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Learning from Humans to Generate Communicative Gestures
for Social Robots

Nguyen Tan Viet Tuyen, Armagan Elibol, and Nak Young Chong

Abstract— Non-verbal behaviors play an essential role in
human-human interaction, allowing people to convey their
intention and attitudes, and affecting social outcomes. Of
particular importance in the context of human-robot interaction
is that the communicative gestures are expected to endow social
robots with the capability of emphasizing its speech, describing
something, or showing its intention. In this paper, we propose
an approach to learn the relation between human behaviors
and natural language based on a Conditional Generative
Adversarial Network (CGAN). We demonstrated the validity of
our model through a public dataset. The experimental results
indicated that the generated human-like gestures correctly
convey the meaning of input sentences. The generated gestures
were transformed into the target robot’s motion, being the
robot’s personalized communicative gestures, which showed
significant improvements over the baselines and could be widely
accepted and understood by the general public.

I. INTRODUCTION

Non-verbal behaviors play an essential role in human-
human interaction. Psychological studies have shown that
people tend to use facial and bodily expressions during the
conversation to signal their intention and attitudes [1], which
influence social outcomes. It is convinced that social human-
robot interaction should be treated in the same way the
interaction occurs between people [2]. By adding the robot’s
social cues to its interaction behavior, the robot could help
improve the interacting partner’s perception and makes the
social interaction outcomes enhanced [3], [4].

Toward understanding the effect of social cues, generat-
ing communicative gestures has been received increasing
attention in the social robotics domain. In [5], the authors
proposed Behavior Expression Animation Toolkit (BEAT),
which receives the input text to be spoken and releases the
non-verbal behaviors. In the BEAT toolkit, the mapping from
text to gesture is based on a set of rules derived from state
of the art in the non-verbal conversational behavior research.
Although this approach can produce various gestures, the
fundamental motions must be designed manually. The model
proposed in [6] accepts both the lexical content of utterances
and audio signals as the inputs to generate the non-verbal
behaviors for virtual agents. Similar to the BEAT toolkit, the
basic behaviors must be designed in advance. In contrast with
the rule-based approach [5], [6] in which the robots’ gestures
are limited to a set of rules, the data-driven approach [7], [8]
endows robots with the capability of learning social gestures
through human data. In [7], the authors proposed the 3D pose
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generation model receiving speech signal and/or text input to
generate the gestures corresponding to certain specific words.
Afterward, it is converted to the target robot joint angles.
Instead of generating robots’ gestures to convey the meaning
of specific words, the bidirectional relation between the
human body motion and natural language was investigated
in [8]. The authors demonstrated the capability of their
approach to generating text descriptions for a variety of
human body motions. Conversely, given the text description
input, the model produces the gestures displayed on the
Master Motion Map (MMM) model. Since the generated
actions are defined in joint space with respect to the MMM
joint configuration, it is difficult to utilize this approach on
the other robots whose kinematic structures are different
from the MMM framework.

In this paper, we aim at generating communicative gestures
for social robots taking into account the meaning of the
whole sentences uttered by robots. Indeed, the generated
gestures are defined in 3D Cartesian space, allowing them
could be effectively implemented into a variety of social
robot platforms. In order to attain this objective, the proposed
approach is based on Conditional Generative Adversarial
Network (CGAN) [9], an extension of Generative Adversar-
ial Networks (GANs) [10] with an additional input condition,
to generate communicative gestures when synthesizing the
verbal content of speech. Recently, GANs have been success-
fully applied to a variety of domains, especially for image
generation tasks [11]. GANs include the Generator and
Discriminator networks which are simultaneously trained and
updated. The Generator tries to create the samples imitating
the training data distribution, while the Discriminator tries to
distinguish between generated samples and real data of the
training set. Although GANs have received considerable at-
tention across different disciplines, generating robot motions
with GANs is seldom explored [12] since this problem often
involves high-dimensional data with complex dynamics. This
paper extends the application of GANs for generating social
robots’ non-verbal actions when synthesizing their verbal
content of speech.

The rest of the paper is organized as follows. In Section
II, the proposed model of generating communicative robot
gestures is described in detail. In Section III, our approach
is validated on the publicly available dataset, which is further
supported by experiments with a real robot. Finally, we draw
some conclusions and describe the direction of our future
work in Section IV.



Fig. 1: The designed model based on CGAN for generating gestures af conditioned to the input descriptions d.

II. METHODOLOGY
Fig. 1 illustrates the proposed approach based on CGAN.

The model consists of Generator G and Discriminator D.
Firstly, ar = [S1, S2, S3, ..., ST ] denotes a real action from
the training data that contains a sequence of skeleton frames
S over a period of time T . Here, the motion ar contains 3
channels representing its joint positions using the Cartesian
x, y, z coordinates in 3 dimensions. On each channel, the
horizontal axis represents the time sequence of skeleton
frames, while the vertical axis shows the spatial distribution
of joints at a certain timestamp. This representation of
action enables the convolutional neural network to capture
the spatial and temporal information of motion at the same
time [13]. On the other hand, d = [w1, w2, w3, ..., wk] is a
natural language sentence composed of k words describing
the action ar, which is fed into the Embedding Description
network. The output vector e ∈ Rne from this model repre-
sents the meaning of the given text d. Then, the embedding
vector e is concatenated with the noise vector z ∈ Rnz before
being fed into the G model. Finally, the fake action af is
generated via af ←− G(z, e) having the same dimensions as
the sample ar, where af = [S′1, S

′
2, S
′
3, ..., S

′
T ] consists of

T poses. The action af can be transformed into the target
robot’s motion, as shown in Fig. 2.

The embedding vector e is also fed into D. Here, with
the same action description input, the Discriminator tries
to differentiate between the real action ar and the fake
gesture af by considering e. The Generator G generates more
realistic actions to beat the Discriminator. Specifically, D and
G play the min-max game on the objective function given
by Eq. 1.

min
G

max
D

V (D,G) = Ear,e∼pdata(ar,e) [logD(ar, e)] +

Ee∼pdata(e),z∼pz(z) [log(1−D(G(z, e), e))]
(1)

The remainder of this section will explain the proposed
model in more detail.

A. Embedding Description

In order to encode the input description into the fixed-
length embedding vector e, which efficiently captures the
meaning of the whole sentence, d = [w1, w2, w3, ..., wk]
is fed into the Embedding Description. Here, we use the
encoder phase of the skip-thoughts model [14]. The output
vectors from this model effectively represent the semantics
and syntax of the sentence to be encoded [14].

The hidden layer hk represents the sequence of words
{w1, ..., wk}. hk is calculated by Eq. 2, where ck is the
word embedding of wk, W , U are the weight matrices, �
denotes a component-wise product, zk and rk represent the
update gate and reset gate of Gated Recurrent Unit [15],
respectively. The hidden state hk captures the meaning of
the whole sentence d, this value is then compressed into
a smaller dimensional vector e before being fed into the
Generator and Discriminator model.

hk = (1−zk)�hk−1+zk�tanh(Wck+U(rk�hk−1)) (2)

B. Generator Network

The proposed model is based on the transposed convo-
lutional network which has been shown to be useful in
many different research contexts such as image generation
[16], [17], video generation [18], and audio generation [19].
Motivated by the above-mentioned applications, this paper
investigates the convolution operation toward an autonomous
generation of communicative robot actions. Firstly, the noise
vector z is sampled from the normal distribution N (0, 1).
The vector z is then concatenated with the embedding vector
e from the previous step before being fed into the Generator
model. The model G consists of a fully connected layer to
reshape the input and four fractionally-strided convolutions
to up-sample the data to the output target size. On the
first three convolutional layers, batch normalization plays
an important role in stabilizing the learning process. This



Fig. 2: The transformation model [21] converts generated
actions in 3D Cartesian space to the robot joint motions.

operation normalizes the input to each unit to have zero mean
and unit variance. The output values are then followed by
the Rectified Linear Unit (ReLU) activation [20]. The last
convolutional layer transposes the neuron units to the output
target size. Here, tanh activation function is applied before
producing the action af .

C. Discriminator Network

The Discriminator D consists of five convolutional layers.
The first one takes an action (either from the real training
data ar or action af from the Generator G) as the input.
Similar to the architecture of G, batch normalization and
ReLU activation functions are applied to all layers except
the output. At the fourth layer, the embedding vector e is
concatenated with the output of the convolutional layer. At
the last layer, the results pass through a sigmoid function to
produce the output value, which represents the probability
that the input action comes from the training data.

The objective function in Eq. 1 is optimized using the
gradient-based approach. It is solved in two steps; update the
Discriminator and then followed by the Generator. Firstly, D
is trained to maximize its ability to differentiate between the
real sample ar and the generated one af , referencing the
input condition e. This is done by training the Discriminator
to output 1 when the input is the real action ar. Otherwise,
D releases 0 if the model receives the action af as the input.
Here, the binary cross-entropy is applied to compute the
miss-classification error of the Discriminator:

LD = log(yr) + log(1− yf ), (3)

where yr ←− D(ar, e) is the output probability assigned
by D for a pair of action ar and embedding vector e of text
description d. Similarly, yf ←− D(af , e) is the output sigmoid
from D for the af and e input. Thus, the Discriminator
aims to maximize yr while minimizing yf . Specifically, the
parameters of D are updated while keeping the parameters
of G constant.

In the second step, the Generator is trained to maximize
its ability to fool the Discriminator D with the loss function
as shown in Eq. 4. Hence, the goal is to maximize the
output probability yf . The parameters of G are adjusted
while keeping the parameters of D to remain unchanged.

LG = log(yf ) (4)

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Dataset

To demonstrate the validity of the proposed model, we
used the Karlsruhe Institute of Technology (KIT) whole-body
motion dataset [22] and the corresponding natural language
annotations [23]. The KIT motion dataset provides a rich
corpus of human whole-body motion in a wide range of
motion types. The selected data contains 2, 127 motions
captured by 53 optical markers in 3D at the frequency of
100 Hz. Since this paper focuses on generating the motions
for the humanoid robot Pepper, only 20 markers capturing the
motion of human upper body and knees were selected out as
the training data as shown in Fig. 2. The knees were included
in computing the robot hip joint angles. Each selected action
ar = [S1, S2, S3, ..., ST ] consists of a sequence of skeleton
frames over a period of time T . At the frame i (i ≤ T ),
Si = [x1, x2, .., x20, y1, y2, .., y20, z1, z2, .., z20] (Si ∈ R60)
is the 60 dimensional vector that defines the positions of 20
joints in Cartesian space.

B. Preprocessing

Before feeding the dataset into the model, the prepro-
cessing steps were conducted on the training data. The
spelling errors in natural language annotations describing the
demonstrative actions were corrected. With the 5, 136 usable
annotation samples from the dataset (one action could be
associated with more than one annotation), each description
d was associated with the corresponding motion ar. In order
to encode the embedding vector representing the meaning
of natural language description as described in II-A, the
skip-thoughts model trained with the BookCorpus dataset
[24] was utilized. As the BookCorpus dataset contains a
collection of 11, 038 books in 16 different genres, it can
be regarded that the training data does not suffer any bias
towards any particular domain. Then, the encoder phase
of the skip-thoughts model was used for generating the
embedding description, as mentioned above. In terms of
the demonstrative actions, we constructed joint values with
respect to the top-chest coordinates. On the other hand,
the size of the demonstrators is different from the training
samples. Therefore, the actions were normalized to have the
variance 1. Afterward, the motions were downrated to 10 Hz
and padded to have an equal length of 240 frames. In total,
51, 360 pairs of motions and descriptions were obtained. We
split it into 90% for training and 10% for testing.

C. Evaluation Metric

Let us consider that ar = [S1, S2, S3, ..., ST ] is the
real motion associated with the input description d. af =
[S′1, S

′
2, S
′
3, ..., S

′
T ] is the generated action from the model G

given d. In order to quantitatively validate af , we evaluate
how close the motion sequence af is to the real action ar
over the whole time sequence T . Specifically, covariance
with temporal hierarchical construction [25] was utilized to
encode the action ar and af into the corresponding feature
vector Cr and Cf , respectively, using Eq. 5. Here, S is the



Fig. 3: Generated actions visualized using Autodesk 3DS
Max: the Generator model imitated the human joint

configuration to yield a natural human posture.

Fig. 4: Key poses of action for “A person waves with its
right hand”. The left skeleton represents the real training
data ar, while the right shows the generated one af . The

similarity between two gestures is 0.8841.

Fig. 5: Comparison between real data ar and generated one
af given the input “A person waves with the left hand”.

The similarity between ar and af is 0.7675.

sample mean of Si computed over the time T and ᵀ repre-
sents the transpose operator. Covariance C ∈ Rnc efficiently
represents the 3D joint movements over the time sequence
by a fixed-length vector. This feature descriptor has been
widely used for action recognition in both supervised [25]
and unsupervised learning tasks [26]. With the calculated
vectors Cr ∈ Rnc and Cf ∈ Rnc , the similarity between ar
and af was measured by the cosine distance between them
given in Eq. 6. The similarity score 1 means that they are
exactly the same vectors.

C =
1

t− 1

T∑
i=1

(Si − S)(Si − S)ᵀ (5)

Similarity(Cr, Cf ) =
Cr · Cf

||Cr|| ||Cf ||
(6)

D. Identification of Human Joint Spatial Configuration

The motions and the corresponding natural language anno-
tations from the training set were fed into the designed model
with the batch size 100. The Adam optimizer [27] was used
at the learning rate 2 × 10−5 for both the Generator and
Discriminator network. The model was trained until Epoch
1, 200. During the first 30 epochs, only the Discriminator was
trained. After that, both D and G were sequentially trained.
In order to monitor intermediate motions of af , the same
description d and noise z were given to G during the training

process. Fig. 3 shows the first frame S′1 of each generated
action.

At the beginning of the training phase, G could not capture
the spatial configuration of the training samples. Because of
that, the generated gestures at Epoch 50 are totally different
from the shape of the human body. Starting from Epoch 100,
G ameliorated the human joint configuration coordination
problem and produced more natural human-like poses. At
Epoch 300, the generated pose was well-proportioned, as
seen in Fig. 3. Hence, throughout the training process, the
Generator G was able to learn the coordination of human
joint configurations. By the end of the training phase, G
could generate the human body properly and symmetrically.

E. Generated Gesture Conditioned to Input Description

To demonstrate that the Generator model is able to produce
the communicative gestures given the verbal content of
speech, different text descriptions were tested. By feeding the
sentence “A person waves with its right hand” and “A person
waves with the left hand” which are included in the training
dataset, the results of the real gestures and the generated ones
are shown in Figs. 4 and 5, respectively. It can be seen that
the motions produced by our proposed network are similar to
the training data. However, the corresponding pair of poses
on each frame is different, indicating that our G model does
not simply memorize and reproduce the training data.

Our experimental results indicated that the embedding
vectors well captured the meaning of description, and the
conditional input efficiently controlled the generated data.
The following texts “Someone over there is waving with their
both two hands” and “They are taking a deep bow to show
their respect” were modified from the original descriptions
while keeping their meaning of “waving both hands” and
“make a bow” intact. The produced gesture in Fig. 8a looks
like a person waves with his/her two hands. Similarly, Fig.
8b represents a sequence of frames as a person is collapsing
their body downward while the arms are kept lower than
the hip. The action is ended with an upright body posture.
In the training data, the joint positions were constructed
with respect to the top-chest coordinates. As a result, the
Generator G always tries to keep the position of top-chest
the same throughout the frame sequence, as shown in Fig.
8b.

For the quantitative evaluation of the generated actions,
starting from Epoch 800, the descriptions d from the testing
data were fed into the Generator model. The generated
motion af and the ground truth sample ar were plugged into
Eq. 5 and Eq. 6 for measuring their similarities. Additionally,
instead of representing the actions by the 3-channel matrix
as mentioned in II, we tested the proposed model with a
single channel approach. Specifically, the action ar and af
were described by a 2D matrix. Here, the horizontal axis
captures the time sequence of action, while the vertical axis
covers the human joints in the x, y, z coordinates. With this
representation of action, the output layer of G and the input
layer of D in Fig. 1 were modified to a single-channel matrix,
while keeping the other parameters of the network remain



Fig. 6: The average similarity between the generated and
real actions with the 1 channel and 3 channel models.

Fig. 7: The distribution of similarity values between
generated and real gestures at Epoch 1, 200.

unchanged. It is then followed by the same training and
testing procedures as conducted with the 3-channel approach.
Fig. 6 shows the average similarity score between the real
actions of testing data and generated actions produced by the
single and 3 channel approaches.

Overall, the performance of both models was improved
over the training time. However, the actions created from
the 3-channel network always yield higher accuracy than
the single-channel approach. Indeed, by representing the
motion by 3 channels corresponding to its 3D Cartesian
coordinates, the similarity score gradually increases over
the training period. Fig. 7 shows a closer look at Epoch
1, 200 for the distribution of similarity scores. The result
indicated that the 3-channel network produces actions more
similar to the real samples than the single-channel system.
Thus, it is convinced that the 3-channel network captures
the spatial and temporal information of actions better than
the single-channel method. The reason is that by separating
the 3D joints into the individual coordinates, the spatial
relations between them could be detected faster than the
single-channel representation. Consequently, the Generator
could receive more informative feedback for optimizing its
generated data.

F. Transforming Generated Gesture into the Target Robot

The Generator network produces actions defined in the 3D
Cartesian space. Through the transformation model, it can be
converted to a set of corresponding joint angles subject to the
target robot physical constraints. Figs. 8a and 8b show the
generated actions defined by the human joint positions, while
Figs. 9a and 9b represent the corresponding gestures of the

Pepper robot. In order to evaluate the quality of the robot’s
gestures generated by our approach compared to the Pepper
robot’s NAOqi API (as a baseline for comparison) 1, the same
input descriptions were fed to both systems. The generated
action are shown in Figs. 10a and 10b, respectively.

As can be seen from Fig. 9a, the Pepper robot’s action well
expressed the original meaning represented by the skeleton
model in Fig. 8a. In order to synchronize with the text
description “Someone over there is waving with their both
two hands”, the Pepper robot is gradually moving its two
hands over the shoulder and then waving. In contrast, as
shown in Fig. 10a, the Pepper robot’s NAOqi API ALAn-
imatedSpeech produced only a slight hand movement to
support the given sentence, which was a difficult sign to
understand. Fig. 9b shows the generated robot’s gesture from
the proposed approach given the text “They are taking a
deep bow to show their respect”. The result shows that
the action looks like Pepper is collapsing its upper body
while its two hands remained unchanged. Compared to the
gestures produced by our proposed approach, most of the
actions produced by ALAnimatedSpeech are not related to
the text description. The motions shown in Fig. 10b can be
taken in such a way that a person is describing something,
which may lead to misperception. The experimental results
showed that the connection between the Pepper’s hand-
crafted gestures and the given text does not fitting the
situation due to the fact that the NAOqi API uses a set
of gestures manually designed by animation experts. It is
often the case that the Pepper robot’s gestures are randomly
launched if some specific keywords are not detected from
the given text. As a result, the generated actions shown in
Fig. 10a and Fig. 10b are not significantly correlated with the
given sentence. Instead of focusing on specific keywords, in
our approach, the encoded vectors capture the semantics and
syntax of the whole sentence. This information is used as
the determining condition to control the generated gestures.
Therefore, the robot’s gestures generated by our approach
more appropriately fits the input descriptions.

IV. CONCLUSION AND FUTURE WORK

In this paper, we proposed a new model of generating
communicative gestures for social robots. The model was
based on a CGAN constructed by the convolutional net-
work. Our approach receives speech text as the determining
condition to generate co-speech actions. To demonstrate the
validity of the proposed approach, the model was trained
on the publicly available dataset. The experimental results
indicated that our model could imitate the human joints
distribution from the training data and generate human-like
gestures. The generated actions efficiently emphasize the
meaning of input description and ensure that the actions
and the ground truth data are as similar as possible. The
generated motions were then transformed into the target
robot motions. In a series of real robot experiments, it was
shown that the communicative robot gestures created by our

1http://doc.aldebaran.com/2-5/naoqi/audio/alanimatedspeech-api.html



(a) “Someone over there is waving
with their both two hands”

(b) “They are taking a deep bow
to show their respect”

Fig. 8: Key poses of actions by the G network.

(a) “Someone over there is waving
with their both two hands”

(b) “They are taking a deep bow to
show their respect”

Fig. 9: Pepper’s key poses by the proposed model.

(a) “Someone over there is waving
with their both two hands”

(b) “They are taking a deep bow to
show their respect”

Fig. 10: Pepper’s key poses by the NAOqi API.

model more appropriately fit the given input sentence than
those produced by the robot’s existing module available on-
board. By considering the relation between human gestures
and natural language for generating social robot’s actions,
it is believed that the generated gestures could be more
understandable and acceptable to the general public. In our
future work, the effect of emotions on the communicative
gestures will be investigated.
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