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A Hybrid 2-Stage Method for Robotic Planar Pushing

ZiYan Gao, Armagan Elibol, and Nak Young Chong

Abstract— Robotic manipulation has been applied to a par-
ticular setup and a limited number of known objects. In
order to cope with these limitations, robots need to be capable
of manipulating novel objects. In this work, we proposed a
computationally efficient 2-stage framework for planar pushing,
allowing a robot to push novel objects to a specified pose with
a minimum number of steps. We developed three modules:
Coarse Action Predictor (CAP), Forward Dynamic Estimator
(FDE), and Physical Property Estimator (PPE). CAP predicts
a mixture of Gaussian distribution of actions. FPE learns the
causality between action and successive object state. PPE based
on Recurrent Neural Network predicts the physical center of
mass (PCOM) from the visual center of mass (VCOM) and
robot-object interaction. Our preliminary experiments show the
promising results to meet the required capability of pushing
novel objects.

I. INTRODUCTION

Inspired by the recent work done by [1] and [2], in this
work, we proposed a hybrid 2-stage robotic pushing frame-
work which can reduce the computational time significantly.
In the first stage as shown in Fig.1, a greedy planer is

Fig. 1. First stage with greedy planner utilizing VCOMs of current object
and target object in the image plane to minimize relative position error. PPE,
a recurrent neural network, receives successive images, VCOM and action
to update its own internal cell state and predicting PCOM.

used to minimize the relative position error. In the second
stage shown in Fig. 2, the relative orientation error is paid
more attention. Also instead of random sampling in action
space, we sample actions from a mixed Gaussian distribution
given by a probabilistic model (CAP). Then we developed
a forward model FDE to predict the future effort caused by
these action candidates. FDE is a simple yet efficient plane
neural network that utilizes PCOMs, VCOMs of the current
object masks and executed action to predict the future state
of the object. PPE is used to estimate PCOM throughout
two stages. During the evaluation, we used a greedy planner
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to minimize the position error, and then used the second
stage models to adjust the orientation. Firstly, we generate
a sub-goal image by using the same method mentioned in
[1]. Then hundreds of action candidates are sampled by
CAP based on the current and sub-goal image and PCOM
predicted by PPE in the previous time step. Afterward, action
candidates were evaluated by FDE, and the best one, which
has a minimum mean square error with the required change,
was selected. Finally, action, current, and sub-goal images
are sent to PPE to estimate the next PCOM. We performed

Fig. 2. Second stage with 3 modules to adjust both relative orientation
error and relative position error. PPE offers PCOM information to CAP and
FDE for better prediction.

extensive simulations to evaluate our approach quantitatively.
The results show that the proposed framework is effective at
pushing tasks with relatively small computation effort.

II. PROPOSED METHOD

An action is defined by

a = {xs, ys, xe, ye}, (1)

where Xs and Ys represent the initial horizontal and vertical
coordinates, while Xe and Ye represent the final ones, respec-
tively. The illustration of the proposed CAP is given in Fig. 3.
The inputs are two mask images (Mt,Mt+1) and the current
PCOM which is estimated by PPE. We used residual blocks
trained on ImageNet as a feature extraction module. The
mixture distribution is computed by the following equation:

P (at|Mt,Mt+1, V COMt) =

C∑
c=1

αcD(µ, σ), (2)

where c denotes the index of the corresponding mixture
component. There are up to C mixture components, αc

depends on the input and the sum of all αc is one. D denotes
the distribution to be mixed. In this work, we used Gaussian
distribution determined by µ and σ.

FDE is a plane neural network which has three layers of
size 64, 64, and 3. The input of FDE is an 11-dimensional



Fig. 3. Coarse action predictor overview

feature vector, which consists of the end position of action,
contact point, the norm vector at the contact point, VCOM
and PCOM of the current object state and area of the shape.
The output is [xt1, yt1, ot1], where xt1, yt1 are the change of
object position and ot1 is the change of object orientation.
PPE is developed by a recurrent neural network that has 2
LSTM layers of size 64 each and 2 plane layers of size 32
and 2. PPE is running both in the first and second stage;
in the first stage, PPE updates its LSTM ceil and hidden
state from robot action and the differences successive object
masks. Meanwhile, it helps greedy planar translate object
efficiently by offering PCOM. In the second stage, PPE keeps
updating its state and broadcasts PCOM to CAP and FPE.

III. EXPERIMENT AND RESULT

The dataset is collected in simulation. A cylinder of radius
0.5 cm and length 20 cm is attached to the end link of
the UR10 robot. The dataset contains more than 57,000
sequences of interactions between the robot and different
objects. The lengths of these sequences are ranging from
3 to 8. There were nine objects(illustrated in Fig.4) of
different shapes and sizes considered in the experiment.
PCOM is aligned to the object randomly within the bounding
box of the objects. Actions are selected randomly but only
guarantee that each action changes the object pose. Each
action pushes 2.5 centimeters forward. In order to improve
the generalization of the model, we randomly change the size
and the ratio of the height, width, and length of the object.
To re-use residual network layers, we tiled mask images to 3
channels. In the training phase of CAP, we used the negative
log-likelihood function to minimize training error.

L = −log(P (a|Mt,Mt+1, PCOMt)) (3)

We used mean square error to minimize the training error
of FDE. For PPE, we used weighted mean square error. The
intuition behind this loss function is that the accuracy of
estimating PCOM in the current step should be higher than
the previous step.

L =
1

T

T∑
t=1

αt( ̂pcomt − pcomt)
2, αt =

t∑T
t=1

(4)

For training all modules, we used Adam optimizer and set
the size of mini-batch 64. The learning rate was set to

Fig. 4. Simulation Environment: nine objects in data collection phase (left
lower) and four novel objects (right lower) in evaluation phase

ids Rotation Effort Translation Effort accmean std max min mean std max min
1 1.19 0.69 6.57 0.54 0.56 0.47 3.00 0.22 0.97
2 1.45 1.46 15.13 0.62 0.70 1.02 6.90 0.21 0.93
3 1.25 0.79 7.16 0.37 0.73 0.87 4.59 0.22 1.0
4 1.11 0.75 5.06 0.49 0.59 0.63 3.58 0.15 0.99

0.001 for CAP and PPE and 0.0001 for FDE. In the whole
training phase, the parameters of residual blocks were fixed.
For evaluating our method, we used four novel objects. For
each object, both target pose and initial pose were randomly
initialized. Compared with [1], where the relative orientation
errors were initially set within [−90, 90] and the target
positions of the object were fixed, our evaluation is more
challenging. We repeated 100 times for each novel object. In
the first stage, the object will be pushed to the goal region,and
the total number of steps needed in this stage is not involved
in calculations. The second stage will be executed at most 26
steps. The goal region is ±5cm for re-positioning and ±10◦
for re-orienting, which is the same as [1]. We proposed 2
metrics to evaluate predicted actions: rotation effort and
translation effort. Rotation effort depicts how many steps
are needed to rotate the object for 10 degrees, and translation
effort means how many steps are needed to translate object
for 1 cm. The result is given in the table.

IV. CONCLUSION

In this study, we proposed a hybrid 2-stage framework for
robot planar pushing. It was evaluated quantitatively through
extensive simulations. The result shows that our method can
manipulate novel objects with unknown physical properties.
Compared with previous work, our method is efficient in
sampling and can handle a more challenging task. In the
future, this method will be evaluated further, with more
sophisticated FDE and PPE.
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