
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title 折り畳み可能な単頂点展開図に関する研究

Author(s) 大内, 康治

Citation

Issue Date 2020-03-25

Type Thesis or Dissertation

Text version ETD

URL http://hdl.handle.net/10119/16649

Rights

Description Supervisor:上原　隆平, 先端科学技術研究科, 博士

Doctoral thesis

Research on Flat-Foldable Single-Vertex Crease
Patterns

by

Koji Ouchi

Supervisor: Ryuhei Uehara

Graduate School of Advanced Science and Technology
Japan Advanced Institute of Science and Technology

[Information Science]

March, 2020

Abstract
This paper aims to help origami designers by providing methods and knowledge related to a simple origami structure
called flat-foldable single-vertex crease pattern. A crease pattern is the set of all given creases. A crease is a line on a
sheet of paper, which can be labeled as “mountain” or “valley”. Such labeling is called mountain-valley assignment, or
MV assignment. MV-assigned crease pattern denotes a crease pattern with an MV assignment. A sheet of paper with an
MV-assigned crease pattern is flat-foldable if it can be transformed from the completely unfolded state into the flat state
that all creases are completely folded without penetration. In applications, a material is often desired to be flat-foldable in
order to store the material in a compact room. A single-vertex crease pattern (SVCP for short) is a crease pattern whose
all creases are incident to the center of the sheet of paper. A deep insight of SVCP must contribute to development of both
basics and applications of origami because SVCPs are basic units that form an origami structure.

A decision problem whether a given crease pattern is flat-foldable or not was studied by Bern and Hayes in 1996.
There are several theorems related to flat-foldable SVCP: for example, the Kawasaki Theorem, the Maekawa Theorem,
and the Big-Little-Big Lemma. A forcing set is one of the promising properties in origami applications. A forcing set
is a subset of a given flat-foldable crease pattern C. If the creases in the forcing set are folded according to given MV
assignment µ, the all other creases in C are also folded according to µ. In an application called self-folding origami, a
thin material folds into an intended shape by rotating the planes around creases according to the label mountain or valley
assigned on the creases. The cost of such an application can be reduced if it is enough to put actuators on a subset of
creases. Such an optimization problem can be modeled as a minimum forcing set problem. The minimum forcing set
problem supposes us to find a forcing set with the minimum number of creases. The input of this problem is a flat-foldable
MV-assigned crease pattern (C, µ). Damian et al. proposed an algorithm for finding a minimum forcing set for arbitrary
1D origami in 2015. Ballinger et al. developed an algorithm for Miura-ori in 2015. The minimum forcing set for arbitrary
2D origami may be important in origami applications. However, there is no algorithm for such case so far.

In this paper, we propose an algorithm for finding a forcing set of flat-foldable MV-assigned SVCP, which might help
us to construct an algorithm for arbitrary 2D origami. Our algorithm, which runs in O(n2) time where n is the number
of given creases, is a variant of the algorithm by Damian et al. Furthermore, we show that the number of creases in
the minimum forcing set for SVCP is n/2 or n/2 + 1. The proof for the size of minimum forcing set is by considering
a situation that we repeatedly crimp consecutive creases forming a minimal angle with different assignments. Roughly
speaking, such size is n/2 if the number of remaining creases after crimp repetition is two, and otherwise it is n/2 + 1.

It is also interesting to know how many flat-foldable MV-assigned crease patterns there are. In the case of SVCP, the
tight upper and lower bounds on such count has been shown by Hull in 2003. However, enumeration of flat-foldable crease
patterns has not been studied actively, although it is relative to counting. This paper tackles an efficient enumeration of
flat-foldable MV-assigned SVCPs. Such enumeration provides us concrete examples of MV-assigned SVCPs, which must
be helpful to construct a new origami structure. In this enumeration, let a positive even number q be an input, and let the
angle between two adjacent creases be a multiple of unit angle (360/q)◦. Our algorithm reduces symmetrically duplicate
patterns up to rotation and reflection. As far as the author knows, MV-assigned SVCP enumeration introducing the unit
angle and reduction of symmetry in this paper is the first trial in the world. The author notes that the problem condition
in this paper is different from that for the upper and lower bounds on counting by Hull. Our enumeration algorithm
is composed of three phases: (1) enumerate crease patterns of at most q creases satisfying the Kawasaki Theorem; (2)
enumerate MV assignments on the crease patterns obtained in (1) satisfying the Maekawa Theorem; (3) test flat foldability
of the obtained MV-assigned SVCPs. The phase (1) can be done in parallel to (2) and (3) with master-worker model: the
master process computes the phase (1); a worker process computes the phase (2) and (3) for an SVCP given by the master
process. In experiment, our algorithm enumerates approximately 4.07×1013 flat-foldable MV-assigned SVCPs for q = 40
in 34 hours using a supercomputer.

This paper contributes to the development of origami by proposing algorithms for two problems: minimum forcing
set for MV-assigned SVCP and enumeration of flat-foldable MV-assigned SVCPs with unit angle. The result of minimum
forcing set for MV-assigned SVCP must help investigation of minimum forcing set for arbitrary 2D origami. The
enumeration provides us examples of flat-foldable MV-assigned SVCPs and reveals that the number of flat-foldable SVCPs
and that of flat-foldable MV-assigned SVCPs are numerous.

Keywords: computational origami, flat foldability, forcing set, enumeration

i

Acknowledgments

The author greatly appreciates the constant encouragement and the kind
guidance of his supervisor Professor Ryuhei Uehara of Japan Advanced
Institute of Science and Technology during this work. The author would like
to thank Assistant Professor Giovanni Viglietta of Japan Advanced Institute
of Science and Technology for his helpful discussions and suggestions. The
author would like to thank Associate Professor Yota Otachi of Kumamoto
University for his helpful discussions and suggestions.

The author is grateful to all who have affected or suggested his areas of
research. The author devotes his sincere thanks and appreciation to all of
them and his colleagues.

ii

Contents

Abstract i

Acknowledgments ii

1 Introduction 1
1.1 Background . 1
1.2 Contents of Thesis . 4

2 Related Work 6
2.1 Flat Foldability of Origami 6
2.2 Forcing Sets . 8
2.3 Enumeration and Counting of Origami 10

3 Minimum Forcing Sets for Single-Vertex Crease Pattern 12
3.1 Introduction . 12
3.2 Preliminaries . 14

3.2.1 Crimpable Sequences [6] 14
3.2.2 End Creases [6] 16

3.3 The Size of a Minimum Forcing Set of an SVCP 17
3.3.1 SVCP of Generic Angles 17
3.3.2 SVCP of Equal Angles 19
3.3.3 General SVCP 21

3.4 Constructing a Minimum Forcing Set 21
3.4.1 Crimp Forest Construction 22
3.4.2 Forcing Set Algorithm 24

iii

3.5 Proof of Correctness . 25
3.6 Conclusion . 28

4 Efficient Enumeration of Flat-Foldable Single-Vertex Crease
Patterns 29
4.1 Introduction . 30
4.2 Outline of Algorithm . 32
4.3 Description of Algorithm 34

4.3.1 Phase 1: Assignment of “crease”/“flat” 34
4.3.2 Phase 1: Satisfying the Kawasaki Theorem 35
4.3.3 Phase 2: Assignment of “mountain”/“valley” . . . 37
4.3.4 Phase 3: Test of Flat Foldability 43
4.3.5 Analysis of Algorithm 44
4.3.6 Parallel Processing 44

4.4 Experimental Results . 44
4.4.1 The Number of Crease Patterns 45
4.4.2 Solution Space 45
4.4.3 Computation Time 47

4.5 Conclusion . 47

5 Conclusion 52

References 54

Publications (refereed) 58

Publications (unrefereed) 59

iv

Chapter 1

Introduction

1.1 Background

From the viewpoint of industry, folding is a promising way to make a thing
compact with flexibility to easily expand, e.g., for solar panels of artificial
satellites. Such an origami structure can be defined by a crease pattern and
a mountain-valley assignment (or MV assignment shortly). A crease pattern
C is a set of creases that are lines to be folded on the sheet of paper. MV
assignment µ is a function that gives a label “mountain” (M) or “valley”
(V) to each crease, that is, MV assignment tells us the direction (upward
or downward) of rotation of paper around a given crease. Figure 1.1 shows
a mountain fold and a valley fold. We call (C, µ) an MV-assigned crease
pattern.

Origami can be classified by dimension and characterizations. One

(a) Mountain fold. (b) Valley fold.

Figure 1.1: Example of mountain fold and valley fold.

1

dimensional origami (1D origami) is defined as folding a strip of paper
with creases orthogonal to the longer edges of the strip. We can abstract
1D origami by a line segment for the strip and points on the segment for
the creases (see Figure 1.2). Stamp folding is a 1D origami such that the
distances between consecutive creases are equal.

Two dimensional origami (2D origami) has creases with arbitrary di-
rections on a piece of paper and the folded shape is flat. Flat-foldable
single-vertex crease pattern (SVCP) is a 2D origami whose creases are in-
cident to the center of a sheet of paper to be folded. We consider the sheet
of paper for SVCP is a disk. Figure 1.3 is an example of flat-foldable MV-
assigned SVCP. Miura-ori is a class of 2D origami, whose crease pattern
is made of two dimensional array of congruent parallelograms as shown in
Figure 1.4.

Three dimensional origami (3D origami) is considered to have non-flat
folded shape. Its crease pattern is usually on a flat piece of paper.

In applications of origami, a sheet of paper, or a thin material, is often
desirable to satisfy flat foldability in order to make the size of the material
small. Flat foldability means whether a crease pattern or an MV-assigned
crease pattern can be folded into a flat shape without penetrating itself if
all creases are folded completely. There are some pieces of software to
help designers’ tough investigation of origami. Mitani developed ORIPA1

[21, 22], which is software for drawing MV-assigned crease pattern, eval-
uating its flat foldability, and estimating the state of the folded sheet of
paper. Origamizer2 [25] by Tachi creates an MV-assigned crease pattern
which can be folded into the input 3D model. Although the software help
designers very well, testing whether a crease pattern is flat-foldable or not
is substantially difficult: Bern and Hayes showed that such test on a given
MV-assigned crease pattern is NP-hard [4].

In application called self-folding origami [11, 14, 18, 19], it is preferable
to use fewer actuators that implement motion of planes around creases to

1http://mitani.cs.tsukuba.ac.jp/oripa/
2http://origami.c.u-tokyo.ac.jp/˜tachi/software/

2

Figure 1.2: An example of 1D origami.

Figure 1.3: An example of flat-foldable MV-assigned SVCP.

Figure 1.4: An example of Mimura-ori.

reduce the production cost, which leads to minimum forcing set problem.
A forcing set is a subset of given flat-foldable creases which forces other
creases to follow the given MV assignment when folding. A minimum
forcing set is a forcing set with the minimum number of creases. Finding a
minimum forcing set of arbitrary 2D origami is an open problem.

In design of origami, designers often introduce a constraint that an angle
between creases incident to a vertex is only multiples of 22.5◦, 15◦ or some
other specific unit angle which divides 360◦. This restriction reduces the
choice of creases which is a part of difficulty of designing, however, such
designing is still tough work. In addition, designers often aim to obtain a
flat-folded shape. Therefore, designers may want a catalog of components
of flat-foldable crease patterns to make their design easier, which requires
a kind of enumeration.

3

This paper focuses on flat-foldable SVCP. We can consider that SVCP
is a basic component of a crease pattern because a crease pattern is a set
of SVCPs. Therefore, investigating SVCPs may contribute to study and
design of 2D origami. We also denote an SVCP with MV assignment by
an MV-assigned SVCP. Although SVCP is a fundamental and important
component of origami, there are few pieces of previous research compared
to complicated 2D and 3D origami applications. This paper studies two
topics; one is minimum forcing set for SVCP, and the other is enumeration
of flat-foldable MV-assigned SVCPs with unit angle. These must give us
insight for further development of 2D origami studies and applications.

1.2 Contents of Thesis

Chapter 2 gives an overview of related work in computational origami: flat
foldability, forcing set, and enumeration and counting. Flat foldablility
is a main component of our research. Our key theorems and lemma on
flat foldability are the Kawasaki Theorem, the Maekawa Theorem, and the
Big-Little-Big Lemma. Forcing set is studied for 1D origami [6] and Miura-
ori [3]. Matsukawa et al. studied an enumeration of flat-foldable crease
pattern and possible folded shapes in 45◦ system with 4 × 4 grid [20].
Mitani developed an enumeration of all possible flat-folded states after
folding [21, 22]. Counting MV assignment is actively studied by Hull.
He derived the tight upper and lower bound on the MV assignment for
flat-foldable SVCP. Ginepro and Hull also counted the MV assignments for
Miura-ori of h × w grid.

In Chapter 3, we consider minimum forcing sets for SVCP. Minimum
forcing set problem is a model for saving resource in self-folding origami:
the number of actuators for self folding can be reduced to the size of the
minimum forcing set for a given MV-assigned crease pattern. We analyze
the size of minimum forcing set for SVCP and propose an algorithm for
finding a minimum forcing set for a given MV-assigned SVCP.

4

In Chapter 4, we propose an algorithm for enumerating the all distinct
flat-foldable MV-assigned SVCPs under an assumption that every angle
between two creases is multiple of (360/q)◦ for given q. The algorithm
considers that crease patterns and MV-assigned crease patterns are equiva-
lent if they are equal up to rotation and reflection. The result of enumeration
can be seen as knowledge for designing origami because SVCP is a com-
ponent of an origami model. The number of enumerated patterns is highly
exponential, which implies how difficult SVCP origami is.

Chapter 5 notes the results and future work.

5

Chapter 2

Related Work

2.1 Flat Foldability of Origami

This paper entirely works on flat-foldable crease pattern. A crease pattern
or an MV-assigned crease pattern is flat-foldable if it can be folded into a
flat shape without penetrating itself when all creases are folded completely.
Great work on flat foldability was done by Bern and Hayes [4]. They showed
the hardness of flat foldability in 3 situations: an MV-assigned SVCP
(Figure 2.1a), an arbitrary crease pattern (Figure 2.1b), and an arbitrary
MV-assigned crease pattern (Figure 2.1c).

The test for an MV-assigned SVCP takes linear time with respect to the
number of creases. If only a crease pattern is given, we can test the existence
of MV assignments such that the area around each vertex is flat-foldable.
This problem is called local flat foldability problem. The test of local flat
foldability can be done in linear time as well, and so is generating a valid
assignment [8]. However, computing flat foldability is NP-hard even if we
are given a valid MV-assigned crease pattern. The proposed algorithm in
Chapter 4 uses the test of flat foldability for MV-assigned SVCP in order to
detect flat-foldable ones in the enumeration.

Assuming that given n creases are indexed clockwisely and the index
starts from 1, there are several conditions related to flat foldability of MV-
assigned SVCP as follows:

6

(a) An MV-assigned SVCP. (b) A crease pattern. (c) An MV-assigned crease
pattern.

Figure 2.1: Three situations for flat foldability. We can obtain a wire frame
of folded shape in (b).

Theorem 2.1 (The Kawasaki Theorem [16]) Let θi be an angle between
the ith and the (i+1)st creases. We assume that either mountain or valley is
assigned to each crease. An SVCP defined by angles θ1+θ2+· · ·+θn = 360◦

is flat-foldable if and only if n is even and the sum of the odd angles θ2i+1 is
equal to the sum of the even angles θ2i, or equivalently, either sum is equal
to 180◦: θ1 + θ3 + · · · + θn−1 = θ2 + θ4 + · · · + θn = 180◦.

Theorem 2.2 (The Maekawa Theorem [8, Chapter 12]) We assume that
a given MV-assigned SVCP defined by angles θ1 + θ2 + · · · + θn = 360◦

is flat-foldable. Then the number of mountains and the number of valleys
differ by ±2.

Lemma 2.1 (Big-Little-Big Lemma [15, 16]) If an angle θi is strictly min-
imal, that is, θi−1 > θi < θi+1 holds, then the creases forming θi have as-
signment different from each other in any flat-foldable MV-assigned crease
pattern.

Lemma 2.2 (Generalized Big-Little-Big Lemma (Theorem 4 of [13]))
If a sequence of k angles θi, θi+1, . . . , θi+k−1 is strictly minimal, that is,
θi−1 > θi = θi+1 = · · · = θi+k−1 < θi+k holds, then the difference of the

7

number of mountains and the number of valleys on the creases between the
angles θi−1, θi . . . , θi+k is zero for odd k and is one for even k.

Note that the Kawasaki Theorem is a necessary and sufficient condi-
tion on angles between creases and others are necessary conditions. The
Maekawa Theorem and the Big-Little-Big Lemma are components of proof
in Chapter 3. These conditions are used to reduce the computation time of
the enumeration algorithm in Chapter 4.

2.2 Forcing Sets

Forcing set is a new topic in computational origami. A forcing set F is a
subset of a given flat-foldable crease pattern C. If the creases in the forcing
set are folded according to given MV assignment µ, the all creases in C \ F
are also folded according to µ and no other way to be folded. Figure 2.2
depicts the concept of minimum forcing set for a flat-foldable MV-assigned
SVCP.

In an application called self-folding origami [11, 14, 18, 19], a thin
material folds into an intended shape by rotating the planes around creases
according to the label mountain or valley assigned on the creases. The cost
of such an application can be reduced if it is enough to put actuators on
a subset of creases. Such an optimization problem can be modeled as a
minimum forcing set problem. The minimum forcing set problem supposes
us to find a forcing set with the minimum number of creases. The input of
this problem is a flat-foldable MV-assigned crease pattern (C, µ). Table 2.1
shows the current progress of studies on minimum forcing set.

Damian et al. proposed an algorithm for finding a minimum forcing
set of arbitrary 1D origami in 2015 [6]. Outline of their algorithm is as
follows: repeat crimping minimal distance sequence of creases to construct
a forest whose nodes represents the sequences, where the sequence of a
parent node includes a crease surviving the crimp on the sequence of a
child node; traverse the forest in preorder manner to decide the forcing

8

Figure 2.2: An example of a minimum forcing set for the flat-foldable MV-
assigned SVCP in Figure 1.3. Each crease with a small circle is the crease
of the forcing set. Given MV assignment is a unique foldable assignment
if we try all possible MV assignments on not forcing creases.

Table 2.1: An overview of studies on minimum forcing set. Dim. means
dimension, and MFS means minimum forcing set.

Dim. Constraint Finding MFS Bounds for the size of MFS Paper
1D Arbitrary O(n) time Open [6]
2D Arbitrary Open Open —

2D Miura-ori O(h2w2) time
for h × w grid

Lower: h + w − 2,
Upper: ⌈hw/2⌉ [3]

2D Single-vertex O(n2) time n/2 or n/2 + 1 Our result

creases.
Ballinger et al. developed an algorithm for finding a minimum forcing

set of 2D Miura-ori in 2015 [3]. To describe the problem, they used
equivalence between locally flat-foldable Miura-ori MV assignments and
3-vertex colorings of a grid graph with one vertex pre-colored shown in [10].
They showed tight bounds of the number of the creases in the minimum
forcing set, and proposed a method for testing whether a given set is forcing
or not as well. The minimum forcing set for arbitrary 2D origami may be
important in origami applications. However, algorithm for such case has

9

Table 2.2: An overview of studies on enumeration and counting of origami.

Target Enumeration Count Bounds for count
Stamp folding [24] [17] (by formula) [26]

MV assignment for Miura-ori Open [10] (by formula) Open
45◦ system (4 × 4 grid) [20] [20] (by enuemration) Open

MV-assigned SVCP,
with unit angle,

excluding symmetrical duplications
Our result Our result

(by enumeration) Open

MV assignment for SVCP,
without unit angle,

including symmetrical duplications
— — [13]

not been developed.
In this paper, we propose an algorithm for finding a minimum forcing

set of flat-foldable MV-assigned SVCP by converting the algorithm in [6],
which might help us to construct an algorithm for arbitrary 2D origami.
We also show the size of a minimum forcing set for SVCP is n/2 or n/2+1.
As far as the author knows, our work is the first trial for minimum forcing
set of SVCP.

2.3 Enumeration and Counting of Origami

Enumeration is an emerging topic in computational origami due to a rise of
calculation speed of computers. Mitani has implemented in ORIPA [21, 22]
an enumeration of all possible flat-folded states after folding input MV-
assigned crease pattern. If we focus on the size of the output of enumeration,
the problem can be seen as a counting problem. Table 2.2 summarizes the
current progress of studies on enumeration and a count of origami.

Hull showed tight upper and lower bounds on the count of MV as-
signments for flat-foldable SVCP [13]. The situation is similar to our
enumeration of flat-foldable MV-assigned SVCP in Chapter 4, but Hull
did not remove duplications up to rotation and reflection. Therefore Hull’s
result cannot be applied to the analysis of our enumeration.

Koehler studied counting of stamp folding which is a kind of 1D
origami [17]. Stamp folding considers to fold a strip of square or rect-

10

angular stamps which are separated by creases, and we are supposed to fold
along the all creases without penetration. He derived complicated formulas
to compute the counting and listed such numbers by computer for N ≤ 16
where N is the number of stamps. Sawada and Li developed a constant
amortized time algorithm to generate stamp foldings in [24]. The numbers
of stamp folding is known for N ≤ 45 so far, listed as A000136 in OEIS1.
Uehara showed that the lower bound of the count is Ω(3.065N) and the
upper bound is O(4N) [26].

Ginepro and Hull counted the number of locally flat-foldable MV as-
signments on Miura-ori of h × w grid where h and w are given [10]. They
derived recurrence and closed formula for w ≤ 5 and arbitrary h, and
computed the numbers of MV assignments for w ≤ 5 and h ≤ 8. The
computed numbers fit with existing integer sequence of the number of
ways of 3-coloring the vertices of a grid graph with one vertex pre-colored
(A078099 in OEIS), where a grid graph is a dual of the given Miura-ori
crease pattern regarded as a graph. They showed such correspondence
occurs for any h and w.

Matsukawa et al. enumerated flat-foldable crease patterns and possible
folded shapes in 45◦ system with 4×4 grid [20]. They did not count the order
of layers in a folded shape. Their enumeration removes duplications up to
rotation and reflection. It is shown that there are 259,650,300 flat-foldable
crease patterns and 13,452 folded shapes in such situation.

Contribution of this paper in this field is that the author enumerates
and counts flat-foldable MV-assigned SVCPs introducing the concept of
unit angle for the first time in the world. The count in Chapter 4 is done
by enumeration. Deriving the closed formula of the count is future work.
Upper and lower bounds for the count is an open problem as well.

1The On-line Encyclopedia of Integer Sequences: http://oeis.org/

11

Chapter 3

Minimum Forcing Sets for
Single-Vertex Crease
Pattern

This chapter is based on the author’s paper published as [OU19b]. We
propose an algorithm for finding a minimum forcing set of SVCP. A forcing
set is a subset of given creases that forces all other creases to fold according
to the given labels. Our algorithm is a modification of an existing algorithm
for 1D origami [6]. We show that the size of a minimum forcing set of an
SVCP is n/2 or n/2 + 1 where n is the number of the creases in the SVCP.

3.1 Introduction

In an origami application called self-folding origami, a thin material folds
into an intended shape by rotating the planes around creases according to
the label mountain or valley assigned on the creases [11, 14, 18, 19]. The
cost of such an application can be reduced if it is enough to put actuators
on a subset of creases. Finding such a subset of creases can be modeled as
a forcing set problem.

Forcing set problem is a new topic in computational origami, which

12

was considered in [1, 3, 6]. Especially, minimum forcing set for flat
foldability was studied for 1D origami [6] and 2D Miura-ori [3]. In a
forcing set problem for flat foldability, a flat-foldable MV-assigned crease
pattern (C, µ) is given. A forcing set F is a subset of C where c ∈ F is
assigned the value µ(c), and F makes the other creases c′ ∈ C \ F to be
assigned the value µ(c′): F is not a forcing set if c′ can have the assignment
opposite to µ(c′) to make the given crease pattern fold flat. A forcing set
F is called minimum if there is no other forcing set with size less than |F |.

This chapter focuses on minimum forcing sets for flat-foldable SVCP.
If |C | is two, we are to fold the sheet of paper in half, and it is obvious
that the size of the minimum forcing set is one. To simplify calculation
of index circulation, we assume the index of creases starts with 0 in this
chapter. An SVCP is a sequence of creases C = (c0, c1, . . . , cn−1) which are
put clockwisely on the disk incident to the center. θi denotes the clockwise
angle from ci to ci+1 mod n (see Figure 3.1).

Figure 3.1: Notation of creases and angles.

In this chapter, we develop an algorithm to find a minimum forcing set
of a given flat-foldable MV-assigned SVCP in O(n2) time. As far as the
author knows, our algorithm is the first one for finding a minimal forcing
set of flat-foldable MV-assigned SVCP, even though SVCP is an important
component of origami. Our algorithm is based on that for 1D origami in
[6] because the structure of SVCP is similar to 1D origami if we regard it
as a ring by cutting away the inner space of the sheet of paper: the creases
reduce to points on the ring, and the sheet of paper becomes 1D origami

13

if we cut the ring at some point. We also reveal that the size of F is n/2
or n/2 + 1. Precisely, |F | is n/2 if the SVCP is of generic angles, which
is a case that the angles to be operated always differ. In the case when
all the angles in the SVCP are equal, |F | is n/2 if n = 2, otherwise |F |
is n/2 + 1. For a general SVCP, which does not have any constraints, the
size of F is n/2 + 1 if the crease pattern can be reduced to an SVCP of
equal angles with size four or more by repeatedly crimping consecutive two
creases (ci, ci+1 mod k) with different MV assignment where θi is minimal,
otherwise |F | = n/2.

3.2 Preliminaries

This section introduces some terminology and preliminary results follow-
ing [6]. Throughout the chapter we work with a flat-foldable MV-assigned
crease pattern (C, µ), where C = (c0, c1, . . . , cn−1) is a flat-foldable SVCP
and µ is a flat-foldable MV assignment.

3.2.1 Crimpable Sequences [6]

We slightly change the definition of crimpable sequence to fit the as-
sumption that C is circular. A crimpable sequence in SVCP is com-
posed of consecutive creases where the angles between the creases are
equal, with the property that the two angles adjacent to the left and right
end of the sequence are strictly larger than the equal angles. Formally,
for integers 0 ≤ i < n and 0 < k < n, a sequence of consecutive
creases (ci, ci+1 mod n, . . . , ci+k mod n) is crimpable if θi = θi+1 mod n = · · · =
θi+k−1 mod n and θi−1 mod n > θi < θi+k mod n. Figure 3.2 shows an example.
We note that we have to take a mod on the index for circulation. Thus we
may have (i − 1) mod n = (i + k) mod n.

A monocrimp operation is defined as a fold about a single pair of
consecutive creases of opposite MV parity in a crimpable sequence. (See
Figure 3.3.)

14

Figure 3.2: (c4, c5, c0, c1, c2) is a crimpable sequence.

Figure 3.3: We can monocrimp (c5, c0) because they are in a crimpable
sequence (c4, c5, c0, c1, c2) and their MV assignment are different. A
monocrimp makes the sheet of paper conic. We describe such a conic
crease pattern by an image captured from the upside of the cone.

A crimp operation is a set of monocrimps repeatedly conducted on
a crimpable sequence while the sequence is crimpable (Figure 3.4). In
our proofs for the minimum size of a forcing set, we characterize such
size by considering the conditions for flat foldability on a given SVCP
while repeating a crimp operation to fold the SVCP flat. A crimp on
an MV-assigned SVCP on a disk changes the disk to a cone and further
crimps make the cone sharper. Such change of the shape does not affect
flat foldability [8, Chapter 12]. The following theorem described with
crimpable sequence is equivalent to Lemma 2.2, which will be needed in
Section 3.5.

Theorem 3.1 (Theorem 1 from [6]) Let α be a crimpable sequence in a

15

Figure 3.4: An example of a crimp operation. After monocrimping (c5, c0),
new MV pair (c4, c1) appears and are folded by another monocrimp as a
part of the crimp operation.

flat-foldable MV-assigned SVCP. The difference in the number of M and V
assignments for the creases in α is zero (one) if α has an even (odd) number
of creases.

In the case of a crimpable sequence α of odd length, we say that the
crease remaining after a crimp operation on α survives the crimp. We
note that the surviving crease in α is with majority assignment in α ([6,
Observation 1]). Majority assignment denotes the assignment M or V
which is major in a sequence or a set of creases.

3.2.2 End Creases [6]

End creases are the remains after exhaustive crimps. Exhaustive crimps
mean repeating a crimp operation until there is no crimpable sequence (for
example, see Figure 3.5). The following lemma holds for SVCP.

Lemma 3.1 The end creases of an flat-foldable SVCP form a flat-foldable
SVCP of equal angles.

To prove this lemma, we need the Maekawa Theorem (Theorem 2.2)
and the following lemma:

Lemma 3.2 (Corollary 12.2.11 from [8]) An SVCP of equal angles is flat-
foldable iff |#M − #V| = 2.

16

Figure 3.5: An example of exhaustive crimps. SVCP becomes equal angles
by the exhaustive crimps.

Details about the Maekawa Theorem can be found in [8, Chapter 12].
Now let us prove Lemma 3.1.
Proof. We will make exhaustive crimps, that is, we will repeat crimps while
processed C satisfies θi−1 mod n > θi = θi+1 mod n = · · · = θi+k−1 mod n <

θi+k mod n for some i and k. After this repetition, the crease pattern becomes
one that consists of all equal angles as shown in Figure 3.5.

The original foldable (C, µ) satisfies the equation in Lemma 3.2 by the
Maekawa Theorem. A monocrimp does not change the difference between
the number of Ms and the number of Vs. Therefore after crimping all
crimpable sequences in (C, µ), the crease pattern satisfies |#M − #V| = 2.
By Lemma 3.2, the obtained SVCP of equal angles is flat-foldable.

3.3 The Size of a Minimum Forcing Set of an
SVCP

This section is devoted to proof of the theoretical minimum size of forcing
sets.

3.3.1 SVCP of Generic Angles

In this section, let a given SVCP be of generic angles, that is, consecutive
angles to be crimped always differ. Formally, SVCP is of generic angles if
θi − θi+1 + θi+2 − θi+3 + · · · + θ j−1 , θ j − θ j+1 + θ j+2 − θ j+3 + · · · + θk−1

17

holds for any i, j, and k where the length of each sequence is odd. (This
definition is from [8, Subsection 12.2.2].) First we show the existence of F
with size n/2, then we prove that F with size n/2− 1 or less does not exist.

Lemma 3.3 There is a forcing set of an SVCP of generic angles, whose
size is n/2.

Proof. First we use a contradiction in order to show that there are al-
ways consecutive three angles which satisfy Lemma 2.1. Assume there
are consecutive different angles θ0, θ1, . . . , θn−1, and any consecutive three
of them do not satisfy Lemma 2.1. Then, for example, we can assume
θ0 > θ1 > θ2. By the condition and assumption, θ1 > θ2 > θ3 holds.
Similarly, θ0 > θ1 > θ2 > θ3 > θ4 > · · · holds and the sequence mono-
tonically decreases. However, θn−1 > θ0 could never happen, which is a
contradiction. Thus, we can always apply Lemma 2.1.

Applying Lemma 2.1 on (θi−1 mod n, θi, θi+1 mod n) repeatedly, we can
fold flat the sheet of paper. Let (ci, ci+1 mod n) be the pair of creases between
the three angles. If we determine the assignment on one of (ci, ci+1 mod n),
the assignment on the other of the pair is also determined. Hence we can
make a forcing set by picking a crease in each pair as an element of the
forcing set. We have n/2 such pairs because generic angles are the worst
case of the number of such pairs. Therefore the size of the forcing set is
n/2.

Lemma 3.4 There is no forcing set of an SVCP of generic angles whose
size is less than n/2.

Proof. The proof is by contradiction. Assume a forcing set F with size
n/2 − 1 or less exists.

We monocrimp (θi−1 mod n, θi, θi+1 mod n) according to Lemma 2.1. Ev-
ery pair (ci, ci+1 mod n) is isolated from other pairs and there are n/2 pairs,
thus every crease appears in a pair only once. Because |F | < n/2, there is
an index i such that both in (ci, ci+1 mod n) are not in F. This contradicts the

18

Figure 3.6: An example of flat-foldable equal-angle SVCP.

definition of F because the sheet of paper folds flat in the following two
cases: we assign (M,V) on (ci, ci+1 mod n), or (V,M) on (ci, ci+1 mod n).

By Lemma 3.3 and Lemma 3.4, we obtain the following theorem.

Theorem 3.2 The size of a minimum forcing set for SVCP of generic angles
is n/2.

3.3.2 SVCP of Equal Angles

In this section, let a given SVCP be of equal angles, or equal-angle SVCP.
(An example of equal-angle SVCP is in Figure 3.6.) Hence θi = θi+1 mod n

holds for any integer i where 0 ≤ i < n.

Lemma 3.5 There is a forcing set of an equal-angle SVCP whose size is
n/2 + 1 if n ≥ 4. Furthermore, the forcing set is composed of all creases
with majority assignment.

Proof. Assume that F consists of all majority M creases (thus all V creases
are not in F). If F is not a forcing set then we can choose some crease in
C \ F to be M, contradicting Lemma 3.2.

Lemma 3.6 There is no forcing set of an equal-angle SVCP whose size is
less than n/2 + 1 if n ≥ 4.

Proof. We prove it by contradiction. Assume F is a forcing set of an
equal-angle SVCP, whose size is n/2 or less. Then there may be a pair of

19

Figure 3.7: F is not forcing: two Ms can be inverted to fold flat.

Figure 3.8: F is not forcing: one M and one V can be inverted to fold flat.

an M crease and a V crease which are not in F (Let M be the majority in
the crease pattern). We denote such pair by p. We note that the creases in
p do not have to be consecutive.

If all V creases are in F, p does not exist. In this case, we can invert the
assignment of a pair of M creases in C \ F to Vs (Figure 3.7), where the
pair is not necessary to be consecutive. This operation holds Lemma 3.2,
a contradiction.

Otherwise we can swap the MV assignment in p, and the resulting
SVCP is flat-foldable by Lemma 3.2 (Figure 3.8). This is a contradiction
to our assumption that F is forcing.

Theorem 3.3 Assume that a given SVCP is of equal angles. If the number
of creases in the SVCP is two, then the minimum forcing set consists of
one crease. Otherwise the size of the minimum forcing set of the SVCP is
n/2 + 1. By Iverson’s convention, it can be described as n/2 + [n ≥ 4].

Proof. It is obvious if the number of creases in an equal-angle SVCP is two.

20

Lemma 3.5 and Lemma 3.6 imply that n/2 + 1 is the minimum size of F if
n ≥ 4.

3.3.3 General SVCP

Here we consider that a given SVCP has no constraints.

Theorem 3.4 Let m be the number of monocrimps performed until the
given SVCP becomes a flat-foldable equal-angle SVCP (cf. Lemma 3.1). F
denotes a minimum forcing set of the given SVCP. Then |F | = n/2+[n−2m ≥
4].

Proof. As the case of generic angles, we crimp the creases in crimpable
sequences as many as possible. For each monocrimp, one of the creases in
the pair must be in F. Such monocrimps contribute to m elements in F.

After monocrimping m times, the crease pattern has become a flat-
foldable equal-angle SVCP (cf. Lemma 3.1). This equal-angle SVCP is
composed of n − 2m creases because two creases are consumed per one
monocrimp. By Theorem 3.3, the size of a minimum forcing set of the
equal-angle SVCP is (n − 2m)/2 + [n − 2m ≥ 4].

The minimum size of F is the sum of the sizes of the two sets of forcing
creases obtained above. This is because the sets do not have intersection
and both are minimum. Thus, |F | = m + (n − 2m)/2 + [n − 2m ≥ 4] =
n/2 + [n − 2m ≥ 4].

3.4 Constructing a Minimum Forcing Set

This section describes how to obtain a minimum forcing set for a given flat-
foldable SVCP. We regard SVCP as a kind of 1D origami by the following
way: cut away the inner space of the sheet of paper to make the sheet of
paper a ring; the creases reduce to points on the ring, and the ring becomes
1D origami by cutting the ring at some point. Hence we can see that flat-
foldable SVCP is a 1D origami with a constraint that the two end points of

21

the paper segment locate at the same point in the folded shape. Another
difference between flat-foldable SVCP and ordinary 1D origami is that the
end creases of flat-foldable SVCP are always equal angle (or equidistant
from the viewpoint of 1D origami). Such conditions suggest a need to
consider Lemma 3.5 in this section.

3.4.1 Crimp Forest Construction

We convert the crimp forest algorithm in [6] to an algorithm for SVCP
by allowing circulation of the index of creases when finding a crimpable
sequence. The converted algorithm is shown in Algorithm 1. A circu-
lating crimpable sequence (ci, ci+1, . . . , c0, c1, . . . , ck) may occur when the
algorithm finds and crimps crimpable sequences, but it does not change
the behavior of the other parts of the algorithm. The algorithm constructs
a forest in bottom-up manner. The edges are added if the sequence in the
parent node includes the crease surviving the crimp on the sequence in
child node. Figure 3.9 depicts an example of a crimp forest.

Algorithm 1: CrimpForestSVCP(C, µ)
Initialize W ← ∅
while C has a crimpable sequence do

Let s be the crimpable sequence in C with the smallest starting
index. // modified from [6].

create a node v corresponding to s, and add v to W .
Make v the parent of each root node in W whose crimpable
sequence has a surviving crease that is in s.

Apply the crimp operation to s.
Update C to be the resulting crease pattern.

end
return W

A straightforward implementation of Algorithm 1 takes O(n2) time
because a naive way to find a crimpable sequence takes O(n) time: start
searching from c0 clockwisely; skip monotonically nonincreasing angles;
stop at the right side crease cr which satisfies θr−1 mod n < θr ; counterclock-

22

Figure 3.9: An example of a crimp forest construction. [·] is a crimpable
sequence to be crimped. The surviving creases are underlined. Inclusion
of a surviving crease is presented as an edge of a tree.

wisely from cr , search the left side crease cl which satisfies θl−1 mod n > θl;
other operations can be done in constant time; since the algorithm loops at
most n times, the time complexity of the algorithm is O(n2).

The following lemma describing the properties of crimp forest holds
for SVCP as well.

Lemma 3.7 (Lemma 4 from [6]) Given a crease pattern C and two fold-
able MV assignments µ1 and µ2, let W1 and W2 be the crimp forests
corresponding to (C, µ1) and (C, µ2), respectively. Then the following
properties hold:

(1). W1 and W2 are structually identical.

(2). Corresponding nodes in W1 and W2 have crimpable sequences of the
same size and the same interval angles between adjacent creases.

23

(3). Creases involved for the first time in a crimpable sequence at a
node in W1 have the same position in the crimpable sequence at the
corresponding node in W2.

3.4.2 Forcing Set Algorithm

We convert the forcing set algorithm in [6] by three modifications: switch
CrimpForest(C, µ) to CrimpForestSVCP(C, µ); initialize F to the ma-
jority of end creases according to Lemma 3.5 instead of all end creases;
remove one crease from F if |F | = 2 in the initialization according to
Theorem 3.3. See Algorithm 2 for the detail.

Algorithm 2: ForcingSetSVCP(C, µ)
Initialize W to the output generated by CrimpForestSVCP(C, µ)
// modified from [6].

Initialize F to the all creases with majority assignment in end
creases that remain after running CrimpForestSVCP(C, µ)
// modified from [6].

if |F | = 2 then // added to [6]

Remove one crease from F.
end
foreach tree T ∈ W do

foreach node v in a preorder traversal of T do
if v’s crimpable sequence has even length then

Add to F all creases from v’s crimpable sequence having
M assignment.

else if the surviving crease from v’s crimpable sequence is
already in F then

Add to F all creases from v’s crimpable sequence having
the majority MV assignment.

else
Add to F all creases from v’s crimpable sequence having
the minority MV assignment.

end
end

end

24

The preorder traversal takes O(n) time because each node is visited
only once and the sum of lengths of the sequences in the nodes is n. Thus
the main factor of computation time is CrimpForestSVCP, which takes
O(n2) time.

We need the following lemma for the proof in Section 3.5:

Lemma 3.8 (Lemma 6 from [6]) Let (C, µ1) be a foldable MV-assigned
crease pattern, and let F be the forcing set generated by Algorithm 2 with
input (C, µ1). Let (C, µ2) be a foldable pattern such that µ2 agrees with µ1

on the forcing set F, that is, µ2(c) = µ1(c) for c ∈ F. Let T1 and T2 be two
structurally equivalent trees generated by the forcing set algorithm (C, µ1)
and (C, µ2), respectively. If a crease c in a crimpable sequence α1 ∈ T1 is
in F, then a crease (not necessarily c) with the same MV assignment occurs
in the corresponding crimpable sequence α2 ∈ T2, in the same position as
in α1.

3.5 Proof of Correctness

This section proves that F created by Algorithm 2 is forcing and minimum.
The proof is almost the same as [6] because Damian et al. use local
properties of crimpable sequence and abstract properties of crimp forest,
which are not affected by the change from 1D to SVCP. In this section, we
organize the proof in [6] to follow and prove the different points.

Assume that there exists a different foldable MV assignment µ2 for C
such that µ2(c) = µ(c) for c ∈ F. For symmetry, let µ1 = µ. We obtain
W1 and W2 by running ForcingSetSVCP with input (C, µ1) and (C, µ2),
respectively. As stated in Lemma 3.7, W1 and W2 are structurally identical.
Let corresponding nodes v1 ∈ T1 and v2 ∈ T2 be a pair of maximal depth
in the trees whose assignments differ. We call two crimpable sequences α1

and α2 similar if they have the same size, the same MV assignment read
from left to right, and same interval angles.

25

The proof in [6] for forcing property is by contradiction with a case
analysis as follows:

1. v1 and v2 are dissimilar. Let l be the length of the crimpable sequences
corresponding to v1 and v2.

(a) l is even.

(b) l is odd.

i. The creases of v1 with majority MV assignment are in F.

ii. The creases of v1 with minority MV assignment are in F.

2. All corresponding nodes in W1 and W2 have similar crimpable se-
quences.

Case 1a leads to a contradiction as shown in [6]. In this case, v1 and
v2 are root nodes in T1 and T2 because they do not have surviving crease.
l/2 creases of v1 are put into F with M assignment by the algorithm. The
creases with M assignment in F have a copy in v2 by Lemma 3.8, and
remaining creases must have V assignment by Theorem 3.1. Then v1 and
v2 are similar, which is a contradiction to the assumption that v1 and v2 are
dissimilar.

Case 1(b)i also contradicts as shown in [6]. By Lemma 3.8, the creases
with majority MV assignment of v1 have a copy in v2 with the same MV
assignment and located in the same positions. All other creases in v1, v2
must have the opposite assignment by Theorem 3.1. Thus v1 and v2 are
similar, a contradiction.

The difference is in Case 1(b)ii and Case 2. In Case 1(b)ii, we have two
new cases due to the second and third steps of Algorithm 2:

A. The survivor of the root node is in F. (Hence the majority in the root
node are in F.)

B. The survivor of the root node is not in F. (Hence the minority in the
root node are in F.)

26

The proof for Case A is the same as the proof of Case 1(b)ii shown in [6].
Assume without loss of generality that the minority assignment of v1 is M.
In Case B, we must encounter a node with majority assignment V, or an
equal number of M and V assignment. Assume to the contrary that we
encounter nodes with majority M assignments only. At the root node r1 of
T1, V creases are selected as a part of F since we assume surviving crease
is not in F. Similarly, on each node from r1 to v1, V creases are selected
as elements of F, which contradicts the assumption that the minority M
creases of v1 are in F. Let w′1 be the first node encountered on the path from
v1 to r1 of T1 having majority assignment V or an equal number of M and
V assignments. As addressed in [6], the differences in v1, v2’s crimpable
sequences must be in first-time creases.

Figure 3.10: The case that first-time creases are different between v1 and
v2, and w′1 have majority assignment V. Underlined are the creases in F.

Let p1 be the parent node of v1. In Case B, if p1 , w′1, p1’s majority are
M (by definition of w′1) and its creases with M should be in F (otherwise it
contradicts the assumption that minority of v1 are in F). The difference of
first-time creases in v1 and v2 causes a contradiction of Theorem 3.1 on p2

in the following cases: (1) w′1 has majority assignment V; (2) w′1 has equal
M and V assignments. Figure 3.10 shows the first case. Assume c1 and
c′1 in Figure 3.10 are first-time creases and c′0 survives a crimp operation.
Then c3 and c4 are copied to c′3 and c′4 by Lemma 3.8. This contradicts
Theorem 3.1 on p2.

In Case 2, the end creases form a flat-foldable equal-angle SVCP (cf.
Lemma 3.1). Because ForcingSetSVCP puts all majority creases of the
equal-angle SVCP into F, the remains of the creases in the equal-angle
SVCP are forced to be with minority assignment, and it is not possible that

27

µ1 and µ2 differ on the equal-angle SVCP. It follows µ1 = µ2, and therefore
F is a forcing set.

We have shown that the theoretical minimum size of F is n/2+[n−2m ≥
4] where m is the number of monocrimps performed in exhaustive crimps
(cf. Theorem 3.4). Here we show how F yields n/2 + [n − 2m ≥ 4]
creases by ForcingSetSVCP. The creases from the end equal-angle SVCP
added to F in the second and third steps in the algorithm contributes to
(n−2m)/2+[n−2m ≥ 4] creases. The same argument as [6] can be applied
for the crimped creases: corresponding to each crimpable sequence α with
size l, the forcing set algorithm adds to F precisely ⌊l/2⌋ creases; summing
up over all crimp performed by the algorithm, we get m creases contributed
to F.

3.6 Conclusion

This is the first attempt to generate and analyze a minimum forcing set of
flat-foldable SVCP. We have developed an algorithm1 to find a minimum
forcing set of flat-foldable SVCP in O(n2) time by converting existing
algorithm for 1D origami. We proved that the size of such forcing set is n/2
or n/2 + 1. The proof of the correctness of the algorithm was done with
the framework used in a proof in prior research for 1D origami. Minimum
forcing set of arbitrary 2D origami is attractive as future work.

1The implementation is at https://ouchi-koji.visualstudio.com/_git/ForcingSet.

28

Chapter 4

Efficient Enumeration of
Flat-Foldable Single-Vertex
Crease Patterns

This chapter is based on the author’s papers published as [OU17, OU19a].
We investigate enumeration of distinct flat-foldable MV-assigned SVCP
under the following assumptions: positive integer q is given; every pattern is
composed of q potential lines incident to the center of a sheet of paper; every
angle between adjacent potential lines is equal to (360/q)◦; every potential
line is classified to “crease” or “flat,” and “crease” lines are then assigned
with “mountain” or “valley”; MV-assigned crease patterns are considered to
be equivalent if they are equal up to rotation and reflection. In this natural
problem, we can use two well-known theorems for flat foldability: the
Kawasaki Theorem and the Maekawa Theorem in computational origami.
Unfortunately, however, they are not enough to characterize all flat-foldable
crease patterns. Therefore, so far, we have to enumerate and check flat
foldability one by one using computer. In this study, we develop the first
algorithm for the above stated problem by combining these results in a
nontrivial way and show its analysis of efficiency.

29

4.1 Introduction

Recent origami is a kind of art, and origamists around the world struggle
with their problems; what is the best way to fold an origami model? One
of these problems is the issue of a unit of angle that appears in the origami
model. Some origamists restrict themselves to use only multiples of a unit
angle which divides 360◦, e.g., 22.5◦, 15◦, and so on. A nontrivial example,
which was designed by the author, is shown in Figure 4.1. It is based on
a unit angle of 15◦. Once origamists fix the unit angle as (360/q)◦ for
suitable positive integer q, their designs are restricted to one between quite
real shapes and abstract shapes, which is the next matter in art.

Figure 4.1: “Maple leaf” designed and folded by the author (left). Its crease
pattern is based on 15◦ unit angle (right).

When we are given a positive integer q, we face a computational origami
problem which is interesting from the viewpoints of discrete mathematics
and algorithms. We consider the simplest origami model which is a kind
of MV-assigned SVCPs; all creases are incident to the single vertex at the
center of origami, and each angle between two creases is a multiple of
(360/q)◦. We are concerned with only flat-foldable MV-assigned crease
patterns.

30

We note that the ordering of the layers of paper is not given, and it
is not easy to compute it even if an MV assignment is given. The flat
foldability of MV-assigned SVCP can be computed in linear time [4, 8].
In fact, the algorithm also gives us the ordering of the layers in the same
time. However, its rigorous proof is not so simple, which is the main topic
of Chapter 12 in [8]. Roughly speaking, the algorithm repeatedly folds and
glues the locally smallest angle in each step. In other words, we have no
mathematical characterization for this problem, and we have to check one
by one.

The problem of computing a folding for a crease pattern is very different
from the case of MV-assigned crease pattern. Hull investigated this problem
from the viewpoint of counting [13]. Precisely, he considered the number
of flat-foldable MV assignments to a given crease pattern of n creases which
were incident to the single vertex. In [13], he gave tight lower and upper
bounds. These bounds are given in two extreme situations; one is given in
the case that all n angles are different, and the other is given in the case that
all n angles are equal to each other. From the viewpoint of origami design,
we are interested in the case between these two extreme situations. To deal
with reasonable situations between extreme ones, we slightly modify the
input of the problem. The input of our problem is a positive integer q, and
we restrict ourselves to the single vertex folding of unit angle (360/q)◦.
We place q potential lines incident to the vertex with unit angle (360/q)◦.
A potential line may eventually become a crease. In order to investigate
our problem, we first give a label “crease” or “flat” to each potential line
to generate crease patterns, then assign “mountain” or “valley” to each
“crease” lines to generate MV-assigned crease patterns. When a potential
line is labeled “flat,” this line is not folded in the final folded state. Let us
call a potential line with a label “crease” a crease. In this way, we can deal
with the SVCPs and MV-assigned SVCPs of unit angle equal to (360/q)◦,
which is more realistic situation from the viewpoint of origami design.

Our aim is to enumerate all distinct flat-foldable assignments of “moun-
tain,” “valley,” and “flat” labels on q potential lines. In other words, our

31

algorithm eventually enumerates all flat-foldable MV-assigned SVCPs of
unit angle (360/q)◦. We consider the sheet of paper is a disk, the vertex is
at the center of the disk, and two crease patterns (or MV-assigned crease
patterns) are considered to be equivalent if they can be equal up to rotation
and reflection (i.e., including turning over and exchanging all mountains
and valleys). Our algorithm enumerates all distinct MV-assigned SVCPs
under this assumption.

For flat foldability of a given MV-assigned SVCP, there are two well-
known theorems in the area of computational origami, which are called
the Kawasaki Theorem and the Maekawa Theorem (Theorem 2.1 and The-
orem 2.2). We note that the Kawasaki Theorem gives a necessary and
sufficient condition for flat foldability, however, MV assignments are not
given. That is, we have to compute foldable MV assignments for foldable
SVCP satisfying the Kawasaki Theorem. In order to compute a flat-foldable
MV assignment, we can use the Maekawa Theorem. Note that the Maekawa
Theorem is a necessary but not sufficient condition.

In the last decades, enumeration algorithms have been well investigated,
and many efficient enumeration algorithms have been given, e.g., [2, 28, 27].
Using techniques that follow above properties of origami, we construct
an enumeration algorithm for flat-foldable MV-assigned crease patterns
for given q, where each angle between two crease lines is a multiple of
(360/q)◦. As far as the author knows, this is the first algorithm for the
realistic computational origami problem. As a result, we succeeded to
enumerate flat-foldable crease patterns up to q = 40 in a reasonable time.

4.2 Outline of Algorithm

Based on the Kawasaki Theorem and the Maekawa Theorem, for a given
q, we can design the outline of our enumeration algorithm as follows:

(1) Assign “crease” or “flat” to each of q potential lines incident to the
single vertex so that the Kawasaki Theorem is satisfied. The result

32

Phase 1 Phase 2 Phase 3

0
00

0

1

11

1

M

MM

M

M

M

MM

M

V

V

V

q = 8

...
...

Figure 4.2: Simple example for q = 8.

of the assignment is a flat-foldable crease pattern.

(2) For each crease, assign “mountain” or “valley” so that the Maekawa
Theorem is satisfied.

(3) Output the pattern if this MV-assigned crease pattern is flat-foldable.

Essentially, the outline consists of two different kinds of enumeration prob-
lems in phases 1 and 2, and flat foldability checking in phase 3. We
note that the algorithm reduces equivalent crease patterns in phase 1 and
MV-assigned crease patterns in phase 2 up to rotation and reflection.

A simple example is given in Figure 4.2. For q = 8, we first generate
all possible crease patterns in phase 1 which is described in a binary string
(in the figure, we show only one, but there are exponentially many). Here
“0” and “1” denote “crease” and “flat” respectively. Therefore, for a string
00011011, we have four creases in the shape in Figure 4.2. In phase 2, we
assign mountain (M) or valley (V) to each crease. In phase 3, we check

33

whether each obtained MV-assigned crease pattern is flat-foldable or not,
and output the pattern if it is flat-foldable.

We have different issue for each phase. Especially in phases 1 and 2, we
have to consider two different problems of symmetry (to reduce redundant
output) and enumeration.

4.3 Description of Algorithm

Now we describe more details in each phase.

4.3.1 Phase 1: Assignment of “crease”/“flat”

In phase 1, we are given q potential lines, and we have to assign “crease”
or “flat” to them so that the assignment satisfies the Kawasaki Theorem.
Since the crease pattern cannot be flat-folded for odd number q, without
loss of generality, we assume that q is even hereafter.

In this phase, we describe “crease” by 0 and “flat” by 1, and consider
a binary string. Then it is easy to see that, before checking the Kawasaki
Theorem, we have to generate all binary strings over Σ = {0, 1} efficiently
reducing equivalent rotations and reflections. To solve this problem, we
introduce the bracelet problem, which is a classic and basic problem in
combinatorics. A bracelet is an equivalence class of strings, taking all
rotations and reversals as equivalent. This is a special case of a necklace
whose equivalence is rotation only. In this paper, let the word bracelet also
denote the lexicographically smallest string of the equivalence class and so
does necklace. It is easy to observe that our problem is now enumeration of
binary bracelet of length q. For bracelets, we have an optimal enumeration
algorithm [23]:

Theorem 4.1 (Sawada 2001) Bracelets of length q can be enumerated in
constant amortized time.

34

That is, the algorithm in [23] runs in a time proportional to B(q) which
denotes the number of bracelets of length q.

We note that the values of the function B(q) are listed in the OEIS (The
On-line Encyclopedia of Integer Sequences; http://oeis.org/) as A000029,
and it is given as

B(q) =
∑

d divides q

2q/dϕ(d)
2q

+ 2q/2−1 + 2q/2−2 (4.1)

for an even number q, where ϕ() is Euler’s totient function.

4.3.2 Phase 1: Satisfying the Kawasaki Theorem

After assigning “crease” or “flat” to each potential line, we have to check
whether the obtained crease pattern satisfies the Kawasaki Theorem or not.
The Kawasaki Theorem states that the alternating sum of angles should be
equal to 0. This notion corresponds to a kind of necklace in a nontrivial
way as follows. We first observe that each angle θi is k× 360

q
◦ for given even

q. That is, θi consists of k unit angles. Now we regard θi as the integer
k, and we consider θ1, θ3, . . . as “white”, and θ2, θ4, . . . as “black”. Then
the total number of beads is q, and the Kawasaki Theorem states that the
number of black beads is equal to the number of white beads. Precisely,
each sequence of n creases satisfying the Kawasaki Theorem corresponds
to a necklace with q beads such that (1) the necklace consists of q/2 white
beads and q/2 black beads, and (2) the number of runs1 of white beads (and
hence black beads) is n. This notion is investigated as “balanced twills on
q harnesses” in [12] and listed in OEIS as A006840. Then the number is
given as follows:

Theorem 4.2 (Hoskins and Street 1982) The number of distinct balanced

1A run is a maximal sequence of beads of the same color.

35

twills on q = 2k′ harnesses is

B′(2k′) =
1

8k′

∑
d divides q

d=2e

ϕ

(
k′

e

) (
2e
e

)

+
∑

d divides k ′
ϕ

(
2k′

d

)
2d

+ 2k′
(
2 ⌊k′/2⌋
⌊k′/2⌋

)
+ k′2k ′

. (4.2)

We note that Equation 4.2 just gives us the numbers for each q, and no con-
crete sets of creases. Therefore, we have to enumerate them by ourselves.
A straightforward approach is to insert a test of the Kawasaki Theorem
into Sawada’s algorithm [23]. The test computes

∑n
i=1(−1)iθi and checks

whether the value is 0 or not. Note that n is the number of creases, and θi
is the angle between the ith and (i+1)st creases as defined in Theorem 2.1.

Fortunately, the test can be amortized if the straightforward approach is
applied. Sawada’s algorithm is a recursive function that always determines
the letters in a string sequentially from smaller index to larger index. That
means, if the algorithm sets “crease” in a recursive call, we can compute the
angle between the new “crease” line and the prior (and adjacent) “crease”
line. It takes just constant time if the last index of “crease” line is passed
to the recursive call. The obtained angle is used to calculate

∑m
i=1(−1)iθi

where m is the index of the currently last “crease”. The alternative sum can
be updated in constant time by passing to the next call the current value
and either + or − to be used. When the recursive call comes to output, the
Kawasaki Theorem holds if the alternative sum including the angle between
the last “crease” and the first “crease” is 0.

Now we have the following theorem:

Theorem 4.3 For a given even number q, phase 1 can be done in O(B(q))
time, where B(q) is the number of bracelets of length q.

36

Furthermore, we can prune the search tree with the following corollary
derived from the Kawasaki Theorem:

Corollary 4.1 If a given SVCP is flat-foldable, ���∑m
i=1(−1)iθi

��� ≤ ∑n
j=m+1 θ j

holds for any integer m where 1 ≤ m ≤ n − 1.

4.3.3 Phase 2: Assignment of “mountain”/“valley”

In this phase, we inherit a binary string of length q from the phase 1, which
describes “crease” (=0) or “flat” (=1). We note that the binary string is
the lexicographically smallest one among rotations and reversals. Then
we translate it to a set of other strings that represent the assignments of
“mountain” and “valley” and the angles between adjacent creases. The first
step can be described as follows:

(2a) For each adjacent pair of 0s, replace 1s between them by the number of
1s plus 1. For example, the string 00011011 in Figure 4.2 is replaced
by 01010303, where the positive (underlined) numbers describe the
number of unit angles there.

Then we assign mountain (= M) and valley (= V) to each 0, but here
we only consider the assignments that satisfy the Maekawa Theorem. The
Maekawa Theorem says that the number of Ms and the number of Vs should
differ by 2. To avoid symmetry case, we can assume that (the number of
Ms)−(the number of Vs)= 2. Thus the next step is described as follows:

(2b) For the resulting string over {0, 1, 2, . . . , q − 1}, assign all possible
Ms and Vs to each 0 such that the number of Ms is 2 larger than
the number of Vs. For example, for the string 01010303, we ob-
tain the set of strings {V1M1M3M3,M1V1M3M3,M1M1V3M3,
M1M1M3V3}. We note that we can prune the search tree by
Lemma 2.2: If k creases (ci, ci+1, . . . , ci+k−1) form a minimal equal
angle sequence, i.e., θi−1 > θi = θi+1 = · · · = θi+k−2 < θi+k−1 holds,
the number of majority assignments on the k creases is ⌈k/2⌉.

37

(a) V1M1M3M3 (b) M1M1V3M3

Figure 4.3: An example of possible mirror image on MV assignment. The
letters at even indices differ but the letters at odd indices are equal between
(a) and (b). (Assume that the index starts from 0.)

For a string s generated by step 2a, which describes a crease pattern,
we can have equivalent MV-assigned crease patterns. Precisely, if some
rotation(s) or reversal(s) of s is (are) equal to s, the result of step 2b may
contain equivalent assigned crease patterns. For example, in the set of
strings {V1M1M3M3, M1V1M3M3, M1M1V3M3, M1M1M3V3}, we
can observe that V1M1M3M3 (Figure 4.3a) is a crease pattern which is
the mirror image of a crease pattern M1M1V3M3 (Figure 4.3b), hence
we consider they are equivalent. (In Figure 4.2, after phase 2, the crease
pattern at the center has its mirror image, and it should be omitted.) To
avoid such equivalent patterns, we perform the following:

(2c) For the resulting string s′ over {M,V, 1, 2, . . . , q − 1} after step 2b,
generate the lexicographically smallest string among rotations and
reversals of s′, which we call s′small , and store all s′small . s′ is discarded
if s′small has been already obtained. Note that M < V < 1 < 2 < · · · .

In this process, we take a caching strategy to detect duplications; For
every s′, we generate and store a representative of the bracelet equivalence
class to which s′ belongs, and we refer to the representatives generated
so far to check whether we have obtained an equivalent of s′ or not. The
string s′small can be one of such representatives because the lexicograph-

38

ically smallest string is easy to be generated and unique among rotations
and reversals. Because of the exponential number of strings to be cached,
we use a trie [7, 9] (a.k.a. prefix tree) that is a space-efficient data structure
for storing many strings. The reason to store s′small is that some assign-
ments can be unique but not the lexicographically smallest. For example,
assume that preprocessed “crease”/“flat” assignment “010101010202” is
generated by phase 2b, which is the smallest among its equivalents. Then
“V1M1M1M1V2M2” is a distinct crease pattern on it. However, the equiv-
alent smallest string is “M1M1M1V2M2V1” which should be generated
from discarded “010101020201.”

To generate s′small , we use Booth’s least circular string algorithm [5].
It is a linear time algorithm to find the smallest string among rotations
of a given string. Note that the algorithm doesn’t care about reversals.
Precisely, Booth’s algorithm finds the right index of the lexicographically
smallest string for a given circular string of length n in linear time. The
right index is the start index of a circular string that may be larger than (or
on the “right” side of) the original start index 0, which is a conventional
description in the field of string algorithms. To deal with both rotation and
reversal, the step 2c can be implemented as follows:

(2c-1) For the resulting string s′ over {M,V, 1, 2, . . . , q − 1} after step 2b,
let s′R is the reverse string of s′. Prepare an empty trie.

(2c-2) Using Booth’s algorithm, find the right index i of a circular string s′

such that the string starting from the index i is the lexicographically
smallest string among all rotations of s′. If i is not the first letter in
s′, we discard this s′ since it is redundant.

(2c-3) Similarly, find the right index j of the lexicographically smallest
string among all rotations of s′R. The index j gives the smallest
string among the equivalents of reversals.

(2c-4) Select the smaller string as s′small from the result of (2c-2) and (2c-
3): rotation of s′ starting from i and rotation of s′R starting from j.

39

If s′small is already in the trie, discard s′. Otherwise append s′small to
the trie and s′ goes to phase 3 to be processed.

This test takes O(q) time because the steps don’t contain loops and
recursions, but it runs linear time subroutines just constant times, which
are Booth’s algorithm, string comparison, and operations on a trie. Sum-
marizing, we have the following theorem:

Theorem 4.4 For a given crease pattern from phase 1 based on q unit an-
gles, we can generate all distinct MV assignments that satisfy the Maekawa
Theorem in O(qC(q)) time with space linear in the product of q and the
number of such assignments, where C(q) is

(
q

q/2−1

)
.

Proof. The number of creases in the crease pattern is at most q, and the
number of Ms is 2 larger than the number of Vs. Thus, the number of
strings s′ over {M,V, 1, 2, . . .} with the constraint for the number of Ms and
Vs is at most

(
q

q/2−1

)
. Other management can be done in linear time, which

implies the time complexity in the theorem. The space complexity is linear
in the maximum number of nodes in the trie used in the algorithm, which
can be suppressed by the product of 2q (the maximum length of s′) and the
number of desired assignments.

Non-Caching Strategy

We can remove duplications of MV assignment without storing the repre-
sentative patterns, which takes O(q2) time for the test but may be practically
faster than the caching strategy. Duplications in phase 2 can be generated
by rotating (or reflecting) an MV-assigned SVCP so that the “crease”/“flat”
assignment does not change. Let us call such a rotation and a reflection an
MV rotation and an MV reflection, respectively. We swap step 2b and 2c
for the following step:

(2b’) For a string s obtained by step 2a, assign all possible Ms and Vs
avoiding the MV rotations and MV reflections such that the assign-
ments satisfy the Maekawa Theorem. We conduct a depth first search

40

that determines M or V on even indices of s. (We assume that the
index of s starts from 0 in this section.) The search can be seen as
generating strings of length n over {M,V } where n is the number of
creases.

By a property of a depth first search for generating binary strings of
fixed length, we can generate the strings for MV assignments with no
duplications as follows:

(2b’-1) Copy s to a string s′ and initialize the MV assignment on s′ by M .
We are assigning Vs to the letters at even indices of s′ from the start
of s′ to the end of s′ by depth first search. The underlying search tree
for s = 01010101 is shown in Figure 4.4.

(2b’-2) Assume that we have determined the MV assignment on the first
k creases of s′ by the depth first search. Let p be such a prefix. The
length of p is 2k − 1.

(2b’-3) Compare p with the MV rotations and MV reflections of s′ in
lexicographic order. If p is smaller than one of the MV rotations and
MV reflections of s′, then s′ is a duplication because such an MV
rotation/MV reflection has been already searched. Figure 4.5 shows
how the algorithm prunes the search tree for s = 01010101.

(2b’-4) If s′ satisfies the Maekawa Theorem, s′ goes to phase 3 to be
processed. We can prune the search if we have assigned n/2 − 1 Vs
to s′ where n is the number of creases.

For efficient computation in step 2b’-3, we construct prior to the search
a function f (i) that tells us the original index over s′ of ith letter in an MV
rotation/MV reflection. For example, if we consider an MV rotation that
shifts 2 letters clockwisely like V1M1M1M1 to M1V1M1M1, then f (i) =
(i + 2n − 2) mod 2n where n is the number of creases. The comparison of
the prefix and an MV rotation/MV reflection is reduced to a comparison of

41

Figure 4.4: The underlying search tree for s = 01010101 with binary string
expression of MV assignment. The bold prefix corresponds to p.

Figure 4.5: The search tree for s = 01010101 pruned by MV rotation. An
arrow means an MV rotation of s′ to the representative string (the largest
string among the equivalents). Pruning by the Maekawa Theorem and MV
reflection are omitted to simplify the explanation in this figure.

42

each letter at index i and at f (i) of s′ for i = 0, 2, . . . , 2k − 2. (We need to
construct such functions for all possible MV rotations and MV reflections.)
This technique eliminates memory allocations for explicit construction of
rotations and reflections. Note that we can prune the search tree further by
Lemma 2.2 as done in step 2b.

Since the number of rotations and reflections is O(q) and string com-
parison takes O(q), the test takes O(q2) time. But the search for MV
assignments can be faster than that with caching strategy because few
“crease”/“flat” assignments have MV rotation or MV reflection and there
is less memory access than caching.

4.3.4 Phase 3: Test of Flat Foldability

In this phase, we check if the resulting string s′ over {M,V, 1, 2, . . .} is
flat-foldable or not. For this problem, Demaine and O’Rourke give a linear
time algorithm [8, Chapter 12]. Therefore, we can perform this phase in
linear time. Roughly, the algorithm is simple; it finds a local minimal angle
whose boundary creases have opposite MV assignment, folds the boundary,
glues it, and repeats until all creases are folded. However, the proof of the
correctness of this algorithm is not easy; as mentioned at the footnote in [8,
page 204], the rigorous proof is first done by Demaine and O’Rourke in [8,
Chapter 12].

We obtain the following obvious upper bound of the number of the
outputs in this phase by integration of the observations in Sections 4.3.2
and 4.3.3:

Theorem 4.5 For a given even number q, the number of distinct flat-
foldable MV-assigned crease patterns with unit angle (360/q)◦ is O

(
B′(q)

(
q

q/2−1

))
where B′(q) is the number of distinct balanced twills on q harnesses (see
Equation 4.2).

43

4.3.5 Analysis of Algorithm

The correctness of our algorithm relies on the algorithms used in each
phase as described above. Here we consider its time complexity and space
complexity of computing all outputs. Our main theorem is the following:

Theorem 4.6 For a given even number q, enumeration of all distinct flat-
foldable MV-assigned crease patterns with unit angle (360/q)◦ can be
done in O

(
qB(q)

(
q

q/2−1

))
time with O

(
q
(

q
q/2−1

))
space, where B(q) is the

number of bracelets of length q (see Equation 4.1).

We note that the order of space complexity may be far from strict one
because the actual required space for the computation depends on the
behavior of the trie used in phase 2.

4.3.6 Parallel Processing

Our algorithm can be easily parallelized because each output of phase 1
is consumed by phase 2 and there is no other relation between the two
phases. We implement the parallel processing as a master-worker model.
The master process runs phase 1, that is, a search to generate crease patterns
satisfying the Kawasaki Theorem. When the master process finds a valid
crease pattern, it passes the crease pattern to a waiting worker process. The
worker process that was given the crease pattern runs phase 2 (a search to
generate MV assignment) and phase 3 (a test of flat foldability), and outputs
the flat-foldable MV-assigned crease patterns.

4.4 Experimental Results

As shown in Theorem 4.5, the upper bound of the number of distinct flat-
foldable MV-assigned crease patterns is exponential if (360/q)◦ unit angle
is introduced. Exact values for each q are difficult to estimate theoreti-
cally. Therefore, we here show experimental results: the number of the

44

enumerated patterns, the rate of the enumerated patterns against the number
of possible patterns, and the computation time for the enumeration. The
program is written in C++ using its default STL library and MPI2.

The computation for enumeration and counting was done with 384
nodes (13824 CPU cores) for at most 1.5 days for each q on a supercomputer
Cray XC40. We compared the computation time in four scales on Cray
XC40:

• single core for at most 4 days for each q,

• 32 nodes (1152 CPU cores) for at most 4 days for each q,

• 128 nodes (4608 CPU cores) for at most 2 days for each q,

• 384 nodes (13824 CPU cores) for at most 1.5 days for each q.

By an experiment, we found that non-caching strategy in phase 2 is faster
than the caching strategy. In addition, the caching strategy with single core
failed to compute for q = 24 or more because of excess of memory. Hence
we took the non-caching strategy for the experiments.

4.4.1 The Number of Crease Patterns

The exact numbers of distinct patterns obtained at each phase are shown in
Table 4.1 and Figure 4.6. As mentioned in Section 4.3.2, the result of phase
1, which enumerates SVCPs satisfying the Kawasaki Theorem, coincides
with the sequence listed in OEIS as A006840. The counting results at the
other phases are different from any existing sequences in OEIS, that is, we
find totally new sequences in this study.

4.4.2 Solution Space

We measure the rate of the number of solutions against that of possible
patterns at each phase (see Table 4.3 and Figure 4.7), which suggests how

2The implementation is at https://ouchi-koji.visualstudio.com/_git/FlapCPEnum?version=GBparallelization.

45

Table 4.1: The number of enumerated patterns. The number of creases in
a pattern is even number from 2 to q. Pruning by Lemma 2.2 is not applied
in phase 2. The rightmost column is the number of outputs in phase 3 per
the output in phase 1, which can be seen as the average size of a task for a
worker process in parallelization.

q Phase 1 Phase 2 Phase 3 Phase 3/Phase 1
2 1 1 1 1.00
4 2 2 2 1.00
6 3 7 6 2.00
8 7 27 20 2.86

10 13 143 87 6.69
12 35 837 420 12.00
14 85 5529 2254 26.52
16 257 38305 12676 49.32
18 765 276441 73819 96.50
20 2518 2042990 438795 174.26
22 8359 15396071 2649555 316.97
24 28968 117761000 16188915 558.86
26 101340 912100793 99888892 985.68
28 361270 7139581543 621428188 1720.12
30 1297879 56400579759 3893646748 3000.01
32 4707969 449129924559 24548337096 5214.21
34 17179435 3601920245329 155622071065 9058.63
36 63068876 29069099909934 991375878185 15718.94
38 232615771 235928559206883 6343073841027 27268.46
40 861725794 1924593128183050 40744074042024 47281.95
42 3204236779 - - -

difficult the problems are. We can see that the solution spaces are very
sparse at each phase. There are 2q possible “crease”/“flat” assignments at
phase 1. Only approximately 4.7% is the solution for phase 1 if q = 6. It
decreases significantly and gets less than 1% for q ≥ 12. The rates at phase
2 and phase 3 are against 3q since we consider “mountain”/“valley”/“flat”
assignments at these phases. These two rates tend to decrease similarly to
that of phase 1 and are much smaller, e.g., 1.0% at phase 2 when q = 6. Such
rate at every phase seems to be exponential to q according to Figure 4.7.

46

Table 4.2: Distribution of the patterns obtained at phase 1.

q #crease of each pattern sum
2 4 6 8 10 12 14 16 18 20

4 1 1 2
6 1 1 1 3
8 1 3 2 1 7

10 1 3 6 2 1 13
12 1 6 13 11 3 1 35
14 1 6 26 30 18 3 1 85
16 1 10 46 93 74 28 4 1 257
18 1 10 79 210 275 145 40 4 1 765
20 1 15 124 479 841 716 280 56 5 1 2518

4.4.3 Computation Time

We compared the computation time in four scales as mentioned in Sec-
tion 4.4. Table 4.4 shows the computation time with non-caching strategy
for each scale and q ≥ 24. Since the average size of a task for a worker
process in parallelization gets exponentially larger as q grows (see the
rightmost column in Table 4.1), the program becomes more parallelized
for large q; see the graph in Figure 4.8 of speedup rate against single core
computation.

4.5 Conclusion

This chapter describes the first trial in the world to enumerate flat-foldable
MV-assigned SVCPs with unit angles (360/q)◦ for given q. We have
constructed an enumeration algorithm which caches representatives among
rotations and reflections of MV-assigned SVCPs to avoid duplications. An
enumeration algorithm without caching is also proposed. In experiment,
the algorithm without caching was faster than that with caching although
the caching algorithm is theoretically faster. The experiment showed that
there are numerous flat-foldable SVCPs. The effect of parallelization of
the program is significant: for example, the computation with 13824 CPU

47

Table 4.3: #solution/#possible at each phase.

q #Phase1/2q #Phase2/3q #Phase3/3q

4 0.125 0.024691358 0.024691358
6 0.046875 0.009602195 0.008230453
8 0.02734375 0.004115226 0.003048316

10 0.012695313 0.002421718 0.001473353
12 0.008544922 0.001574963 0.000790304
14 0.005187988 0.001155977 0.000471255
16 0.003921509 0.000889847 0.000294471
18 0.002918243 0.000713543 0.000190540
20 0.002401352 0.000585924 0.000125845
22 0.001992941 0.000490617 8.44317E-05
24 0.001726627 0.000416957 5.73202E-05
26 0.001510084 0.000358831 3.92975E-05
28 0.001345836 0.000312088 2.71641E-05
30 0.001208744 0.000273934 1.89112E-05
32 0.001096159 0.000242377 1.32477E-05
34 0.000999975 0.000215979 9.33144E-06
36 0.000917773 0.000193672 6.60501E-06
38 0.000846251 0.000174652 4.69561E-06
40 0.000783735 0.000158303 3.35130E-06
42 0.000728559 - -

cores was 717 times faster than that with single core if q = 32. Speedup
rate of the computation with fixed number of CPU cores gets larger as q
grows.

48

Table 4.4: Computation time with non-caching strategy [sec].

q 1 core 1152 cores 4608 cores 13824 cores
24 64.13 1.91 1.23 1.61
26 470.45 7.69 4.50 5.02
28 3514.68 32.27 17.42 17.90
30 26578.2 149.93 70.17 69.49
32 199032 784.81 297.04 227.36
34 > 4days 4595.42 1355.50 1146.13
36 > 4days 29194 6715.16 4842.22
38 > 4days 202886 38451.1 22943.4
40 > 4days > 4days > 2days 120918

49

1E+000

1E+002

1E+004

1E+006

1E+008

1E+010

1E+012

1E+014

1E+016

4 8 12 16 20 24 28 32 36 40 44

#
p

a
tt

e
rn

q

Phase 1
Phase 2
Phase 3

Figure 4.6: The number of enumerated patterns. The number of creases in
a pattern is even number from 2 to q.

1E-006

1E-005

1E-004

1E-003

1E-002

1E-001

1E+000

4 8 12 16 20 24 28 32 36 40 44

s
o

lu
ti
o

n
 s

p
a

c
e

 r
a

te

q

#phase1/2
n

#phase2/3
n

#phase3/3
n

Figure 4.7: The rate of solutions against possible patterns at each phase.

50

0

100

200

300

400

500

600

700

800

24 26 28 30 32

s
p

e
e

d
u

p

q

1152 cores
4608 cores

13824 cores

Figure 4.8: The speedup rate = (computation time using 1
core)/(computation time using multi cores).

51

Chapter 5

Conclusion

This paper contributes to basics and applications of 2D origami by focusing
on SVCP that is a component of arbitrary 2D origami. SVCP is simple and
old as a theme of study but still open to investigation if we consider a new
general concept like forcing sets and enumeration. Our contribution can be
separated into two parts.

The first contribution is the development of an algorithm for finding
a minimum forcing set of a given flat-foldable MV-assigned SVCP, which
may reduce the cost of implementation of origami applications. This work
on SVCP is for the first time in the world as far as the author knows. The
algorithm runs in O(n2) time where n is the number of given creases. We
have shown that the size of such forcing set is n/2 or n/2+ 1. Precisely, the
size is n/2 if the number of creases remaining after crimping minimal angle
sequence repeatedly is two. Otherwise the size is n/2 + 1. It is an open
problem to find a minimum forcing set of arbitrary 2D origami. Considering
minimum forcing sets of two- or several-vertex origami might be the first
step to solve the arbitrary case. Enumeration of minimum forcing sets of
a given MV-assigned crease pattern is an interesting problem as well. We
believe that our result will help us to solve such open problems.

The second contribution is to enumerate distinct flat-foldable MV-
assigned SVCPs with unit angles, which provides us with knowledge for
designing origami. We have developed the first algorithm for enumerating

52

distinct flat-foldable MV-assigned SVCPs with unit angle (360/q)◦where q
is a given positive even integer. The algorithm consists of three phases: gen-
erating SVCPs, generating MV-assigned SVCPs, and testing flat foldability.
We have experimentally shown how many patterns in each phase there are,
which is done for the first time as well. We have examined the rates of
desired patterns against all possible patterns in each phase; experimentally,
they seem to decrease exponentially. According to the experimental results,
we conjecture that there are exponentially many flat-foldable MV-assigned
SVCPs. The computation time was reduced by parallel processing. Im-
proving the algorithm and investigating further for the counting problems
are future work. For example, rather than Sawada’s algorithm in Theorem
4.1, enumeration of the sequences stated in Theorem 4.2 may directly im-
prove the running time of our algorithm drastically. Showing theoretical
lower and upper bounds on counting also remains open.

53

References

[1] Zachary Abel, Jason Cantarella, Erik D Demaine, David Eppstein,
Thomas C Hull, Jason S Ku, Robert J Lang, and Tomohiro Tachi.
Rigid origami vertices: conditions and forcing sets. Computational
geometry, 7(1), 2016.

[2] David Avis and Komei Fukuda. Reverse search for enumeration.
Discrete Applied Mathematics, 65(1):21–46, 1996.

[3] Brad Ballinger, Mirela Damian, David Eppstein, Robin Flatland, Jes-
sica Ginepro, and Thomas Hull. Minimum forcing sets for Miura
folding patterns. In Proceedings of the twenty-sixth annual ACM-
SIAM symposium on Discrete algorithms, pages 136–147. Society for
Industrial and Applied Mathematics, 2015.

[4] Marshall Bern and Barry Hayes. The complexity of flat origami.
In Proceedings of the Seventh Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 175–183, 1996.

[5] Kellogg S Booth. Lexicographically least circular substrings. Infor-
mation Processing Letters, 10(4-5):240–242, 1980.

[6] Mirela Damian, Erik Demaine, Muriel Dulieu, Robin Flatland,
Hella Hoffman, Thomas C Hull, Jayson Lynch, and Suneeta Ra-
maswami. Minimum forcing sets for 1D origami. arXiv preprint
arXiv:1703.06373v1, 2015.

[7] Rene De La Briandais. File searching using variable length keys. In

54

Papers presented at the the March 3-5, 1959, western joint computer
conference, pages 295–298. ACM, 1959.

[8] Erik D Demaine and Joseph O’ Rourke. Geometric Folding Algo-
rithms: Linkages, Origami, Polyhedra. Cambridge University Press,
2007.

[9] Edward Fredkin. Trie memory. Communications of the ACM,
3(9):490–499, 1960.

[10] Jessica Ginepro and Thomas C Hull. Counting miura-ori foldings.
Journal of Integer Sequences, 17, 2014. Article 14.10.8.

[11] E. Hawkes, B. An, N. M. Benbernou, H. Tanaka, S. Kim, Erik D.
Demaine, D. Rus, and R. J. Wood. Programmable matter by folding.
Proceedings of the National Academy of Sciences, 107(28):12441–
12445, 2010.

[12] W.D. Hoskins and Anne Penfold Street. Twills on a given number of
harnesses. Journal of the Australian Mathematical Society (Series A),
33(01):1–15, 1982.

[13] Tom Hull. Counting mountain-valley assignments for flat folds. Ars
Combinatoria, 67:175–187, 2003.

[14] Leonid Ionov. 3D microfabrication using stimuli-responsive self-
folding polymer films. Polymer Reviews, 53(1):92–107, 2013.

[15] Jacques Justin. Towards a mathematical theory of origami. In Pro-
ceedings of 2nd international meeting origami science, technology,
pages 15–29, 1994.

[16] Toshikazu Kawasaki. On the relation between mountain-creases and
valley-creases of a flat origami. In Proceedings of 1st international
meeting origami science, technology, pages 229–237, 1989.

55

[17] John E Koehler. Folding a strip of stamps. Journal of Combinatorial
Theory, 5(2):135–152, 1968.

[18] Timothy G. Leong, Paul A. Lester, Travis L. Koh, Emma K. Call,
and David H. Gracias. Surface tension-driven self-folding polyhedra.
Langmuir, 23(17):8747–8751, 2007. PMID: 17608507.

[19] L. Mahadevan and S. Rica. Self-organized origami. Science,
307(5716):1740–1740, 2005.

[20] Yoshihisa Matsukawa, Yohei Yamamoto, and Jun Mitani. Enumer-
ation of flat-foldable crease patterns in the square/diagonal grid and
their folded shapes. Journal for Geometry and Graphics, 21(2):169–
178, 2017.

[21] Jun Mitani. Development of origami pattern editor (ORIPA) and
a method for estimating a folded configuration of origami from the
crease pattern. IPSJ Journal, 48(9):3309–3317, 2007. in Japanese.

[22] Jun Mitani. The folded shape restoration and the CG display of
origami from the crease pattern. In 13th international Conference on
Geometry and Graphics, 2008.

[23] Joe Sawada. Generating bracelets in constant amortized time. SIAM
Journal on Computing, 31(1):259–268, 2001.

[24] Joe Sawada and Roy Li. Stamp foldings, semi-meanders, and open
meanders: fast generation algorithms. the electronic journal of com-
binatorics, 19(2):43, 2012.

[25] Tomohiro Tachi. 3D origami design based on tucking molecule. In The
Fourth International Conference on Origami in Science, Mathematics,
and Education, R. Lang, ed., Pasadena, pages 259–272, 2009.

[26] Ryuhei Uehara. Stamp foldings with a given mountain-valley assign-
ment. In Origami 5, pages 585–592. CRC Press, 2011.

56

[27] Takeaki Uno, Tatsuya Asai, Yuzo Uchida, and Hiroki Arimura. An
efficient algorithm for enumerating closed patterns in transaction
databases. In International Conference on Discovery Science, pages
16–31. Springer, 2004.

[28] Mohammed J Zaki. Efficiently mining frequent trees in a forest. In
Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 71–80. ACM, 2002.

57

Publications (refereed)

[ONK11] Koji Ouchi, Atsuyoshi Nakamura, and Mineichi Kudo. Efficient
construction and usefulness of hyper-rectangle greedy covers. In
2011 IEEE International Conference on Granular Computing,
pages 533–538. IEEE, 2011.

[ONK14] Koji Ouchi, Atsuyoshi Nakamura, and Mineichi Kudo. An effi-
cient construction and application usefulness of rectangle greedy
covers. Pattern Recognition, 47(3):1459–1468, 2014.

[OU17] Koji Ouchi and Ryuhei Uehara. Efficient enumeration of flat-
foldable single vertex crease patterns. In Sheung-Hung Poon,
Md. Saidur Rahman, and Hsu-Chun Yen, editors, The 11th In-
ternational Conference and Workshops on Algorithms and Com-
putation (WALCOM 2017), pages 19–29, Cham, 2017. Springer
International Publishing.

[OU19a] Koji Ouchi and Ryuhei Uehara. Efficient enumeration of flat-
foldable single vertex crease patterns. IEICE Transactions on
Information and Systems, E102-D(3):416–422, 2019.

[OU19b] Koji Ouchi and Ryuhei Uehara. Minimum forcing sets for single-
vertex crease pattern. In 31st Canadian Conference on Compu-
tational Geometry, pages 171–176, 2019.

58

Publications (unrefereed)

[OU16] Koji Ouchi and Ryuhei Uehara. Efficient enumeration of flat-
foldable single-vertex crease patterns. Unrefereed poster session
as an exhibition in the 29th International Conference for High Per-
formance Computing, Networking, Storage and Analysis (SC16),
2016.

[OU18] Koji Ouchi and Ryuhei Uehara. The world record for enumeration
of flat-foldable single-vertex crease patterns. Unrefereed poster
session as an exhibition in the 31st International Conference for
High Performance Computing, Networking, Storage and Analysis
(SC18), 2018.

59

