choose either Slater type orbitals (STOs) or Gaussian type orbitals
(GTOs). Both electronic orbital descriptions have advantages and disadvantages.
The structure of the STO form is more in line with the true wave function
description, exponentially decays over long distances, and conforms to Kato’s
conditions in short distances. However, the form of STO in factorization is more
complicated since its calculation is not easy to simplify. Therefore, according
to the calculation cost, the application of GTO with easier numerical processing
is more extensive. The GTO conforms to the Gaussian Product Theorem, i.e.,
the product of two GTOs can be expressed as the sum of a finite number of
Gaussian functions somewhere in the middle. This greatly simplifies the use of
basis functions, which are typically 4-5 orders of magnitude faster than STO.
Furthermore, some contracted basis functions, the two forms are mixed in order
to balance accuracy and computational efficiency. Therefore, the DFT experiences
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three different levels of approximation. [58] The first is the difference between
theory and reality, using KS orbital to approximate the physical wave function.
The second is a numerical approximation, which involves the choice of methods
that come in the actual solution of the differential equation, the main aspect being
the choice of the basis function. The third type is the introduction of a non-
interactive reference frame, which makes the error all focused on constructing an
unknown XC functional expression. How to choose this functional is discussed
in the next section. It is worth noting that the choice of XC functionals is like a
ladder, and so far, there is no accurate functional expression that can be applied
to the general systems. The difference in the processing of different functionals in
different problems chooses functionals to contain empirical components.

2.3.3 Exchange and Correlation Functionals

The choice of functionals is the main research problem in the DFT method, and
finding the right functional is crucial to the calculation results. Specifically,
Local functionals refers to methods for electron density approximation based
on harmonious electron gas, including Thomas Fermi (TF) and Local density
approximations (LDA). They keep the electrons too close together that the ex-
change’s overall energy was overestimates. At the same time, the correlation
energy is underestimated, because only the interaction of local electrons is con-
sidered without the long-range parts. The Semilocal or the gradient-expansion
approximation (GEA) and generalized gradient approximation (GGA) methods
all incorporate density gradient parameters into the density functional, which
improve the limitation of LDA. Nonlocal functionals can also be divided into
hybrids, orbital Functionals such as meta-GGAs and self-interaction correction
(SIC), and Integral-dependent functionals. Among them, SVWN is a kind of
LDA, B3LYP is the most widely used hybrids type method, and M06-2X a typical
meta-GGA method, while CAM-B3LYP and wB97X are long-range corrected
hybrid density functionals. In this study, we used SVWN [59], B3LYP [60],
CAM-B3LYP [61], M06-2X [62–64], wB97X for target molecular systems. This
includes representatives of local, semilocal and nonlocal functionals.

1. Local Density Approximation (LDA)
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The oldest and simplest DFT functional is LDA, which is based on average
or uniform electron gas (UEG), which does not apply to chemical problems.
The exchange-correlation energy density is assumed to be as uniform as
possible in the space of molecules, with the same energy at each location.
Therefore, it is considered that electrons can be considered to be uniformly
distributed in a small volume. An energy density function approximation
based on a uniform electron gas model is established within the spatial
volume element, except that the electron density is different at different
points.

ELDA
XC [ρ] = ELDA

X [ρ] + ELDA
C [ρ]. (2.28)

The exchange energy is as the following equation:

ELDA
X [ρ] = C

∫
n4/3(~r)d~r. (2.29)

In general, exchange-correlation functionals are represented in the form of
unrestricted spins, i.e., two electrons α and β can have different spatial
orbitals. Therefore, replacing two variables with one variable improves
the applicability of the function. For systems that are not equivalent to
spintronics, using two spin density functionals will yield more accurate
results. This method is called local spin density approximation (LSDA).
The exchange of energy depends only on the electron density at a given
location, so the calculation is simple. As a result, LDA calculations are
speedy and generally provide good geometry. However, sometimes, the
result is a systematic error in energy due to stronger bonding or excessive
bonding.

2. Generalized Gradient Approximation (GGA)
In general, GGA provides enhanced results for LDA. In order to correct
errors due to uneven distribution of electron density, and electron density
gradient characterizing the inhomogeneity is included in the expression of
the energy density functional. This functional is divided into two parts,
exchange and correlation functionals, and also derived separately. The
exchange energy does not depends on the value of density at a point as
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in LDA, but depends on its gradient as follows:

EGGA
XC [ρ] =

∫
ρ(~r)εXC(ρ(~r), | ∇ρ(~r) |)d~r. (2.30)

Most of the GGA functionals have been modified from LDA functionals
and have the following associations added.

εGGA
XC [ρ] = εLDA

XC [ρ] + ∆εX/C


∣∣∣∇ρ(~r)

∣∣∣
ρ4/3(~r)

 . (2.31)

If the functionals contain empirical parameters, the values are fitted to
reproduce the experimental result, such as exchange B(Becke), CAM, and
the correlation B88, LYP. On the other hand, the functionals exclude the
empirically determined parameter as the the following: exchange B86, PBE,
and the correlation is PW91.

3. Hybrid Exchange Functionals
These functionalities contain the exact fraction of HF exchange energy,
which comes from the molecular orbital functional of KS, which usually
contains the following form:

EXC = (1 − a) · EDFT
XC + a · EHF

X . (2.32)

In general, the exchange energy is significantly larger than the correlation
energy. In the HF method, the exchange energy can be accurately calcu-
lated, but the correlation can be complicated to calculate. So the Becke
process takes advantage of the hybrid approach in 1993, so-called B3LYP 3-
parameter functional or Backe3LYP. The calculation of the method includes
using the HF method and the DFT method to calculate the exchange energy,
and the DFT to calculate the correlation energy. This functional is widely
used for molecular calculations, especially for many organic molecule
calculations.

EB3LYP
XC = (1−a) ·ELDA

XC + a ·EHF
X + b ·∆EB

X + (1− c) ·ELDA
c + c ·ELYP

c , (2.33)

31



where a = 0.1161, b = 0.9262 and c = 0.8133. Basically, there are many
hybrid functionals, for instance B3LYP, which is widly used.

4. Hybrid Meta-GGA
Now that we have the idea of mixing different functionals, we can con-
tinue to develop GGA. A meta-GGA DFT functional in its original form
includes the second derivative of the electron density. Donald Truhlar
at the University of Minnesota published M05 functional family in 2005.
The M06 family represents a general improvement over the M05 family
and a series of functionals that are constantly being improved. Different
types are mixed with different parts. Among them, M06-L is a computa-
tional functional based on strong interactions such as metal, and M06 is
an improvement, which applies to the corresponding system. And M06-
HF is mixing Hartree–Fock and approximate DFT exchange, suitable for
systems with non-covalent bonds. M06-2X is its improvement, mixed
global hybrid functional with 54% HF exchange. It is worth noting that the
M06 functionals are mixed with different levels of empirical optimization
parameters, which is one of the reasons why they can only be optimized
for different systems. The exchange-correlation functionals are shown as
follow:

EM06
X =EPBE

C (ρ,∇ρ,∇2ρ) + ELS DA
C

EM06
C =Eαβ

C + Eαα
C + Eββ

C

EM06
XC =pEHF

X + (1 − p) EM06
X + EM06

C ,

(2.34)

Where exchange engery not only used gradient, but also include 2-order
gradient, and in the correlation functional, oppsite-spin(αβ) and parallel-
spin(αα and ββ) are treated separately, finally, the p is determined by fitting
to the data in the training set.

2.3.4 Basis set superposition error

When calculating the weak interaction energy between multibody molecules, such
as the stacked molecules system A and B, usually:

Einteraction , EAB − E(A) − E(B). (2.35)
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Because the non-additivity of EAB energy relative to E(A) + E(B) does not only
contain the interaction energy between the real A and B molecules. On the other
hand, the basis functions from the A and B molecules overlap in the complex
system. In other words, the basis set of the complex is increased, resulting in
a decrease of E(AB) energy. In order to remove this part of the contribution
Einteraction, to prevent overestimation of the interaction energy, it must be corrected
using the basis set superposition error (BSSE) [65]. So the interaction energy of
the two molecules should be expressed as Einteraction = EAB−E(A)−E(B) + EBSSE.
For weak interactions, the ratio of EBSSE to Einteraction is often not small or even
exceeds it. If not corrected, the symbols may be wrong.

There are several ways to calculate EBSSE, and the counterpoise method is
currently the most widely used, developed by Boys and Bernardi. It should be
noted that this method only calculates the actual EBSSE approximation, which is
not completely strict and precise, and there is no rigorous method to calculate
EBSSE. Let Ei be the energy of the i-th molecule under its basis set and E′i be the
energy of the i-th molecule appearing under the basis functions of all n molecules.
Then the interaction energy of n molecules is

EBSSE =
∑

[i]

(Ei − E′i ). (2.36)

For the variational method, since the basis set is larger and the energy is lower, E′i
is more negative than Ei, so EBSSE must be positive. Since the composite structure
we use to calculate weak interactions is generally optimized. Therefore, generally
used counterpoise calculations are generally used to optimize the composite
structure.

2.4 Correction of long-range interactions

2.4.1 Intermolecular forces

Chemical bonds refer to the mutual chemical interactions of atoms in a molecule
and broadly include interactions between molecules. Two or more atoms or

33



ions rely on chemical bonds to combine atoms into stable molecules or crystals.
Generally, there are three chemical bonds: covalent bonds, ionic bonds, and metal
bonds. Among them, the molecules are mainly covalent bonds. Ionic bonds
and metal bonds are present in the ionic compound and the metal, respectively.
Hydrogen bonds (H-bonds) are sometimes formed between molecules and within
molecules, and their strength is between covalent bonds and vdW forces.

The intermolecular force is a general term for the interaction between groups
other than covalent bonds, ionic bonds, and metal bonds. It mainly includes ion
or radical groups, dipoles, interaction forces between induced dipoles, H-bonding
forces, hydrophobic group interaction forces, and non-bonded electron repulsive
forces. Most of the intermolecular interactions are below 10 Kj/mol, which is 12
orders of magnitude smaller than the usual covalent bond energy, with a range
of 0.3-0.5 nm. Moreover, there is generally no directionality and saturation other
than H-bond.

The three forces proportional to 1/r6 shown in Table 2.1 are known as vdW
forces. It is the role of people in the study of gas behavior, the discovery of
the attraction and repulsion between molecules in the gas phase, using the vdW
equation to correct the deviation of the actual gas against the ideal gas pair.

Table 2.1: Types of intermolecular-forces. [6]

Type relation with distance

Charged group electrostatic action 1/r
Ion - dipole 1/r2

Ion-induced dipole 1/r4

Dipole - dipole 1/r6

Dipole - induced dipole 1/r6

Induced dipole - induced dipole 1/r6

Non-key repulsion 1/r9 − 1/r17

There are three main sources of vdW forces: electrostatic force, induced force,
and dispersion forces.

1. Electrostatic force
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Polar molecules have a permanent dipole moment, and electrostatic attrac-
tion occurs between dipole moments. The average energy is:

E = −
2
3
µ2

1µ
2
2

kTr6 ×
1

(4πε0)2 , (2.37)

where µ is the dipole moments, respectively. r is the distance from
the center of mass of the molecule, k is the Boltzmann constant, T is
absolute temperature, and negative value represents energy reduction, ε0

is the vacuum permittivity, also known as vacuum dielectric constant or
electrical constant. The electrostatic force increases as the dipole moment
increase. For the same type of molecule, since the dipole moment is the
same, it is proportional to the fourth power of the dipole moment. When
the temperature rises, the orientation of the dipole molecules is destroyed,
and the interaction energy is lowered, so it is inversely proportional to the
absolute temperature.

2. Inductive force
The permanent dipole moment induces adjacent molecules, causing charge
displacement and induced dipole moments. There is an attraction between
the permanent dipole moment and the induced dipole moment. The energy
of this interaction is called inductive energy. The average induced energy
between molecule 1 with a dipole moment of µ1 and molecule 2 with
polarizability of α2 is:

E = −
α2µ

2
1

(4πε0)2r6
. (2.38)

3. Dispersion force
Non-polar molecules have an instantaneous dipole moment. The instanta-
neous dipole moment induces a dipole moment in the adjacent molecule,
and the interaction between the instantaneous dipole moment and the in-
duced dipole moment is called the dispersive force. This interaction energy
is called dispersive energy. London introduced the approximate expression
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of the dispersive energy between two molecules as:

E = −

3
2 I1I2

I1 + I2

(
α1α2

r6

) 1
(4πε0)2 , (2.39)

I1 and I2 are the ionization energies of two interacting molecules, α is their
polarizability, which reflects whether the electron cloud in the molecule is
easily deformed. When the number of electrons in the molecule increases,
the atom becomes larger, the outer electron is farther away from the core,
the polarizability increases, and the dispersion force increases. When there
is a π bond in the molecule, the electron cloud is more easily deformed than
the σ key; if there is a delocalized π key, α is generally larger.

Electrostatic force and inducing force exist only in polar molecules, and
dispersive forces exist in either polar or non-polar molecules. These forces exist
not only between different molecules but also in different atoms or groups within
the same molecule. Between the regiments. Experiments have shown that these
three forces between the general molecules, the dispersion force is dominant.

2.4.2 Polarization interactions

We can use the Rayleigh-Schrödinger perturbation theory to describe the po-
larization interactions as 2nd-order or higher-order perturbation terms. The ap-
proximation solution of Schrödinger equation is considerably simplified to solve
the complex systems, according to perturbation theory, when the unperturbed
Hamiltonian H0 add a small perturbation correction as a sum:

H = H0 + V, (2.40)

where the solution of H0 is assumed to be known:

H0Ψ
(0)
m = E(0)

m Ψ (0)
m . (2.41)

The 0-order undisturbed solution of Schrödinger equation can use different power
series of V to perform different forms of expansion. And the expansion of the
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perturbation theory is not unique. If we expand E and cm as series and match
them to n-order perturbations:

E = E(0) + E(1) + E(2) + · · ·

cm = c(0)
m + c(1)

m + c(2)
m + · · · ,

(2.42)

for the correct state n, where E(n) and c(n)
m are the first-order as Vn, and can get

their specific form as:
E(1)

n = Vnn =
〈
Ψ (0)

n |V |Ψ
(0)
n

〉
. (2.43)

For higher-order expressions, they are more complex, but can still be derived from
undisturbed forms. In the 2nd-order, the energy of interaction expression is given
as follow:

E(2)
pol = −

q∑
n,m

∣∣∣∣〈ΨA
n Ψ

B
m |V |Ψ

A
0 Ψ

B
0

〉∣∣∣∣2(
EA

n − EA
0

)
+

(
EB

m − EB
0

) = E(2)
ind + E(2)

disp, (2.44)

where the summation counts the interactions of each electron pairs, and the
corresponding electrons n and m cannot be in the ground state at the same time.
The addition of this part can be physically interpreted as the interaction of the
induction interactions E(2)

ind and the dispersion interaction E(2)
disp.

2.4.3 London dispersion theory

Dispersion interactions were defined by London in 1930 and can be presented
E(2)

disp from the previous section. [66–68]

E(2)
disp = −

∑
m,n,0

∣∣∣∣〈ΨA
n Ψ

A
m |V |Ψ

A
0 Ψ

B
0 〉|

2(
EA

n − EA
0

)
+

(
EB

m − EB
0

) = −
∑

m,n,0

∣∣∣Vnm,00

∣∣∣2(
EA

n − EA
0

)
+

(
EB

m − EB
0

) . (2.45)

The matrix element, appearing in this equation, corresponds to the electrostatic
interaction of two mutually induced electron distributions, ρA

n0(i) and ρB
m0( j), and

may be expressed as follows:

Vnm,00 =

∫
ρA

n0(i)ρB
m0( j)

e2

ri j
dVidV j. (2.46)
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The dispersive force is mainly determined by the quantum fluctuation, and is also
affected by the instantaneous induced polarity caused by the change of the electron
density.

Due to the electronic movement, the distribution of electrons cannot always
be an average distribution. So there will be a momentary charge distribution that
produces a momentary dipole moment of the molecule that will induce multipole
moments on the other molecule. This energy is always negative in the ground
state, indicating that this transient interaction corresponds to an attractive force.
London believes that the main terms of the dispersive force can be expressed by
the electric field vibration energy generated by the zero-point vibration of the
interacting wave dipole moment.

As London’s theory, the multipole expansion for dispersion energy is usually
written as follow, which is a series with coefficients Cn:

E(2)
disp = −

∞∑
n=6

Cn

rn . (2.47)

It is worth noting that since the interaction is between particles, n can only take
an even number. The starting point is n = 6, which corresponds to the interaction
between dipoles, and when n = 8, ( 1/r8) is a dipole and quadrupole interaction,
furthermore, the dipole-octopole and quadrupole-quadrupole interactions in the
calculation of the term 1/r10. Since the quantum mechanical fluctuations are
asymmetrical to the ground state electrons, the interaction between the dipoles
corresponds to the dispersion multipole, the direct electrostatic interaction is 1/r7

term, 1/r14 term is for rotating molecules and induction interaction, the leading
term is 1/r10.

In the calculation of the dispersion energy in the ground state of two hydrogen
atoms [69], the method for accurately evaluate C6 was verified. Which method
was also used to evaluate the dispersion forces in our B-DNA target system in
this study. The results show that the non-additive contribution evaluation of a
four-body system under the limit state should be in a negative value.

Assuming that there is no polarity of the whole target system, such as a
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spherically symmetric system, then we can represent the dispersion coefficient
of the dipole-dipole interaction C6 as the equation:

CAB
6 =

3
2

∑
n,m,0

f A
n0 f B

m0

ωA
n0ω

B
m0

(
ωA

n0 + ωB
m0

) , (2.48)

where fn0 is the dipole-oscillator strengths of 0→ n type for one molecule, and it
could be expressed in detail about the expectation value of the dipole moment dn0:

fn0 =
2
3
ωn0 |dn0|

2 (2.49)

where dn0 is from n state to ground state 0. The average dynamic polarizability
of the target systems could be defined as function corresponding to the dipole
transitions while the static polarizability at ω = 0 and ω , 0:

α(0) = f k0/ω
2
k0

α(ω) =
∑
n,0

fn0

ω2
n0 − ω

2
.

(2.50)

Then, we got the well-known formate London formula by replaced the averaged
transition frequencies by the first ionization potentials (empirical parameters):

C6 =
3
2
αA(0)αB(0)

IAIB

IA + IB
. (2.51)

2.4.4 DFT+D

Because of the high computational cost of the standard wave function theory
(WFT) method, WFT can only handle small-sized systems. For a slightly larger
system, even large-scale supercomputers are difficult to calculate, while DFT
can easily calculate systems that include more than 200 atoms. However, in the
actual calculation of the standard DFT functionals (including local or semilocal),
because of its theoretical limitations, the long-range London dispersion energy
is not correctly described, which made they unsuitable for the calculation of
intermolecular non-covalent interactions. Even when the exchange of electron sets
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can be estimated theoretically accurately, it is impossible to accurately estimate
the correlation energy [70, 71]. Then, for the physical properties that are mainly
affected by the electronic correlation, the results of the standard DFT calcula-
tion are not satisfactory, and we need to extend the standard DFT. Therefore
dispersion-corrected DFT (DFT+D) provides a practical tool for the investigation
and analysis of many-body molecular systems.

According to the previous elaboration of London theory, the electronic shock
will cause the charge density to deform, causing an instantaneous dipole moment.
Which can distort the charge density of other atoms or molecules, resulting in
induced dipole moments at the same time. The existence of two dipole moments
forms a total interaction. London gives the relationship between two spherically
symmetric atoms with a large mutual distance. The general expression of this
interaction is:

Vdispersion = −C/r6, (2.52)

where C is the compound physical values (including dispersion relationship) in
inverse proportion to the 6th power of the distance of the atoms r. A simple
practical example that can account for dispersion interactions is the dimer of noble
gas atoms such as Ne. It is well known that these atoms are very chemically stable.
However, these gases can be liquefied at sufficiently low temperatures, indicating
that there is an attraction between the noble gas atoms.

Although the dimer must have minimum potential energy, the minimum value
that can be found when using the B3LYP calculation depends on the calculation
details. In the calculation without counterpoise corrections, the average absolute
error of the equilibrium atomic distance prediction is 0.13 Å, and the average
absolute error of the interaction energy is 0.24 kcal/mol. Conceptually, a simple
remedy for the DFT’s handling of dispersion interactions is to correct the total
energy with a dispersion-dependent contribution between each pair of atoms.
This idea has been developed in the localized base method, the so-called DFT+D
method. In the DFT+D calculation, the atomic set can always be augmented with

40



the EDFT calculated by the DFT method to the following form:

EDFT+D = EDFT + S 6

∑
i!= j

Ci j

r6
i j

fdamp(ri j), (2.53)

where ri j is the spacing, and Ci j is the dispersion coefficient, which can be
calculated from the atomic attribute list; fdamp(ri j) is a damping function that
prevents the dispersion term from being unrealistic when the distance is small.
The only empirical parameter S 6 in this expression is a scale factor that is
uniformly applied to all atom pairs. For each functional, the scale factor should be
estimated separately in advance, and the method is to continuously optimize the
value of the scale factor for a group of molecular complexes that have an important
influence on the dispersion interaction [37].

2.4.5 Non-additivity

Unlike classical mechanics, the force field superposition of quantum systems
cannot be added by the instantaneous polarization caused by quantum fluctuations.
Therefore, it has a non-additive effect. For example, in a two-body system, there
are two molecules A and B. The typical intermolecular interaction is that the
polarization fluctuation of molecule A causes polarization fluctuation of molecule
B, causing interaction. At this point, the intermolecular force of the total system
can be expressed as follows:

1. Coulomb force of A and B.
2. B is subjected to the polarization of A’s polarization.
3. A is affected by the polarization fluctuation of B.
4. A is subjected to the polarization fluctuation of B and the polar force of B

after the polarization fluctuation of A.

After the addition of the third molecule C, the force analysis of the system is much
more complicated. The fluctuation of molecule A also causes the fluctuation of
the molecule C, and the polarization fluctuation of molecule C also affects the
fluctuation caused by the molecule B. In this case, it is obvious that this is not a
simple superposition. Therefore, it is not enough to analyze only the non-additive
effects of traditional calculation methods on quantum systems.
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Let us further analyze the situation of this non-additive after the introduction
of quantum mechanics. In classical mechanics, an object can be described as
a point charge or object in a multibody system. In general, in most physical
laws (such as Coulomb’s law and Newton’s law of gravity), the interaction of
a point is characterized by its additivity. Because the objects in the system are
rigid, additivity can always be expected. However, the situation is different in
quantum mechanics. Because the charge cannot be regarded as a rigid point. The
internal electronic structures of molecules and atoms are dynamic, which results
in constantly changing the electron potential fields. Electrons are also susceptible
to other interaction forces that produce energy changes, such as inductive dipoles.
Under such quantum fluctuation conditions, additivity will inevitably not work.
Non-computational forces are generated, including polar forces and exchange
energies. The non-additivity is expected in inter-molecular bindings due to the
induced polarizations by the quantum fluctuations, such as vdW forces.

The description and reproduce of the binding itself due to intermolecular
forces is a huge challenge for ab initio method. Non-additivity is a more difficult
subject that has long been far from the mainstream research field and has not
been well analyzed yet. The ab initio quantum chemistry theory is a good
description of the natural stacking energy, which allows reliable energy to be
found on any base structure. Calculations, in any case, need to be done at a
sufficient theoretical level. For example, standard DFT, HF, and semi-empirical
methods all fail in the description of base stacking because they cannot correctly
capture the dispersion effect. However, some work applied to systems consisting
of weakly constrained subsystems shows that non-additiveness is much larger than
we expected [42, 43]. Although there is non-additivity in molecular systems, if
the non-additive contribution is positive and tiny, means cohesion reduced than
the superposion, then there is no research significance. If so, it will only make
minor corrections to the C6 force without any qualitative impact.
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2.5 Quantum monte carlo methods

Although the problem of solving the Schrödinger equation is simplified to an
eigenvalue problem (or a generalized eigenvalue problem) based on the HF
method and the variational principle. The computational complexity of MO-
based methods is very high: when the number of system electrons n rises, the
wave function ψ(r1, r2, · · · , rn) dimension describing the many-body system state
also rises linearly, and the number of bases needed to describe the state of the
system correctly must rise exponentially. In summary, when the number of
electrons rises, the computational complexity becomes very large to solve the
Schrödinger equation variational form by the matrix method. At the same time,
according to the description of the relevant DFT chapter, the approximation of the
density functional makes this complexity greatly reduced. However, the exact XC
functional is always unknown, which makes the accuracy of the DFT only stay at
the theoretical level. In standard DFT, the lack of dispersion term in XC makes
the DFT’s credibility greatly reduced. Even if the long-range force correction is
added, it can only be considered as a reinstatement. Then we have to look back to
the WFT methods to solve the problem accurately for comparing, but this time we
use the method of random statistics to reduce the difficulty of calculation. In this
way, we can not only approximate the exact solution infinitely in theory, but also,
the statistical method has parallel acceleration efficiency in the current parallel
computers.

Quantum Monte Carlo (QMC) technology provides a direct and potentially
efficient means of solving the many-body Schrödinger equation for quantum
mechanics. The simplest QMC, also known as VMC, is based on the direct use of
Monte Carlo (MC) integrals to calculate the expected value of multidimensional
integration, such as total energy. The MC method is statistical, so the key result
is to use the integral value calculated by MC, the convergence speed is faster
than the traditional numerical integration method when the problem involves
multidimensional relationships. The statistical method thus provides a practical
approach to solving the direct integration of the multibody Schrödinger equation
and requires only an estimate that is easily controlled. Recent advances in accurate
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calculation methods, especially through DMC calculations, make it possible to
handle larger systems. [28, 30–41, 43]

2.5.1 Monte Carlo methods

The MC method is a class of methods that use random numbers to implement
a certain type of computation. When dealing with high-dimensional integrals,
MC integrals have the characteristic that the precision increases linearly with the
number of points. Metropolis Monte Carlo (MMC) in an important sampling
method that can obtain a random number sequence that conforms to an arbitrary
distribution through detailed balance condition.

Since the value of the real wave function in most areas of the Hilbert space is
minimal, the sparse problem cannot be avoided when solving the integral method.
At this time, if the traditional integration method or MC integration is performed
directly using a uniform random number, a large number of computational re-
sources will be wasted. In this case, it is preferable to use the MMC method
for integration: Using a large number of particles to perform random walks in
the wave function space, the migration rules corresponding to MMC will “push”
them to areas with large wave function values to achieve more efficient sampling
integration.

2.5.2 Variational principle

As mentioned earlier, since the actual wave function is difficult to derive directly,
we need to accurately normalize the eigenstate Hamiltonian. The variational
principle can be used in quantum mechanics, which is obtained by extending the
normalized trial wave function ψT . This principle is also the main theoretical basis
of VMC [72,73]. Suppose we get an infinite wave function ψi based on statistical
principles, then the trial wave function can be expressed as:

ψT =

∞∑
i=0

ciψi, (2.54)
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where ci is the expansion factor, and {ci} can be normalized to 1 as follow:

∞∑
i=0

|ci|
2 = 1. (2.55)

The many-body Hamiltonian can be expanded as follows:

〈ψT | Ĥ |ψT 〉 =

〈∑
i

ciψi

∣∣∣∣∣∣∣Ĥ
∣∣∣∣∣∣∣∑j

c jψ j

〉
=

∑
i

∑
j

c∗i c j 〈ψi|Ĥ
∣∣∣ψ j

〉
=

∑
i

|ci|
2 εi,

(2.56)

where the energy eigenvalue of a single electron εi can be calculated from single
wave function as εi =< ψi|Ĥ|ψi >. Therefore, the expected value of the trial wave
function must be greater than or equal to the true ground state energy. The key
to variational calculation is to rely on the form of the trial wave function. By
selecting the trial wave function on the basis of physical motivation, an accurate
wave function can be obtained. Typically, use the wave function obtained from
HF method or similar calculations and add additional parameters to construct
additional physical properties, such as the known limits and derivatives of the
many-body wave function. And then the additional variation degrees of freedom
are then used to further optimize the wave function.

2.5.3 Trial wave functions

According to the above, the choice of the wave function determines whether
the accuracy and variational principle of the VMC can obtain the exact ground
state energy. All observations are related to the probability distribution

∣∣∣ΨT (~r)
∣∣∣2.

In order to obtain accurate results of the observations, the trial wave function
constituting this probability distribution must be able to obtain a good eigenstate.
A good trial wave function also improves the important sampling and reduces
the cost of obtaining accurate statistical accuracy. Any wave function can be
utilized by QMC whose physical value, gradient, and laplacian can be effectively
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calculated. The power of QMC is the flexibility of the trial wave function form.
We have to find a trial wave function that is accurate and easy to estimate. In
quantum chemistry methods, it is generally desirable to expand a many-body wave
function into a linear combination of determinants. However, the convergence of
this expansion form is slow because it is difficult to describe cusps, when any
two electrons are associated. QMC needs a more reasonable and generalized trial
wave function, Slater-Jastrow form: [74]

ΨT = D
(
~ri j

)
exp

 N∑
i< j

J
(
~ri j

) . (2.57)

It consists of a single Slater determinant multiplied by a Jastrow correlation factor
[74, 75], including the cusps [76]. The orbitals in the Slater determinant are
usually derived from HF or DFT calculations. The Jastrow factor is chosen by
some special functional form and optimized its parameters. The role of the J

(
~ri j

)
function is to minimize the energy of the entire system, and it is chosen to increase
the probability of the particle appearing at the position of the lowest interaction
energy. The variation of this method has been successfully applied to various
systems, multiplying the determinant wave function by the many-body correlation
function. Choosing a good correlation function that contains the relevant effects
is more efficient than CI-based methods. A common application and a simple
Jastrow factor should be expressed as:

J
(
~r
)

=
A
~r

(
1 − e−

~r
F
)
, (2.58)

where F is parameterized according to A and chooses to satisfy the electron-
electron cusp conditions constraint. The better approximation of the exact many-
body wave function and the development of its acquisition methods will remain
an important area of research as the results increase the level of accuracy and
efficiency.
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2.5.4 Variational Monte Carlo

The VMC is a direct application based on MC integration and is used to inte-
grate explicit correlated many-body wave functions. The variational principle in
quantum mechanics discussed above indicates that the energy of the trial wave
function will always be greater than or equal to the energy of the actual wave
function. The exact system energy can be accurately determined by using the
optimized form of many-body wave function. According the variational principle,
a samples configurations-set of electron positions |~r〉 =

{
~ri
}

is constructed from the
probability distribution

∣∣∣ΨT
(
~r
)∣∣∣2, whereΨT is our trial wave function and satisfy

normalized conditions
∫

i
d~r

∣∣∣~r〉 〈~r∣∣∣ = 1. We define local energy:

EL(~r) =

〈
~r
∣∣∣ Ĥ |ΨT 〉〈
~r|ΨT

〉 =
ĤΨT (~r)
ΨT (~r)

. (2.59)

Then, variational enery is obtained by averaging the EL(~r):

EV =
1
N

∑
EL(~ri). (2.60)

If ΨT (~r) is equal to the true wave function, then this local energy is independent
of the position ~r. Therefore, the energy can be expressed in the following integral
form:

EV =

∫
Ψ 2

T (~r)EL(~r)d3~r∫
Ψ 2

T (~r)d3~r
. (2.61)

Then we can use the distribution:

ρ(~r) =
Ψ 2

T (~r)∫
Ψ 2

T (~r′)d3~r′
, (2.62)

to perform the calculation of the MMC sample. The variational QMC method
directly calculates the ground state of a multibody system using the ground state
energy minimum principle. Its advantage is intuitive and clear. However, the
obvious disadvantage is that this method is more dependent on the quality of the
constructed and modified wave functions.
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2.5.5 Calculation process of VMC

The VMC algorithm contains two distinct phases. In the first phase, a walker
containing an initial random set of electronic locations will propagate or multiply
according to the Metropolis algorithm. This step is to equilibrate and then start
sampling the electronic probability distribution π = |Ψ |2. In the second phase,
the walker will continue to move, but energy and other observables will also
accumulate here, preparing for later average and statistical analysis. To simplify
the notation, the wave function Ψ (~r′) is used to indicate that a single electron
moves from position ~r to ~r′, but no other electrons have a moving wave function.
[77, 78]

Algorithm 2.1 The Psudocode of VMC Equilibrium phase
1: //Equilibrium phase to get the distribution π
2: for i=0; i→ m ; equilibrated as ri+1 = ~r′i do
3: Generateing an initial position configuration

{
~ri
}

of electrons randomly
4: Generateing distribution probability ρi

5: for each electron on the configuration do
6: Propose i th. move from ~ri to ~r′

7: with conditional probability T
(
~r′|~ri

)
8: Update a new distribution ρ

(
~r′
)

9: Evaluate a Metropolis acceptance rate A = min
(
1,

∣∣∣∣∣Ψ(~r′)
Ψ (~ri)

∣∣∣∣∣2)
10: Generate random number x
11: if x < A then
12: Accept the move ri+1 = ~r′;
13: else
14: Reject the move ri+1 = ~ri;
15: end if
16: end for
17: end for

In this algorithm, electrons move independently, rather than all. This is to
improve the computational efficiency of the algorithm in large systems, that is
to say, coordination movement needs to increase the small movement step to
maintain the acceptance rate. Observables also need to be accumulated on each
electronic basis and then weighted according to the acceptance and rejection
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Algorithm 2.2 The Psudocode of VMC Accumulation phase
1: //Accumulation phase to get the local energy and other observables
2: for i=0; i→ m ; ufficient data accumulated do
3: for each electron on the configuration do
4: Propose i th. move from ~ri to ~r′ with T

(
~r′|~ri

)
5: Update a new distribution ρ

(
~r′
)

6: Evaluate a Metropolis acceptance rate A = min
(
1,

∣∣∣∣∣Ψ(~r′)
Ψ (~ri)

∣∣∣∣∣2)
7: Accumulate the local energy, and other observables,
8: at ri and ~ri, weighted by the A one by one.
9: Generate random number x

10: if x < A then
11: Accept the move ri+1 = ~r′;
12: else
13: Reject the move ri+1 = ~ri;
14: end if
15: end for
16: end for

probabilities:

< O >=
1
m

m∑
i=1

[
TiOi

(
r′
)

+ (1 − Ti) Oi(r)
]
, (2.63)

where represents the acceptance rate after the m move, where Ti is the acceptance
rate of the electron i, and Oi (r′) is the contribution value of the observables.
The calculation of this formula improves statistical statistics, which is averaged
compared to positions that are only based on movement or not, and can be applied
to any observables.

2.5.6 Diffusion Monte Carlo

Obviously, VMC calculations rely heavily on the quality of trial wave functions.
[77–80] This limitation can be overcome with the aid by using a projection
technique to enhance the ground-state component of a starting trial wave function.
The DMC method [72, 73] is based on the Schrödinger equation with imaginary
time:

∂|Ψ〉

∂τ
= −Ĥ|Ψ〉, (2.64)
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Where τ = it and the state |Ψ〉 represents the eigenstate of the Hamiltonian
quantity:

|Ψ〉 =
∑∞

i=0 ci |φi〉,

Ĥ |φi〉 = εi |φi〉.
(2.65)

One solution to this form of equation is to use an exponential form of orthogonal
projection, given the existence of an unbounded spectrum:

|Ψ (τ1 + δτ)〉 = e−Ĥδτ |Ψ (τ1)〉 . (2.66)

The projection operator in the form of an exponent is represented by the following
form of the Green’s equation:

G
(
x′, x

)
=

〈
x′

∣∣∣∣e−Ĥδτ
∣∣∣∣ x

〉
. (2.67)

This actually contains an exponential form of Hamiltonian that can compute all of
the base elements of the base set |x〉 to |x′〉. Using this projection operator, we can
use the orthogonal projection on the imaginary time to continuously approximate
the ground state energy |φ0〉:

lim
τ→∞
|Ψ (τ)〉 = c0e−ε0τ |φ0〉 . (2.68)

This is somewhat similar to the variational principle, but in the virtual time
projection, the convergence of this excited state energy to the ground state energy
can become very rapid, when we consider the particle’s spatial coordinates on R:

lim
τ→∞

Ψ (R, τ) = c0e−ε0τφ0(R). (2.69)

Thanks to the Trotter approximation, which differs in the Green’s equation in a
small virtual time, the diffusion equation can be used to change the form as:

−
∂Ψ (R, τ)

∂τ
=

 N∑
i=1

−
1
2
∇2

iΨ (R, τ)

 + (V(R) − ET )Ψ (R, τ). (2.70)

We can see that the first item on the right side of the formula is related to the
diffusion process, which can be described by the density of the diffusing particles.

50



The second term is a rate term that can be solved using the branching scheme
[81,82]. This process is based on a potential-dependent increase or decrease in the
particle density, which is the so-called Birth-death process. The above equation
can be transformed into a form suitable for the MC method, but such efficiency is
very low. Because the potential energy V is borderless, parts of the second term
can diverge and then cause a large error in the particle density and the expected
real system. So we can use key sampling to reduce these problems. That is to
add a guiding wave function, and this guiding wave function is very close to
the estimation of the real system to constrain the diffusion process of the wave
function.

2.5.7 Fixed-node approximation

Generally speaking, QMC is a method to solve the integrals of a ground state
system by sampling, and then performs weighted averaging. For the fermionic
system such as electronics, because of the antisymmetry of the fermionic wave
function, as long as it is not half full filling, any wave function in the ground
state, we can find the corresponding negative wave function, so that there will be
positive and negative weights. Therefore, statistical results will cause cancelling
with each other. Such statistical results are meaningless, leading to the so-
called “sign problem”. This problem is an NP-hardness problem that cannot be
completely solved. It can only rely on approximation to improve the result. The
most successful attempt to address to this “sign problem” is the fixed-node (FN)
approximation [83–85].

The fixed node method is an approximation to the exact Fermi ground state,
by translating a fixed nodal so that most of the statistical results are on the same
sign side. Its accuracy depends on the established reference nodes, which makes
the DMC results more controllable, rather than uncertain empirical parameter
corrections. In practice, the nodes of an HF or DFT based wave function are
found to be very accurate, giving energies well below those of the best VMC
wave functions.
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2.5.8 Calculation process of DMC

Just as VMC is divided into equalization phase and accumulation phase, DMC
also performs calculations like this. However, the two phases of the DMC are ba-
sically the same as the energy. In the calculation of the branching coefficient of the
evaluation configuration, these two phases are both required in each movement.

In the algorithm 2.3, step No. 7 is to propose a move as an equation:

r′i = ri + τF (ri) + η, (2.71)

where F is quantum force: F(R) =
∇ψ(R)
ψ(R) , and η is a Gaussian random vector

with an average sum of 0 and a variance of τ. And the weight for the movement
W (r′, r) is calculated as follow in the algorithm 2.3 step No. 14 :

W
(
r′, r

)
=
|ΨG (r′)|2 G̃ (r′, r; τ)
|ΨG(r)|2 G̃ (r, r′; τ) ,

(2.72)

where G̃ is a short-term estimate using the Green’s equation. In the step No. 22,
the branching factor PB of the configuration j is calculated as

PB = exp
[
−τ

(
1
2

[
EL

(
R′

)
+ EL(R)

]
− ET

)]
. (2.73)

2.6 Conclusion

In this chapter, we discussed all electronic state calculation methods applied in
the study. Unlike the empirical field, ab initio calculations can more accurately
describe the electronic state. Correspondingly, higher computational costs are
required, which is more pronounced for MO-based methods. The core of solving
the many-body electronic state problem is to solve the many-body Schrödinger
equation. Based on the BO approximation, we can simplify the equation and use
the HF to get the solution of the equation. The addition of electronic correlations
makes calculations accurate and expensive, and the advantage of these post-HF
methods is that the level of accuracy can be determined. There is no doubt that
the accuracy of the third-order CCSDT is much higher than that of the first-order
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CCS. Furthermore, the MP4 accuracy is much higher than MP2, with a very high
computational cost.

DFT, using the functional of the electronic density as exchange-correlation,
opened up the revolution of SCF computing. On the other hand, DFT is a
theoretically accurate calculation method, whose key problem is to find the correct
functional. Although the precision of functionals can be constantly evolved, in
practice, the construction of functionals inevitably incorporates empirical param-
eters to correct them. Especially in the calculation of long-range intermolecular
forces, the instantaneous induced polarity caused by quantum fluctuations cannot
be obtained from electron density. Furthermore, the non-covalent bond action
itself is a quantum chemical challenge, and the non-additiveness generated by
quantum wave action lacks research.

The high-precision MO method cannot handle large systems under the existing
computational power, and the DFT can only introduce empirical parameters for
correction. Therefore, the statistical method based on the accurate wave function
is necessary. With the ability of parallel computing, statistical wave function
methods can handle larger systems with an expansive computational cost. The
simple QMC method is a VMC method based on the variational principle, but it
still relies on the trial wave functions evaluated from other calculations. The in-
troduction of projection operators makes the accuracy of the calculation eliminate
the influence of the trial wave function. Although the FN approximation is applied
to solve the sign problem, the accuracy of the DMC is still trustworthy. Moreover,
with the development of parallel computers, statistical methods make the QMC
algorithm more advantageous.
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Algorithm 2.3 The Psudocode of DMC
1: while accumulated enough numbers do
2: //The overall value of the initial Nc configuration, the total system should

be irrelevant, and distributed according to the distribution of the guidance
equation π = |ΨG|

2.
3: Initialize the trial energy ET

4: for configuration j=0; configuration movement j→ Nc do
5: //According to the number of steps, generally O (100 ∼ 1000)
6: for electron i; i→ m; do
7: Propose a move r′i
8: //Apply the fixed-node approximation
9: if Ψ (r′) the same symbol as Ψ (r) then

10: Accept i move
11: else
12: rejects i move and consider the next one
13: end if
14: Calculate the weight of the move W (r′, r).
15: Generate random number x
16: if x < min (1,W (r′, r)) then
17: Accept the move ri+1 = ~r′;
18: else
19: Reject the move ri+1 = ~ri;
20: end if
21: end for
22: Calculate the branching factor PB of the configuration j
23: Accumulative local energy and any observables
24: weighted by branching coefficients.
25: Copy int(PB + u)th configurations,
26: where u ∼ normal distribution [0, 1].
27: end for
28: ET =AverageEnergy(E(previousblock)

T )
29: //Update trial energyBring bring it closer to the current system
30: Random birth-death process(walkers) //creat or delete walkers
31: Reorganize walkers in this overall system to target number Nc

32: end while
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Chapter 3

Systems and Methods

3.1 Problem Statement

The many-body problem of molecules is an important research topic in quantum
chemistry. The complexity of intermolecular forces determines that there are
still many mysteries in many-body systems. To explore the non-additivity of
intermolecular interactions in the target system is the problem to be solved in this
study. Due to quantum fluctuations, the non-additiveness of the interaction forces
between macromolecules is always expected, as we described. The interaction
between the molecules of a living organism is in the formation of its structure.
For DNA molecules and the weak force between many-body molecules itself
is the big challenge in the field of quantum chemistry. The non-additive study
of the interaction between molecules is at the edge of the research field. In
the traditional methods, which are widely used, the non-additive contributions
is tiny with positive sign. However, after a simple London model analysis, the
non-additive contribution should be negative, which will be discussed in more
detail later. Recent studies have shown that in the calculation using the FNDMC
method, and negative values appear in the results of non-additive contributions.
Even with positive results, FNDMC still captures more non-additivity contri-
butions, resulting in large differences in results than others. First of all, the
appearance of this phenomenon makes the evaluation result of the methods based
superpositon approximation doubtful. Second, even the CCSD(T) method, one of
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high-precision molecular orbital-based electronic correlation quantum computing
methods, still evaluates non-additivity as the SCF methods level which will never
happened in the binding itself. Finally, although the DMC method evaluate the
exact wave functions with imaginary-time evolution, the Fixed-Node (FN) method
cannot be ruled out in the cancellation of the error to solve the sign problem,
because, we still divide the system according to the H-bonds in the non-additive
calculation. Therefore, discussing the correctness and rationality of this result is
the problem to be solved in this study.

3.2 Target system

Describe the molecular system of large systems has always been the frontier of
research, but how to find a suitable research object is a problem worth exploring.
For MO methods such as CCSD(T), too many particle numbers make calculations
difficult to achieve at the current stage of computing power. DNA molecules are an
typical molecule for researching many-body systems. According to the previous
study, we used four-body collections of B-DNA stacking systems as our research
objects.

3.2.1 B-DNA molecules

The proposal of a double-helical structure for DNA over 60 years ago provided
an eminently satisfying explanation for the heritability of genetic information.
DNA not only has the function of information storage in the genetic process,
but also plays the role of energy transfer. DNA molecules can have a variety of
conformations. In general, B-conformation has a unique role in heredity. Chiral
B-DNA consists of A-T and G-C (adenine [A], thymine [T], guanine [G] or
cytosine [C]) base pairs and forms a double helix under the action of torsional
stress. The nature of the double helix structure depends not only on the base pair,
but also on the stacking between base pairs. The power of the stack drives the
composition and changes of the chromosomes, ensuring the stable development
of the double helix, which is also the key to storing genetic information on the
chromosomes [86].
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The target systems are shown in Fig. 3.2, ten kinds of Watson-Crick base pairs
in B-DNA. The preceding work [1] provides the geometries for all the ten pairs,
and we take them to be fixed. Though ‘AT:AT’ and ‘TA:TA’ are schematically
identical being in a mirror image relation, but not practically identical because
of the different geometries in detail. For convenience, we describe the upper and
lower layer of four molecules as the schematic geometry of the systems, shown in
Fig. 3.1 (b). Base fragments pairs (W,V) and (X,Y) are located within a ‘strand’
(a box elongating along the stacking direction, shown as a red rectangular),
respectively, to form the whole four-body system specified as ‘VW:XY’ in the
convention of the notation. The molecular layers are arranged parallel to each
other and have a certain angle, which is following the right-handed helix sense.
The distance a between the layers is about 3.25 Å, which is consistent with the
experimental data. Moreover, between the base pairs, A-T will form two, and
G-C will form three H-bonds, which will further be discussed in the discussion
chapter. Because this study explores the non-additivity of stacking energy, not the
stacking energy itself, there is no geometry optimization of the structure.

!""""#"""""$

!""""#"""""$

%&' %('

Figure 3.1: Panel (a) shows the example of the geometry for ‘AA:TT’ pair. The
notational convention, ‘VW:XY’, is according to the standard one [1] in this field,
as explained in the panel (b), where the bases V,W,X,Y appear in this order along
∩-shape wise.
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Figure 3.2: Ten kinds of the Watson-Crick base pairs in B-DNA we evaluated.
Each system is composed of four kinds of bases, adenine [A], thymine [T],
guanine [G], and cytosine [C] molecules.
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3.3 Benchmarks of calculation methods

For our target system, this system contains a total of 58 ∼ 60 atoms, two layers
combined by four molecules. Each layer is linked by 2 ∼ 3 H-bonds in the two
layers. This system is an ideal system for studying the interactions within many-
body systems. What we are concerned with is the stacking energy between layers
in the system. Due to their many-body structures, the composition of the stacking
energy is not singular. According to the discussion of the theoretical chapter, non-
additiveness is always expected. We can verify our conjecture in three levels:
First, the mean-field HF, and the standard DFT method, is difficult to express
the dispersion interactions, due to their lack of dispersion term. At this stage,
we use the HF method and the LDA method, as well as the most widely used
B3LYP method in hybrid functionals, and M06-2X in Meta-GGA functional. It
can be expected that the description of non-additiveness is not good because these
methods completely ignore the instantaneous polarity shift of the electrons.

In the second phase, the conventional XC functionals, we adopted recently
developed XC functionals such as ωB97X (B97 functional with long- and short-
range corrected exchange), ωB97M-V [87], B3LYP-D3 [88] (B3LYP with an
empirical dispersion correction), and CAM-B3LYP-D3 [89] (B3LYP-D3 with the
long-range corrected (LC) exchange) in order to investigate not only dispersion
effects but also H-bonding. Our HF and DFT simulations were carried out using
Gaussian09 [5] with the same basis set and pseudopotential as FNDMC. This level
of comparison is to verify empirical corrections at the level of the density func-
tional, which is sufficiently accurate for the many-body’s binding energy itself.
However, we intentionally adopted them for comparison between correlation- and
SCF-level non-additive contributions. So further, we look forward to accurately
describing the combined energy of the larger systems, and we need to go back to
the WFT method.

There is no doubt that CCSD(T)/CBS is a state-of-the-art or “gold standard”
quantum chemistry method – an established protocol of capturing dispersion
interactions in non-covalent systems [90]. Its applicability is, however, quite
limited to small systems. Unfortunately, the complete basis set is too complicated
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for 58 ∼ 60 atoms. CCSD(T)/CBS is not able to handle our target systems of
B-DNA base-pair steps, even using the best supercomputer. The practically best
possible solution [1] was to apply “CCSD(T)/CBS” to all pairwise stacking and
add a many-body correction at MP2/VDZ level to the pairwise sum. Here we note
that “CCSD(T)/CBS” for the pairs is not a true one, but an approximation such
that MP2/CBS is combined with an energy difference between CCSD(T) and MP2
obtained using a small basis set. Hereafter we refer to this sort of approximation to
CCSD(T)/CBS[MP2]. Very recently, Kraus et al. [91] have attempted to avoid the
approximation of stacking interaction, such as the sum of four base-base stacking
energies. However, their level of theory has not reached CCSD(T)/CBS. Parker et

al. [3] stated that such an approximate estimate could be used for reference, but
not as an absolute standard value. In the above-mentioned context, a true non-
additivity at CCSD(T)/CBS level of theory remains unknown. We will discuss the
estimation of the MP2 level basis set function in the discussion chapter.

To describe the dispersion interactions as the main ingredient in the stacking,
such methods going beyond MP2 (Moller-Plesset) level treatment of electronic
correlations are required [43, 92–94]. Besides, FNDMC is the most widely used
method of statistical WFT methods as our final result. We hence applied the
FNDMC method [43,92–94] using an implementation, CASINO [95]. Due to the
statistical approach, the time complexity of FNDMC in handling such systems
is within acceptable limits. The feasibility of FNDMC applied to the system
size here has well been established, achieving the accuracy to capture electronic
correlations at the same level as those by CCSD(T)/CBS (complete basis set
limit) [28, 30–41] . Especially for the present B-DNA case, the stacking energies
evaluated by DMC are well-calibrated in detail in our preceding work [36]. More
detailed information about the computational conditions and numerical results are
provided separately later. Nevertheless, we need to note that there is no non-
approximation in DMC for evaluating the wave functions part. But, the sign
problem is unavoidable in DMC method because anti-symmetry of the fermionic
system when inter-changing two particles. The weights of random walkers can be
either positive or negative, and their signs are usually a priori unknown when we
get the mean value of wave functions. In our study, we use fixed-node algorithm
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approximate to solving this sign problem. This method allows a refinement of
a given guiding wave function by improving its amplitudes. This approximation
inevitably leads to errors while eliminating the sign problem. We cannot rule out
that this is the cause of the difference in results. The error caused by this part
will have a large error on the non-additivity contribution, which we will discuss
in detail in the following chapter.

All DMC calculations in this study were performed by CASINO code [95]
with Burukatzki-Filippi-Dolg pseudopotentials (BFD-PPs) [96]. We used the con-
ventional N-body Slater-Jastrow form, ΨT (x1, ..., xN) = eJ(x1,...,xN ) · ΨAS (x1, ..., xN),
where xi are the position of particles. The Jastrow function, J(x1, ..., xN), used here
consists of the one-body (electron-ion) and two-body (electron-electron) terms.
ΨAS (x1, ..., xN), for the many-body wave function used in DMC. ΨAS is a single
Slater determinant formed by the Kohn-Sham orbitals generated by DFT-B3LYP
implemented in Gaussian09 [5] code, using VTZ level basis sets. Parameters
in the Jastrow functions were optimized in VMC by the variance minimization
procedure [97]. In DMC, the pseudo potentials are treated under the locality
approximation using T-move scheme [83, 98].

Stacking energies, ε(4) and ε(2) are evaluated using ab initio methods to
evaluate the non-additive contribution,

∆E(4) =ε(4)
VW:XY−

(
ε(2)

VW+ε(2)
YX+ε(2)

VX+ε(2)
YW

)
, (3.1)

as defined by Sponer et al., [1] which does not include the contributions from
H-bonds within each layer, V·Y and W·X, respectively.

3.4 Parallel computing efficiency

A computer with a large function and size is called a “supercomputer”. In the
past few decades, this has undoubtedly referred to as parallel computers: A
computer with multiple CPUs and that can be set to handle the same problem [99].
Multiple processors handle this parallelism with multiple instruction streams,
typically explicitly scheduled by the user. In order to parallelize the program
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size, it is necessary to design a parallel strategy. Allocate at least a portion of
the data and tasks between different Np processors without introducing a large
amount of communication between different CPUs. For different calculations,
the parallel strategy usually depends on the way it is calculated, and the specific
parallel optimization method is adopted. However, it could be certain that the
statistics-based algorithm accelerates in parallel much more than the numerical
iterative method, although the latter can also rely to some extent on the power of
parallelism.

3.4.1 SCF calculations

Due to the iterative calculation of SCF, it converges to the target energy. This
approach means that each iteration calculation relies entirely on the results of
the last calculation. This leads to the calculation of the time direction must be
linear in this algorithm. But fortunately we can decompose the calculations on
the spatial latitude to accelerate the DFT calculations using parallel algorithms.
For DFT calculations of different basis sets, we can perform different forms of
parallel methods based on the basis set, such as the traditional diagonalisation
(TD) scheme or the orbital transformation (OT) method. For example, in the DFT
calculation of the plane wave basis set widely used in the periodic operation, we
can perform parallel calculation on the wave function in the frequency domain by
performing Fourier transform on the plane wave. However, this does not apply to
the orbital wave function of the Gaussian basis set function configuration of the
center of the nucleus widely used in molecular modeling.

In general, the mapping state of the task decomposition at the processors
level can be divided into one-dimensional(1D) or two-dimensional(2D) condi-
tions. Most of the data, including the fragments of molecules, atoms, and their
coordinates, the grids and matrices for sampling properties are replicated. These
1D data are distributed in each processor and retrieved according to the spatial
order of the atoms. Such parallel level calculations are generally used to calculate
the state of the atom itself, such as the charge density, because such variables only
have spatial coordinates.
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On the other hand, the task can be easily decomposed according to the 1D
distribution. The storage space required for a complete 1D distribution is small,
so each piece of data can be replicated into a distributed process to reduce the
duplication of data transfer and memory allocation. However, it is necessary to
establish a corresponding 2D mapping between atoms, such as the interaction
between the atoms i and j. So for a 1D atomic distribution, it also needs to locate
the positions of the electron pair for i and j. [100]

However, in any case, the parallel basis of SCF is still to decompose the
linear matrix, including the diagonalization process and the linear solution. In
the process of matrix decomposition, solution, and merging, a large amount of
communication overhead is generated for data exchange. According to Amdahl’s
law [101,102], SCF is algorithmically impossible to achieve linear scaling. When
the processing system is too large, it will generate large-scale parallel communica-
tion overhead. For such large-scale parallel computing, the speedup will decrease
as the number of cores increases until the acceleration limit is reached.

We tested the parallel efficiency of a widely used quantum computing software
gaussian in shared-memory parallel computers. Benchmark uses the DFT calcu-
lation of B3LYP-D3. The target system is AA:TT system for parallel computing.
The wall times and the CPU times divided by the number of cores are shown
as Fig. 3.3, by comparing 6, 12, 24, 36, 48 cores with 256GB shared memory.
As shown, the more parallel cores are counted for DFT calculations, the lower
the efficiency of parallelism. An important factor that causes this is the need for
constant communication of spatial lattice determinants.

3.4.2 Statistical evaluation calcualtions

Since the QMC method is random, a very efficient parallel implementation of the
QMC algorithm can be generated. In a VMC, independent runs can be performed
by different processors, and then the data from each CPU can be averaged to arrive
at a final result. According to the definition of the speedup ratio, the average time
for each CPU to complete the operation divided by the maximum single CPU
time, the VMC’s efficiency can reach ∼ 1.
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Figure 3.3: The figure shows the total calculation time and CPU time divided by
the number of cores. The benchmark’s calculation time for Gaussian in the 6, 12,
24, 36, 48 cores states. This calculation selects the AA:TT system in the target
system for calculation. In theory, the more parallel cores, the total time should be
approximately equal to the CPU time divided by the number of cores Np. Its curve
should be rendered with ∼ O(1/Np). It can be seen from the figure that for DFT
calculations, the more parallel cores, the lower the efficiency of parallelism. The
important factor leading to this reason is the need for continuous communication
of spatial lattice determinants.
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The DMC method needs to evolve according to the imaginary-time τ, and
each imaginary-time state includes different configurations P. Parallel DMC
calculations are performed by allocating a configured initial number P in the
available processors, each CPU n performing an imaginary-time evolution of its
assigned Pn configuration. According to the description of the DMC algorithm,
the number of configurations in the branch DMC is different; therefore, the time
τ required for the node n to complete the iteration is proportional to the number
of configurations Pn (τ) on the node n. And the parallel efficiency of iteration τ
is approximately

∑Np

n=1 Pn(τ)/
(
Np max [Pn(τ)]

)
. Therefore, if all nodes have the

same number of configurations, the operational efficiency can be maximized by
∼ 1. Therefore, it is common practice to redistribute configurations between nodes
after each iteration. [103]

Notice that a large amount of inter-node communication is still required in
QMC calculation, but the communication cost of the statistical method is much
lower than that of continuous communication in SCF calculation. Although the
easiest way is to separate the branches from the redistribution, it is best to execute
them at the same time, transfer the configuration between the nodes, and then copy
the configuration on the receiving node. Because copying information between
processors is more expensive than copying information within the same processor.
In most calculations, this aspect of the redistribution process is not very important,
because the branching factor is usually very close to the unit, so multiplicity is also
true. However, this can be very important for calculations with large time steps or
poor fluctuation functions.

3.5 Conclusion

In this chapter, we discussed different electronic state calculation methods. There
are several issues we need to verify for the target system. First, the standard DFT
method has been proven to fail in the calculation of dispersive forces. So whether
the correction of the dispersion interactions and the long-range force functional
can truly describe the dispersion interactions. In addition, high-precision calcula-
tion methods such as CCSD(T) can achieve the calculation accuracy of CCSD(T)
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when dealing with large-scale systems. These problems all mean that the QMC
method is essential to describe the electronic association correctly and to calculate
the large system. We designed the calculation of the non-additional contribution
to the stacking energy of the target system. For non-additive results, CCSD(T) can
only get the same result as DFT. QMC, on the other hand, gets negative results
that are difficult to obtain by other methods, and the non-additive contribution of
positive values is also significantly higher than other methods. So how to interpret
these results is also an important issue. Based on this problem, we have selected
10 B-DNA systems to compare different calculation methods, and detailed target
system characteristics are also described. Further, we have also discussed in detail
the choice of different calculation methods. Based on our problem, we chose the
simplest HF method and the standard DFT methods as a standard for comparison.
For the WFT methods, we chose the high-precision CCSD(T)/CBS[MP2] and
FNDMC to verify our conjecture. Accordingly, the DFT methods with increased
dispersion interactions correction were also tested. Finally, we discuss the com-
putational efficiency of SCF methods and statistical methods. The computational
power of the SCF method has unparalleled advantages so that it can handle larger-
scale calculations. Nevertheless, by using parallel computers, statistical methods
can also handle large-scale calculations, which makes precision and larger system
calculations possible.
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Chapter 4

Results

4.1 Result of B-DNA systems

The target systems are shown in Fig. 3.1, ten kinds of the Watson-Crick base pairs
in B-DNA. The preceding work [1] provides the geometries for all the ten pairs,
and we take them to be fixed. The distance between the molecules is around 3.25
Å, which is very close to the experimental data. The molecular layers also have
a certain angle between them and conform to the right-handed Helix sense of B-
DNA. Though ‘AT:AT’ and ‘TA:TA’ are schematically identical being in a mirror
image relation, but not practically identical because of the different geometries in
detail.

4.1.1 Stacking energies ε(4)

We shall start with the four-body stacking energies (ε(4)) of the B-DNA base-
pair steps. Fig. 4.1 (a) and (b) are the ε(4) values obtained from wave function-
based and DFT-based methods, respectively, together with CCSD(T)/CBS[MP2]
as reference. Within the wave function methods (Fig. 4.1 (a)), we can see that
HF fails to describe the stacking properly because it does not include electron
correlations at all by nature. An appropriate description of stacking requires
theory more than MP2 level [92, 94]. Overall, the correlated methods agree
with each other. Looking closely at the trend, CCSD(T)/CBS[MP2] was found
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to overbind compared with the other approaches, LMP2, SAPT, and FNDMC.
This can be attributed to two practical approximations adopted in the CCSD(T)
reference [1]: Since the B-DNA system is too large to be computed by CCSD(T)
with larger basis sets (cc-pVTZ and cc-pVQZ), the true CCSD(T)/CBS is not
available in any literature so far. Instead, two approximations were applied to
estimate “CCSD(T)/CBS” [1]. Firstly, all the pairwise base-base terms (ε(2)

in Eq. (3.1)), were computed by MP2/CBS plus an energy difference between
CCSD(T) and MP2 with a common small basis set (6-31G*(0.25)). Secondly, the
non-additive contribution (∆ε(4)) was evaluated at RI-MP2/aug-cc-pVDZ level.
In this sense we refer the CCSD(T) to “CCSD(T)/CBS[MP2]”. From the above
facts, we can infer that “CCSD(T)/CBS[MP2]” overbinds, similar to MP2. Note
that both SAPT and DF-LMP2 are known to correct the overbinding trend in
MP2 [2]. Accordingly, ’the overbinding in CCSD(T)/CBS[MP2]’ can be also
supported by the fact that the magnitudes of stacking energies in SAPT and DF-
LMP2 are smaller than those in CCSD(T)/CBS[MP2], as can be seen in Fig. 4.1
(a) and Tab. 4.1. It was found that FNDMC deviates from the other correlated
methods depending on base-base pair steps (especially TA:TA and AG:CT), which
is closely related to a significant difference in non-additive contributions between
the methodologies, as described later.

As for the DFT methods (Fig. 4.1 (b)), we see that only B3LYP cannot
properly describe the stacking, which is consistent with its well-known defi-
ciency in describing dispersion interactions [104]. Which are also shown in
Tab. 4.2. On the other hand, recently developed dispersion methods within DFT
reproduce the stacking for all the steps [88], giving almost the same trend as
CCSD(T)/CBS[MP2]. When comparing with CCSD(T)/CBS[MP2], B3LYP-D3
gives the wiggling stacking energies; CAM-B3LYP-D3 slightly overbinds overall;
M06-2X and ωB97X both underestimate the stacking energies for all the steps,
which has also been demonstrated for other non-covalent systems [37]. Note that
the stacking described by LDA is known to be artificial [28, 32, 36–38, 40, 105,
106]. Tab. 4.1 and Tab. 4.2 are only shown the 4-body stacking energies. More-
over, for evaluating the non-additivity contributions, we also need to calculate
2-body stacking energies, including intra- (W,V and X,Y)and interstrand (W,Y
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Figure 4.1: Four-body stacking energies, ε(4) [kcal/mol], for the B-DNA base-
pair steps evaluated by various methods. The negative values correspond to the
binding, and hence we see that only B3LYP cannot correctly describe the binding.
CCSD(T) values were taken from a previous work [1].
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and X,V) stacking. The above stacking energy data is put in Appendix I.

Table 4.1: Stacking energies (ε(4)) of B-DNA base-pair steps evaluated from wave
function-based methods. All the energies are given in kcal/mol.

Pairs CCSD(T)/CBS[MP2]1 LMP22 SAPT3 HF4 FNDMC4

AA:TT −14.7 −13.66 NA 9.09 −13.0(4)
AT:AT −13.3 −11.99 −10.87 8.09 −10.9(7)
TA:TA −12.8 NA −11.92 7.18 −8.3(7)
GG:CC −11.5 −10.29 −9.32 7.85 −8.5(7)
GC:GC −15.4 −14.70 −14.48 8.71 −14.8(9)
CG:CG −17.3 −16.15 −15.69 3.53 −15.2(0)
GA:TC −12.9 −11.26 −10.22 10.00 −8.9(9)
AG:CT −13.5 −12.39 −11.20 6.31 −7.4(9)
TG:CA −15.1 −13.96 −13.63 5.22 −15.7(8)
GT:AC −13.4 −12.01 −11.29 10.74 −13.5(6)

Table 4.2: Stacking energies (ε(4)) of B-DNA base-pair steps evaluated from DFT-
based methods. All the energies are given in kcal/mol.

Pairs LDA1 B3LYP1 B3LYP-D31 CAM-B3LYP-D31 ωB97X1 M06-2X1

AA:TT −10.17 9.00 −12.04 −13.94 −8.52 −8.39
AT:AT −9.60 10.14 −11.19 −13.90 −8.76 −7.76
TA:TA −9.50 6.97 −12.82 −13.88 −8.63 −7.72
GG:CC −6.83 8.65 −12.42 −12.14 −6.93 −5.67
GC:GC −11.48 4.50 −15.97 −15.85 −10.31 −10.33
CG:CG −13.20 8.80 −13.79 −18.35 −12.89 −12.25
GA:TC −8.71 8.60 −10.35 −13.05 −7.71 −7.68
AG:CT −9.62 10.47 −11.99 −14.58 −9.24 −7.74
TG:CA −11.37 7.64 −12.02 −16.11 −10.83 −10.18
GT:AC −9.96 5.98 −13.94 −13.76 −8.36 −8.17

1Ref. [1]
2DF-LMP2+∆(T ) in Ref. [2]
3SAPT0/jaDZl in Ref. [3]
4Present study
1Present study
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4.1.2 Non-additivity contributions ∆ε(4)

The present study adopts CCSD(T)/CBS[MP2] results due to Šponer et al [1] as
reference, though they are not “true” CCSD(T)/CBS as described in the previous
section “System and methods”. Here we show not only non-additive contributions
∆ε(4), but also stacking energies ε(4) themselves similar to conventional researches.
We will see that FNDMC gives rise to a striking dependence of ∆ε(4) on base-pair
steps, compared to the other ab initio methods including CCSD(T)/CBS[MP2] as
well as DFT, while there is not any novel findings in their ε(4) evaluations.

The non-additivity in the interactions is obviously expected in inter-molecular
bindings due to the induced polarizations by the quantum fluctuations, such as
vdW forces. Since the binding itself has been a great challenge for ab initio
methods to describe and reproduce, the non-additivity as the further difficulty
on top of it has been put off from the major interest, being not well analyzed
so far. The target systems are ten kinds of the Watson-Crick base pairs in B-
DNA. The preceding work [1] provides the geometries for all the ten pairs, and
we take them to be fixed. Though ‘AT:AT’ and ‘TA:TA’ are schematically identical
being in a mirror image relation, but not practically identical because of the
different geometries in detail. Stacking energies, ε(4) and ε(2) are evaluated using
ab initio methods to evaluate the non-additive contribution as Eq. 3.1 which does
not include the contributions from H-bonds within each layer respectively. Non-
additive contributions ∆ε(4) evaluated from various methods are shown in Fig. 4.2.
We found FNDMC giving a wiggling behavior of ∆ε(4), compared to all the other
methods. This remarkable sign alternation found in FNDMC is a central issue in
the present study.

We first remark that the non-additive contributions do not necessarily arise
from the electron correlations but always appear as non-linear processes inside
a many-body system. In terms of the perturbation expansion based on SAPT,
interaction energy is decomposed into physically meaningful components: elec-
trostatic, induction, exchange, and dispersion terms [92,94]. Even at the HF level
of theory, the ‘exchange’ and ‘induction’ parts of the non-additivity occur [92,94],
which we refer to ‘SCF-level non-additivity’ hereafter. The behavior of HF in
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Fig. 4.2 can be an appropriate reference to the ‘SCF-level non-additive’ contri-
bution because HF is incapable of describing the dispersion by nature. Except
for FNDMC, CCSD(T)/CBS[MP2] as well as all the other DFT methods exhibit
almost the same ∆ε(4) as HF; their magnitudes of ∆ε(4) are slightly increased
or decreased from those of HF owing to their balance between exchange and
correlation (as described later), but their differences are quite small (less than 1
kcal/mol). Presumably, the non-additive contributions appearing inn all the DFTs
and even CCSD(T)/CBS[MP2] may be regarded as being ‘SCF-level’ ones or
hardly describing ‘dispersion-level/correlation-level’ ones. On the other hand, we
may imply that FNDMC describes more dispersion/correlation contributions than
the other methods.

Looking closely at individual methods, it was found from Fig. 4.2 (a) that the
behavior of CCSD(T)/CBS[MP2] is the most striking: The electron correlation
described by CCSD(T)/CBS[MP2] hardly makes any corrections to the SCF-level
non-additivity. It means that the ‘correlation-level non-additivity’ cannot be well
captured by CCSD(T)/CBS[MP2]. Note that the many-body contributions in
CCSD(T)/CBS[MP2] are identical to those obtained at RI-MNP2/aug-cc-pVDZ
level. The deficiency of correlation-level non-additivity in MP2 is attributed to
the fact that MP2 can take into account only the two-electron excitation process.
In order to describe the correlation-level non-additivity in a system consisting
of four subsystems, MP2 level of theory should be adopted at least, where four
one-electron excitations simultaneously appear in each of the subsystems [92,94].
Therefore, the CCSD(T) method with the practical approximation considered in
the literature [1] can be regarded as being almost the same as HF and thus, poor
at capturing the correlation-level non-additivity. Unfortunately, a true behavior of
the non-additivity at CCSD(T)/CBS level is still unknown.
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Figure 4.2: Non-additive contribution, ∆E(4) [kcal/mol], evaluated by various
methods. DF-LMP2 [2] and SAPT [3] appearing in Fig. 4.1 are not shown here
because their non-additive contributions are not available. For CCSD(T), the
data is taken from the preceding work. [1] Unlike stacking energies (Fig. 4.1),
CCSD(T) agrees with both HF and B3LYP, while it is far from FNMDC. Plausible
discussions for this are given in the text.
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Table 4.3: Non-additive contributions (∆ε(4)) of B-DNA base-pair steps evaluated
from wave function-based methods. The definition of ∆ε(4) is given in Eq. 3.1 of
the main text. All the energies are given in kcal/mol.

Pairs CCSD(T)/CBS[MP2]1 HF2 FNDMC2

AA:TT 0.0 0.27 −3.7(7)
AT:AT 0.0 0.55 −0.6(11)
TA:TA +0.2 0.40 +5.6(11)
GG:CC +2.2 2.58 +2.3(12)
GC:GC +1.2 1.45 +2.8(13)
CG:CG +1.1 1.80 +0.4(14)
GA:TC +0.7 1.08 +5.1(13)
AG:CT +0.8 1.32 +8.1(14)
TG:CA +0.9 1.42 −2.3(13)
GT:AC +0.8 0.30 −0.9(9)

A comparison between B3LYP and B3LYP-D3 gives the most intriguing
insight into the non-additivity within the framework of DFT. While the empirical
dispersion correction D3 significantly improves the stacking itself (Fig. 4.1 (b)),
it hardly modifies its non-additivity from B3LYP (Fig. 4.2(b)). It can be attributed
to the fact that dispersion corrections based on D3 or the likes of vdW-XC are
additionally made on the original DFT/SCF energies and, thus, never deform their
wave functions. From the viewpoint of many-body theory, the deformation of
wave functions is the origin of dispersion interactions and hence, essential to the
non-additivity. Interestingly enough, as shown in our central results in Fig. 4.2
and Tab. 4.3 this is not true as clarified by the present work, applying DMC to
evaluate stacking energies of B-DNA base pairs [1–3, 37, 93, 107, 108]. While
the conventionally available techniques, including CCSD(T)/CBS, predict tiny (∼
several kcal/mol), positive definite contributions, the DMC predicts much larger
non-additive contributions [even being the same magnitude as those of interac-
tions themselves (∼ 10 kcal/mol)], with those signs alternating from positive to
negative depending on the base pairs [it means that the binding of the stacking is
reduced (positive) or enhanced (negative) by the non-additivity].

1Ref. [1]
2Present study
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We can also note that the results of FNDMC are more unstable in the combi-
nation of A-T base pair appearances compared to systems consisting only of G-C
base pair. Especially the difference in the arrangement of the directions, it is easy
to associate the relationship between them. We make a conjecture as “whether
the difference between these positive and negative signs comes from a change
in the polarity direction”. Alternatively, we suspect that the whole of the base
pairs acts as an inline polar molecule, which leads to a difference in the results
of non-additive contributions. The key to the direction of the A-T base and the
G-C base is the role of the molecular π ring, and the second is the arrangement
of H-bonds. No clear way has been found to quantitatively analyze the increasing
effects between π rings, although the dispersive force between π rings can lead
to many unique properties. Moreover, there is an angle between the molecules
of the B-DNA, which makes the π ring have no upper and lower correspondence.
In contrast, the analysis of H-bonds is more explicit. In summary, we will try to
explain the result by establishing a model based on H-bond direction later.

Table 4.4: Non-additive contributions (∆ε(4)) of B-DNA base-pair steps evaluated
from DFT-based methods.

Pairs LDA1 B3LYP1 B3LYP-D31 CAM-B3LYP-D31 ωB97X1 M06-2X1

AA:TT 0.87 −0.21 −0.20 0.48 0.55 −0.08
AT:AT 1.31 0.16 0.16 0.88 0.91 0.02
TA:TA 1.20 −0.12 −0.12 0.72 0.92 −0.18
GG:CC 3.21 1.96 1.95 2.79 2.88 2.21
GC:GC 2.16 0.83 0.85 1.68 1.80 0.81
CG:CG 2.22 0.83 0.84 1.91 2.06 0.56
GA:TC 2.01 0.54 0.57 1.46 1.63 0.62
AG:CT 1.93 0.73 0.73 1.54 1.53 0.45
TG:CA 2.13 0.75 0.76 1.70 1.85 0.61
GT:AC 1.97 0.60 0.61 1.43 1.62 0.52

1Present study
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4.2 Conclusion

This chapter presents and describes the calculations based on the B-DNA target
systems. We calculated the stacking energy in the ten target systems described
in the previous chapter. Various methods are employed, including WFT cal-
culations and DFT calculations. The WFT calculation includes the most basic
HF calculations, calculations based on perturbation theory, and high-precision
CCSD(T) calculations. Moreover, the most important work of this study is
FNDMC calculation. In DFT calculations, there is no doubt that the standard
DFT calculations, especially the results of widely used hybrid functionals, are
used as a negative example for comparison. In comparison, the DFT method with
the dispersion-correction is also calculated, and the results are presented in this
chapter. Base on the result of the stacking energy, non-additive contributions is
also calculated according to the above definition. In this result, we can find that
CCSD(T) is at DFT-level. Only the results of the DMC have a negative result, and
the overall trend is not at the same level as the other results. We will discuss these
results further.
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Chapter 5

Discussions

5.1 London model analysis

Although it is difficult to estimate how much non-additivity contributions should
be captured by the ab initio methods before actual calculations. And none of
the conventional ab initio methods can describe the negative sign of the non-
additive contribution. But we can estimate its sign with a simple model analysis
upon London theory, which gives a quick estimation of the contribution being
surely negative: Fig. 3.1 (b) shows the schematic geometry of the systems. Base
fragments pairs (W,V) and (X,Y) are located within a ‘strand’, respectively, to
form the whole four-body system specified as ‘VW:XY’ in the convention of the
notation. In London theory, a stacking energy between the upper and lower layers
scales as ε ∼ α(upper) · α(lower), where α(upper/lower) denotes the polarizability of
each layer. In the model defined by London theory, the molecules are attracted
to each other by transient dipoles. The instantaneous dipoles caused by the
instantaneous relative displacement occurs between the electrons and the nucleus,
due to the continuous movement of electrons and the constant vibration of the
atomic nucleus. The dispersion force was calculated by the equation 5.1.

EL = −
3
2
αAαB

IAIB

IA + IB
rAB
−6 , (5.1)
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For a two layers system, A and B represent two different layer. Where α is
polarizability [Bohr3], I is ionization energy [Hartree], and rAB is intermolecular
distance [Å] The units are given in atomic units (au), and converting to kcal/mol
requires multiplication by constant 627.509. Since the polarizability scales to
the molecular weight, α(upper/lower) in the total (four-body) system gets doubled
from that of the partial (two-body) system, giving a rough estimate of the stacking
energy for the whole (four-body) system as ε(4) = 2 × 2 · ε(2) < 0, where ε(2)

denotes the stacking energy for a partial (two-body) system (of course, there are
other dependence of ε such as on ionic energies, geometries etc., they don’t affect
so much in the discussion). The estimate then gives the non-additivity being
∆E = ε(4) − 4 × ε(2) = 0. That would be true for the limit, l → 0 [(a′/a) → 1],
but for the practical cases, (a′/a) > 1, we can ignore the inter-strand interactions
[those between ’W and Y’ and ’X and V’] due to (1/a6) � (1/a′6) (the latter is
actually in between 2%∼9% of the former with (a′/a) = 1.5∼1.9), concluding the
negative non-additivity, ∆E = ε(4) − 2 × ε(2) = 2 × ε(2) < 0. London theory hence
supports the non-additivity being negative (the stacking energy enhanced by the
non-additivity).

5.2 Hydrogen bonds

A-T base pairs are held together by two H-bonds, while G-C base pairs have three
H-bonds. The H-bonds in the middle of the base pairs are obviously asymmetrical.
This asymmetry causes the bases to not stay on the same plane, but at an angle and
bend in practice. This means that the two-layer parallel molecular structure is not
an optimized geometric structure, and the power of this distortion tends to change
the structure. In contrast, the A-T base pair lacks a H-bond on one side, so this
polarity change makes its structure more unstable. This trend is also discussed in
the results below to explain the inconsistency results in DMC. The electrostatic
potential at the vdW surface of the DNA base pairs is shown as Fig. 5.1.

As described in the result chapter, we presume a main origin of the positive
non-additivity coming from the H-bonds bridging between the bases horizontally.
Looking back the Fig. 3.1, one notices that all the ten cases include only two kinds
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Figure 5.1: The non-covalent interaction between base molecules gives the entire
molecule a local polarity, the electrostatic potential at the vdW surface of the DNA
base pairs are shown. Regions of positive (blue) and negative (red) charge density
are marked. (a) A-T; (b) G-C. [4]
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of H-bonds (horizontal), i.e., between ‘A-T’ and ‘G-C’. As shown in Fig. 5.3 (b),
these bridging bonds can be sorted into a (N-H...O) or b (N-H...N), and further
labelled such as a+, b− etc. based on the direction of the charge transfer expected
due to the negativity. By writing down the alignments of the ‘polarized bonds’ for
each base pair as given in Table. 5.1, we could extract some interesting trend as
follows. Since the ‘±’ denotes the direction of the ‘polarization’, we can sort the
cases into ‘P’ (parallel) or ‘A’ (anti-parallel), based on the relation between the
‘polarization’ in upper and lower layer. Then, we can see that the labelling ‘P’ or
‘A’ is fairly in accordance with the sign of the non-additivity observed in Fig. 4.2.

To examine whether such ‘dipole’ directions could really dominate the trend
or not, we evaluated the Mulliken charge analysis on the bridging position using
DFT B3LYP-D3, as shown in Fig. 5.3 as well as Fig.7∼16 (in Appendix II). From
the analysis, we immediately notice that, ‘I. Large negative charges concentrate
on Oxygen site’, and ‘II. On the bond, b/N...N-H, little dipole is found’. We
may therefore neglect b-bond to consider as a dipole contribution, only taking the
bond, a/O...N-H, into account [even when we consider b as well, the consequence
doesn’t change because when a is P(A), b is also P(A)].

5.2.1 Sign alternation in FNDMC

Except for B3LYP(-D3) and M06-2X for AA:TT and TA:TA, most of the DFT
functionals give positive values of ∆ε(4), similar to HF. We then may conclude
that the SCF-level non-additivity is mostly positive definite as the previous sec-
tion. i.e., CCSD(T)/CBS[MP2] gives a negligibly small dispersion-level non-
additivity. In contrast, FNDMC values of ∆ε(4) alternate their signs depending
on the corresponding base-pair steps. This means that the dispersion-level non-
additivity in FNDMC for some base-pair steps is large enough to change the signs
from the SCF-level non-additivity. According to a simple model analysis based
on the London theory, the dispersion contribution to non-additivity was found to
be negative definite. Thus, we may conclude that the negative non-additivity in
FNDMC for some base-pair steps (AA:TT, TG:CA, and AC:GT) can be attributed
to the dispersion contribution. In summary, the dispersion contributions to non-
additivity have the potential for changing the sign of non-additivity, depending on
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Table 5.1: The bondings located from back to front are shown from left to right
in a line. Two lines for each pair corresponds to upper and lower layers of a base
step. The sign appearing in the left-most column, e.g., ‘-/01aatt’, means if the
non-additivity is negative or positive. For 02atat, we put ‘-+’ because it is ‘zero’
within the errorbar. ‘P/A’ appearing in the right-most column means ‘parallel’ or
‘anti-parallel’ based on the accordance in the sign ordering in each layer. The
pairs, 04∼06, are not considered to be put P/A because these pairs show only the
SCF-level non-additivity.

Pairs upper layer ‘parallel’ or
lower layer ‘anti-parallel’

-/01aatt a− b+ (P)
a− b+

-+/02atat a+ b− (A)
a− b+

+/03tata a− b+ (A)
a+ b−

/04ggcc a+ b− a−
a+ b− a−

/05gcgc a− b+ a+

a+ b− a−
/06cgcg a+ b− a−

a− b+ a+

+/07gatc a− b+ (A)
a+ b− a−

+/08agct a+ b− a− (A)
a− b+

-/09tgca a+ b− a− (P)
a+ b−

-/10gtac a+ b− (P)
a+ b− a−

base-pair steps.

If we accept the negative non-additivity in FNDMC in accordance with the
London theory, then another doubt arises about why FNDMC also gives more
positive non-additivity, depending on the base-pair steps. Comparing FNDMC
with HF, FNDMC was found to give almost the same ∆ε(4) as HF (within errobar)
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for GG:CC, GC:GC, and CG:CG (Fig. 4.2). In contrast, the more positive
∆ε(4) deviating from the SCF-level non-additivity appears in TA:TA, GA:TC, and
AG:CT, which will be then investigated from the viewpoint of stacking energies.

Fig. 5.2 shows one four-body and four two-body stacking energies given in
Eq. (3.1) for ten unique B-DNA base-pair steps. ‘s’ and ‘i’ appearing in the
labels for the horizontal axis in Fig. 5.2 indicate intra- and interstrand stacking.
e.g., A//Ai means Adenine molecules are in different strands, and A//As means
Adenine molecules are up and down position within strand. It is evident that
positive non-additivity correlates with weaker four-body stacking (red bar), which
is also noted in Fig. 4.1 that the base-pair steps with the positive non-additivity
exhibit the weaker stacking described by FNDMC than by the other ab initio

methods.

Figure 5.2: Non-additive contributions (black points) decomposed into 4-body
(red bars) and 2-body (blue bars)stacking energies evaluated by DMC [kcal/mol].
‘s’ and ‘i’ appearing in the labels for the horizontal axis indicate intra- and
interstrand stacking.

The weaker four-body staking is identified as being the origin of the positive
non-additivity. Furthermore, it was found from Fig. 5.3 (a) and (b) that the weaker
four-body stacking can be caused by the bridging bond between the Watson-
Crick base pair: Although the bridging formed by the H-bonding partly leads to a
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stronger stacking in the horizontal direction [109,110], it simultaneously weakens
the staking owing to the vertical repulsion between the bridges at different layers
(given in Appendix II in detail). Both the contributions would cancel each other
out and thus, giving rise to the overall ‘weaker stacking’. This cancellation causes
the positive non-additivity depending on the base-pair steps. This factor was not
taken into account in our simple London model analysis.

Figure 5.3: H-bonds for GA:TC base pair, shown inside the red broken lines [left
panel(a)], and its schematic picture [panel(b)]. Small red arrows put on the N-H
bonding in the right panel mean the charge transfer due to the negativity. Bridging
bonds can be sorted into a (N-H...O) or b (N-H...N), and further labelled such as
a+, b− etc., based on the direction of the charge transfer. Panel(c) shows the
Mulliken charge analysis for the upper and lower layers. Blue and red indicate the
negative and positive charge values, respectively.

To estimate the contributions quantitatively, we first evaluated the Mulliken
charge that appeared in the bridging location, as shown in Fig. 5.3 (c). Based
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on the charge, we then evaluated the Madelung repulsion interaction, shown in
Fig. 5.4, getting +5∼10 kcal/mol per bond. Since the typical range of the H-
bonding energy is known to be less than 5∼6kcal/mol [111], it is likely to result
in a positive contribution to non-additivity, thus making the stacking weaker.

Figure 5.4: Electrostatic interaction energies arising from the Mulliken charges
located at atoms involved in H-bonds. The energies are normalized by the number
of H-bonds: 4 for a pair of A-T and A-T, 9 for a pair of G-C and G-C, and 6 for a
pair of A-T and G-C. Energies are given in kcal/mol.

5.3 CBS[MP2] to CBS[MP4]

The overall coincidence between “CCSD(T)” and SCF (HF/DFT) implies that
(1) the present “CCSD(T)” method never describe the dispersion-level non-
additivity and thus, losing a large part of true non-additivity at CCSD(T) level of
theory, or (2) a true dispersion-level non-additivity is essentially tiny and thus,
well described by the present “CCSD(T)” method. As has been explained in
“Systems and methods”, the present “CCSD(T)” method relies on the CBS[MP2]
approximation, i.e., it is not a true “CCSD(T)/CBS”. Since the true CCSD(T)/CBS
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is believed to well reproduce the non-additivity, it is unlikely for CCSD(T)/CBS
to be insufficient to describe the non-additivity. So the second statement is
implausible, while the first one is to be studied in more detail. Hereafter we
investigate whether or not the CBS[MP2] approximation can be a possible source
of damaging a capability inherent in “CCSD(T)/CBS” of capturing the non-
additivity.

To address the above issue, we attempted to apply CBS[MP3] and CBS[MP4]
(as well as the true CBS) to the B-DNA base-pair steps, but they were too
large to compute. Instead, we dealt with a neon tetramer as a simple/model
system in which each DNA base is replaced by a Ne atom. We evaluated ∆ε(4)

values of the Ne tetramer at several distances between the two dimers using
CCSD(T)/VTZ (w.o. CBS), CCSD(T)/CBS[MPn] (n = 2, 3, 4), and B3LYP-D3.
Fig. 5.5 shows how those values differ from each other: CCSD(T)/CBS[MP2]
is significantly different from CCSD(T)/CBS[MP3] and CCSD(T)/CBS[MP4],
but it is almost same as B3LYP-D3. This indicates that the CBS[MP2] level
can be regarded as the SCF-level non-additivity, which is consistent with our
finding in the B-DNA case that CCSD(T)/CBS[MP2] is incapable of reproducing
the dispersion-level non-additivity properly. In contrast, CCSD(T)/CBS[MP3]
almost converges to CCSD(T)/CBS[MP4], while it significantly deviates from
both CCSD(T)/CBS[MP2] and B3LYP-D3 – SCF-level non-additivity. From the
viewpoint of the perturbation theory, this convergence means that a main contri-
bution to the dispersion-level non-additivity can be described by the CBS[MP3]
level. That is, at least CBS[MP3] is essential to describe the dispersion-level
non-additivity, while CBS[MP2] is insufficient. Although we could not actually
confirm how CBS[MP3/4] differ from SCF/CBS[MP2] for the B-DNA case, we
may infer that even in the B-DNA case CBS[MP3/4] dominantly contribute to a
description of the dispersion-level non-additivity.

5.4 Dispersion-level non-additivity in FNDMC

Next we move on to FNDMC. Its wiggling dependence of ∆ε(4) on the base-pair
steps appearing in Fig. 4.2 arouses suspicion whether FNDMC really reproduces
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Figure 5.5: The non-additivity ∆ε(4) of neon tetramer at several distances between
the constituent dimers (described as “Interlayer distance” in the horizontal axis).
With a fixed “Interlayer distance”, all the Ne atoms located on a plane form a
rectangle, where in each dimer its interatomic length is fixed to be 2.925 Å. All
the CCSD(T) and DFT calculations were performed using Gaussian09 [5].
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the dispersion-level non-additivity appropriately. Here we shall deliberate on two
possibilities of causing faults in FNDMC: quality of trial wave functions obtained
and reliability of the fixed-node approximation adopted in the present study.

We first note that such a wiggling dependence appears only in Fig. 4.2, but
not in Fig. 4.1; both the results were obtained by the wave functions that were
optimized at the same level of theory. In the present study we did not optimize the
Slater part the trial wave functions, but the Jastrow part only. In FNDMC, the latter
changes the statistical error bar only, while the former – related to the fixed-node
approximation – changes the final total energy value, unlike VMC. [112] It is well
known that the same performance on the Jastrow optimization leads to the same
magnitude of error bars for similar system sizes if all the other computational
details are assumed to be common to the systems. It is obvious from Figs. 4.1
and 4.2 that this is actually valid for the present B-DNA systems. We also insist
that our choice of computational details on FNDMC – basis sets, time step, t-
move scheme, as well as Jastrow function – is equivalent to a protocol established
in previous studies on non-covalent systems due to Dubecký et al. [35]. The
reasonable behavior of FNDMC stacking energies in Fig. 4.1 asserts that our
choice is valid for the present B-DNA base-pair steps.

5.5 Fixed-node approximation

The fixed-node approximation is the most notorious as the cause of errors in
FNDMC. [84] Previous studies on non-covalent systems including B-DNA, how-
ever, demonstrated that FNDMC works well for evaluating their complexation
energies in general. [35] It is to be noted in the B-DNA stacking that this is valid
for the stacking energies, but unknown for the non-additivity. The success in
the FNDMC stacking energies relies on the error cancellation of the fixed-node
approximations between the whole non-covalent system and its constituent sub-
systems. This implies that the formation of non-covalent/vdW bonding does not
give rise to a significant difference in nodal surface structures between the whole
and the sub-systems (tetramer-dimer/dimer-monomer), leading to an accurate
complexation energy. The success in the non-additive contribution requires that
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two error cancellations of the fixed-node approximations simultaneously occur
for ε(4) and ε(2). In the case of non-additivity, however, it is possible that the
cancellation in ε(4) would not occur properly. Its possible factor can be attributed
to a horizontal bridging between Watson-Crick bases due to H-bonds. The
formation of H-bonding accompanied by the charge transfer could deform the
fixed-node surface structure of the tetramer more significantly than that of vdW
bonding. If this were true, the fixed-node error could not be canceled out more
remarkably in ε(4) than in ε(2). The less cancellation could arouse the suspicion
that the wiggling dependence of FNDMC in Fig. 4.2 is incorrect due to the fixed-
node error related to the H-bonding.

In order to prove the conjecture (or anti-conjecture) about the fixed-node
errors caused by the H-bonds, the most straightforward way would be to evaluate
the nodal surface dependence of the non-additivity. While the stacking energy
has been demonstrated to be insensitive to the dependence [36, 38], one would
suspect that it is not the case for the non-additivity. Suppose it were true, the non-
additivity evaluated with a different trial node would be different from the present
FNDMC one in Fig. 4.2. Although we plan to address this issue in our future
work, we should mention that such a calculation involves a heavy computational
resource, which costs 1.2 × 106 core-hour [1.2 × 105 (core-hour) × 10 pairs]. In
addition to a single reference trial node, we could employ recently developed
trial nodes such selected configuration interaction [113] and multipfaffian [114]
wave functions, as well as a simple multi-reference one [41, 115]. Beside their
feasibility in terms of computation costs, the more sophisticated trial nodes would
shed light on the nodal surface dependence of non-additivity in FNDMC, i.e., we
could verify whether or not the non-additivity is sensitive to the nodal surface
unlike the stacking energies [35, 36].

Although we do not investigate the nodal surface dependence of ∆ε(4) further,
we alternatively examine if the charge transfer – the key to verifying the issue
– could really matter even for the SCF-level non-additivity. Suppose it really
matters, one would expect that the charge transfer could somewhat affect the
dispersion-level non-additivity. We consider two types of XC functionals in
terms of the long-range (LC) exchange corrections: one well describes the charge
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transfer with the correction and the other dose not. Their difference in the charge
density distribution tells us how significantly the distribution in a B-DNA base-
pair change before and after forming the base-pair, thus clarifying an effect of
changing their non-additive contributions. For example, it is well known that
B3LYP-D3 is not good at capturing the charge transfer because B3LYP also fails
for a number of cases relevant to the charge transfer [89] and the D3 correction
never improve the B3LYP description of charge density [88]. On the other
hand, CAM-B3LYP-D3 [89] remarkably improve the charge transfer, because
it enhances the exact exchange for the long-range exchange based on Coulomb-
Attenuating Method (CAM). As another choice, ωB97X has been reported to give
a better descriptions of properties including the charge transfer than ωB97M-V in
some cases. [87] We note that there are further choices of XC for reproducing
the charge transfer well, such as ‘self-consistent vdW’ implemented in a series
of ‘vdW-DF’ [116], but their implementations are unavailable for Gaussian ba-
sis set calculations. Fig. 5.6 focuses on a comparison among XC functionals
with/without long-range corrections (originally taken from Fig. 3.1). We found
that the long-range corrections by CAM-B3LYP(-D3) and ωB97X (positively)
enhance the non-additive contributions compared to the counterparts, B3LYP(-D)
and ωB97M-V. This implies the importance of the charge transfer caused by the
H-bonding when forming a Watson-Crick base pair. Although the above analysis
deals with only the SCF-level non-additivity, it would be expected that the charge
transfer caused by the H-bonding could significantly deform the nodal surface
structures when forming the Watson-Crick base giving rise to a large fixed-node
error, and hence the wiggling dependence of ∆ε(4) in FNDMC, shown in Fig. 4.2,
might be false due to the less error cancellation in the ∆ε(4) evaluation.

Lastly, we mention another drawback for FNDMC simulations in a practical
sense. According to the previous analysis on the Ne tetramer, it might be expected
that CCSD(T)/CBS[MPn] (n ≥ 3) would get closer to FNDMC predictions as
increasing the CBS[MPn] level. For comparison, we attempted to apply FNDMC
to evaluate ∆ε(4) of the Ne tetramer. Unfortunately, however, we could not
obtain numerically/statistically reliable FNDMC results because the magnitude
of ∆ε(4) itself is an order of/less than the sub-chemical accuracy (0.1 kcal/mol)
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Figure 5.6: Non-additive contributions, ∆E(4) [kcal/mol], predicted by different
XC functionals with/without the long-range exchange corrections. The charge
transfer mainly occurs at horizontal H-bonds when forming Watson-Crick bases.

and hence the corresponding error bar is required to be an order of/less than 0.01
kcal/mol. To attain such an error bar, a vast number of statistical samplings must
be accumulated even for the smaller system considered here. his is another serious
drawback to be noted for FNDMC.

5.6 Conclusion

As we can see in the result chapter, it is found that the FNDMC values of non-
additivity alter their sign (i.e. they increase or decrease their stacking interactions)
depending on the base-pair steps, which is contrary to all the other ab initio

methods. On the other hand, no significant difference between the methodologies
was observed for four-/two-body stacking energies, each of which are used to
evaluate the non-additivity. To elucidate this contrast between the stacking and
non-additivity, we made two plausible discussions about limitation on practical
approximations involved in CCSD(T) and FNDMC:

1. The reason why the unexpected coincidence between CCSD(T)/CBS[MP2]
and HF/B3LYP occurs only at the non-additivity level can be attributed
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to the imperfect capability for MP2 to reproduce the electron correlation
specific to the four-body system. The lack of the correlation never describes
the correlation/dispersion-level non-additivity properly. In other words,
CCSD(T)/CBS[MP2] mostly describes the SCF-level non-additivity only.
In this chapter, we also construct a similar system using Ne atoms to
estimate the impact of the MP2 to MP4 level baseset on the calculation
results. The results also support our conclusions.

2. FNDMC demonstrates a wiggling dependence of the non-additivity. While
the SCF-level non-additivity is mostly positive, the non-additive contri-
butions described by FNDMC are both positive and negative signs. The
negative sign is found to be reasonable, which might be supported by a
simple model analysis based on the London theory. It would, however, be
premature to draw a conclusion that the FNDMC non-additivity reveals the
truth. This is because the Watson-Crick base-pair involves the charge trans-
fer caused by the H-bonds, but we could not verify if the error cancellations
of the fixed-node errors were successful for the H-bonds, as in the case of
complexation energies. However, we can’t ignore the FN approximation
which is used to solve the QMC symbol problem. We analyzed the possible
errors in this approach and discussed this.

In summary, for the results of the previous chapter, we conducted a series of
discussions to explain the rationality of the results.
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Chapter 6

Summary

After decades of development, quantum chemistry based on computer simulation
has become an important means except for experiments. Especially in the
biomacromolecules studies, such as stacking, conversion of DNA, folding of
protein molecules, etc., the properties between molecules are difficult to measure
in experiments. Therefore, how to explain the mechanism of action of large
system molecules in biological activities has become an important research topic.

On the other hand, the structure of biomacromolecules is more complex than
conventional organic macromolecular. This makes it difficult to simplify the
system model using periodic conditions or other methods. The corresponding
molecular force field method builds an intermolecular force field based on empir-
ical data, which makes it possible to simulate large-scale molecular systems. The
first-principles quantum chemistry is much more complex in calculation than the
molecular force field method. Therefore, how to deal with large-scale models has
always been a research challenge.

On the other hand, non-covalent effects play an important role in biomolecules
such as vdW and H-bond, Since the induced polarity of molecules is involved,
a greater cost is required in the calculation of the electronic correlations. The
intermolecular interactions in many-body systems are an important research topic
in quantum chemistry, but the non-additivity is not well studied. For standard
SCF methods have been proven failed to describe dispersion interactions properly.
Therefore, hybrid functionals based on long-range force correction and disper-
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sion force correction based on empirical data are applied to DFT calculations.
However, it is clear that the introduction of empirical parameters makes the DFT
uncertain. If the long-range interaction is to be correctly described, calculations
above the MP2 level are necessary.

The CCSD(T)/CBS method, known as the “gold standard”, is limited to the
size of the systems it can handle due to its computational complexity. To deal
with many-body molecular systems, CCSD(T) can take a matrix of MP2 levels
basis set and perform additive approximation. Then the calculation of such
intermolecular interactions is only at the MP2 level, which is at the same level as
the DFT method with the dispersion force correction added. Therefore, a quantum
chemistry method that can handle macromolecular systems and correctly describe
long-range forces (rather than using empirical methods) is particularly important.
The QMC method is a wave function theory method based on stochastic statistics,
which can truly describe the electron orbit. However, like other wave function
theory methods. When the association between the electrons is added, the
computational cost will also increase significantly. Fortunately, as the size of
side-by-side computers grows larger and larger, and the balance begins to tilt,
statistical-based calculations can compress time costs in large-scale parallelism.
This makes it possible for the QMC method to handle larger systems.

We performed a non-covalent calculation of the non-covalent binding of the
four-molecule system of B-DNA using the highly static QMC method. The results
show that using FNDMC, a widely used QMC method, can achieve non-additive
contributions that are difficult to capture by other methods. Among them, only
the FNDMC method obtains the non-additive contribution of the negative sign in
some systems, and according to the analysis of the London model, the negative
sign of non-additive is expected. In contrast, the non-additive contributions
of other traditional methods are positive symbols. In some B-DNA molecular
systems, FNDMC also obtained a larger positive sign non-additive contribution.
After a structured analysis, we find that the non-additive fluctuation trend has an
important relationship with the polarity direction between molecules. Therefore,
we established a model of the H-bond orientation in the base pair to analyze its
regularity. We found that when the direction of H-bonds is parallel, the non-
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additional contribution will be higher, while in the antiparallel, the non-additional
contribution will be lower. It can explain that FNDMC can get more polar energy
so that the fluctuation of non-additive contribution is enhanced. However, we
cannot rule out the FN approximation, the only approximation in FNDMC, the
offsetting of H-bonds generated in separate calculations.

According to the full text, with the deepening of molecular research, more
and more precise molecular reaction mechanisms need to be accurately described.
The demand for high-precision calculation of macromolecules is also becoming
more and more urgent. With the continuous development of large-scale parallel
computers, computing power will soon exceed tens of billions of times (as the
writing of this article in November 2019) [12], Furthermore, we can predict that
larger-scale parallel computing will be more suitable for statistical algorithm-
based computing methods than traditional determinant iterative methods. So we
can optimistically estimate that in the future, the QMC method will show its
unique charm in more directions and fields.
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Appendix I Stacking energy

Numerical values for energies

The stacking energies (ε(4)) of ten unique B-DNA base-pair steps evaluated from
various ab initio methods, are tabulated in Tables I.1, I.2 and I.3 respectively. In
order to facilitate comparison and layout, the methods are divided into two parts,
one is based on the quantum mechanics-based wave function method (WF), and
the density functional theory method (DFT) is placed separately in a subsequent
tables.
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Stacking Energy of WF methods

Table I.1: Four- and two-body stacking energies (ε(4) and ε(2)) evaluated from
CCSD(T)/CBS[MP2], HF, and FNDMC. All the energies are given in kcal/mol.

Stacking energy Pairs CCSD(T)/CBS[MP2]1 HF2 FNDMC2

ε(4) AA:TT −14.70 9.09 −13.0(4)

ε(2) A//As −6.06 4.56 −4.3(3)

ε(2) T//Ts −4.18 5.55 −2.3(3)

ε(2) A//Ti −2.34 −0.44 −1.7(3)

ε(2) T//Ai −2.16 −0.84 −1.3(3)

ε(4) AT:AT −13.32 8.09 −10.9(7)

ε(2) A//Ts −6.64 2.47 −4.0(4)

ε(2) A//Ts −6.64 2.48 −5.7(4)

ε(2) T//Ti 0.88 1.72 1.1(5)

ε(2) A//Ai −0.92 0.88 −1.7(4)

ε(4) TA:TA −12.79 7.18 −7.2(4)

ε(2) A//Ts −6.07 0.78 −5.6(4)

ε(2) A//Ts −6.07 0.78 −5.6(4)

ε(2) A//Ai −1.55 3.83 −2.0(4)

ε(2) T//Ti 0.70 1.38 0.9(4)

ε(4) GG:CC −11.46 7.85 −8.5(7)

ε(2) G//Gs −3.54 7.10 −1.4(5)

ε(2) C//Cs −1.62 5.46 −2.1(4)

ε(2) C//Gi −3.68 −2.63 −3.1(5)

ε(2) G//Ci −4.82 −4.67 −4.2(7)

ε(4) GC:GC −15.38 8.71 −14.8(9)

ε(2) G//Cs −10.80 −1.22 −10.7(5)

ε(2) G//Cs −10.80 −1.22 −10.6(5)

ε(2) C//Ci 3.09 4.16 2.0(5)
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Table I.1: Four- and two-body stacking energies (ε(4) and ε(2)) evaluated from
CCSD(T)/CBS[MP2], HF, and FNDMC. All the energies are given in kcal/mol.

Stacking energy Pairs CCSD(T)/CBS[MP2]1 HF2 FNDMC2

ε(2) G//Gi 1.93 5.53 1.6(5)

ε(4) CG:CG −17.33 3.53 −15.2(10)

ε(2) G//Cs −7.88 −1.40 −7.1(5)

ε(2) G//Cs −7.88 −1.40 −7.5(5)

ε(2) G//Gi −3.91 2.34 −3.1(4)

ε(2) C//Ci 1.24 2.17 2.1(4)

ε(4) GA:TC −12.86 10.00 −8.9(9)

ε(2) A//Gs −9.14 3.14 −10.2(6)

ε(2) T//Cs −4.69 2.61 −4.9(5)

ε(2) A//Ci −0.31 1.15 1.3(5)

ε(2) T//Gi 0.58 2.01 −0.2(5)

ε(4) AG:CT −13.50 6.31 −7.4(9)

ε(2) A//Gs −7.58 1.26 −7.9(6)

ε(2) T//Cs −6.07 0.38 −5.4(5)

ε(2) T//Gi −0.47 2.22 −2.1(6)

ε(2) A//Ci −0.18 1.12 −0.2(5)

ε(4) TG:CA −15.20 5.22 −15.7(8)

ε(2) T//Gs −5.67 1.09 −5.5(5)

ε(2) A//Cs −4.96 2.99 −3.2(5)

ε(2) A//Gi −4.22 0.54 −3.9(5)

ε(2) T//Ci −1.15 −0.81 −0.8(5)

ε(4) GT:AC −13.36 10.74 −13.5(6)

ε(2) T//Gs −4.96 6.89 −4.5(4)

ε(2) A//Cs −5.44 3.92 −4.3(3)

ε(2) T//Ci 0.30 0.88 −0.3(4)

ε(2) A//Gi −4.06 −1.24 −3.6(4)
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Stacking Energy of DFT methods

Table I.2: Four- and two-body stacking energies (ε(4) and ε(2)) evaluated from
LDA, B3LYP, and B3LYP-D3. All the energies are given in kcal/mol.

Stacking energy Pairs LDA1 B3LYP1 B3LYP-D31

ε(4) AA:TT −10.17 9.00 −12.04

ε(2) A//As −4.80 4.56 −4.94

ε(2) T//Ts −4.02 5.10 −3.84

ε(2) A//Ti −1.02 −0.14 −1.36

ε(2) T//Ai −1.20 −0.31 −1.70

ε(4) AT:AT −9.60 8.65 −12.42

ε(2) A//Ts −5.66 2.78 −6.31

ε(2) A//Ts −5.66 2.78 −6.31

ε(2) T//Ti 1.15 1.72 0.96

ε(2) A//Ai −0.74 1.21 −0.92

ε(4) TA:TA −9.50 7.64 −12.02

ε(2) A//Ts −5.24 1.39 −5.96

ε(2) A//Ts −5.24 1.39 −5.96

ε(2) A//Ai −1.23 3.65 −0.85

ε(2) T//Ti 1.01 1.33 0.87

ε(4) GG:CC −6.83 8.60 −10.35

ε(2) G//Gs −1.51 7.03 −2.44

ε(2) C//Cs −0.92 5.28 −1.27

ε(2) C//Gi −3.22 −1.83 −3.76

ε(2) G//Ci −4.39 −3.84 −4.83

ε(4) GC:GC −11.48 8.80 −13.79

ε(2) G//Cs −9.96 −0.47 −10.19

1Ref. [1]
2Present works
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Table I.2: Four- and two-body stacking energies (ε(4) and ε(2)) evaluated from
LDA, B3LYP, and B3LYP-D3. All the energies are given in kcal/mol.

Stacking energy Pairs LDA1 B3LYP1 B3LYP-D31

ε(2) G//Cs −9.96 −0.47 −10.19

ε(2) C//Ci 3.38 3.65 3.27

ε(2) G//Gi 2.90 5.26 2.47

ε(4) CG:CG −13.20 4.50 −15.97

ε(2) G//Cs −6.48 −0.54 −7.01

ε(2) G//Cs −6.48 −0.54 −7.01

ε(2) G//Gi −3.85 2.69 −4.03

ε(2) C//Ci 1.39 2.06 1.24

ε(4) GA:TC −8.71 10.14 −11.19

ε(2) A//Gs −8.03 3.06 −8.09

ε(2) T//Cs −4.22 2.83 −4.67

ε(2) A//Ci 0.42 1.70 0.06

ε(2) T//Gi 1.11 2.01 0.94

ε(4) AG:CT −9.62 6.97 −12.82

ε(2) A//Gs −5.66 1.74 −6.67

ε(2) T//Cs −5.36 0.95 −6.12

ε(2) T//Gi −0.53 2.20 −0.56

ε(2) A//Ci 0.00 1.35 −0.20

ε(4) TG:CA −11.37 5.98 −13.94

ε(2) T//Gs −4.63 1.51 −5.13

ε(2) A//Cs −4.05 3.26 −4.18

ε(2) A//Gi −3.88 1.06 −4.22

ε(2) T//Ci −0.94 −0.60 −1.17

ε(4) GT:AC −9.96 10.47 −11.99

ε(2) T//Gs −4.28 5.85 −4.45

ε(2) A//Cs −4.11 4.27 −4.47
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Table I.2: Four- and two-body stacking energies (ε(4) and ε(2)) evaluated from
LDA, B3LYP, and B3LYP-D3. All the energies are given in kcal/mol.

Stacking energy Pairs LDA1 B3LYP1 B3LYP-D31

ε(2) T//Ci 0.53 0.82 0.41

ε(2) A//Gi −4.07 −1.07 −4.09

Table I.3: Four- and two-body stacking energies (ε(4) and ε(2)) evaluated from
CAM-B3LYP-D3, ωB97X, and M06-2X. All the energies are given in kcal/mol.

Stacking energy Pairs CAM-B3LYP-D31 ωB97X1 M06-2X1

ε(4) AA:TT −13.94 −8.52 −11.84

ε(2) A//As −6.08 −4.19 −5.96

ε(2) T//Ts −4.62 −2.52 −3.83

ε(2) A//Ti −1.68 −1.02 −1.07

ε(2) T//Ai −2.04 −1.33 −1.39

ε(4) AT:AT −13.90 −8.76 −11.12

ε(2) A//Ts −7.04 −5.14 −6.17

ε(2) A//Ts −7.04 −5.14 −6.17

ε(2) T//Ti 0.78 1.25 1.16

ε(2) A//Ai −1.47 −0.63 −0.48

ε(4) TA:TA −13.88 −8.63 −11.09

ε(2) A//Ts −6.90 −5.08 −5.85

ε(2) A//Ts −6.90 −5.08 −5.85

ε(2) A//Ai −1.58 −0.49 −0.77

ε(2) T//Ti 0.77 1.10 1.02

ε(4) GG:CC −12.14 −6.93 −9.08

ε(2) G//Gs −3.49 −1.20 −4.80

ε(2) C//Cs −1.90 −0.51 −3.38

ε(2) C//Gi −5.21 −3.42 −1.14

1Present study
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Table I.3: Four- and two-body stacking energies (ε(4) and ε(2)) evaluated from
CAM-B3LYP-D3, ωB97X, and M06-2X. All the energies are given in kcal/mol.

Stacking energy Pairs CAM-B3LYP-D31 ωB97X1 M06-2X1

ε(2) G//Ci −4.33 −4.67 −2.55

ε(4) GC:GC −15.85 −10.31 −14.13

ε(2) G//Cs −11.42 −9.52 −11.21

ε(2) G//Cs −11.42 −9.52 −11.21

ε(2) C//Ci 3.30 3.65 3.31

ε(2) G//Gi 2.00 3.28 3.58

ε(4) CG:CG −18.35 −12.89 −15.84

ε(2) G//Cs −8.20 −6.69 −7.40

ε(2) G//Cs −8.20 −6.69 −7.40

ε(2) G//Gi −4.97 −3.19 −3.93

ε(2) C//Ci 1.11 1.62 1.57

ε(4) GA:TC −13.05 −7.71 −11.28

ε(2) A//Gs −9.37 −7.12 −9.47

ε(2) T//Cs −5.39 −3.76 −4.72

ε(2) A//Ci −0.41 0.28 0.43

ε(2) T//Gi 0.66 1.26 1.23

ε(4) AG:CT −14.58 −9.24 −11.16

ε(2) A//Gs −7.65 −5.74 −6.80

ε(2) T//Cs −6.84 −5.23 −5.68

ε(2) T//Gi −1.07 0.04 0.07

ε(2) A//Ci −0.56 0.16 0.24

ε(4) TG:CA −16.11 −10.83 −13.63

ε(2) T//Gs −6.10 −4.39 −5.15

ε(2) A//Cs −5.37 −3.76 −4.76

ε(2) A//Gi −5.02 −3.59 −3.93

ε(2) T//Ci −1.32 −0.95 −1.06
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Table I.3: Four- and two-body stacking energies (ε(4) and ε(2)) evaluated from
CAM-B3LYP-D3, ωB97X, and M06-2X. All the energies are given in kcal/mol.

Stacking energy Pairs CAM-B3LYP-D31 ωB97X1 M06-2X1

ε(4) GT:AC −13.76 −8.36 −11.80

ε(2) T//Gs −5.40 −3.16 −4.67

ε(2) A//Cs −5.38 −3.73 −5.15

ε(2) T//Ci 0.32 0.60 0.51

ε(2) A//Gi −4.73 −3.69 −3.59

1Present study

104



Appendix II Mulliken charge
distribution

Mulliken charge and its electrostatic interaction

As mentioned in the main text, we evaluated the Madelung energy for H-bond as a
Coulombic interaction energy between nitrogenous bases in a Watson-Crick pair.
The Mulliken charge distributions is shown in Figures II.2, where the Mulliken
charge distributions are evaluated at the B3LYP-GD3/VTZ level of theory using
the Gaussian09 code.

Figure II.1: Mulliken charge distribution on molecular planes of AA:TT. In each
row, the left and right panels respectively correspond to upper and lower positions
in direction from 5’ to 3’ carbons.
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Figure II.2: Mulliken charge distribution on molecular planes of AT:AT (upper
panel), TA:TA (middle panel) and GG:CC (lower panel). In each row, the left
and right panels respectively correspond to upper and lower positions in direction
from 5’ to 3’ carbons.

106



Figure II.3: Mulliken charge distribution on molecular planes of GC:GC (upper
panel), CG:CG (middle panel) and GA:TC (lower panel). In each row, the left
and right panels respectively correspond to upper and lower positions in direction
from 5’ to 3’ carbons.
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Figure II.4: Mulliken charge distribution on molecular planes of AG:CT (upper
panel), TG:CA (middle panel) and GT:AC (lower panel). In each row, the left
and right panels respectively correspond to upper and lower positions in direction
from 5’ to 3’ carbons.
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