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Learning Bodily Expression of Emotion for Social
Robots through Human Interaction

Nguyen Tan Viet Tuyen, Student Member, IEEE, Armagan Elibol, Member, IEEE,
and Nak Young Chong, Senior Member, IEEE

Abstract—Human facial and bodily expressions play a crucial
role in human-human interaction to convey the communicator’s
feelings. Being echoed by the influence of human social behavior,
recent studies in human-robot interaction (HRI) have investigated
how to generate emotional behaviors for social robots. Emotional
behaviors can enhance user engagement, allowing the user to
interact with robots in a transparent manner. However, they
are ambiguous and affected by many factors such as person-
ality traits, cultures, and environments. This paper focuses on
developing the robot’s emotional bodily expressions adopting the
user’s affective gestures. We propose the behavior selection and
transformation model, enabling the robots to incrementally learn
from the user’s gestures, to select the user’s habitual behaviors,
and to transform the selected behaviors into the robot motions.
The experimental results under several scenarios showed that
the proposed incremental learning model endows a social robot
with the capability of entering into a positive, long-lasting HRI.
We have also confirmed that the robot can express emotions
through the imitated motions of the user. The robot’s emotional
gestures that reflected the interacting partner’s traits were widely
accepted within the same cultural group, and perceptible across
different cultural groups in different ways.

Index Terms—Human-robot interaction, Affective behaviors,
Imitation learning, Cross-cultural evaluation

I. INTRODUCTION

Nonverbal behaviors have an indispensable role in human-
human interaction. During the conversation, people communi-
cate through facial and bodily expressions to convey their emo-
tions that may influence social relationships. The connection
between human behaviors and emotion has been investigated
from the psychological point of view [1], [2], [3]. In social
robotics, the social human-robot interaction should be treated
similarly as the interaction with another person [4]. Taking into
account the role of emotional expressions in human-human
interaction, many studies have focused on generating robot
emotional behaviors by estimating environmental stimuli and
incorporating robot emotional states. Robots’ social cues can
enhance the social interaction outcomes by allowing humans
to interact in a facile and transparent manner [5].

In this paper, we firstly underline the importance of emo-
tional expressions in human-human interaction and in social
human-robot interaction. Previous works related to facial and
bodily expressions of robots are summarized in I-A. In I-B,
we emphasize the importance of the interacting partner’s
traits on generating expressive robot behaviors. Along the
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lines, the psychological perspectives about the infant’s social
development are explained in I-C. In Section II, the proposed
behavior selection model is described in detail and is followed
by the transformation model in Section IIl. In Section IV,
the two scenarios of interaction and evaluation are conducted
to validate the proposed transformation model. This model is
further strengthened by the integration of behavior selection
and transformation model in Section V through a scenario of
long-term HRI. Finally, the experimental results, research con-
tributions, and future work are summarized in the conclusions
and future work section.

A. Related Works

The imitation of human or animal behaviors for robots has
received considerable attention [6], [7], which can positively
enhance the interaction between a subject (which could be
human [8] or animal [9]) and a target robot to some degree.
In terms of humanoid robots, the mimicry of human emo-
tional behaviors for producing robots’ cues could be broadly
classified into facial and bodily expressions.

The MIT Kismet robot [10] perceived a variety of social
cues from the environment through visual and audio resources,
and it responded to the interacting partner through its eye
gaze and facial expressions. In [11], the cultural factors on
the robot’s affective behaviors were investigated. The dy-
namic facial expressions derived from East Asian people is
transferred to a social robot head for subjective evaluation.
The authors confirmed that, compared to the robot associated
with standardized universal expressions defined by the theory-
driven approach [12], the robot equipped with the skills of
cultural expressions outperformed its comparator robot in
terms of both recognition accuracy and human-likeness.

In contrast to the robots’ facial expressions, bodily expres-
sions have received less attention from HRI researchers [13],
even though the potential of affective gestures had been clearly
revealed from the psychological literature [3], [14]. Only a
few studies were aimed at implementing the theory-driven
approach in psychology for robot bodily expressions [15],
[16]. By taking into account the contribution of human body
movements to the attribution of emotion [2], [3], robots’ bodily
expressions could be generated, especially for the robots
without a dedicated facial articulation. The creation of body
movements for the NAO robot in [15] was mainly inspired
from Meijer’s work [2] and other related psychological studies.
The analysis evidenced that the designed bodily expressions
displayed on the robot are appropriately conveyed the target



emotions. Similarly, bodily expressions for the Brian 2.0
robot [16] was based on perspectives of social psychology
[2], [3] about the connection between human emotion and
bodily movements. The experimental results demonstrated that
certain human bodily movements representing social emotions
could be effectively displayed on the robot. On the other
hand, with the data-driven approach, human motion data
could be used for generating robots’ social cues. In [17],
the emotional postures performed by a professional actor and
a professional director were recorded by the motion capture
system. Then, the expressive key poses were selected through
the recognition accuracy of the participants. Afterward, the
corresponding robot’s emotional poses were carefully posi-
tioned to match the original pose of recorded motion data. The
experimental results confirmed that bodily postures displayed
by the robot could be used to convey emotions during child-
robot interaction. Similarly, the UCLIC Affective Posture
and Motion Database [18] was used to generate emotional
expressions for different robots in [19]. The authors chose
the best recognizable ones, and they were mapped into robots
with the provided labels through the proposed transformation
model. Without using the motion data obtained from the
human gesture database, the Tangy robot [20] can observe
a demonstrator’s social gestures through a one-shot human
demonstration. The perceived actions were fed to the proposed
imitation system to generate the robot’s mimicking gestures.
The authors concluded that their proposed approach endowed
the Tangy robot with the capability of imitating the interacting
partner’s social gestures.

B. Importance of Interacting Partner’s Traits on Generating
Robot Behavior

It is emphasized that social robots should be capable of
communicating and interacting with people in a personalized
way, adapting and learning social behavior throughout their
lifetime [4]. During everyday communications, robots should
be able to re-configure their interaction behaviors adapting
to environmental stimuli toward increasing the empathy and
the engagement of social interaction. Hence, without using
stereotyped patterns of behavior produced from a single in-
stance of human motion data [17], [19], [20], robots are
required to perceive and learn the interacting partner’s be-
havior through long-term interaction. By sharing the same
patterns of behavior with the interacting partner, empathy,
defined as “an affective response more appropriate to someone
else’s situation than to one’s own” [21], could be ensured for
long-lasting social interaction. On the other hand, it should
be noticed that emotional expressions are highly affected by
many factors, such as individual personalities and cultures
[22]. Thus, robots’ behaviors defined by the theory-driven
approach [15], [16] may not match the dynamically changing
expressions of the interacting partner. Instead, by choosing
the appropriate behaviors in alignment with the interacting
partner’s traits, this strategy ensures that the robot’s behaviors
conform to the individual traits. There is a strong psycholog-
ical evidence, known as the “chameleon effect” [23], defined
as the tendency to mimic the posture, facial expressions,

and verbal and nonverbal behavior of the interacting partners
to conform to social norms. The influence of the user’s
personality traits on the robot’s emotional expression was
underlined in [8] as the “law of attraction in HRI”. The authors
examined the effect of KMC-EXPR robot’s personalities in
social interactions represented by different facial expressions.
The results indicated that the partner feels more comfortable
when interacting with the robot having a similar personality
than those with different personalities. Interestingly, the in-
fluences of the robot’s behaviors on the interacting subjects
were also be confirmed on the interaction between a rat-like
robot and a live rat [9]. On the other hand, the capability of
dynamically selecting the appropriate behaviors is a strategy
for the maintenance of the social relationship throughout day-
to-day interaction [24]. The robot’s novel behaviors over time
can positively contribute to the user’s engagement in long-
term interaction even though that is not the most appropriate
behavior. For this, previous researches outlined in this section
provide the empirical evidence for the need of considering
the interacting partner’s information obtained through long-
term HRI to generate the most appropriate social behaviors for
robots. Understanding and reflecting the interacting partner’s
traits to alter the robot’s emotional expressions, it is believed
that their behaviors could be more acceptable in a variety of
social interaction settings [25].

C. Inspiration from Infant Social Development to Generate
Robot’s Behavior via Long Term HRI

In order to generate the robot’s social behavior reflecting
the interacting partner’s traits through long-term HRI, this
research was inspired from the infant social development
process, where the infant’s interpretation and behaviors are
highly affected by their parents through imitative exchanges
[26]. In social referencing, the infant is typically the referrer -
the individual who seeks and is influenced by the referencing
message which is received from the referee - the person doing
the influencing. Referees are usually tend to be the infant’s
parents, specifically their mother [26], [27]. Throughout the
infant’s social development, they are rapidly influenced by the
guidelines from their parents in acquiring knowledge about
a typical event. They generate emotions and behaviors in
response to the stimuli by an imitating mechanism which
regulates their emotions and behaviors to match the encoded
emotions and expressions from their parents. Through imi-
tative exchanges, an infant learns a wide variety of skills,
customs, and typical behaviors of their culture [28]. All of
those play a crucial role in helping infants explore and learn
about themselves as well as others as a social being.

The idea of infant social development could be used for
long-term HRI, allowing the interacting partner to influence
the robot’s behaviors throughout the social referencing. During
day-to-day interaction, the robot incrementally perceives the
individual partner’s emotional behaviors as the stimulus, and
the robot then utilizes the obtained information to form its
own interpretation about the corresponding event. More specif-
ically, our proposed behavior selection model sequentially
collects the individual’s emotional behaviors corresponding



to the specific emotion. Then, by assessing the frequency of
the observed human behaviors, the model outputs the most
appropriate patterns of emotional behavior. Finally, through
the proposed transformation model, behaviors are converted
to the robot’s bodily expressions. Fig. 1 illustrates the overall
flow of the proposed process. This process is continuously
repeated throughout everyday interaction as a social develop-
ment process of the robot.

II. THE BEHAVIOR SELECTION MODEL

The characteristics and types of human affective behavior
vary according to the culture and personality traits of indi-
viduals [22]. Therefore, collecting labeled data from human
behaviors during social interaction is a challenging task.
Unsupervised learning sidesteps the requirements of labeled
data to enable robots to be capable of learning socially
appropriate gestures based on human behaviors. This idea has
been shared across different contexts. In [29], the unsupervised
learning approach is presented for the association between
human gestural commands and robot actions. In [30], the
authors validated the performance of different unsupervised
learning algorithms such as Self Organizing Maps (SOM),
Fuzzy C-Means (FCM), and K-Means for the recognition of
human posture in video sequences. The capability of robot arm
trajectory learning from human demonstrations was proposed
in [31], where the trajectory clustering and approximation
modules take human demonstrative trajectories as the input
and then classify these trajectories into different groups. For
each group, the most consistent trajectory was selected and a
set of generated trajectories can be visualized in a simulated
environment, allowing the human user to finally select the
desired trajectory. For unstructured HRI with no a priori in-
formation about human behaviors, unsupervised learning is an
effective strategy, allowing robots to acquire new knowledge
of the interacting partner’s behaviors by classifying various
types of actions into different groups based on the similarity
of patterns.

On the other hand, through day-to-day social interaction,
robots may acquire new knowledge incrementally. This means
that robots should be able to learn new information in an in-
cremental manner without corrupting the existing knowledge.
This strategy ensures robots to acquire a collection of skills
throughout its developmental process. In [32], the authors
proposed a system which enables robots to incrementally learn
unlabeled gesture patterns based on the interaction with a
human partner. In [33], the robot is able to improve its visual
perception by incrementally learning from newly detected
objects associated with the labels provided by the user through
interactions.

The aforementioned studies have shown that unsupervised
learning in an incremental manner is a desirable approach for
long-term HRI, especially when the number of observed hu-
man behaviors continuously increases. The following sections
will detail our proposed approach to cope with such situations.

A. Encoding Human Actions into Feature Descriptors

During day-to-day HRI, sequences of human bodily expres-
sion data can be obtained for each of the different human

emotions. Before feeding this data to the training phase, an
appropriate method should be applied to encode the human
actions into the feature descriptors. Since human behavior
data vary from one behavior to another, the pose estimation
module may produce different frame lengths for different
type of actions. The encoder should produce the fixed-length
descriptors regardless of the number of obtained skeleton
frames. The covariance descriptor proposed by [34] can satisfy
such a requirement and achieve higher accuracy compared to
the other approaches [35].

Let us consider an action 4; = [S1,S5%,5s, ..., 57| per-
formed in the period of time 7. The estimated skele-
ton at frame ¢ (1 < ¢ < T) is a vector S; =
[T1, 02, ooy Thoy Y15 Y2, oy Yk 21, 22, -, k| Which represents k
joints of the skeleton. Consequently, N = 3k elements are
included in the vector S;. The covariance matrix C(S5) is
calculated as:

C(S) = —Z(Si ~5)(S; —9)T (1)

where S is the sample mean of S; computed over the time ¢
and T represents the transpose operator. The upper triangle of
C(S) contains (N x (N +1)/2) elements.

It should be noticed that the covariance matrix described
by Eq. 1 only captures the spatial features of the action
A;. By computing the overlapped covariances over the entire
time 7', the temporal information of motion could be deter-
mined. Specifically, a covariance matrix C(S) at the level [
is calculated by Eq. 1 that covers ¢t = T/2! frames. At the
top level (I = 0), a single covariance matrix is computed
capturing the entire action including 7" frames. At level [ = 1,
there are 3 smaller overlapping time windows covering T'/2!
frames, where the matrices are computed over a period of time
[0,T/2], [T/4,3T/4], and [T/2,T), respectively. Finally, the
obtained feature descriptors z; of action A; is extracted from
the upper triangles of four covariance matrices computed. The
vector x; consisting of (4x N x (N+1)/2) elements efficiently
represents the spatial and temporal information of the entire
sequence A;. This feature descriptor has been widely used for
action recognition in both supervised [34] and unsupervised
learning tasks [36].

B. Training and Clustering Phase

Given sets of feature descriptors from the encoding phase, as
an unsupervised learning approach without a priori knowledge
of the number of clusters, Self Organizing Map (SOM) [37]
was implemented for the training phase in [38]. SOM creates
a set of neurons representing the distributions of the whole
dataset, and the topological property of the original data
was preserved on the grid of SOM neurons. It should be
underlined that topological preservation is the main strength
of SOM for classifying the encoded descriptors into different
groups based on the similarities. On the other hand, for the
scenarios of daily human-robot interaction, since the number
of observed behaviors will continuously increase, the robot
should be capable of incrementally learning the new gestures
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Fig. 1: Social gestures generation framework: The observation part collects information of the partner. The behavior selection
part selects the most frequently observed behaviors. The transformation part converts the selected behaviors into robot
motions.

without corrupting the existing model. However, with the
SOM network, the number of trained neurons must be fixed
in advance, which makes this approach inappropriate for
incremental learning. To satisfy the requirement of incremental
learning for scenarios of day-to-day interactions as well as
ensuring the topological preservation, we employ a Dynamic
Cell Structure (DCS) neural architecture [36] [39] for the
training phase. DCS makes sure that the topological properties
will be maintained in a similar way as SOM. Indeed, thanks to
the capability of extending the network structure, DCS could
learn new patterns in an incremental manner. DCS has been
widely used for online learning purposes, such as NASA’s first
generation Intelligent Flight Control System program [40]. The
other type of growing self organizing network named Grow
When Required (GWR) [41] was used in [42], where the
authors utilized GWR as the supervised learning to recognize
the affective states of human bodily expression.

On the DCS network curl, for the input descriptor z;,
Eq. (2) is firstly used to determine the closest 1, and the
second closest M second Neurons to the descriptor x;. Then, the
lateral connection defining the connection strength between
two neurons m; and m; is updated by the Hebbian learning
rule [43] as described in Eq. (3), where ¢ is a forgetting
constant and 9 is a threshold for deleting lateral connection.

lzi = mpmal| < [l —mill, 1<i<N @
Hxi_msecondHS”mi_miHy ]_Sl#meSN
, (i = bmu) A (j = second)

0 , (@ =bmu) A (5 € {N;}\ {second})

/\(C,L < 19)

Cii(t+1) = J

st eCij(t) ,(E=bmu) A (j € {N;}\ {second})

AN(Cij = D)

Cii(t) ,otherwise

3)

Similar to SOM, the weight vector of DCS neurons are
updated by the Kohonen learning rule [37] which makes them
move closer to the current input descriptor x; as described in
Eq. (4), where 7 is the learning rate, m; is the neighboring
neurons of My, and @(m;, Mpm,) is the neighborhood
kernel function.

Mpmu = Momu + U(t) (xb - mbmu)
m; = m; + 1n(t)d(mi, Mpmu) (T — my)

The resource value 7p,,, of the closest neuron 1, is
updated by Eq. (5). The new neuron unit could be added into
the network and located between neurons with the largest and
second-largest resource values. The training phase is finished
by decreasing the resource value 7; of all neuron units, as
described in Eq. 6, where A is defined as the decreasing rate.

“4)

(&)

Tomu = Tomu T th - mb’muH2

(6)

It can be seen that when the input data x; is fed to the
training phase, the Kohonen learning rule and the Hebbian
learning rule allow the current network curl to modify
the lateral connection Cj; and the neuron weights m;. The
network is then grown up in an appropriate manner. This
process endows the updated network uptl with the capability
of preserving the topological property of the whole training
data in an incremental way.

After the training phase, m trained neurons are classified
into different groups based on its similarities at the training
phase. Classifying the trained neurons into different groups is
conducted with the distance matrix based approach [44]. Since
each trained neuron unit m; creates a Voronoi region on the
original space of feature descriptors x given by Eq. (7), the
region V; may include several descriptors. As a result, by clus-
tering the training neurons rather than the original descriptors
directly, it has been reported that significant improvement is
obtained in the speed of clustering phase [45]. At the end of the
clustering phase, the grid of m neuron units was divided into
k clusters. Each neuron m; and its corresponding descriptor
x; is defined by the Best Matching Unit function given by
Eq. (8). Now the descriptor x; belongs to the same cluster as
its corresponding neurons unit m;.

T, = )\Ti

Vi={z| vi#iy ()

|z = mil| < [lz —my]|

||z —mil| = min{|lx —m||}

®)



C. Behavior Selection Phase

As explained earlier, n action data A;, Ao, .., A, are

encoded into n fixed-length descriptors x1,xs, ..., Ty.
Then, during the training and clustering phase,
these actions are clustered into k& different groups

Clustery, Clusters, ...,Cluster, (k < mn) based on the
similarities of its motions. At the behavior selection phase,
considering the probabilistic distribution of human actions
observed by the robot, the most frequently observed behavior
is selected out of the largest cluster Cluster;(i € k). Here,
Cluster; contains the highest number of patterns sharing the
similar features compared to other clusters. As those patterns
are repeatedly observed by the framework, they could be seen
as the habitual behavior that reflects the interacting partner’s
traits. Finally, to ensure that the selected pattern geometrically
represents the majority of elements in the largest cluster,
Cluster;, the representative pattern is defined by Eq. (9).
Now the descriptor x,.;, is the one located closest to the
center i of the Cluster;.

erep —pl| < |z —pl|, Vo e Cluster, )

where ||z — || is the Euclidean distance between the center
of Cluster; and the descriptor z. Finally, the corresponding
action of descriptor x,., is selected and denoted by A,.p.
Overall, for a new input action A; obtained, the behavior
selection model is executed as summarized in Algorithm 1.
The robot can utilize the interacting partner’s habitual action
Ayep as a reference for generating an appropriate bodily
expression associated with a certain emotion.

Algorithm 1 Behavior selection model processing a new
observed action A;.
Input: observed action A;, current network curl,
network parameters €, ¥, 1, ¢, \;
Output: action A,.,, updated network updl;
1: do ( action A; )
2: x; < ActionEncoder(A4;);
3 Mbmas Msecond < TWOClosestNeurons(curl, x;);
4: updl < HebbianRule(curl, mpmay, Msecond> € V);
5: updl < KohonenRule(updl, n, ¢);
6:
7
8
9

updl < UpdateResource(updl, mymy);
updl + AddNeuron(updl);

updl < DecreaseResources(updl, \);
Cluster;, pu < ClusteringPhase(updl);

10: Zrep < RepresentativeAction(Cluster;, p);
11: Arep < ActionDecoder(z,¢p);
12: end

III. THE TRANSFORMATION MODEL

Now the pipeline for transferring the selected behaviors to
the target robot (SoftBank’s Pepper) is explained. It should be
emphasized that the number of degrees of freedom (DOFs)
and the range of joint angles of the Pepper robot are limited
compared to those of humans. Thus, the transformation model
is required to convert human actions into Pepper by taking
into account its kinematic structure. As shown in Fig. 1, the

transformation model receives the human joint vectors {r_k,
l_k, r_hi, I_hi, c_hi, tor, neck, r_s, l_s, r_e, l_e, T_h,
[_h}, represented in the Cartesian space. These vectors are
represented with respect to the tor coordinates fixed at the
torso joint in order to obtain invariant representation to the
camera position. Through the proposed model, a set of robot’s
joint angles are released. For calculating the Pepper robot’s
joint angles, the solutions to the inverse kinematics problem
are computed based on geometric algebra. This approach has
been widely used in imitation learning from human behav-
iors for different kinematic structures of robots such as the
DARwIn-OP humanoid robot [46], NAO robot [47], and Tangy
robot [20]. Depending on the specific robot’s kinematics, an
appropriate inverse kinematic model is determined. It can be
also noted that there are significant differences in the lower
body between humans and the Pepper robot. Therefore, the
transformation model focuses on the imitation of the upper
body by producing the corresponding movements of the Hip,
Head, Shoulders, Elbows, Hands, and Wrists on both the right
and left sides.

A. Reference Axis Calculation Phase

The robot exhibits nonverbal communicative behaviors such
as head motion in order to convey deeper messages and emo-
tions. Those behaviors affect the orientation of the estimated
human pose with respect to the camera embedded on the
robot head. To cope with this problem, the reference axes
calculated by Eqgs. (10), (11), and (12) are used to describe the
orientation of the estimated pose. Then, they were combined
with the estimated human skeleton to calculate the robot’s
corresponding joint angles.

— —

Tl = (r_hi — I_hi) x (r_hi — tor) (10)
— —

Trof =T_hi — I_hi (11)

Vref = (rcf X Tref) (12)

B. Joint Angles Calculation Phase

In order to calculate the robot’s joint angle 6 correspond-
ing to the movements of the human joints in the Cartesian
space, we can define the two vectors, v_{ and 175, at each
joint, representing the directions of the two neighboring links,
respectively. It is straightforward to calculate the joint angle by
the dot product between the two neighboring vectors given by
Eq. (13). Finally, depending on the robot’s home configuration
different from that of the human joints, an offset value is added
to the calculated 6.

= =
0 = cos™! <%>
CHE ]

The joint angle calculation phase releases a set of an-
gles Roll («), Pitch (8), Yaw () corresponding to the
availability of DOFs of the robot kinematic structure.

13)



Specifically, a set of joint angles 0; = { amip. BHips
QRightShoulders BRightShoulder’ QRightElbows YRightElbow>

QLeftShoulders ﬁLeftShoulder, QLeftElbows YLeftElbow } are
computed. Also, when the human motion capture data of the

head and wrists are available, the model additionally generates
the robot’s joint angles: 6; = { Buecad> VHeads VRightWrist,
VLeftWrist }. Details of the calculation are given in the
supplementary material.

C. Collision Checking Phase

Oimins  1f 05 < 0i_in
Oi =190, if Oimin < 0i <0i_max
Zf 01 2 gi_max

The calculated joint angles are checked to ensure that they
satisfy the robot’s joint limit constraints given by Eq. (14),
where 6; i, and 0; 4 denote the lower and upper limits of
the joint angles 6;, respectively. Finally, before releasing it to
the robot, collision detection is conducted using the Pepper
robot’s off-the-shelf API to prevent possible self-collisions.

(14)

Qi_max )

IV. EXPERIMENT 1 - TRANSFERRING HUMAN SOCIAL
GESTURES INTO THE ROBOT

In this experiment, the transformation model, which con-
verts human actions into the Pepper robot motions, is qualita-
tively evaluated in two different scenarios. Firstly, we recruited
observers from various cultural backgrounds who are not fa-
miliar with robots. They evaluated whether the demonstrators’
gestures are appropriately represented by the robot taking into
account the robot’s physical constraints. Secondly, observers
evaluated whether the human emotional expressions were
retained by the corresponding robot motions. We performed
subjective evaluations widely used to evaluate the robot’s facial
expressions [10] or bodily expressions [19].

A. Experiment Scenario: Generating Robot Actions through
Human Demonstration

1) Experimental Setup: This scenario evaluates the imitated
gestures by the robot through a one-shot human demonstration.
More specifically, the users stood in front of the Pepper
robot to perform 6 different actions. The interacting distance
between the demonstrator and the robot was approximately
2 meters. The robot acquired the user’s upper body motion
as a sequence of skeleton frames using its on-board camera.
The pose estimation module receives the human motion as the
input, and, through the VNect model [48], a sequence of 3D
skeleton frames represented by 14 markers is released. Then,
the transformation model sequentially converts demonstrated
actions into the robot motion. Additionally, to analyze how
similar the actions were performed by the demonstrators, each
of the human demonstrated actions H was encoded to the
corresponding feature vector C' given by Eq. 1. The encoded
vector C' captures the spatial-temporal information of motions
as described in Section II-A. Then, the similarity between
a pair of human actions H, and H;, can be determined
by measuring the cosine distance between the two encoded

TABLE I: Similarity between all pairs of human actions.
[Action [ HI [ H2 [H3 [ H4 [ H5 | H6 |

H1 0 0.6 I[N 045 | 0.07 | 0.33
H?2 0.6 00 047 | 0.11 | 0.21
H3 0.76 O 042 | 0.12 | 0.39
H4 045 | 047 | 042 U8 0.20

HS 0.07 | 0.11 | 0.12 | 0.20 O 0.25
H 6 0.33 | 021 | 0.39 0.25 00

TABLE II: Confusion matrix representing the recognition of
six human actions (H) transferred into the robot model (R),
normalized by the number of observers.

Observers
Action | H1 [HZ ]H3[H4]H5[H6
0.13 | 0.00 | 0.00 | 0.00
0.00 | 0.00 | 0.00

0.00
R 4 0.00
R S5 0.00
R 6 0.00

feature vectors C', and C} as in Eq. 15. Hence, the closer the
cosine distance to 1, the greater the similarity between two
vectors.

.. . Ca . Cb
Similarity(Cq, Ch) TeATRIEA]

An online survey in English was conducted with 39 ob-
servers (28 males and 11 females), ranging in age from 22
to 33 (mean age M = 25.6 years, standard deviation SD
= 2.5 years), from three different cultures (13 Chinese, 14
Japanese, and 12 Vietnamese). They are graduate students at
the Japan Advanced Institute of Science and Technology who
use English in daily life. The selected observers are mostly not
familiar with robots since their educational backgrounds are
not related to robotics and they have not interacted with social
robot platforms (such as Nao, Pepper, and others) before. They
were asked to evaluate the demonstrator’s motions and the
Pepper’s imitated ones using online surveys discussed further
in a later section.

2) Experiment Results and Discussions: The three demon-
strators performed six actions combining the movements of
their hip and arms, each of them demonstrated two actions.
Table I shows the similarity between all pairs of demonstrator’s
actions calculated from Eq. 1 and Eq. 15. The demonstra-
tors’ actions were imitated by the Pepper robot through the
transformation model. We conducted a survey with a group of
observers using a 23.8-inch color monitor with a resolution
of 1920 x 1080 pixels, in order to evaluate the recognition
of demonstrated actions imitated by the robot. The survey
form provides a Graphical User Interface (GUI) that help us
collect the observers’ responses. They were asked to use a
keyboard to input their personal information. It is followed by
the six experimental trials corresponding to the six different
types of the robot actions. On each trial, the observers used
a mouse to trigger the video of the Pepper robot’s imitated
action. After that, they sequentially watched six videos of
the human demonstrated actions by triggering one video at
one time. The observers used a mouse to select the most
similar human action to the robot’s one - in a six alternative

5)



forced choice task. Notice that by randomly swapping the
positions of the videos, the six human actions were presented
to the observers in different temporal orders. This format
prohibits the observers from exhibiting a biased response.
The duration of each demonstrated action is approximately
6 seconds. The stimuli subtended a visual angle of 11.17°
(vertical) and 8.00° (horizontal). The viewing distance is
approximately 70 c¢m. Table II shows the recognition rate of
the imitated actions, evaluated by 39 observers. It is indicated
that the observers could recognize the demonstrators’ actions
imitated by the robot with the high categorization accuracy.
However, the observers were sometimes confused between
the human action H1 and H3. By analyzing the similarity
of demonstrators’ actions using its encoded feature vectors,
Table I confirms that the demonstrated actions H1, H2, and
H3 were performed similarly to each other. It should be
remarked that the experimental results only show that (1) the
robot is able to perceive the user’s action represented using a
skeleton sequence collected with its on-board sensor and (2)
the proposed framework can convert the observed user action
into the target robot motion subject to its physical constraints.
To evaluate more closely whether the messages of the user’s
actions are retained by the robot’s bodily expressions or not,
the transformation model will be validated with the user’s
affective behaviors detailed in the following experiment.

B. Experiment Scenario: Human Emotional Expressions Re-
tained by Robot Motions

1) Experimental Setup: We conducted a study to evaluate
whether the message of human bodily expressions is retained
by the robot motions using the UCLIC Affective Posture and
Motion Database [18]. The database includes 108 affective
gestures recorded by a motion capture system. It is categorized
into four emotion labels (Happy, Sad, Fear, Angry). The actors
conveyed those emotions mostly using their upper body. The
acted gestures were evaluated online by 70 subjects from
three different cultural groups of observers (25 Japanese, 25
Sri Lankans, and 20 Caucasian Americans in the United
States). The evaluation results were represented by the label
and the intensity of the emotions. In our experiment, we
selected four affective gestures portraying each of the four
emotions, respectively, which were recognized correctly by
the majority of observers across the above-mentioned cultural
groups. Specifically, the selected gestures should satisfy the
following two conditions: (1) the sum of percentages of
observers across three cultures who correctly recognized the
emotion of the gesture is the highest of all the other gestures in
the database and (2) on each group, the percentage of observers
recognizing the emotion correctly should be equal to or higher
than 40%. Here, the threshold of 40% was used to filter out
gestures showing a significantly low recognition rate within a
specific culture. Finally, the four human gestures were fed to
the transformation model to be converted to the robot motions.

Subjective evaluations were carried out through an online
survey designed in English. It was conducted with 150 ob-
servers (101 male and 49 female), ranging in age from 18 to
45 years old (mean age M = 25.2, standard deviation SD = 4.1

years), from five different cultures (14 Chinese, 11 Japanese,
13 Koreans, 57 Turkish, and 55 Vietnamese). The observers
are English speaking students of five universities and institutes,
most of whom are not familiar with social robots. Similar
to the Experiment IV-A, this survey form is designed with
a GUI for collecting the observers’ responses. The first part
of the survey includes four experimental trials corresponding
to the different robot’s bodily expressions. The order of trials
were randomly presented to the observers. On each trial, the
observers were asked to watch the robot’s bodily expressions
and choose the most appropriate emotion label from the five
options (“Happy”, “Sad”, “Fear”, “Angry”, “Other”) - in a five
alternative forced choice task. Here, if the observers believe
that the robot’s gesture may infer a different message, they
select the option “Other” and write their own interpretation.
Each of the actions was performed for 7 seconds, and the
observers can replay the video as many times as they wish
before completing the experimental trial. Another part of
this evaluation is the assessment of four selected UCLIC
human expressions. The motion capture data were graphically
visualized using Autodesk 3ds Max software. Similar to the
first part of the survey, there are four experimental trials where
their positions are randomly swapped across the observers. The
observers were asked to watch the human skeleton actions
and rate the emotion label from “Happy”, “Sad”, “Fear”,
“Angry”, and “Other”- in a five alternative forced choice task.
It should be emphasized that, by additionally evaluating the
human bodily expressions, this approach allows us to collect
the subjective results of human and robot affective gestures
which were evaluated by the same group of observers.

2) Experimental Results and Discussions: Figs. 2a, 2c,
2e, and 2g show the key poses of the four selected human
expressions (Happy, Sad, Fear, Angry) chosen from the UCLIC
dataset. Through the transformation model, those gestures
were converted to the Pepper robot motions considering the
physical constraints as shown in Figs. (2b, 2d, 2f, 2h).

Subjective evaluations were conducted for both the human
and robot emotional bodily expressions. Figs. 3a and 3b
show the culture-specific recognition accuracy. Additionally,
the average recognition accuracy was calculated by pooling
data of 150 observers across five cultural groups. It can be seen
from Fig. 3a that the overall recognition accuracy of human
bodily expressions is quite high. However, only 36% of the
Japanese observers correctly recognized the human expression
Happy. The overall recognition accuracy is also high for the
robot bodily expressions (Happy, Sad, and Fear) as seen in
Fig. 3b. Notably, the bodily expression Angry has the lowest
recognition accuracy.

Fig. 2e shows the key pose of the human motion Fear. It
consists of bending the upper body, covering the face with their
hands, and stepping backward to defend themselves. It should
be noticed that a coordinated movement of head, shoulder,
arms, and knees is required as well as the backward step. Due
to the differences in the lower body between the human and the
robot, the knee motion and the backward step were removed in
the robot motion. As a result, the robot’s joint Sxpee is set to
a constant value of Bx .. = 0 rad (as the value at the initial
position). Indeed, Fig. 4 indicates the absolute differences



(a) human Happy (b) robot Happy

(c) human Sad (d) robot Sad

il

(e) human Fear  (f) robot Fear  (g) human Angry (h) robot Angry

Fig. 2: Selected human postures from UCLIC dataset visualized using Autodesk 3ds Max: Figs. 2a, 2c, 2e, and 2g represent
the key poses of human bodily expressions. Figs. 2b, 2d, 2f, and 2h show the corresponding Pepper expressions.
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Fig. 3: The recognition accuracy of bodily expressions rated by observers within each cultural group. The dark-red bar
indicates the average pooled accuracy of 150 observers across five cultures.
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Fig. 4: Absolute differences in joint angle values between
the human expression Fear and the imitated one performed
by the Pepper robot.

between a set of joint angles calculated from the human motion
Fear and angle values collected from the robot’s sensors. It
is noticed that the joint Sp;;, could not reach the desired
values of the human motion, due to the limitation of the
robot’s physical configuration. This error constrains the range
of bending motion of the robot’s upper body, failing to reach
the extent as performed by the human skeleton. These reasons
affected the recognition of the robot expression Fear. Thus,
the robot Fear was relatively difficult to recognize with the
average recognition accuracy 75% compared to 94% for the
human skeleton Fear.

As shown in Fig. 2a, the expression Happy was performed
by raising outstretched arms over the head. Since there are no
facial expressions to accompany bodily expressions, this ex-
pression of the skeleton model sometimes caused the observers

to infer other messages such as Angry, Fear, or Shocked. On
the other hand, when this expression was conveyed by the
robot, it was more easily recognizable to the observers. After
completing the survey, the results were shown to the observers
for receiving their feedback. It was self-reported that while
watching the robot bodily expressions, they commonly paid
more attention to the robot face. By looking at the robot
face and bodily expressions at the same time, the observers
felt that this behavior might imply Happy or Welcoming.
For that reason, the recognition rate of the robot Happy is
slightly higher than that of the human skeleton Happy. It
should be underlined that no eye color was used for the robot
emotional expressions. However, the robot face influences
the recognition of its bodily expression. Indeed, the facial
expression turns out to be significant for the robot expression
Angry. When transferring this gesture to the robot motion, due
to the limitation of its physical constraints, the robot could
not move its arms close enough to its hip. This problem led
to the difficulty in achieving higher recognition rate of its
expression Angry as shown in Fig. 3b. On the other hand,
the robot face caused the observers to infer positive emotions
like Happy or other message such as “Hey, what’s up?”.
As a result, 25% of the observers rated other meanings for
the robot expression Angry. The observers also thought that
the robot somehow tried to convey expression Angry by its
bodily movement. However, they were confused by the robot
face. It should be noted that the design of Pepper’s face was
influenced by characters in Japanese animation having big eyes
[49]. That appearance makes the robot look more friendly to
humans even when no animated behaviors are performed by



the robot. Accordingly, the Pepper’s face positively contributes
to the recognition of Happy, while it adversely affected the
perception of Angry.

Interim Summary: In this experiment, the transformation
model was sequentially evaluated by two different experimen-
tal setups. In the scenario of learning from human demon-
strations, the robot was able to perceive the demonstrators’
gestures and imitate them as closely as possible under the
robot’s physical constraints. The robot’s imitated behaviors
were recognized with high categorization accuracy. Secondly,
the human emotional expressions represented by the robot
motions were evaluated using the public dataset. The messages
of Happy, Sad, and Fear were well retained by the robot
motions. The robot’s expression Angry was recognized with
low accuracy, mainly due to the robot’s physical constraints
and facial expression.

V. EXPERIMENT 2 - LONG-TERM INTERACTION TO
DEVELOP ROBOT EMOTIONAL EXPRESSIONS

A. The Scenario of Interaction

In this experiment, the transformation model and the be-
havior selection model were integrated into a new scenario of
three consecutive days of HRI. In other words, the proposed
framework in Fig. 1 was comprehensively evaluated through
a long-term interaction scenario. The experimental setup is
given in Fig. 5, where the Pepper robot interacted with a
demonstrator to learn from his emotional behaviors. The
interacting distance between the user and the Pepper robot
was about 2 meters. The interaction section was triggered
when the robot detected the user through the facial detection
API'. Then, the robot started the conversation by executing
several verbal and nonverbal behaviors from the predefined
list of interacting actions. The demonstrator then responded
to the robot with his facial and bodily expressions in his
own way since no constraints were placed on them. The
human upper body motion is captured from the robot’s camera,
using the human pose estimation module as described in the

Fig. 5: The scenario of Pepper’s interaction for 3 consecutive
days learning from the partner’s emotional behaviors.

Thttp://doc.aldebaran.com/2- 5/naogi/peopleperception/
alpeopleperception.html

TABLE III: SOM versus DCS on MSRC-12 dataset.

SOM DCS
Precision 09166  0.8019
Recall 09115 09141
Foaiue 09133 0.8524

previous experiment, and the demonstrator’s gestures were
acquired as a sequence of 3D skeleton frames represented by
14 markers. At the same time, the robot estimated the user’s
facial expression through the emotion estimation API?. The
user’s emotional behaviors associated with facial expressions
Happy, Sad, and Fear were stored in the robot memory. For
each interaction day, the obtained user data were sequentially
fed into the corresponding emotion classes in the behavior
selection model as presented in Algorithm 1, which was
followed by the transformation process. In the next day, the
robot gained access to the stored knowledge from the previous
day and incrementally learned from the user’s new behaviors.
The scenario of interaction was repeatedly carried out for
three consecutive days, considering the number of interactions
obtained and especially the familiarity of the demonstrator
with the experimental protocol.

B. Evaluation Criteria

This survey investigates the quality of the robot’s emotional
behaviors aligned with the interacting user’s culture (Viet-
namese) as well as the cultural differences in the perception
of the robot’s behavioral expressions. Specifically, subjective
evaluations were performed through an online survey designed
in English. We recruited 136 observers (96 males and 40
females), ranging in age from 18 to 45 (mean age M = 25.2
years, standard deviation SD = 4.1 years) from five different
cultures (13 Chinese, 9 Japanese, 13 Koreans, 44 Turkish, and
57 Vietnamese). The observers are students from five different
universities and institutes. They are fluent in English and most
of them are not familiar with robots.

Firstly, the observers were asked to watch the robot’s
emotional expression and choose the appropriate emotional
label similar to the previous experimental setup mention in
section IV-B. Then, the observers rated the appropriate value
for Arousal and Valence using the Self-Assessment Manikin
(SAM) nine-point scale [50]. Arousal and Valence are the
dimensions on the Circumplex model of affect [S1]. This
validation allows the observers to assess and express their
emotional responses to the robot’s expression without any
constraints on the emotion labels. The observers’ assessments
were then scaled in a range of [-1, 1]. This measurement has
been widely used by other HRI researchers to subjectively
validate the robot’s behaviors [52], [53].

C. Experiment Results and Discussion

1) Robot Bodily Expressions Generated Over Three Con-
secutive Days of Interaction: The behavior selection model

Zhttp://microsoft.com/cognitive- services/en-us/
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TABLE IV: The behavior selection phase on the third day. Using Eq. (9), the representative pattern A, is selected as the
closest one to the center p of the largest cluster Cluster;.

(a) Cluster; on
emotion class Happy

(b) Cluster; on
emotion class Sad

(¢) Cluster; on
emotion class Fear

\ | Pattern ID | [|z — p| | \

‘ Pattern ID ‘ [l — pll ‘ ‘

‘ Pattern ID ‘ |z — pl| ‘

1 H_39 0.3937 1 S_24
2 H_47 0.3042 2 S_33
3 H_45 0.3794 3 S_l14
4 H_40 0.3974 4 S_20
5 H_31 0.3370 5 S_6
6 H_S5 0.3889 6 S_4
7 H_7 0.3071 7 S_29
8 H_20 0.3152 8 S_40
9 H_41 0.2002 9 S_39
10 H_23 0.3230 10 S_23
11 H_28 0.2656 11 S_42
12 H_42 0.2992 12 S_17
13 H_50 0.2298 13 S_27
14 H_22 0.3495 14 S_21
15 H_30 0.3342 15 S_32
16 H_13 0.2506 16 S_18
17 H_51 0.2798 17 S_15
18 H_43 0.3533 18 S_25
19 H_32 0.2425 19 S_38
20 H_38 0.2824 20 S_35
21 H_36 0.2440 21 S_41
22 S_30
23 S_31

0.1636 1 F_8 0.9811
0.1828 2 F_5 1.0957
0.1600 3 F_36 0.5164
0.1926 4 F 25 0.3147
0.1917 5 F_6 0.2713
0.2249 6 F_22 0.3075
0.3187 7 F_32 0.3386
0.1326 8 F_37 0.3134
0.1428 9 F_35 0.2958
0.1685 10 F_29 0.2819
0.2099 11 F_ 4 0.3764
0.1373 12 F_34 0.3324
0.1237 13 F_28 0.4791
0.1622 14 F 2 0.3354
0.3039 15 F_31 0.2600
0.1488 16 F_30 0.2451
0.1890 17 F_ 24 0.4249
0.1900 18 F_33 0.4563
0.3070 19 F_26 0.3133
0.4049

0.3948

0.3619

0.3965

(a) Expression Happy

(b) Expression Sad

(c) Expression Fear

Fig. 6: The key poses of Pepper bodily expression generated using A,., of the behavior selection phase.

(a) Emotion space Happy

(b) Emotion space Sad

(c) Emotion space Fear

Fig. 7: The trajectories of human left hand created by the patterns of Table IV. Eq. (9) selects the representative gesture A,
the most consistent one in the cluster.

incrementally perceived the interacting user’s emotional be-
haviors. In more detail, on each emotion class, the demon-
strator actions were first encoded to feature descriptors. Those
descriptors were incrementally trained and clustered into dif-
ferent groups during the training and clustering phase. Through
the behavior selection phase, the representative action A.p

was selected. Finally, the transformation model converted the
selected expressions into the robot motions. This process was
continuously repeated over three consecutive days as a part
of the robot’s social development. Fig. 10 shows the number
of learned behaviors and the changes in the robot’s emotional
expressions over three days. More specifically, Table IV rep-



resents the selected patterns from the behavior selection phase
conducted in the last day. Based on the transformation model,
the selected behaviors were converted to the robot motions,
being the robot’s emotional expressions. Fig. 6 shows the key
poses of those behaviors.

In our previous work [36], the training and clustering phase
as shown in Fig. 1 was evaluated with the Microsoft Research
Cambridge-12 Kinect gesture dataset (MSRC-12) [54]. The
experiment results as summarized in Table III indicated that
SOM yielded better performance than DCS. Notably, the
accuracy of DCS was acceptable, whereas the incremental
learning gained considerable benefit on the processing time
required compared to SOM. Concerning the long-term interac-
tion scenarios, the robot’s capability of incrementally updating
the learning model without corrupting the existing one is the
most demanding requirement as discussed before. Thus, the
DCS was finally selected for our training phase.

Through the training and clustering phase, the obtained data
were classified into different clusters based on the similarities.
At the behavior selection phase, considering the probabilistic
distribution of human actions observed by the robot, the largest
cluster, Cluster;, was determined. Among the gestures that
belong to Cluster;, instead of randomly picking up one pat-
tern out of the cluster, the representative pattern is defined as
the gesture closest to the center i of Clluster; as described in
Eq. (9). Eq. (9) guarantees that the representative gesture A,.cp,
is the most consistent one in that cluster. Tables IVa, IVb, IVc
show the patterns located in Cluster; on each of the emotion
classes. The selected pattern A,., represents the majority of
elements in the largest cluster Cluster;. With the motion
patterns defined in Table IV, the trajectories of the human
left-hand are depicted in Fig. 7. Here, the movements of the
hand were analyzed, since the hand movements are considered
as the richest source of emotional body language [55]. Con-
cerning the behavior selection as described in Table I'Va, it is
easy to notice that pattern [ _41 satisfies Eq. (9). Visualizing
the trajectories as shown in Fig. 7a, the trajectory created by
the gesture H_41 is correctly located in the center of the
cluster. As shown in Table IVc, it can be seen that F'_30
is the representative pattern, while the calculated distance of
F_5 and F'_8 are significantly different to the others in this
group. The visualization of their trajectories in Fig. 7c explains
the differences. Although inappropriate patterns could exist
in Cluster; due to the performance of DCS in the training
phase, the behavior selection phase ensures that the selected
emotional gesture Ap,. is the most reasonable one among
the others in Cluster;. Those representative actions Ay
were converted to the Pepper robot’s motions through the
transformation model as presented by the key poses in Fig. 6.

2) The Cultural Differences in the Perception of Robot
Expressions: While the experiment results in Section IV
confirmed the capability of the robot conveying its emotion
through bodily expressions, in this experiment, we aim to
evaluate the human perception of the robot behaviors across
different cultures. The robot gestures on the last day as shown
in Fig. 6 were selected for evaluation. It is reasonable to
think that those emotional expressions sufficiently reflected
the interacting partner’s traits. The interacting user agreed that

TABLE V: The recognition rate of robot expressions rated
by 57 observers from the same cultural group with the
interacting partner, normalized by the number of observers.

Emotional Observers
label Happy | Sad I Fear [ Others
Happy 0 0.05 0.11 0.09
Sad 0.05 0.6 0.11 0.19
Fear 0.19 0.02 0.60 0.19

TABLE VI: The recognition rate of robot expressions rated
by 136 observers from 5 different cultural groups,
normalized by the number of observers.

Emotional Observers
label Happy | Sad I Fear [ Others
0.03 0.13 0.12

0.13 0.26
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expression Happy expression Sad expression Fear

Fig. 8: Mean values of Arousal and Valence rated by
Vietnamese observers for robot expressions.

TABLE VII: The differences in Arousal and Valence for
expressions Happy, Sad, Fear rated by Vietnamese observers.
The third column indicates significantly different pairs.

Dimension ANOVA test Post-hoc test
A 1 significant diffs. Sad-Happy = 4.02E-14
rousa p_value = 1.08E—14 | Sad-Fear = 5.27E-09
Val Significant diffs. Happy-Sad = 1.36E-07
alence p_value = 3.8E—08 | Happy-Fear = 9.47E-06

those expressions are his interested behaviors, as he frequently
used such gestures to convey his emotion. Thus, the user was
easily able to recognize the expressions represented by the
Pepper robot. For further investigation on how appropriate the
robot’s emotional expressions would be from the viewpoint
of other people, we recruited observers from five different
cultural groups. Table V shows the recognition rate of 57
observers who share the same cultural background with the
interacting user (Vietnamese). Then, this group of observers
scored the values of Arousal and Valence for the robot behav-
iors as shown in Fig. 8. Table VI shows the recognition rate
of 136 observers across five different cultures, while Figs. 9a
and 9b represent the mean of Arousal and Valence assigned
by the observers within individual cultural groups.

Table V confirmed the high recognition accuracy of the
robot expressions Happy rated by Vietnamese observers. 75%
of them believed that Pepper tried to convey Happy cues by
its bodily movements. 11% thought that the gesture means
Fear. 9% felt that the gesture might have another meaning
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Fig. 9: Mean values of Arousal and Valence rated by people from 5 different cultures.

TABLE VIII: The cultural differences in Arousal and Valence rated by Chinese (CHI), Japanese (JAP), Korean (KOR),

Turkish (TUR), Vietnamese (VIE) observers. The third column indicates significantly different pairs.

(a) Arousal dimension

(b) Valence dimension

expression Fear

Emotion ANOVA test Post-hoc test Emotion ANOVA test Post-hoc test
No significant diffs. s . Significant diffs. _
Happy p_value = 0.1610 No significant diffs. Happy p_value = 0.0171 VIE-TUR = 0.0117
Significant diffs. | Vi 1UR =00278 Significant diffs. | Y LA =00431
Sad value = 0.0001 | 1URJAP = 0.0012 Sad value = 0.0028

b- - JAP-CHI = 0.0019 b- - JAP-TUR = 0.0018

No significant diffs. L . No significant diffs. N .
Fear p_value = 0.7197 No significant diffs. Fear p_value = 0.2992 No significant diffs.

such as Excited. The Pepper robot expressed the emotion Sad
by slowly bending its upper body, keeping the hand positions
lower than its Hip. 65% of observers assigned the label Sad to
such Pepper motions. 19% rated it as another label like Sorry.
The Pepper robot suddenly moved backward and raised its
arms forward to express Fear which was recognizable to 60%
of observers. On the other hand, such energetic movements
made 19% of observers confused with Happy, or it might cause
them to infer another message such as Shocked.

Table VI shows the recognition rate of 136 observers from
five different cultures. In general, there were no significant
differences noticed on the recognition rate of emotion label
assigned by Vietnamese observers (who share the same cul-
tural background with the interacting partner) and the others.
However, a wide variety of answers about the possible mes-
sage of the robot’s expressions were received from the non-
Vietnamese observers. More specifically, the evaluation results
indicated that 26% of observers rated expression Sad by other
labels which have the similar meaning such as Shy, Boring,
or Uncomfortable. 12% of observers believed that expression
Happy might be other positive cues such as Thankful, Cheer,
or energetic expressions like Excited or Euphoric. These
results suggested that the generated expressions were not only
recognizable to the observers who have the same cultural
background as the interacting partner, but also recognizable
to the observers from different cultural groups.

To address in more detail about the differences in the
perception of the robot’s emotional behaviors, the following
discussion focuses on the Arousal and Valence dimensions of
the Circumplex model of affect. These dimensions allow us to
investigate how the observers perceived the robot’s emotional

expressions without being affected by the interpretation of
emotional labels. Firstly, to analyze the differences within
the generated gestures using the Arousal and Valence values
assigned by Vietnamese culture as shown in Fig. §, the one-
way analysis of variance (one-way ANOVA) test was con-
ducted in the Arousal dimension. It was followed by analyzing
the Valence dimension. When the significant differences were
detected from the ANOVA test (p < 0.05), the post-hoc test
was carried out to explore the differences. Table VII sum-
marizes the obtained results. The ANOVA test indicated that
there were significant differences (F'(2,168) = 39.188,p =
1.08E£—14 < 0.05) in the Arousal dimension of the three
generated behaviors. Then, the post-hoc test revealed that the
Arousal values for Sad was significantly different with Happy
(p = 4.02E—-14 < 0.005) and Fear (p = 5.27E—09 < 0.05).
Thus, the observers from this cultural group assigned similarly
the Arousal values for Happy and Fear higher than Sad. Like-
wise, the significant differences were also found in the Valence
dimension (F'(2,168) = 18.947,p = 3.8E—08 < 0.05).
Analyzing the post-hoc test, these significant differences come
from Happy-Sad (p = 1.36 E—07 < 0.005) and Happy-Fear
(p = 9.47TE—-06 < 0.005). Consequently, the results revealed
that the observers rated similarly higher values of Valence for
Happy than Sad and Fear. It is widely known that Arousal
represents the energy of emotion, while Valence describes the
extent to which an emotion is positive or negative. Hence, it
can be inferred that the observers from this culture tended to
perceive the robot expression Happy with a positive emotion
than the robot expression Sad and Fear. In contrast, they
thought that Pepper performed Happy and Fear more ener-
getically than Sad.



Figs. 9a and 9b represent the mean values of Arousal
and Valence, respectively, rated by 136 observers across five
different cultures. To analyze how different the Arousal and
Valence values are within these cultures on each emotion
class, the ANOVA test was conducted with the Arousal and
Valence dimensions. Once the significant differences were
detected (p < 0.05), further analysis with the post-hoc test was
carried out to determine which pair of cultures are significantly
different from each other. Tables VIIla and VIIIb summarize
the analysis on the Arousal and Valence dimensions, respec-
tively. Firstly, the results indicated that Vietnamese observers
were more likely to rate lower Arousal than those who were
Turkish for the robot expression Sad. Also, Japanese observers
tended to assign lower values of Arousal than the Chinese
and Turkish observers for Sad. In the Valence dimension,
Vietnamese observers rated higher values than Turkish for
Happy. On the other hand, the Japanese observers were more
likely to assign lower values for Sad than those who were
Vietnamese and Turkish. Hence, the differences in perception
of robot emotional behaviors have been clearly distinguished
on the Arousal and Valence dimensions. More precisely, the
Vietnamese observers tended to feel Happy more positively
than the Turkish observers. In contrast, those who were Viet-
namese felt that the robot expression Sad was performed less
energetically than the way those who were Turkish perceived.
Similarly, Japanese observers seemingly thought that Sad was
expressed less intensively than the Turkish and Chinese cul-
tural groups. At the same time, Japanese observers were more
likely to think that Pepper conveyed more negative emotion
than the way Vietnamese and Turkish observers perceived.
In general, the significant differences as mentioned above
suggested that different cultural groups perceived the same
emotional expressions of the robot in different ways.

Interim Summary: In this experiment, the scenario of long-
term HRI was conducted to validate the proposed incremen-
tal learning approach. In the behavior selection model, the
training and clustering phase was revisited. Then, the role of
the behavior selection phase for selecting the representative
patterns was emphasized. Through the transformation model,
the patterns were converted into the robot motion. Subjective
evaluations were conducted to evaluate how appropriately the
emotional expressions were represented by the robot. A series
of validations were conducted in the emotion label categories
as well as on the Arousal and Valence dimensions. The evalu-
ation results indicated that the robot behaviors, which reflected
the interacting partner’s traits, are easily recognizable to the
group of observers who share the same cultural background
with the partner. The results also support the notion that
the robot gestures are recognizable and perceptible to the
observers of other cultural groups in different ways.

VI. CONCLUSIONS AND FUTURE WORK

This work presented the human behavior selection and
transformation framework to autonomously generate emo-
tional bodily expressions for social robots. Compared to the
existing studies, the proposed framework enables the robot
to be capable of obtaining the individual partner’s habitual

behaviors through long-term human-robot interaction, leading
to generating the robot’s social gestures. The overall approach
was inspired by the social development of infants, where the
behaviors and interpretation of infants are highly influenced
by their parents. Similarly, our approach emphasizes the
role of the interacting partner’s traits to generate the robot’s
social behaviors. A series of experiments were designed to
verify the effectiveness of the proposed behavior learning
strategy. Firstly, the human behavior transformation model
allowed the robot to learn from the interacting partner’s one-
shot demonstration. Then, the model was validated using a
publicly available human affective posture and motion dataset.
The experimental results revealed that the robot was able to
generate imitated human behaviors. Furthermore, the message
of human emotional expressions was well retained by the
robot’s behaviors. Secondly, the behavior selection model and
the transformation model were integrated into a scenario of
long-term social interaction. Through the interaction over three
consecutive days, the robot produced the emotional bodily
expressions which reflected the interacting partner’s behaviors.
These expressions were evaluated by observers from differ-
ent cultural groups. The experimental results confirmed that
the robot’s emotional expressions were widely recognizable
to the people sharing the same cultural background with
the interacting partner. Likewise, the robot expressions were
recognizable and perceptible to different cultural groups in
many different ways. The current results also support the
psychological findings that emotional behaviors are affected by
many different factors such as individual personalities and cul-
tural backgrounds. Therefore, by acquiring and reflecting the
interacting partner’s behaviors through long-term interaction,
social robots are endowed with the capability of incrementally
learning to develop their social behaviors to adapt to its
environmental settings.

Our contributions in this paper are: (1) the incremental
learning approach to the representative behavior selection
reflecting the interacting partner’s traits over long-term interac-
tion, (2) the transformation model to convert human behaviors
into the target robot’s motion space, and (3) the dataset of
human expressions obtained from the robot’s point of view
that could be used for other researches in the field of emotional
gesture recognition. Summarizing, the proposed approach en-
ables social robots to develop and learn their behaviors to
adapt to a variety of social and environmental settings. In our
future work, the current nonverbal interaction behavior will
be extended to support more sophisticated behavior of social
robots associated with the verbal content of emotional speech.
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