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Voice conversion for emotional speech: Rule-based synthesis with degree of emotion

controllable in dimensional space

Yawen Xue�, Yasuhiro Hamada, Masato Akagi

School of Information Science, Japan Advanced Institute of Science and Technology,

1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan

Abstract

This paper proposes a rule-based voice conversion system for emotion which is capable of converting neutral speech to emotional

speech using dimensional space (arousal and valence) to control the degree of emotion on a continuous scale. We propose an

inverse three-layered model with acoustic features as output at the top layer, semantic primitives at the middle layer and emotion

dimension as input at the bottom layer; an adaptive-based fuzzy inference system acts as connectors to extract the non-linear rules

among the three layers. The rules are applied by modifying the acoustic features of neutral speech to create the di�erent types

of emotional speech. The prosody-related acoustic features of F0 and power envelope are parameterized using the Fujisaki model

and target prediction model separately. Perceptual evaluation results show that the degree of emotion can be perceived well in the

dimensional space of valence and arousal.

Keywords: Emotional voice conversion, rule-based speech synthesis, emotion dimension, three-layered model, Fujisaki F0 model,

target prediction model.

1. Introduction

In terms of human-computer interaction (HCI), synthesized

speech has burgeoned at a rapid rate in recent years to fulfill

the demand for daily speech communication. Natural sounding

synthetic speech with only linguistic information is currently

used in modern applications such as text to speech systems,

navigation systems, robotic assistants, story teller systems and

speech to speech translation systems. Fujisaki proposed that in-

formation conveyed by speech should be summarized through

linguistic information, which is discrete categorical informa-

tion explicitly represented by the written language or uniquely

inferred from context; but also paralinguistic information, dis-

crete and continuous information added by the speaker to mod-

ify or supplement the linguistic information, as well as non-

linguistic information, information not generally controlled by

the speaker, such as the speaker's emotion, gender, age, etc

[1]. Synthesized speech with only linguistic information can-

not encompass all of these factors, thus resulting in unnatural

speech sounds. Therefore, a�ective synthesized speech that al-

lows communication of nonlinguistic information, such as af-

fect and intent, is increasingly required [2] [3] [4]. A�ect is not

restricted to emotion; for instance [5] [6], there are social af-

fective expressions, such as expression of politeness, sarcasm,

irritation, flirtation, etc., which may be more or less control-

lable. Emotions, ranging from an underlying emotional state
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to full-blown emotions, contribute substantially to the acoustic

manifestation of the spoken language. In order to improve the

naturalness of synthetic speech, it is necessary to incorporate

the e�ect of emotion on speech.

Previous methods for emotional voice conversion utilized

a categorical approach to express emotional states [7]. One

method is the piece-wise linear mapping using a probabilis-

tic model, Gaussian Mixture Models (GMM) [8] [9] [10] [11].

Kawanami [12] first applied GMM for spectrum transforma-

tion to emotion voice conversion. Tao [13] tested three dif-

ferent methods for prosody conversion and found that GMM

is suitable for a small database while a classification and re-

gression tree model will give better results if a large context-

balanced corpus can be obtained. Inanoglu [14] combined a

Hidden Markov Model, GMM and F0 segment selection method

for transforming F0, duration and short-term spectra in data-

driven emotion conversion when large amounts of parallel data

are needed. Aihara [15] improved the GMM-based emotional

voice conversion for both voice quality and prosody feature

conversion.

Former studies [12] [14] [15] [16] [17] [18] [19] considered

converting neutral speech to simple categories of emotions such

as joy, anger and sad. Tao tried to label the emotion database us-

ing four degrees “strong,” “normal,” “weak,” “unlike” to each

emotion category [13]. However, daily social emotions con-

veyed by humans are mild and not purely one emotion or an-

other, but a mixture of emotions, e.g., anger and sad and fearful;

they can be described as a continuum of nonextreme states [20]

[21]. So synthetic speech with simple categories of emotions is

not suÆcient. This paper focuses on converting neutral speech
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into a continuum of emotional types with varying degrees.

When modeling the emotion, two primary problems are to

be considered. The first one is how to describe emotions. In the

literature, there are many descriptive systems for emotion. The

most straightforward description is the utilization of emotion-

denoting words or category labels [12] [13] [14] [15] [16] [17],

called emotion category [22]. Also there are other less-well-

known methods, prototype descriptions [23], appraisal-based

descriptions [24], the circumplex model [25], physiological de-

scriptions [26] and dimensional approaches [20] [27] [28]. Emo-

tion in daily speech communication is highly diverse. Many

human-machine dialogues need machines to express mild and

nonextreme emotional states. Therefore, an emotion dimen-

sional approach which satisfies the requirement to express a

range from low-intensity to high-intensity states is appropriate

for representing a continuum of non-extreme emotional states

[20] for controlling the degree of emotion.

Another problem is how to model the process of expression

and perception of emotion by human beings. Many researchers

[29] [30] [31] [32] base their theory and research on a modified

version of the Brunswik’s functional lens model [33] of percep-

tion as shown in Fig.1. Brunswik’s model suggests that the pro-

cess of perception of emotion is multi-layered. Huang and Ak-

agi [34] as shown in Fig.2 proposed a three-layered model for

expressive speech perception based on the Brunswik’s model

with emotion (listener attributions) at the top layer, semantic

primitives (proximal percepts) at the middle layer, and acous-

tic feature (distal indicators) at the bottom layer. The three-

layered model has already been applied by some researchers in

the emotion recognition area [35] [36]. In this paper, we assume

that the human production of emotion follows the opposite di-

rection of human perception. This means the encoding process

of the speaker is the inverse process of the decoding of the lis-

tener. Hence, an inverse three-layered model is employed as the

structure between emotion and acoustic feature.

In this paper, the voice conversion system for emotional

speech is built with a single speaker. In order to control the

degree of emotion, the emotion dimension is adopted to ex-

press the emotional state as a point in dimensional space so

the degree can be controlled by changing the position in the

emotion dimension. This paper mainly focuses on prosody-

related feature conversion. In the emotion conversion system

as shown in Fig.3, two inputs (intended position in dimensional

space and neutral speech) and two steps (rule extraction and

rule application) are necessary. In the first step, the rules be-

tween acoustic feature variations of neutral and emotional ones

can be extracted using a fuzzy inference system. The inverse

three-layered model is set as the structure between emotion di-

mension and acoustics with emotion dimension as the bottom

layer, the semantic primitive layer at the middle and acoustic

layer at the top. As the emotional experience is biologically

based, these rules have the potential ability to be applied for

arbitrary speakers or languages.

The second step is to apply the rule-based voice conver-

sion method to modify the acoustic features of neutral speech

to emotional ones following rules extracted from the first step.

It is widely understood that emotion is conveyed by means of a

number of prosodic parameters such as voice quality and speech

rate as well as fundamental frequency [4] [7] [13]. In this

step, some essential prosody features such as duration, F0 con-

tour and power envelope are parameterized by an interpolation

method, Fujisaki model [37] [38] and target prediction model

[39]. Then the modified acoustic features are synthesized using

STRAIGHT [40], a VOCODER which can decompose speech

signal into parameters so as to precisely control and modify

them. Fig.3 will be explained in detail in Section 5.

This paper is structured as follows. Section 2 introduces the

conceptual grounds of emotion dimension. Section 3 reviews

the three-layered model as the construction between emotion

dimension and acoustic features. Section 4 describes the listen-

ing tests done to obtain the relation between the acoustic fea-

tures and each emotion dimension. In Section 5, the structure

of the emotional voice conversion system is explained. Section

5.1 illustrates the extraction of the prosody rules for emotional

voice conversion using a fuzzy inference system. The prosody

conversion method is explained in Section 5.2, and Section 5.3

reports the perceptual evaluation of the resulting emotion con-

version system. Lastly, the conclusion is made in Section 6.
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Figure 1: Scherer’s [29] modified Brunswikian lens model adopted for vocal

communication of emotion.

2. Emotion dimension representation

As mentioned above, many frameworks have been proposed

already for representing emotion. Among them, categorical

approach is the most common way while more and more re-

searchers based their research on dimension representation for

emotion [20] [28]. This section aims to explain the two meth-

ods in detail.
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Figure 2: Three-layered model [34].
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Figure 3: Scheme of emotion conversion system.

2.1. Categorical representation

The emotion category approach is the most straightforward

method with simple emotion-denoting labels. It has been shown

that emotion-denoting labels in human language are extremely

powerful. It is reported that there are 107 emotion-denoting la-

bels in English [41] and 235 in German [42]. However, it is dif-

ficult to apply all items when concentrating on emotion speech

recognition or emotion speech synthesis. According to the re-

search aim, some basic emotions or essential everyday emotion

terms are selected. The merit of emotion category represen-

tation is that it is the simplest and least costly method for both

emotion recognition and emotion synthesis. In the field of emo-

tion synthesis, much previous research has attempted synthe-

sizing a�ective speech with categorical emotion terms [7] [43].

However, many researchers [13] [20] [44] argued that discrete

category representation ignores the diverse and fuzzy peculiar-

ity of emotion and sometimes it is diÆcult to define a clear-cut

boundary among the non-overlapping categories. Therefore,

the complexity of emotional states may not be reflected well

by categorical representation.

2.2. Dimensional representation

Humans tend to produce emotion with di�erent degrees of

intensity which may change during the course of the speech

communication act. Most HCIs require the machine to produce

human-like non-extreme emotion. Therefore, in order to build

intelligent HCIs, a representation needs to satisfy the require-

ment that it can express mild emotions rather than full-blown

ones.

The dimensional representation method which represents

emotion as a point in a multi-dimensional space can scale the

emotion intensity from low intensity to high intensity in a con-

tinuous way. Despite specifying emotion as an individual emo-

tion category, dimensions used in this representation are gradual

in nature and show the essential aspects of emotion concepts.

Through a variety of di�erent methods such as semantic

di�erential ratings and multidimensional scaling, three dimen-

sions [27] (how active or calm, how positive or negative, how

powerful or weak) are commonly utilized among researchers.

The names of the three dimensions in literature have many ver-

sions (eg., pleasure, arousal and dominance; evaluation, activity

and potency; and evaluation, activation and power). In this pa-

per, two dimensions, as shown in Fig.4, arousal (synonymous to

activation and activity) and valence (synonymous to evaluation

and pleasure) are used for representing emotions based on the

database we have. In the valence-arousal (V-A) representation

as shown in Fig.4, joy is positive and excited while sadness is

negative and calm; thus, the position values of joy are all pos-

itive and the position values of sadness are all negative in V-A

space. On the other hand, anger which is negative but excited

shares the negative valence but positive arousal. According to

the value of valence and arousal, anger can be divided into hot

and cold anger. In psychology, hot anger corresponds to the

prototypical full-blown anger emotion; milder and more subtle

forms of anger expression exist, including cold anger [45].

3. Three-layered model

Another problem addressed in this paper is that the voice

conversion system for emotional speech needs to follow the

process of human perception and production of emotion. This

section discusses the methods to model the vocal communica-

tion of emotion and to apply to a voice conversion system.

3.1. Modified Brunswik’s functional lens model for emotion per-

ception

As briefly mentioned above, in the Brunswik’s functional

lens model as shown in Fig.1, emotion is encoded by means of

a number of objective cues, called “distal indicator cues”. In
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the area of speech and emotion, distal indicator cues in princi-

ple are related to the objectively measured acoustic features. A

listener perceives the distal cues through the transmission chan-

nel which are internally viewed as “proximal percepts” in the

first perceptual inference process. The listener uses the per-

cepts for “attribution” to judge the speaker’s state. According

to the Brunswik’s lens model, we can see that the perception

of emotion is not directly from “distal indicator cues”, that is,

acoustic to “attribution” emotion, but includes a middle pro-

cedure “proximal percepts”. This means that the procedure of

human emotion perception is a multiple-layered process.

3.2. Three-layered model for emotion perception

Based on the Brunswik’s lens model, Huang and Akagi [34]

proposed a three-layered model for emotional speech percep-

tion with emotion category at the top layer, semantic primitives

constitute the middle layer and at the bottom is the acoustic

feature layer as shown in Fig.2. Acoustic features refer to the

acoustic parameters of voice, e.g., F0, power, duration, and se-

mantic primitive refers to the listener’s label of the voice such

as bright, fast or hard. The acoustic feature, semantic primitive

and emotion category in the three-layered model corresponds

to the “distal indicators cues”,“proximal percepts” and “attribu-

tion” respectively in the Brunswik’s lens model. They hypoth-

esize that humans perceive emotion not directly from acous-

tic features but from some descriptors where each descriptor

is an adjective for describing the perceived characteristics of

the speaker’s voice. The combination of descriptors accounts

for the decision about which emotion the speech belongs to.

The 17 semantic primitives used in the three-layered model are

selected by three experiments using multidimensional scaling

analysis. Some researchers have utilized this model in the field

of emotion recognition [35] [36]. The top layer is modified

from an emotion category to an emotion dimension since hu-

man beings have the ability to perceive gradual and continuous

emotion degrees, not only categorical. They found that apply-

ing a three-layered model achieves a better emotion recogni-

tion rate compared with a two-layered model with no semantic

primitive layer.

3.3. Inverse three-layered model for emotion production

Both Brunswik’s functional lens model and the three-layered

model are used to account for human emotion perception. Ac-

cording to Juslin who also uses the Brunswik’s lens model in

[46], two important conclusions can be made: firstly, speak-

ers can communicate emotions successfully to listeners, and

secondly, the cue utilization of speakers maps well to the cue

utilization of listeners. This indicates that speakers and lis-

teners share the same representation methodology (i.e., coding

method) when doing vocal communication. According to this

result, we assume that human production of emotion is the mir-

ror e�ect of human perception of emotions which means the

encoding process of the speaker is the inverse process of the

decoding process of the listener.

Based on this assumption, the inverse three-layered model

is applied to the structure of the voice conversion system for

emotional speech. We assume that in order to express the “at-

tribution”, i.e., the emotion intended by the speakers, speakers

firstly encode the attribution by means of a number of “prox-

imal percepts”, that is, semantic primitives. Then the “proxi-

mal percepts”, are externally expressed by the “distal indicator

cues”, that is, acoustic features. In the inverse three-layered

model, at the top layer is the acoustic feature layer, the middle

layer, the semantic primitives and the bottom layer, the emotion

dimension representation.

4. Acoustic features related to emotion dimensions

For speech synthesis with di�erent emotional styles in the

V-A dimensional space, the related acoustic features to each

dimension are explored in this section.

Most previous methods concentrated on related acoustic fea-

tures within an emotion category [34] [47]. Previous methods

such as Schröder [20] [48], applied statistical analysis such as

correlation and linear regression analyses to dimension space.

According to these results, almost all acoustic variables corre-

lated with the arousal axis. Correlations with the valence axis

are less numerous as well as less strong. This leads to confu-

sion when synthesizing the speaking styles related to the va-

lence axis. Statistical methods may make a great contribution

to emotion recognition because a combination of acoustic vari-

ation may lead to one kind of emotion. However, for emotional

voice conversion, even if we modify some acoustic features ac-

cording to the statistically-derived rules, such as duration which

show great di�erences between emotional and neutral speech,

the synthesized speech still is not perceived as a targeted (cate-

gorical) emotion.

This section investigates the acoustic features related to each

dimension as applied to emotional speech synthesis. Subjects

were asked to evaluate the synthesized speech, the specific acous-

tic features of which, such as F0, have been replaced by the F0

contour from the emotional speech but leaving the other acous-

tic features of the neutral speech. The idea is that if chang-

ing only the F0 contour results in the synthesized speech being

rated as similar to the original emotional speech in the arousal

dimension, then this means that the F0 contour makes a great

4



contribution to the arousal axes. If this kind of changing makes

results similar to the original neutral speech, this means that F0

contour is not related much to the arousal axes. In this paper,

four types of acoustic features relating to emotion are explored:

duration, F0 contour, spectral sequence and power envelope.

4.1. Acoustic features replacement procedure

Source and spectral parameters can be extracted flexibly by

using the analysis/synthesis method STRAIGHT [40]. Succes-

sive refinements on the extraction procedure of source and spec-

tral parameters enable the total system to re-synthesize high-

quality speech. The literature on vocal correlates of emotion di-

mensions, especially with respect to speaking styles, reports the

importance of prosodic parameters, such as F0 contour, spectral

sequences and power envelopes [13] [20].

In order to determine which particular acoustic features of

the emotional speech can be used to convert the neutral speech

to emotional speech, it is necessary to keep the linguistic con-

tent constant. Thus, our research examined nine sentences with

the same linguistic information but di�erent speaking styles/

emotions. These sentences were chosen from the Fujitsu database

recorded in the Fujitsu Laboratory by one professional voice

actress. One of the 9 sentences is in the neutral speaking style

without emotion; the remaining emotions are sadness, joy, hot

anger and cold anger, with 2 utterances for each emotion type.

The procedure for replacement of F0 contours shown in

Fig.5 is followed. Time information was first modified to keep

the speech duration of the neutral and emotional speech con-

stant; this needs to be done before modifying the F0 contour,

spectral sequence and power envelope. Time modification was

done first by manually segmenting the speech signal at the phoneme

level for both neutral and emotional speech; then the time du-

ration of the neutral speech is modified to that of the emo-

tional speech, according to the ratio of the time duration of

the neutral and emotional speech. Applying STRAIGHT, the

first synthesized speech (neutral speech 2) can be obtained by

changing only the time duration to match that of the emotional

speech. Then, the F0 contour, spectral sequence, and aperi-

odic component (Ap) of the neutral speech 2 are extracted us-

ing STRAIGHT. At the same time, from the emotional speech,

the F0 contour and spectral sequence are also extracted using

STRAIGHT. Since the time duration of the neutral speech 2 is

the same as that of the emotional speech, the F0 contour of

the neutral speech can be directly replaced by that from the

emotional speech. The Ap and spectral sequence from neutral

speech 2 and the F0 from the emotional speech are combined

to be synthesized by STRAIGHT. The synthesized speech with

F0 replacement is obtained lastly. By doing this, the spectral

sequence and Ap information are kept, but the F0 contour is

changed from neutral to emotional.

Fig.5 shows the procedure for replacing of F0 contour. For

replacing the spectral sequence, the previous step is the same

as F0 replacement. But in the last step, we use the F0 and Ap

from the neutral speech, so that the spectral sequence from the

emotional speech can be synthesized. This means the spectral

sequence from neutral to emotional speech has been changed,

but the other information is kept. For power envelope calcula-

tion, a Hilbert transform and low-pass filter are used. Synthe-

sized speech with a di�erent power envelope can be obtained by

applying the power envelope of the emotional speech to neutral

speech 2.

4.2. Experiment

The F0 contour, spectral sequence, power envelope and time

duration of the emotional speech are moved one by one to the

neutral speech. We obtained 32 samples of synthesized speech

(8 utterances with the same linguistic information but di�erent

speaking styles, 4 types of acoustic features); plus 9 original

utterances. Totally, there were 41 stimuli in the perception test

in order to explore the influence of each acoustic feature on

each emotion dimension.

In the listening test, twelve Japanese subjects with normal

hearing ability were asked to evaluate the utterances in the V-

A space. The stimuli were presented in an individually ran-

domized order per subject over high-quality headphones (type

HDA200, SENNHEISER).

Experiments for valence and arousal were done twice, for

each dimension for a total of 4 tests. The first time served as

a training test to allow the subjects to acquire an impression of

all the stimuli. Valence and arousal were evaluated from -2 to 2

with a step of 0.1 (Valence: -2 [Very Negative], -1 [Negative],

0 [Neutral], 1 [Positive], 2 [Very Positive]; Arousal: -2 [Very

Calm], -1 [Calm], 0 [Neutral], 1 [Excited], 2 [Very Excited]).

Subjects evaluated these scales using a graphic-user interface as

shown in Fig.6. During the listening test, subjects were allowed

to listen to the stimulus as many times as they wanted.

4.3. Results

The correlation coeÆcients between subjects are calculated

and the average results above 0.7 are chosen for the final anal-

ysis. Totally, there were 12 subjects who attended this experi-

ment, but ten subjects were considered for the final analysis. In

order to explore the influence of each acoustic feature on each

emotion dimension, we assessed the original positions of the

original emotional speech. The hollow points in Figs. 7, 8, 9

and 10 show the perceptual position values in V-A space of the

original utterances. The neutral speech is almost at the center

point which indicates neither positive nor negative, neither ac-

tive nor calm. The values of joy are in the first quadrant which

means positive and active. Hot anger is in the second quadrant

which represents negative but active, and cold anger is in the

second quadrants although the value of valence and arousal is

lower than that of hot anger. For sad emotion, all points are in

the third quadrant, which are negative and calm. These find-

ings seem intuitively reasonable, which suggest that our sub-

jects were able to understand the basic meaning of valence and

arousal.

In order to investigate the influence of the emotion dimen-

sion, the four kinds of acoustic features are replaced separately;

thus, the results of the listening tests for the synthesized speech

are analyzed in terms of three aspects. Fig.7 shows the results

when only the F0 contour is changed to the F0 contours of the
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Figure 6: Graphic interface of the perceptual test.

Table 1: Anova values of each acoustic features to valence and arousal(�� p <

0:01,� p < 0:05).

p-value F0 SS PW TM

Valence �� �� 0.53 0.13

Arousal �� �� 0:03� 0:01�

other emotion categories but keeping the other acoustic infor-

mation such as spectral sequence and power envelope. Figs 8,

9 and 10 show the results when only time duration, power en-

velope and spectral sequence are changed to those of the other

emotions while holding the remaining acoustic values.

4.4. Discussion

Figs.8 and 9 show that by replacing the duration informa-

tion and power envelope, the synthesized speech is still con-

centrated at the center point; this means that only modifying

the duration or power envelope does not very much change the

expressiveness of a neutral utterance. Comparing the results

of the original with the replaced ones, shown in Fig.7, we see

that if only the F0 contour of the neutral speech is replaced by

the F0 contours of joy and hot anger speech, the synthesized

speech samples are all evaluated as joyful speech, as the eval-

uated position values are in the first quadrant. This is an in-

teresting finding because most previous research proposes that

�2
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Figure 7: Perceptual position values of original (Org) emotional utterances and

synthesized (Rep) utterances on V-A space when F0 contour (F0) is replaced

from neutral to emotional speech. (Anger (C) means cold anger and anger (H)

means hot anger.)

F0-related acoustic features contribute greatly to the emotions

of joy and anger. To a certain extent, this is true. But when

converting neutral speech to emotional speech, if only F0 in-

formation is modified, it is possible to synthesize joyful speech

but not angry speech. For sad speech, replacing the F0 of the

neutral with that of sad results in the synthesized speech being

in the third quadrant; this means sad speech can be synthesized

by modifying only the F0-related acoustic features. However,

the degrees of valence and arousal are reduced in joyful and sad

emotions when only F0 is replaced. For cold anger emotion,

by replacing only the F0, it is rated as slightly sad. Our find-

ings show by replacing only F0, sad and joyful speech can be

distinguished well, but notice that these emotions have inverse

values in terms of both valence and arousal. However, joyful

and angry speech cannot be di�erentiated; note that these di�er
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utterances on V-A space when time (TM) duration information is replaced from

neutral to emotional speech. (Anger (C) means cold anger and anger (H) means

hot anger.)

only in the valence axis.

When replacing spectral sequences, as shown in Fig.10, syn-

thesized speech was evaluated as the original emotion, espe-

cially for hot and cold anger. This means that if there is a

suitable method for modifying the spectral sequence of neutral

speech, all emotions can be synthesized, although the degrees

of valence and arousal are reduced compared to the original

speech. What’s more, for joyful and sad speech, by replacing

only the F0, we can get closer to the original position in the

V-A space than by replacing only the spectral sequence. This

indicates that F0 is more related to the arousal axis than the va-

lence axis. However, for the valence axis, the spectral sequence

is more important.

The results of the ANOVA (analysis of variance) are shown

in Table.1. From this table, we can see that F0 and spectral

sequence have significant contributions to valence and arousal

axes (p < 0:01); power envelope and duration are much related

to the arousal dimension (p < 0:05) but show no significance

with the valence dimension (p > 0:05).

We conclude that both the F0 contour and spectral sequence

are important to voice conversion for emotional speech. The

power envelope and duration show little influence on the va-

lence axes. In this paper, we focused on the prosody-related

features such as duration, F0 and power envelope. The control-

ling of spectral sequence will be researched in the future. Since

the utterances examined in this experiment are from a single

speaker, and speakers have individuality di�erences when en-

coding emotion [53], future research is necessary to examine

the commonalities among speakers for a better understanding

of synthesizing di�erent speaking styles.
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Figure 9: Perceptual position values of original (Org) and synthesized (Rep)

utterances on V-A space when power envelope (PW) is replaced from neutral

to emotional speech. (Anger (C) means cold anger and anger (H) means hot

anger.)

5. The voice conversion system for emotional speech

A rule-based voice conversion technique is utilized for mod-

ifying the acoustic parameters of the neutral speech in order

to convey the target emotion. Previous methods on emotional

voice conversion systems mainly focused on applying a sta-

tistical approach, GMM, Deep neural network (DNN) or neu-

ral network (NN) [12] [14] [15] [16] [17]. GMM often suf-

fers from over-smoothing problems and the non-linear map-

pings such as DNN or NN need large databases for training

using categorical emotion representations. However, for the di-

mensional approach, it is diÆcult to collect a suÆciently large

enough database with continuous emotional degrees. A rule-

based strategy is applied with a limited database in this paper to

obtain tendencies of variation between emotion dimensions and

semantic primitives, and then to extract rules between semantic

primitives and acoustic features.

In the rule-based emotional voice conversion system, the

two-dimensional space of valence and arousal is used for rep-

resenting the emotion; and the inverse three-layered model is

used as the structure relating the acoustic features and emotion

dimensions, as shown in Fig.3. The emotional voice conversion

system needs two inputs and two steps. Firstly, we need to in-

put the position in the V-A space, which represents the desired

emotion degree, and this step is referred to as the rule extrac-

tion step. It is this step which allows us to estimate the acoustic

values of the desired emotion through the inverse three-layered

model. This then allows us to calculate the di�erences in acous-

tic features between the emotional and neutral speech. In the

next step, the rule application step, the ratios of di�erence be-

tween the estimated acoustic features of the desired emotion

and the acoustic features of neutral speech are applied to the

extracted parameter values of the neutral speech. In order to
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utterances in V-A space when spectral sequence (SS) is replaced from neutral

to emotional speech. (Anger (C) means cold anger and anger (H) means hot

anger.)

modify the di�erences for the neutral speech, we concentrated

on the prosody-related features, duration, F0 contour and power

envelope. In order to control these features, the F0 contour and

power envelope are parameterized using the Fujisaki model and

target prediction model. After the modifications, applying the

synthesis tool STRAIGHT to the modified acoustic features,

the converted utterances with desired emotional degrees can be

synthesized.

5.1. Rule extraction

In this section, we illustrate how the inverse three-layered

model is applied to the database to obtain the value of the var-

ious elements; how the fuzzy inference system connects the

three layers to output rules relating the emotional dimensions

to the semantic primitives; how the rules are extracted from

semantic primitives to acoustic features and finally, how the ef-

fectiveness of the inverse three-layered model is evaluated by

means of calculating mean absolute errors [49].

5.1.1. Database

We used the multi-emotional single speaker Japanese Fu-

jitsu Database, recorded at Fujitsu Laboratories. A professional

voice actress uttered 179 utterances in 5 speaking styles, joy,

cold anger, hot anger, sad and neutral; 20 sentences spoken

in 5 speaking styles, including one instance of neutral speech

and two repetitions of each of the other speaking styles. One

instance of cold anger is missing which makes a total of 179

sentences.

5.1.2. Acoustic feature extraction

Except for duration-related features which are extracted by

manual segmentation, the other acoustic features are obtained

by the high-quality speech analysis-synthesis system STRAIGHT

[40]. Based on the work by Huang and Akagi [34], 16 acoustic

features are classified into the following subgroups.

F0 related features: F0 mean value of average F0 (AP),

highest F0 (HP), a rising slope of the F0 contour (RS) and rising

slope of the F0 contour for the first accentual phrase (RS1st).

Spectrum related features: First formant frequency (F1),

second formant frequency (F2), and third formant frequency

(F3) were taken approximately at the midpoint of the vowels /a/,

/e/, /i/, /o/, and /u/. The formant frequencies were calculated at

an LPC-order of 12. Spectral tilt (SP TL) was used to measure

voice quality and was calculated using the following equation:

S P T L = A1 � A3 (1)

where A1 is the level in dB of the first formant, and A3 is the

level of the harmonic whose frequency is closest to the third

formant. To describe acoustic consonant reduction, spectral

balance (SP SB) is adopted. It was calculated in accordance

with the following equation:

S P S B =

P

fi � Ei
P

Ei

(2)

where fi is the frequency in Hz, and Ei is the spectral power as

a function of the frequency.

Power envelope related features: Power range (PW R),

rising slope of the power for the first accentual phrase (PW RS1),

the ratio between the average power in high frequency portion

(over 3 kHz), the average power (PW RHT) and the mean value

of power range in accentual phrase (PW RAP) were measured.

Duration related features: Total length (TL), consonant

length (CL), the ratio between consonant length and vowel length

(RCV) were considered related to duration.

All the acoustic features are used for building the inverse

three-layered model in the rule extraction step. In the rule ap-

plication step, the prosody related features such as F0, duration

and power envelope are parameterized. The conversion of spec-

tral sequence features will be performed in the future work.

5.1.3. Semantic primitives evaluation

Based on the work by Huang and Akagi [34], 17 semantic

primitives were selected to describe the perception of emotional

vocalization. The 17 semantic primitives are bright, dark, high,

low, strong, weak, calm, unstable, well-modulated, monotonous,

heavy, clear, noisy, quiet, sharp, fast, and slow. 11 Japanese

subjects were asked to give subjective values on a five-point

scale (“1-Does not feel so at all”, “2-Seldom feels so”, “3-Feels

slightly so ”, “4-Feels so”, “5-Feels very much so”) for each

semantic primitive for each 179 utterances. For each seman-

tic primitive, the inter-rater agreement is measured by pairwise

Pearson’s correlation between two subjects’ ratings. All sub-

jects showed from moderate to a high level agreement.

5.1.4. Emotion dimensions evaluation

The evaluation of emotion dimension is divided into two

parts: valence and arousal [35]. The 11 Japanese subjects rated

the 179 utterances on a five-point scale f-2, -1, 0, 1, 2 g. Valence
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was from -2 (very negative) to +2 (very positive), and arousal

was from -2 (very calm) to +2 (very excited). The correlation

coeÆcient between subjects rating for valence is about 0.9 and

for arousal, about 0.85, which means subjects showed a high

inter-rater agreement.

5.1.5. Applying a fuzzy inference system for extracting rules

The fuzzy logic system using If-Then rules to turn human

knowledge into a mathematical model is utilized as the con-

nector for the three layers. The fuzzy logic system is based

not only on the non-linear functions of arbitrary complexity but

also on natural language. Contrary to the conventional fuzzy

logic system which does not have a learning ability, the adap-

tive neuro-fuzzy inference system (ANFIS) combines the merit

of fuzzy inference systems and neural networks as its own struc-

ture [50]. ANFIS not only has an inference ability but also a

strong learning mechanism. ANFIS is considered instead of

other popular methods such as DNN, or NN for two reasons.

One is that ANFIS has a membership function with an interpo-

lating method which means that the tendency of the variance in

the whole V-A space can be obtained from a small database. A

second reason is that fuzzy logic is based on natural language;

the natural language in our system is in the form of semantic

primitives (the middle layer in the three-layered model).

Fig.11 shows the flow chart for training the ANFIS to ex-

tract rules. Firstly, from the emotion speech corpus as intro-

duced in Sections 6.2, 6.3, 6.4, 16 acoustic features (AF1; :::; AF16)

are extracted by STRAIGHT; the 17 semantic primitives values

(S P1; S P2; :::; S P17) and the two emotion dimensions (D1; D2)

are evaluated by subjects’ ratings. To avoid any emotion depen-

dency, all acoustic features are normalized by the mean value

of neutral speech. For the ANFIS, all input and output need to

range from 0 to 1. We then normalized the acoustic features, se-

mantic primitives and emotion dimensions using the range and

minimum value of each parameter using the following Eq.3.

f̃(i;m) =
f̂(i;m) � f minm

f ranm

(3)

where m is the number of acoustic features (m = 1; : : : ; 16) and

i is the number of utterances in the database (i = 1; : : : ; 179).

f̂(i;m) is the normalized value of the neutral speech. f minm and

f ranm is the minimum value and range of the mth acoustic fea-

tures. For semantic primitives and emotion dimensions, the nor-

malized part in [0; 1] are the same as the acoustic features.

ANFIS is a system with multi-inputs and a single-output. In

the training phase as shown in Fig.11, from the bottom to the

middle layer, for each semantic primitive (S P1, S P2,..., S P17),

we train the appropriate ANFIS (ANFIS S P1, ... , ANFIS S P17)

whose input is the same, that is, the evaluated value of va-

lence and arousal in the emotion dimension (D1, D2). From

the middle to the top layer, 17 semantic primitives (S P1, S P2,

... , S P17) are the input of each ANFIS (ANFIS AF1, ... ,

ANFIS AF16), whose outputs are the acoustic features (AF1, AF2,

... , AF16).

After the training step, 17 semantic primitives and 16 acous-

tic features are used in this system to generate 17 ANFISs for

estimating semantic primitives and 16 ANFISs for estimating

acoustic features. When given the intended position in the V-A

space to each of the 17 ANFIS (ANFIS S P1, ... , ANFIS S P17)

for estimating SP , the estimated semantic primitive (estS P1,

estS P2, ... , estS P17) is obtained. Applying the 17 estimated

semantic primitives (estS P1, estS P2, ... , estS P17) as the in-

put to each ANFIS (ANFIS AF1, ANFIS AF2, ... , ANFIS AF16)

for estimating acoustic features, the estimated acoustic features

(estAF1, estAF2, ... , estAF16) are acquired as shown in Fig.12.

In the estimation step, the neutral position and the intended

position in V-A are given separately to the ANFIS to obtain the

acoustic value of neutral speech and the intended speech. We

then use the estimated acoustic feature of the intended position

in V-A space to divide the estimated AF of the neutral position

in V-A space. In this system, we assume that (0,0), the center

point in V-A space, is the neutral position. The ratio di�erences,

i.e., the rules between intended and neutral acoustic features,

are calculated using the following equation:

rulen = estAFn=estAFn (4)

where estAFn shows the estimated nth acoustic feature value

from the ANFIS of the intended emotional state in V-A space

and estAFn shows the estimated nth acoustic feature value from

the ANFIS of the neutral speech (0,0) in V-A space. Then rulen

represents the rule for the nth acoustic features(n = 1; 2; :::; 16)

which is applied for modifying the neutral speech in the next

step.

5.1.6. System evaluation

All data sets are divided into training data (90%) and test-

ing data (10%). ANFIS is first trained using the training data

and then validated using the testing data. By giving the value of

arousal and valence to the ANFIS sp1; ANFIS sp2; :::; ANFIS sp17,

firstly, the estimated semantic primitives, estS P1; estS P2; :::; estS P17

can be obtained and then we input the estimated semantic prim-

itives to ANFIS AF1; ANFIS AF2; :::; ANFIS AF16, and after that,

the estimated acoustic features estAF1; estAF2:::; estAF16 can

be obtained. The accuracy of the estimated acoustic features

and estimated semantic primitives are evaluated by mean ab-

solute error (MAE); this can measure the distance between the

estimated values by the proposed system and the annotated val-

ues from listeners evaluations.

MAE =

PN
i=1 jxi � yij

N
(5)

where xi(i = 1; 2; :::; N) is the sequence of estimated values of

one semantic primitive or one acoustic feature. yi(i = 1; 2; :::; N)

is the sequence of annotated values by listeners for the cor-

responding semantic primitive and acoustic feature. N is the

number of utterances in the database.

Figs 13 displays the MAE results of semantic primitives be-

tween the training data and testing data from the three-layered

model. Fig.14 shows the MAE of acoustic features from three-

layered model and two-layered model. The two-layered model
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Figure 11: Procedure for training ANFIS.

utilized the same methodology of applying the emotion dimen-

sion for representing emotion but without considering using the

semantic primitive layers. The MAE of 15 semantic primitives

are all below 10%, and for the fast and slow semantic prim-

itives, the MAE is somewhat higher, near 10% which means

that the estimation accuracy of semantic primitives is very high.

From Fig.14, comparing the results from the two-layered and

three-layered model, it is found that among 16 acoustic fea-

tures, the MAE values of 10 acoustic features from the three-

layered model are lower than the two-layered model which means

that the three-layered model can provide higher estimation ac-

curacy than the two-layered model. Among the 16 acoustic

features, all are below 20% and only the MAE of PW RAP is

higher than 15% using the three-layered model.

5.2. Rule application

For the emotional voice conversion system, the acoustic pa-

rameters of neutral speech need to be modified in order to syn-

thesize the emotional speech. The ratios, rules of the relation-

ships between acoustic features between neutral and intended

emotion, are calculated by ANFIS through the inverse three-

layered model. In this section, the modification method based

on the extracted rules is explained.

As shown in Fig.15, first, the phoneme boundaries of the

vowels and consonants are extracted manually from the neutral

speech. Then the ratios between the neutral and target emo-

tional speech of the acoustic features TL, CL, RCV are used to

modify the phoneme boundaries. The F0 contour is extracted

by STRAIGHT at the same time and interpolated using the du-

ration information. The F0 contour is parameterized by a modi-

fied version of the Fujisaki model to modify the F0 contour. Af-

ter F0 modification, STRAIGHT is applied to obtain the mod-

ified speech. Lastly, the power envelope modification is done

by using the target prediction model. After the power envelope

modification, the final converted emotional speech can be ac-

quired.

5.2.1. Fujisaki model for parameterizing F0 contour

Previous work separately modified the F0 related acoustic

features, such as average F0 (AP), highest F0 (HP), the mean

value of F0 in the rising slope (RS) and rising slope of the first

accentual phrase (RS 1st). In our case, separately modifying the

acoustic features is not suitable, because modifying one acous-

tic feature such as RS may influence other acoustic features

such as AP and HP and there is no appropriate order for modi-

fication. We parameterized the F0 contour to control the entire

contour using only a limited set of parameters.
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Figure 13: Mean absolute error of semantic primitives.

The Fujisaki model [1], a mathematical model represented

by the sum of phrase components, accentual components, and

the baseline Fb, is adopted to parameterize the F0 contour. The

F0 contour can be expressed as follows.

ln F0(t) = ln Fb +

I
X

i=1

ApiGpi(t � T0i)

+

J
X

j=1

Aa jfGa j(t � T1 j) � Ga j(t � T2 j)g (6)

Gpi(t) =

8

>

>

<

>

>

:

�

2
i
t exp(��it); t � 0

0; t < 0
(7)

Ga j(t)

8

>

>

<

>

>

:

min[1 � (1 + � jt) exp(�� jt); 
]; t � 0

0; t < 0
(8)

where Gp(t) represents the impulse response function of the phrase

control mechanism, and Ga(t) represents the step response func-

tion of the accent control mechanism. The symbols in these

equations forecast

Fb: baseline value of fundamental frequency,

I: number of phrase commands,
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Figure 14: Mean absolute error of acoustic features from three- and two-layered

model.

J: number of accent commands,

Api: magnitude of the ith phrase command,

Aa j: amplitude of the jth accent command,

T0i: timing of the ith phrase command,

T1 j: onset of the jth accent command,

T2 j: end of the jth accent command,

�: natural angular frequency of the phrase control mecha-

nism,

�: natural angular frequency of the accent control mecha-

nism,


: relative ceiling level of accent components.

Many researchers utilize the Fujisaki model; the work of

Mixdor� [51] is adopted in this paper where � = 1:0=s and

� = 20=s. By using Mixdor�’s method the parameters (T0,

T1, T2, Ap, Aa, and Fb) in the Fujisaki model are extracted.

We then modify the parameters to obtain a modified F0 contour

using Equations 6, 7 and 8. We can extract the AP, HP, RS,

and RS 1st of the modified F0 contour. The root mean square er-

ror (RMSE) between the desired acoustic features and extracted

one from the modified F0 contour is calculated using the fol-

lowing equation:

RMS E =

s

PN
i=1(AFi �

ˆAFi)2

N
(9)

where AF1, ... ,AFn is the desired acoustic feature value which
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is denormalized after being estimated from ANFIS. And the
ˆAF1, ... , ˆAFn is the extracted value from the modified F0 con-

tour. The F0 contour with the smallest RMSE is selected as the

final F0 contour.

5.2.2. Target prediction model for parameterizing the power

envelope

In order to parameterize the power envelope target, a predic-

tion model which predicts the stable power target in short-term

intervals is used to estimate the targets of the power envelope

[52]. We then change the targets to a stepwise function by using

the segmentation information, the starting and ending points of

each phoneme. By modifying the magnitude of the stepwise

targets of the power envelope, a modified power envelope is

reproduced by a 2nd-order critically damped model.

The power envelope of the neutral speech signal is firstly

extracted by

e
y

(t) = LPF

�

�

�

�

y(t) + jHilbert
�

y(t)
�

�

�

�

2
�

(10)

where LPF[�] is a low-pass filtering and Hilbert[�] is the Hilbert

transform. Then we used Eq.11 to change the power envelope

in the log power envelope domain.

log e
y

(t) = 10log10(e
y

(t)) (11)

Then the power envelope is approximated by a 2nd-order

critically damped system which can estimate the target power

envelope using short-term power sequences without being given

the onset positions of the power transition.

A 2nd-order critically damped model is generally repre-

sented as follows

�

�

2
� 2�� + �

2
�

yn = �

2b (12)

where � is a di�erenctial operator in time, � is a reciprocal time

constant, time n = 0 is the onset position of the transition and b

is a target to which yn converges in the past if � > 0 and n � 0,

or in the future if � < 0 and n � 0. The solution of Eq.12 is

yn = (a + cn) exp (
�n)

+ b (13)

where a and c are constants obtained from the boundary con-

dition. Previous methods that estimated the parameters of 2nd-

order critically damped models have predicted all parameters

directly by using Eq.13 and the following measure,

e (n0 or n1; �)
=

n1
X

n=n0

�

�

�

y

i
n � yn

�

�

�

2
; n0 < n1 (14)

where y

i
n is an unknown input sequence. For these methods,

a long-term sequence suÆcient to start at the onset position of

the transition n0 = 0 when � < 0 or n1 = 0 when � > 0 is

essentially required. Then, non-linear optimization under two

values, n0 and � or n1 and � is needed. However, the purpose of

our target prediction model is to estimate b only.

Divide Eq.12 such that;

(
� � �

)
f
(
� � �

)
yng = �

2b (15)

and assume that

xn = (
� � �

)
yn (16)

(
� � �

) xn = �

2b (17)

By substituting Eq.13 into Eq.16,

xn = c exp (
�n)

� �b (18)

and Equation 18 is a first-order equation.

Assuming that

cm = c exp (
�m) (19)

at time n = m, the neighborhood xm+t of xm is represented by

xm+t = cm exp (
�t) � �b (20)

Thus, if the measure

e(�) =

n1
X

t=n0

�

�

�(� � �)yi
m+t � xm+t

�

�

�

2

=

n1
X

t=n0

�

�

�xi
m+t � xm+t

�

�

�

2

12



can be used, non-linear optimization under only � is needed and

it does not require any knowledge of the onset position of the

transition estimating the target b, because xm+t is an exponential

function. In this prediction, if � � 0, it is the backward predic-

tion (target in the past). If � < 0, it is the forward prediction

(target in the future). We use forward prediction (target in the

future) to reproduce the power envelope.

In Fig.16, the blue line shows the estimated target of the

power envelope using the target prediction model.
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Figure 16: The original extracted power envelope, the estimated target of power

envelope and the stepwise target of power envelope.

The onset point T1 j and ending point T2 j of each phoneme

was segmented manually. After obtaining the estimated power

envelope, we calculated the average value, Au j of the jth step

in each period of one phoneme which consisted of the stepwise

function shown in Fig.16, black line. These are the inputs of the

Eq.21 that follow the accent mechanism of the Fujisaki model.

The stepwise input signals to the power control mechanism are

defined by their amplitude Au j, onset time T1 j and o�set time

T2 j using Eq.

log e
y

(t) =

J
X

j=1

Au j[Gu(t � T1 j) � Gu(t � T2 j)] (21)

where log e
y

(t) is the reproduced power envelope. And the step-

response Gu(t) is calculated using the following equation

Gu j(t) = 1 � (1 + Æt) exp(�Æt) t � 0 (22)

The symbols in these equations forecast

� Au j: amplitude of the jth step, Au j is the average value

of b in each segmentation,

� T1 j: onset of the jth step,

� T2 j: o�set of the jth step,

� Æ: time constant.

Æ is the absolute value of the sum of the negative parts

of � as we use a forward prediction, � < 0 (target in the

future), to reproduce the power envelope.

In Fig.17, the reproduced power envelope and extracted log

power envelope are shown. Signal/Error Ratio (SER) in Eq.23

and Mean Absolute Error (MAE) in Eq.24 are used to evalu-

ate the di�erence between the extracted and reproduced power

envelope. As the voiced signal is more important than the un-

voiced parts in this research, SER is calculated only during the

voiced part.

S ER = 10log10

PN
i=1(xi)

2

PN
i=1(xi � yi)2

(23)

MAE =

PN
i=1 jxi � yij

N
(24)

where xi is the extracted power envelope and yi is the repro-

ducing power envelope. N is the number of bits in the voiced

part.

The value of SER is 18.01dB and the MAE is about 1.82dB

which means that the reproduced power envelope is almost the

same as the original extracted power envelope. Therefore, we

can conclude that this method works well for parameterizing the

power envelope. After this, we modified the power envelope by

controlling Aa j to fit the estimated acoustic features.
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Figure 17: Reproducing power envelope using 2nd-order critically damped

model and the extracted power envelope from original speech.

5.3. Perceptual evaluation

The voice conversion system for emotional speech aims to

control the degree of emotion in dimensional space. We hy-

pothesize that the system can convert any utterance from any

speaker by a given point in dimensional space using a limited

database. This is the procedure for the synthesized utterances

for the evaluation phase, so there is no reference to the desired
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position of the corresponding emotional utterance in the cor-

pus. Hence, the objective measures such as Mel-cepstral distor-

tion or mean squared error between converted and target are not

suitable. The inputs of the conversion system are the intended

position value in V-A space and the neutral speech. We utilized

the distance between the intended position and the evaluated

position obtained from the perception experiment to evaluate

the category and the degree of emotion.

5.3.1. Stimuli

In the following subjective evaluation experiments, the in-

puts of the system for emotional voice conversion are three dif-

ferent neutral statements spoken by the single speaker from the

Japanese Fujitsu database. The English meaning of the three

statements are the following:

1. You have new mail.

2. Nothing new has come to mind.

3. I am already home.

The input positions to the system in V-A space are shown

in Fig.18 with solid points. The range of valence and arousal is

from -2 to 2 in increments of 0.1. The position values among the

three utterances are the same. In the 1st and 3rd quadrants, there

are 3 positions. Since there are two kinds of anger emotion, hot

anger and cold, there are two positions for each in the 2nd quad-

rant. One position in the V-A space represents one synthesized

utterance with di�erent degrees of emotion. Including the neu-

tral original speech, there are 11 stimuli for each utterance with

a total number of 33 synthesized speech utterances.

5.3.2. Experiment procedure

16 Japanese subjects (7 females and 9 males) with normal

hearing, average age about 23.3 years old, participated in the

experiment. Subjects listened to the stimuli in a random order

presented through an audio interface (FIREFACE UCX, Syntax

Japan) and headphones (HDA200, SENNHEISER) in a sound-

proof room. The original sound pressure level was about 64 dB.

The subjects evaluated the stimuli with regard to three aspects,

valence, arousal and naturalness. Each aspect was evaluated as

a separate test in order to avoid the conceptual confusion be-

tween valence and arousal, with at least a 3 hour time interval

between tests. Subjects evaluated these scales using a graphic

user interface as shown in Fig.6. The ranges, scale steps, and

other rules are the same as explained in Section 4.

5.3.3. Subjective evaluation result in V-A space

Analysis of the evaluated results mainly focuses on two

parts: perception of the emotion category and the degree of

emotion. The evaluated results (perceived positions) analyzed

in terms of emotion category in the valence and arousal spaces

are shown in Fig.19. The oval is calculated using average and

standard deviation of valence and arousal values. The central

point of each oval is the mean value of each emotion. The ra-

dius of the oval shows the standard deviation related to valence

and arousal of each emotion. Fig.19 shows that the mean value

of evaluated joy, cold anger and sadness can be obtained in the

intended quadrant and the standard deviation is acceptable for

each emotion; this means that the category of emotion can be

perceived well by subjects for joyful, cold anger, and sad emo-

tional speech. But for hot anger, the intended position is the

second quadrant while the evaluated line of hot anger is in the

first quadrant, so subjects perceived synthesized hot anger as a

joyful emotion. The reason for this misunderstanding is that, as

we mentioned in Section 4, only by replacing the spectral se-

quence of hot anger can the neutral speech be perceived as hot

anger. For now, our modification method only controls for du-

ration, F0, and power envelope. Therefore, hot anger emotion

cannot be well obtained.

The degree of emotion perception is shown in Fig.18. As

the input positions of the three di�erent linguistic utterances

are the same, the average evaluated values for each position

among the three utterances are calculated. In Fig.18, the solid

circles represent the intended position and the hollow circles are

the positions evaluated from the perceptual experiment in V-A

space. The dashed lines show the distance of the two pairs: in-

tended and evaluated. From Fig.18, we can see that the tenden-

cies of the degrees of valence and arousal for the intended and

evaluated emotions are the same, except for cold anger. More-

over, we note that the degree of the synthesized speech is more

mild than intended. This phenomenon is in line with the results

reported in Section 4. It is found that if only the F0 or spectral

sequence of neutral speech is replaced by those from the emo-

tional speech, the degree of perceived emotion is decreased.
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Figure 18: The evaluated and intended positions in V-A space. (the dashed lines

are the intended position and the solid lines are the obtained position.)

5.3.4. Subjective evaluation result of naturalness

The naturalness quality of the converted utterances was rated

on a 1-to-5 scale [1-bad, 2-poor, 3-fair, 4-good, 5-excellent]

using the neutral sentence as the reference. The Mean Opin-

ion Score (MOS) is shown in Fig.20. The MOS of each emo-

tion is calculated separately. From these results, we see that
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Figure 19: The average and standard deviation of the evaluated results. (1st,

2nd, 3rd stand for the intended quadrants. Cold and hot represent the intended

cold anger and hot anger. av and str mean the average and standard deviation

values of each quadrant.)

all naturalness scores are fair, i.e., above 2.5. Joyful speech

was rated best (MOS about 3.38), with cold anger as a second

(MOS about 3.1). The MOS of hot anger and sad are about

2.98 and 2.27. The reason that the quality of sadness is the

lowest is because that the duration of sad speech is long but the

pauses between phrases were not markedly obvious. We treated

the ratio of modification to voice and unvoiced part the same.

Therefore, the synthesized speech seemed machine-like. More

precise control of duration ratios between voiced and unvoiced

periods is needed in order to improve the quality of sadness;

this is a topic that will be researched in the future.
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Figure 20: Mean opinion scores for converted speech in each quadrant.

6. Discussion and conclusion

A voice conversion system for emotional speech which uti-

lized dimensional space to represent emotion in order to con-

trol the degree of emotion is proposed in this paper. Two di-

mensions, valence(from positive to negative) and arousal (from

excited to calm), are considered to represent emotion. Follow-

ing Brunswik’s functional lens model which assumes that the

perception of emotion by humans is multi-layered, the inverse

three-layered model is proposed as the structure between emo-

tion dimensions and acoustics. The significant acoustic features

related to each dimension are explored by synthesizing speech,

certain acoustic features of which are from emotional speech

and others, from neutral speech. Perceptual evaluations in V-A

space show that F0 and spectral information are the most im-

portant factors related to arousal and valence. By replacing the

F0 and spectral information of neutral speech from joyful, cold

anger and sad emotional speech, the synthesized speech can be

perceived as having the same original emotional category, al-

though the degree is decreased by replacing either of them. But

by replacing only the F0 of the neutral utterance to the F0 from

the hot anger utterance, the synthesized utterance is perceived

as a joyful emotion. If only spectral information is replaced by

that from the hot anger utterance, the synthesized voice can be

perceived as hot anger while the degrees in both valence and

arousal dimensions are decreased. These results support the

previous studies that voice quality and F0 contribute much to

emotions [53] [54]. However, these findings are based on one

female voice actress database. Yet, speakers encode their af-

fective states using various acoustic features. In future work,

the database will be extend ed to multiple speakers in order to

explore speaker individuality for a�ectiveness.

The voice conversion system has two parts: rule extraction

and rule application. ANFIS, which embraces the concept of

human perception of emotion as fuzzy logic, connects the three

layers as a non-linear mapping. The low mean absolute er-

ror between the estimated value from ANFIS and the reference

shows that ANFIS and the inverse three-layered model has the

ability to build the non-linear relationship between acoustics

and the emotion dimensions. The rules of acoustic features for

modifying the neutral speech are extracted using the estimated

acoustic features from ANFIS and the extracted acoustic fea-

tures from neutral speech. In order to convert the neutral speech

to the desired emotional speech in dimensional space, the Fu-

jisaki model and target prediction model for parameterizing F0

and power envelope separately are conducted. STRAIGHT is

used as the analysis-synthesis tool in this system.

Perceptual evaluation results in V-A space show that the

synthesized speech of joyful, sad and cold anger emotion can be

perceived well, including the category and the degree, although

the perceived degree is decreased compared to the desired val-

ues. For hot anger emotion, since spectral modification was

not conducted, the synthesized speech of hot anger is perceived

as a joyful emotion. In the future, the method for controlling

spectral sequences will be researched in order to convert neutral

speech to any kind of emotion. Also, previous research has al-

ready revealed the commonality and di�erence in cross-cultural
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emotion perception [55] [56] [57]. Since this system does not

have a restriction on linguistic information, this will be a good

approach for exploring the applications to multiple languages

and multiple speakers in the future.
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