JAIST Repository

https://dspace.jaist.ac.jp/

Understanding Nonverbal Cpmmuni cati
Title Human Personality Traits n Human- R
Il nteraction

Author(s) Shen, Zhi hao; Elibol, Armpgan; Chon¢
Citation | EEE/ CAA Journal of Automptica Sini
Issue Date 2020-06-02

Type Journal Article

Text version aut hor

URL http://hdl . handle.net/ 101009/ 16710

This is the author s versjon of t he
Copyright (C) 2020 1| EEE. EEE/ CAA J
Aut omatica Sinica, 2020,

DOl : 10. 1109/ JAS. 2020.1003R01. Persot
this materi al is permittepd. Per missi
, must be obtained for all bt her uses,
Rights : .
current or future medi a, ncluding
reprinting/republishing this mater.i
advertising or promotiona pur poses,
collective works, for resphle or redi
servers or |ists, or reuspgkp of any c¢
component of this work in|lother worl
Description

AIST

JAPAN
ADVANCED INSTITUTE OF
. SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology



IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. X, NO. X, X X

Understanding Nonverbal Communication Cues of
Human Personality Traits in Human-Robot
Interaction

Zhihao Shen, Armagan Elibol, and Nak Young Chong, Senior Member, IEEE

Abstract—With the increasing presence of robots in our daily
life, there is a strong need and demand for the strategies to
acquire a high quality interaction between robots and users
by enabling robots to understand users’ mood, intention, and
other aspects. During human-human interaction, personality
traits have an important influence on human behavior, decision,
mood, and many others. Therefore, we propose an efficient
computational framework to endow the robot with the capability
of understanding the user’s personality traits based on the user’s
nonverbal communication cues represented by three visual fea-
tures including the head motion, gaze, and body motion energy,
and three vocal features including voice pitch, voice energy,
and Mel-Frequency Cepstral Coefficient (MFCC). We used the
Pepper robot in this study as a communication robot to interact
with each participant by asking questions, and meanwhile, the
robot extracts the nonverbal features from each participant’s
habitual behavior using its on-board sensors. On the other
hand, each participant’s personality traits are evaluated with
a questionnaire. We then train the ridge regression and linear
support vector machine (SVM) classifiers using the nonverbal
features and personality trait labels from a questionnaire and
evaluate the performance of the classifiers. We have verified
the validity of the proposed models that showed promising
binary classification performance on recognizing each of the Big
Five personality traits of the participants based on individual
differences in nonverbal communication cues.

Index Terms—human-robot interaction, nonverbal communi-
cation cues, personality traits, machine learning.

I. INTRODUCTION

ITH the population aging and sub-replacement fertility
problems increasingly prominent, many countries have

started promoting robotic technology for assisting people
toward a better life. Various types of robotic solutions have
been demonstrated to be useful in performing dangerous and
repetitive tasks which humans are not able to do, or do not
prefer to do. In relation to elderly care provision, assistive
robots could replace and/or help human caregivers support the
elderly socially in their home or residential care environments.
Researchers gradually realized that the interactions between

a human user and a robot are far more than sending commands
to the robot or reprogramming, as a new class of social robots
are emerging in our daily life. It is now widely understood
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that not only the robot’s appearance but also its behaviors
are important for human-robot interaction [1] [2]. Therefore,
synchronized verbal and nonverbal behaviors [3] were de-
signed and applied to a wide variety of humanoid robots,
like Pepper, NAO, ASIMO, and many others, to improve the
user’s engagement in human-robot interaction. For instance,
the Honda ASIMO robot can perform various movements
of arms and hands including metaphoric, iconic, and beat
gestures [4]. Likewise, some researchers have designed such
gestures using the SAIBA framework [5] for the virtual agents.
The virtual agents were interfaced with the NAO robot to
model and perform the combined synchronized verbal and
nonverbal behavior. In [6], the authors tested the combined
verbal and nonverbal gestures on a 3D virtual agent MAX to
make the agent act like humans. Meanwhile, cultural factors
are also considered to be crucial components in human-robot
interaction [7]. In [8], the authors designed emotional bodily
expressions for the Pepper robot and enabled the robot to
learn the emotional behaviors from the interacting person.
Further investigations on the influence of the robot’s nonverbal
behaviors on humans were conducted in [9]. These efforts
were made to enable robots to act like humans. However, the
synchronized behaviors are unilateral movements with which
robots track the person’s attention. Therefore, the authors
in [10] claimed that social robots need to act or look like
humans, but more importantly they will need to be capable
of responding to the person with the synchronized verbal and
nonverbal behavior based on his/her personality traits. Inspired
by their insight in [10], we aim to develop a computational
framework that allows robots to understand the user’s per-
sonality traits through their habitual behavior. Eventually, it
would be possible to design a robot that is able to adapt its
combined verbal and nonverbal behavior toward enhancing the
user’s engagement with the robot.

A. Why are the personality traits important during the inter-
action?

In [11], the authors investigated how personality traits affect
humans in their whole life. The personality traits encompass
relatively enduring patterns of human feelings, thoughts, and
behaviors, which make each different from one another. When
the human-human conversational interaction is considered, the
speaker’s behavior is affected by the speaker’s personality
traits, and the listener’s personality traits also affect their
attitude toward the speaker. If their behaviors make each other



feel comfortable and satisfying, they would enjoy talking to
each other. In social science research, there have been different
views toward the importance of interpersonal similarity and
attraction. Some people tend be attracted to other people
with similar social skills, cultural background, personality,
attitude, and several others [12] [13]. Interestingly, in [14],
the authors addressed the complementary attraction that some
people prefer to talking with other people whose personality
traits are complementary to themselves. Therefore, we believe
that if the robot is able to understand the user’s coherent social
cues, it would improve the quality of human-robot interaction,
depending on the user’s social behavior and personality.

In previous studies, the relationships between the user’s
personality traits and the robot’s behavior were investigated.
It was shown in [16] that humans are able to recognize the
personality of the voice that was synthesized by the digital
systems and computers. Also, a compelling question was
explored to better understand the personality of people whether
they are willing to trust a robot or not in an emergency
scenario in [15]. Along the lines, a strong correlation between
the personality traits of users and the social behavior of
a virtual agent was presented in [17]. In [18], the authors
designed the robot that have personalities to interact with
a human, where significant correlation between human and
robot personality traits were revealed. Their results showed
how the participants’ technological background affected the
way they perceive the robot’s personality traits. Also, the
relationship between the profession and personality was in-
vestigated in [19]. The result conforms with our common
sense such as that doctors and teachers tend to be more
introverted, while managers and salespersons tend to be more
extroverted. Furthermore, the authors investigated how humans
think about the NAO robot with different personality traits
(Introversion or Extroversion), when the robot plays different
roles in human-robot interaction [20]. However, their results
were not in accordance with our common sense. The robot
seems smarter to the human when the robot acted as an
introverted manager and extroverted teacher. On the contrary,
the extroverted manager and introverted teacher robots were
not perceived intelligent by the participants. These two results
conflict with each other. This could be due to the fact that
people treat and perceive robots differently than humans in
the aforementioned settings. Another reason could be that the
introverted manager robot looked like more deliberate, because
it took more time to respond, while the extroverted teacher
robot looked like more erudite, because it took less time to
respond during the interaction. Even though these two studies
found conflicting results, the results imply the importance
of robot personality traits in designing professional roles for
human-robot interaction.

In light of the previous studies on personality match in
human-robot interaction, some of the findings are inconsistent
with each other. The result that was shown in [21] indicated
that the participants enjoyed interacting more with the AIBO
robot when the robot has a complementary personality to the
participants’. While the conclusions from [22] showed that
the participant was more comfortable when they interacted
with the robot with a similar personality to theirs. Similarly,
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the engagement and its relation to the personality traits were
analyzed during human-robot interaction in [23], where the
participants’ personality traits played an important role in eval-
uating individual engagement. The best result was achieved
when the participant and robot both were extroverted. Note
that when both the participant and the robot were introverted,
the performance was the worst. Although the complementary
and similar attraction theory may need further exploration
in the future, these studies clearly showed that how the
personality traits are important in human-robot interaction.

On the other hand, the personality traits have been shown
to have a strong connection with the human emotion. In [26],
it was discussed that how the personality and mind model
influence the human social behavior. A helpful analogy for
explaining the relationship between personality and emotion
is “personality is to emotion as the climate is to weather” [27].
Therefore, theoretically, once the robot is able to understand
the user’s personality traits, it would be very helpful for the
robot to predict the user’s emotion fluctuation.

Fig. 1 illustrates our final goal by integrating the proposed
model of inferring human personality traits with the robot’s
speech and behavioral generation module. The robot will be
able to adjust its voice volume, speed, and body movements
to improve the quality of human-robot interaction.

Human interacts with robot oe
Personality Traits
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Non-verbal Behavior X
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Human-Robot Interaction T
I
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PRRED, (it . & Movement Range
to meet you!

Robot interacts with human

Synchronized Verbal and Non-verbal
Behavior

Fig. 1. Integrating Proposed Model of Inferring Human Personality Traits
into Robot Behavior Generation

B. Architecture for Inferring Personality Traits in Human-
Robot Interaction

In the sub-section above, the importance of the personality
traits in human-human and human-robot social interactions is
clearly stated. Here we propose our computational framework
for enabling the robot to recognize the user’s personality traits
based on their visual and vocal nonverbal behavior cue. This
paper is built upon our preliminary work in [32].

In this study, the Pepper robot [25] equipped with two 2D
cameras and four microphones interacts with each participant.
In the previous research on the emergent LEAder corpus
(ELEA) [33], when recording the video of a group meeting,
the camera was set in the middle of the desk to capture



each participant’s facial expression and upper body movement.
[23] also used the external camera to record the individual
and interpersonal activities for analyzing the engagement of
human-robot interaction. However, we do not use any external
devices for the two reasons; First, we attempt to make sure
that all audio-visual features are captured from the first-person
perspective, ensuring that the view from the robot is closely
similar to that from the human. Secondly, if the position and
pose of the external camera changes for some reasons, it would
yield a significant difference between the visual features. Thus,
we use the Pepper’s forehead camera only.

Fig. 2 briefly illustrates our experimental protocol which
consists of the nonverbal feature extraction and the machine
learning model training: a) All participants recruited from the
Japan Advanced Institute of Science and Technology were
asked to communicate with the Pepper robot. The robot keeps
asking questions related to the participant, and each participant
answers the questions. The participants are supposed to reply
to the robot’s questions with their habitual behavior. Before
or after each participant finished interacting with the robot,
they were asked to fill out a questionnaire to evaluate their
personality traits. The personality traits scores were binarized
to perform the classification task. b) We extracted the par-
ticipants’ audio-video features that include the head motion,
gaze, body motion energy, voice pitch, voice energy, and
MFCC during the interaction. ¢) The nonverbal features and
personality traits labels will be used to train and test our
machine learning models.

Data:

1) Head Motion
Gaze Score
Motion Energy

2) Pitch.

Energy
MFCC

1 Video
2 Audio

Questionnaire for . .
c) Design and train our model

assessment of the user’s
personality traits

Fig. 2. Experimental Protocol for Inferring Human Personality Traits

To the best of our knowledge, this is the first work that
shows how to extract the user’s visual features from the robot’s
first-person perspective, as well as the prosodic features, in
order to infer the user’s personality traits during human-
robot interaction. In [24], the non-verbal cues were extracted
from the participant’s first-person perspective and used to
analyze the relationship between the participant and robot
personalities. With our framework, the robot is endowed with
the capability of understanding human personalities during
face-to-face interaction. Without using any external devices,
the proposed system can be conveniently applicable to any
type of environment.

The rest of this paper is organized as follows. Section II ex-
plains the personality traits model used corresponding to Part
a. Section IIT explains why we used the nonverbal features,
and what nonverbal features were used for recognizing the

participant personality traits corresponding to Part b. Section
IV presents the technical details of our experiments. Section V
is devoted to experimental results and analysis corresponding
to Part c. Section VI draws conclusions.

II. PERSONALITY TRAITS

Based on the definition in [34] [35], personality traits have
a strong long-term effect in generating the human’s habitual
behavior: “the pattern of collective character, behavioral, tem-
peramental, emotional, and mental traits of an individual that
has consistently over time and situations”.

In the most of existing studies on personality traits, the
researchers proposed many different personality models in-
cluding Meyers-Briggs (Extroversion-Introversion, Judging-
Perceiving, Thinking-Feeling, and Sensation-Intuition) [28];
Eysenck Model of Personality (PEN) (Psychoticism, Extro-
version, and Neuroticism) [29]; and the Big-Five personality
model (Extroversion, Openness, Emotional Stability, Consci-
entiousness, Agreeableness) [30] [31]. The Big-Five personal-
ity traits are the very common descriptor of human personality
in psychology. In [36] [37], the authors investigated the
relationship between the Big-Five personality traits model and
nonverbal behaviors. We also use the Big-Five personality
traits model in this study. Table I denotes the intuitive ex-
pressions for the Big-Five personality traits.

TABLE I
BIG-FIVE PERSONALITY TRAITS

Big-Five | High on this trait Low on this trait
Enjoy meeting new people | Prefer solitude
Extrove- Like being attention center | Dislike being attention center
rsion Easy to make new friends Think things through
Has a wide social circle Do not talk much
Care about others Do not interest in others
Agreea- Prefers to cooperate Manipulates others frequently
bleness Enjoy helping others Insult and belittle others
Kind and compassionate Competitive and stubborn
Keep things in order Make messes
Conscien- | Pay attention to details Do not take care of things
tiousness Enjoy having a schedule Delay to finish tasks
Goal- and detail-oriented Less detail-oriented
Do not worry much Worry about many things
Emotional | Deal well with stress Experience a lot of stress
Stability Rarely feel depressed Get upset easily
Emotionally stable Appears anxious or irritable
Enjoy tackling challenges Do not enjoy new things
Openness | Like abstract concepts Resist new ideas
Open to trying new things Not very imaginative

As the personality traits become more popular in the last

few decades [38], various questionnaires were proposed in the
literature for the assessment of human Big-Five personality
traits. The most popular format of questionnaire is the Likert
scale: Ten Item Personality Inventory (TIPI) which has 10-
items and each question is on a 7 point scale [39]; The Revised
NEO Personality Inventory (NEO PI-R) which contains 240
items [40]; the NEO Five-Factor Inventory (NEO-FFI), a short-
ened version of NEO PI-R, which comprises 60 items [41]; and



the International Personality Item Pool (IPIP) Big-Five Factor
Markers which has been simplified to 50 questions [42]. We
used the IPIP questionnaire in this paper, and all participants
were asked to fill out the questionnaire to evaluate their Big-
Five personality traits. The IPIP questionnaire is relatively
easier to answer, and it does not need too much time to
complete.

Specifically, the participants are asked to rate the extent to
which they agree/disagree with the personality questionnaires
on a five-point scale. A total of 50 questions are divided
into ten questions for each of the Big-Five traits and the
questions also include the reverse-scored and positive-scored
items. For the reverse-scored items, Strongly Disagree equals
5 points, Neutral equals 3 points, and Strongly Agree equals 1
point; for the positive-scored items, Strongly Disagree equals
1 point, Neutral equals 3 points, and Strongly Agree equals 5
points. After the participants rate themselves for each question,
each personality trait is represented by the mean score of 10
questions. We did not use the scale of 1-5 to represent the
participant’s personality traits. Instead, the personality traits
are binarized using the mean score of all participants as a
cut-off point to indicate whether the participant has a high
or low level of each of the Big-Five traits. For instance, if
a participant’s trait of extroversion was rated 2 which is less
than the average value 2.8, then, this participant is regarded as
introvert and his/her trait score will be re-assigned 0. Then, we
used the binary labels to train our machine learning models
and evaluate the classification performance accordingly.

III. FEATURE REPRESENTATION

It is known that the personality trait encompasses the
human’s feeling, thoughts, and behaviors. The question to be
investigated then arises as “how can it be inferred human per-
sonality traits based on their verbal and nonverbal behaviors?”

A. Related Work on Verbal and Nonverbal Behaviors

The influences of personality traits on linguistic speech
production have been addressed in previous works [43] [44].
The user’s daily habits were investigated to ascertain whether
they are related to the user’s personality traits. The changes of
facial expression were also used to infer the personality traits,
which was proposed in [54]. In [49], the participants were
asked to use the Electronically Activated Recorder (EAR) to
record their daily activities, which included locations, moods,
language, and many others, to verify the manifestations of
personality. Moreover, the authors investigated how the writing
language reflects the human personality style based on their
daily writing diaries, assignments, and journal abstracts [45].
More specific details were presented in [46]. In that study, two
corpora that contain 2,479 essays and 15, 269 utterances more
than 1.9 million words were categorized and used to analyze
the relation to each participant’s Big-Five personality traits.
Although the participant’s verbal information can be used
to analyze their personality traits based on Pennebaker and
King’s work [45], it should be noted that categorizing so many
words would be an arduous task. In [47], the authors addressed
that the language differences could influence the annotator’s
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impressions toward the participants. Therefore, they asked
three annotators to watch the video that was recorded in the
meeting without audio and to annotate the personality traits
of each participant. Notably, the issue of conversational error
was addressed in [48], where the error caused the loss of trust
in the robot during human-robot interaction. In light of the
aforementioned studies, the participants in our study were free
to use any language to talk with the robot. It can generally be
said that the nonverbal behavior would be a better choice in
this study.

On the other hand, it is desirable that the robot can change
its distances with the user depending on a variety of social
factors leveraging a reinforcement learning technique in [50].
In [51], the author also used the changes in the distance
between the robot and the participant as one of their features
for predicting the participant’s extroversion trait. Similarly,
the authors proposed a model of automatic assessment of
human personality traits by using body postures, head pose,
body movements, proximity information, and facial expres-
sions [52]. The results in [53] also revealed that the extrovert
could accept people to come closer than the introvert. How-
ever, the proxemics feature was not considered in our study,
as the human-robot distance remains unchanged during our
communicative interaction settings.

In the related research on inferring human personality traits,
a variety of fascinating multimodal features were proposed.
In [36] [55], the authors used vocal features to infer personality
traits. In [37], they used vocal and simple visual features to
recognize the personality traits based on MS-2 corpus (Mission
Survival 2). [47] [56] detailed how to infer personality traits
in the group meeting. They used the ELEA corpus, and the
participant’s personality traits were annotated by the exter-
nal observer. Meanwhile, the participant’s vocal and visual
features such as voice pitch, voice energy, head movement,
body movement, and attentions were extracted from audio and
videos. The similar features were used in [57] to infer the
personality traits with Youtube video blogs. The convolutional
neural networks were also applied to predict human personal-
ity traits based on an enormous database that contains video,
audio, and text information from YouTube vlogs [58] [59]. In
[60] [61], the authors explained a nonverbal feature extraction
approach to identifying the emergent leaders. The nonverbal
features that were used to infer the emergent leaders included
prosodic speech feature (pitch and energy), visual features
(head activity and body activity), and motion template-based
features. In [77] [70], the frequently-used audio and visual
nonverbal features in existing research were summarized for
predicting the emergent leader or personality traits. Similarly,
a method was proposed in [69] for identifying the human’s
confidence during human-robot interaction with the sound
pressure, voice pitch, and head movement.

In the previous studies [47] [37] [60] [62], the authors used
the statistical features and activity length features. Since the
personality traits are long-term characteristics that affect peo-
ple’s behaviors, they believed that the statistical features can
well represent the participants’ behaviors. Similar nonverbal
features were used in our study. However, we believe that the
state transitions of the nonverbal behaviors or features are also



importance to understand the human’s personality traits. The
study in [56] proposed their co-occurrent features to indicate
some movements of other participants that happened at the
same time. Hence, in our study, the raw form and time-series
based features of the visual and vocal nonverbal behavior were
used to train the machine learning models.

B. Nonverbal Feature Representation

Taking into account the findings of the aforementioned
studies, we intend to extract similar features from the par-
ticipant’s nonverbal behaviors. Nonverbal behaviors include
vocal and visual behaviors. Table II shows the three visual
features including the participant’s head motion, gaze score,
and upper body motion energy, as well as the three vocal
features including the voice pitch, voice energy, and Mel-
Frequency Cepstral Coefficient (MFCC).

In our basic human-robot interaction scenario, it is assumed
that the participant talks to a robot using gestures the way a
person talks to a person. Therefore, the participant’s visual
features can be extracted using the robot’s on-board camera
while the participant or the robot talks. Note that, in Table
II, some of the visual features HM2, GS2, and M E2 are
extracted when the participant listens to the robot asking four
simple questions. The total time duration was too short to
capture sufficient data enough to train our machine learning
models. Therefore, we did not use these three features in our
study.

TABLE I
NONVERBAL FEATURE REPRESENTATION

Activity | Abbreviation | Description
Head HM1 Users move head while they are talking
Motion HM1, Binarized HM1
HM2 Users move head while pepper is talking
Gaze GS1 Users’ gaze score while they are talking
Score GS1, Binarized GS1
GS2 Users’ gaze score while pepper is talking
Motion ME1 Users move body while they are talking
Energy ME1, Binarized ME1
ME2 Users move body while pepper is talking
Pitch Pn Normalized pitch
Pny Binarized pitch
Energy En Normalized energy
Eny Binarized energy
MFCCO One of the 13 MFCC vectors
MFCC MEFCCOy, Binarized MFCCO
m_FCCO The average vector of the 13 MFCC vectors

1) Head Motion: An approach to analyze the head activity
was proposed in [60]. They applied the optical flow on the
detected face area to decide whether the head was moving
or not. Based on the head activity states, they were able
to understand when and for how long the head moved. We
followed the method that was proposed in [63]. First, every
frame captured by the Pepper’s forehead camera was used for

scanning procedure to extract the sub-windows. The authors
in [63] has trained 60 detectors based on left-right rotation-
out-of-plane and rotation-in-plane angle, and each detector
contains many layers that are able to estimate the head pose
and detect a human face. Each sub-window was used as an
input to each detector which was trained by a set of the face
with a specific angle. The output would provide the 3D head
pose (pitch, yaw, and roll) as shown in the left image of Fig. 3.
In this study, the pitch angle covers [-90°, 90°], the roll angle
covers [-45°, 45°], and yaw angles covers [-20°, 20°]. And then
the Manhattan distance of every two adjacent head angle was
used to represent the participant’s head motion. Let «, /3, and
v denote the pitch, yaw, and roll angles, respectively. Then
the head motion (HMI1) can be calculated by the following
equation:

HM1;y = oy = | +18a) =B+ v —va+nls (D

where 7 and 7 + 1 are two consecutive frames at 1 sec time
interval.

Fig. 3. Visual Features (The left image illustrates the 3D head angles, and
the right image shows the different pixels by overlapping two consecutive
frames)

2) Gaze Score: In [62], the influence of gaze in the small
group human interaction was investigated. The previous stud-
ies used the visual focus of attention (VFOA) to represent
the participant’s gaze direction [61] in the group discussion.
However, the high-resolution image is required for the analysis
of the gaze direction, which will tremendously increase the
computational cost. In our experiment, the participant sits at
a table in front of the robot positioned 1.5 to 1.7 m away.
In practice, the calculation of gaze direction might not be
feasible, if we consider the image resolution and the distance,
since the eye occupies only a few pixels in the image. As
the head pose and gaze direction are highly related with each
other [64], an efficient way of calculating the gaze direction
was proposed based on the head orientation in [65]. Therefore,
we used the head direction to estimate the gaze direction which
is highly related to the head yaw and pitch angles. In the
real experimental environment, we found that the face was
hardly detected when the facial plane exceeds +20°. When
the participant faces the robot’s forehead camera, the tilt/pan
angle is 0°. Therefore, we measure the Euclidean distance
from the 0° to the head yaw and pitch angle. Then, the full
range (distance) of tilt/pan angles [0°, 20°] is normalized to 0



to 1. Finally, the normalized score between 0 and 1 is used as
the gaze score which indicates the confidence in the fact that
the participant is looking at the robot. If we denote by a and
[ the head pitch and yaw angles, respectively, the gaze score
of the frame ¢ can be calculated by the following equation:

o, + %
GS1p=1— 4 —2—O @)

where anq, and [,4, represent the maximum degree of the
head pitch and yaw angle, respectively.

3) Motion Energy: The motion energy images [66] [67]
were used in the previous studies to describe body motion.
Their basic idea is to compute the number of different pixels
of every two consecutive frames. We applied the same idea
to calculate the ratio of the different pixels between every
two frames. The right image of Fig. 3 shows an example
of different pixels between two frames. This method is
simple and effective. However, it requires the image to have
stationary background and distance between the robot and
each participant. Otherwise, the change of the background
will be perceived as the participant’s body movement, and
the number of different pixels will increase if the participant
sits closer to the robot. Now, all three visual features were
calculated and normalized in the whole database, denoted by
HM1, GS1, and M E1. The binary features HM1;,, GS1y,
and M FE1, mentioned in Table II are the binarized HM1,
GS1, and M E1 which were simply calculated by comparing
whether the value is larger than O or not.

4) Voice Pitch and Energy: The vocal behavior is another
important feature when humans express themselves. Pitch and
energy are the two well-known vocal features and very com-
monly used in emotion recognition. Pitch, which is generated
by the vibration of vocal cords, is perceived as F'O the fun-
damental voice frequency. There are many different methods
to track the voice pitch. For instance, AMDF (Average Mag-
nitude Difference Function [71]), SIFT (Simple Inverse Filter
Tracking [72]), and ACF (Auto-correlation Function [73]) are
the time domain approach, while HPS (Harmonic Product
Spectrum [74]) is the frequency domain approach. We used
the auto-correlation function denoted by acf(7) given in Eq. 3
to calculate pitch:

N—-1—7

acf(r) = _z: s(i)s(i+7),(0 <7 < N), 3)

i=1

where s(i) is the audio signal of each frame, 7 is the time
delay, and [V is the frame size.

Using the acf(7) function, we divided the sampling fre-
quency by the index number of the second peak to calculate
the pitch of each frame. Generally, the audio signal of each
frame that was used to extract vocal feature contains more than
two periods, and the pitch range of a human’s voice is higher
than 50H z. For an audio file whose sampling frequency is
16,000H z, we can calculate the range of the frame size [N
based on the following equation.
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16,000 _ N | @
50 2
N = 16000 x T. (5)

In Eq. 5, T is the time duration of the audio signal in one
frame. Since the frame size N used in this study is 800, the
time duration 7" is 50 milliseconds.

Now the average of the short-term energy can be calculated
by the following equation:

N
Energy = ]171_21 s(i)?, (6)
where s(i) is the audio signal of each frame, and N is the
frame size.

5) Mel-Frequency Cepstral Coefficient: Mel-Frequency
Cepstral Coefficient (MFCC) [75] is a vocal feature well
known for its good performance in speech recognition [76].
The procedures to calculate MFCC are highly related to the
vocalism principle and also able to discard the redundant
information that the voice carries, e.g., the background noise,
emotion, and many others. We intend to test this pure and
essential feature which reflects how the sound was generated.
We calculated the MFCC based on the following steps;

First, we calculate the power spectrum by calculating the
Fast Fourier transform (FFT) of each frame. The motivating
idea is from the concept of how our brain understands the
sound. The cochlea in the ear converts sound waves, which
caused the vibrations in different spots, to the electrical
impulses to inform the brain that some frequencies are present.
Usually, only 256 points were kept from 512 points in FFT.

Then, 20-40 (usually 26) triangular filters of the Mel-spaced
filterbank were applied to the power spectrum. This step is to
simulate how the cochlea perceives the sound frequencies. The
human ear is less sensitive to the closely spaced frequencies,
and it becomes even harder when the frequency is increas-
ing. This is why the triangular filter becomes wider as the
frequency increases.

Third, the logarithm was applied to the 26 filtered energies.
This is also motivated by human hearing. We need to put
8 times more energy to double the loudness of the sound.
Therefore, we used the logarithm to compress the features
much closer to what humans actually hear.

Finally, we compute the discrete cosine transform (DCT) of
the logarithmic energies. In the previous step, the filterbanks
were partially overlapped, which provide high correlated fil-
tered energies. The DCT was used to decorrelate the energies.
Only 13 coefficients were kept as the final Mel Frequency
Cepstral Coefficients.

Now we have 13 MFCC features vectors. Each feature was
used to train and test our machine learning models. As shown
in the Table II, M FCCO is one of the MFCC vectors. And
the m_M FCC is the average vector of all 13 MFCC vectors.
The three vocal features were normalized among the whole
dataset. As for the binarized pitch and energy, Pn; and Eny,
were calculated by estimating the trend of Pb and Eb. e.g.,
if the pitch of frame ¢ is greater or equal to the value of



frame ¢ — 1, we assign 1. Otherwise, we assign 0. While the
binarized feature M FC'CO is different, we again pay attention
to whether the value is greater than O or not.

We normalized the features by the following equation:

- E(F)
- Var(F) "’
where X is the normalized feature vector, F’ is the raw form

feature, F(F) is the mean value of the raw form feature, and
Var(F') is the variance of the raw form feature.

(7

IV. EXPERIMENTAL DESIGN

The experiment was designed in the scenario that the robot
asks questions as the robot meets with the participant. In the
following, we introduced the experimental environment and
the machine learning methods used.

A. Experimental Setup

The relationship between people’s professions and person-
ality traits was investigated in [19]. In our study, all the
participants were recruited from the Japan Advanced Insti-
tute of Science and Technology. Therefore, the relationship
between professions and personality traits was not considered.
On the other hand, the interactions between participants and
the robot were assumed to be casual everyday conversations.
Specifically, each participant sits at a table with his/her forearm
resting on the tabletop and talks with the robot. The partici-
pants did not have any strenuous exercises before they were
invited to the experiment.

observable

Parameters:

Camera: Top Camera
Resolutions:

640*480px
Framerate: 1 fps

The distance between user and Pepper is about 1.5~1.7meters

(a) Illustrative Diagram of Experimental Setup

(b) Snapshots of Real Experiments

Fig. 4. Details of Experimental Setup

The experimental setup is shown in Fig. 4. Each participant
was asked to sit at a table in front of the robot standing 1.5
to 1.7 m away in a separate room. Only the upper part of
the participant’s body was observable from the robot’s on-
board camera that extracts the visual features. The robot keeps

asking questions one after another. The participant was asked
to respond to each question using his/her habitual gesture. As
mentioned in Section III, the participants were free to use any
language (such as English, Italian, Chinese, and Vietnamese)
to communicate with the robot.

Fig. 4 (a) shows some parameters used in the experiment.
The top camera of the robot in the middle of the forehead
was used, which makes the view of the robot very similar to
that of humans. The resolution of the video camera is 640 x
480 pixels. If the frame rate is too high, it may provide too
many subtle movements. On the contrary, if the frame rate
is too low, the subtle movements will be hard to detect. We
used one frame per second. Participants were aware of all the
questions they will receive, such as “Hello, I am Pepper, nice
to meet you. Can you introduce yourself?”, and many others.
Therefore, they would have time to prepare the answers. The
audio was recorded with a microphone on the robot’s head
with 16,000 H z. Before starting to extract the vocal features,
the robot’s fan noise was removed from the audio.

We recruited 15 participants in the study; however, 3 of the
participants were too nervous during the experiment, and they
looked at the experimenter frequently. Therefore, they were
excluded, and our database contains the data of 12 participants
with a total duration 2,000 sec. One of the convenient ways to
infer personality traits is using the fixed time length. Once the
robot has enough data, it would be able to infer the personality
traits. Therefore, we divided the data into 30-sec long clips.
The 30-sec clip may contain data from different sentences.
When we divided the clips, each clip has 50% overlap with
the previous one, and then we were able to generate more data
generalized.

Face detection

Start >

Timer counter

question
No sound

Head, Gaze,
T Motion Energy
(per second) inputs in 5

l seconds

Features

Participant’s
speaking Pepper’s Do
- Head, Gaze, speaking turn nothing
Visual Features | Motion Energy
(per second)

Timer
counter

Yes,

Error or
Manually
stop

Yes

Write “features”
to “feature.txt”

—> stop

Fig. 5. The Pipeline for Feature Extraction

The flowchart in Fig. 5 shows the architecture for extracting
features. The robot first detects whether there is a person to
talk to. Then the robot would sequentially select a question
from a file “questions.txt” and use the speech synthesizers
to start the conversation. Meanwhile, the robot also extracted
the visual features every second. Even after the robot finished
asking its question, the vocal and visual features extraction
would be continued while the participant was responding to
the question. The participant was instructed that they were



expected to stop talking for 5 seconds for letting the robot
know that it may ask the next question.

B. Classification Model

In [77], the authors summarized different methods used for
the prediction of the leadership style such as the Logistic
regression [47] [56] [78], Rule-based [79], Gaussian mixture
model [80], and Support vector machine [47] [56] [81]. The
ridge regression and linear SVM were both used in [47] [56].
We opted to apply the same methods in our study to make a
simple comparison. The cross-validation was used to find the
optimal regression parameters. The following formulas were
used to calculate the regression parameters:

w=(XTX +9D)7 X"y, @®)
where X is the feature matrix, I is an identity matrix, y is
the binarized label of the personality traits, and + is the ridge
parameter calculated using the following equation:

v=¢"1%€[0,29],i € N). 9)

In Eq. 9, ¢ is an integer indicating that each regression
model is executed for 30 times for optimizing the regression
parameter w. As we used the regression model to perform a
classification task, we used the accuracy rather than the mean
squared error, which would give more meaningful results.

SVM is used to perform the linear or nonlinear classification
task by using different types of kernel functions. It requires a
longer time to train an SVM classifier than ridge regression.
From Table III, it can be noticed that the binary features did
not present their advantages in ridge regression. Therefore,
the binary features were discarded in SVM. Then, we trained
an SVM classifier with the linear kernel with the penalty
parameter of the error term which was chosen from [0.1, 0.4,
0.7, 1]. Therefore, each SVM classifier was trained for 4 times
based on the equation that was mentioned in [82] which is
shown in the following equation.

M
y(@) =Y amymK (@, 2m) + b, (10)
m=1

where y(z) is the predicted sign of the testing sample x, and
a., is a set of Lagrange multipliers. This model was trained
by the training data x,, with the corresponding label y,,. b is
the bias parameter, and K(z, x,,) is the linear kernel function.
The linear kernel function can be described as the following
equation:

(1)

Kz, z;) = xij,

where z; and x; are two data samples.

The leave-one-out method was used to evaluate the perfor-
mance of ridge regression and linear SVM. The results of the
linear SVM was presented in Table IV.
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V. EXPERIMENTAL RESULTS

A. Classification Results

Tables III and IV showed the results of the ridge regression
and linear SVM classifier that were trained by each feature
corresponding to each personality trait, respectively. The best
result of each trait was shown in bold. It is obvious that
the linear SVM classifier outperforms the ridge regression on
four traits, except the results of Extroversion. As shown in
Table III, the highest accuracies of five traits were acquired
by GS1, En, and the 6-th M FFCC'. These three features were
concatenated as the combined feature and used to train five
more ridge regression models for the five traits. We used the
abbreviation F'RR to represent the combined feature for ridge
regression. Similarly, we trained five more SVM classifiers for
each trait by concatenating HM1, GS1, M FE1, Pn, and the
6-th M FCC features. The abbreviation F'SV M was used to
represent the combined feature for SVM. The details about the
classification results were given in the following two tables.

TABLE III

AVERAGED ACCURACIES FOR BIG FIVE PERSONALITY TRAITS (RIDGE
REGRESSION CLASSIFIER)

Trait Extro- | Agreea- | Conscien- Emotional | Ope-
Feature . . -
version | bleness | tiousness | Stability nness
HM1 0.5601 0.5739 0.5282 0.5693 0.5280
HM1, 0.5289 | 0.5483 0.5455 0.5399 0.5335
GS1 0.6363 | 0.5087 0.5087 0.5298 0.5601
GS1, 0.5951 | 0.5629 0.6364 0.5418 0.6391
ME1 0.5252 | 0.6961 0.6658 0.5554 0.5923
MEl, 0.5151 0.6126 0.5695 0.5262 0.5455
Pn 0.5703 | 0.5142 0.5189 0.6033 0.5592
Py 0.5400 | 0.5776 0.6446 0.5280 0.6281
En 0.5363 | 0.5611 0.6979 0.6612 0.7053
Ep 0.5473 | 0.5868 0.6446 0.5409 0.6281
MFCCO 0.5225 | 0.8696 0.7594 0.7456 0.6079
MFCCO, 0.5629 | 0.6171 0.6694 0.5666 0.6574
[ m_MFCC | 05751 [ 06430 [ 0.6141 [ 06588 [ 0.6219 |
[ FRR [ 06243 [ 08641 [ 0.6082 [ 0.8320 [ 0.6165 |
TABLE IV

AVERAGED ACCURACIES FOR BIG FIVE PERSONALITY TRAITS (LINEAR
SVM CLASSIFIER)

Trait Extro- | Agreea- | Conscien- Emotional | Ope-
Feature . . .
version | bleness | tiousness | Stability nness
HM1 0.5068 | 0.6689 | 0.7364 0.7635 0.7162
GS1 0.5946 | 0.5878 | 0.6149 0.5472 0.4459
ME1 04122 | 0.7973 | 0.6014 0.6622 0.7162
Pn 0.5581 | 0.5814 | 0.8682 | 0.5194 0.6202
En 05349 | 05193 | 0.8527 0.5891 0.6976
MFCCO | 05113 | 0.8915 | 0.8527 0.7209 0.5504
| m_MFCC | 04806 [ 05736 [ 0.7984 [ 0.6899 [ 0.5349 |
| FSVM [ 0.6401 | 08411 [ 08645 [ 0.6963 [ 0.5761 |

In ridge regression, the combined feature F'RR achieved
higher accuracy of Emotional Stability. And the accuracies of



Extroversion and Agreeableness were close to the best result.
However, the results of the other two traits, Conscientiousness
and Openness, remained comparatively less accurate. On the
other hand, in Table IV, the feature F'SV M increased the
accuracy of Extroversion. And the accuracy of Conscien-
tiousness reached, as closely as possibly, the best result that
was acquired by Pn. The combined feature F 'SV M did not
improve the results of the other three traits Agreeableness,
Emotional Stability, and Openness.

The highest accuracy of Extroversion that was achieved
by using gaze score GS1 with ridge regression is 0.6363,
which, however, is the lowest among the five traits. This
problem seems to be caused by the following two reasons:
the relationship between a human and the robot is pretty
confusing, which is hard for the participant to define whether
the robot as a friend or a machine. The experimental environ-
ment also has some limitations for the participants expressing
themselves. The participants sat at a table in front of them, and
their movements could be restricted due to the experimental
settings.

We acquired the highest accuracy of Agreeableness 0.8915
by using MFCC with the linear SVM classifier, which is the
highest accuracy among all traits. We tested all 13 MFCC
feature vectors with ridge regression and SVM. In the ridge
regression, we calculated all accuracies of 13 MFCC features
on each trait. Only the results on each trait that was obtained
by using the sixth MFCC feature vector were better than the
average accuracy of 13 MFCC features. Therefore, the results
of MFCCO as shown in Table IV also were acquired by
using the sixth MFCC feature vector. Agreeableness appeared
to be the trait that could be most easily recognized.

The highest result of Conscientiousness 0.8682 was ob-
tained by using pitch Pn with the linear SVM. Based on the
results, the features Pn, En, and M FCCO provided such
promising results, which shows a strong correlation between
Conscientiousness and the human’s voice features.

The best result of Emotional Stability is 0.7635 that was
obtained by using the Head Motion H M1 with linear SVM.
Moreover, the two best results of Openness also were achieved
by HM1 and M E'1 with 0.7162. The visual features provided
better results when we used the SVM classifier than the ridge
regression.

Even the feature head motion HM1 and gaze score GS1
were calculated based on the head angle, they still provided
very different results. Also, the MFCC showed its promis-
ing performance for recognizing the personality traits. If
we compare our results with the results of previous works
[47] [56], except the results of Extroversion, our experiment
outperformed all of the previous competing methods.

B. Regression

For the ridge regression model, we used the average person-
ality trait scores that were calculated from the questionnaire
ranging from 1 to 5. For evaluating the regression model,
we calculated M SE (Mean Squared Error) values and R?
which is known as the coefficient of determination used to
evaluate the goodness of fit of the regression model [47]. The

maximum R? values of Conscientiousness and Openness are
smaller than 0.1. Therefore, we only presented the R? values
of Extroversion, Agreeableness, and Emotional Stability in
Table V. We calculated R? based on the following equation:

M ~ 2
Zn:l (Yn _ Yn)

M == 2
Don=1 (Yn —Yn)
where M is the total number of the data samples, Y, is the
personality trait score of the sample n, Y;, is the regression

personality trait score of the sample n, and Y, is the average
score of the trait.

R*=1- (12)

TABLE V
THE MAXIMUM VALUES OF R2 OF THE REGRESSION RESULTS FOR
EXTROVERSION, AGREEABLENESS, AND EMOTIONAL STABILITY

\_% HM1| GS1| ME1| Pn | En | MFCC6| FRR
Trait

Extroversion | 0.05 | 0.30 | 0.01 | 0.01| 0.11 | 0.01 0.15
Agreeableness| 0.11 | 0.01 | 0.12 | 0.01| 0.01 | 0.28 0.18
Emotional 0.17 | 0.01 | 0.05 | 0.01 | 0.09| 0.12 0.31
Stability

In Table V, the best classification result of three personality
traits were inferred by the features with the highest R? values
marked in bold.

The MSE values were given in Figs. 6 to 10. In order to
show the changes of the MSE values clearer, we only revealed
the ¢ (the parameter for calculating the ridge parameter v from
Eq. 9) from O to 16. The variables that were shown in Fig. 6
to 10 were represented by using two capital letters of the
abbreviation of personality trait and the feature name (refer
to Table II, m fcc6 is the 6-th M FC'C vector). Figs. 6, 7, and
9 of Extroversion, Agreeableness, and Emotional Stability also
showed that the feature with the smallest MSE value acquired
the best classification result. The differences of the other two
traits Conscientiousness and Openness were not very obvious
compared to the aforementioned three traits.
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Fig. 6. MSE Values of the Ridge Regression for Inferring Extroversion

VI. CONCLUSION AND THE FUTURE WORKS

In this paper, we have proposed a new computational
framework to enable a social robot to assess the personality
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traits of the user it is interacting with. In the beginning, the
user’s nonverbal features were defined as easily-obtainable
as possible and extracted from video and audio collected
with the robot on-board camera and microphone. By doing
so, we have decreased the computational cost in the feature
extraction stage, yet the features provided promising results
in the estimation of the Big Five personality traits. Moreover,
the proposed framework is generic and applicable to a wide
range of off-the-shelf social robot platforms. To the best of
our knowledge, this is the first study to show how the visual
features can be extracted in the first-person perspective, which
could be the reason that our system outperformed the previous
studies. Notably, the MFCC feature was beneficial to assessing
each of the Big Five personality traits. We also found that,
apparently, extroversion appeared to be the hardest trait. One
reason could be the current experimental settings, where the
participants sat at a table with their forearms resting on the
tabletop that limited their body movements. Another reason
could be the confusing relationship between the participants
and the robot, which made the participants hesitate to express
themselves naturally in the way they do in everyday situations.

Each feature showed its advantage in a different aspect.
However, there is not a standard way of drawing the con-
clusion that declares the user’s personality traits. Therefore,
one of the future works is to find an efficient way to fuse
the multi-modal features. On the other hand, the personality
traits can be better understood through frequent and long-
term interaction. This means that the system should be able
to update its understandings of the user’s personality traits
whenever the robot interacts with its user. It is also needed
to evaluate the engagement between a human and a robot,
and attitude of the human toward the robot, since the user’s
behaviors can be precarious when the user loses interest in
interacting with the robot. Finally, in order to achieve the
best possible classification performance, more sophisticated
machine learning models need to be incorporated.
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