
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title 抽象意味表現の構文解析と生成に関する研究

Author(s) VU, Trong Sinh

Citation

Issue Date 2020-06

Type Thesis or Dissertation

Text version ETD

URL http://hdl.handle.net/10119/16721

Rights

Description
Supervisor: NGUYEN, Minh Le, 先端科学技術研究科,

博士

A Study on Abstract Meaning Representation

VU Trong Sinh

Japan Advanced Institute of Science and Technology

Doctoral Dissertation

A Study on Abstract Meaning Representation

VU Trong Sinh

Supervisor : Professor NGUYEN Le Minh

Graduate School of Advanced Science and Technology
Japan Advanced Institute of Science and Technology

Information Science
June, 2020

Copyright © 2020 by VU Trong Sinh

Abstract

Humans are born with the ability to communicate with their natural language. Com-
puting machines, on the other hand, only understand several specific programming
languages, with a limit of expressions. To bridge the gap between human languages
and computer languages, semantic representation is one such a solution, with the ability
to convert natural language utterances into machine-understandable forms. Many se-
mantic schemes have been introduced and developed, such as Combinatory Categorial
Grammar (CCG), Groningen Meaning Bank (GMB) or Abstract Meaning Represen-
tation. Two traditional problems of semantic representations are producing them from
natural language (parsing) as well as producing natural language from them (gen-
eration). In this thesis, we present our study in Abstract Meaning Representation
(AMR) Parsing and Generation, which are showing lots of potential in the computa-
tional linguistics community recently. We also present our first attempt on the domain
adaptation in parsing and generation for legal text.

In the first part of our thesis, we present our AMR-to-text generator incorporat-
ing the self-attention mechanism. Motivated by the domination of the Transformer
architecture in various Natural Language Processing tasks, e.g. machine translation,
text summarization, we adopt its core component - the self-attention - to build our
generation models. We conduct experiments on both sequence to sequence and graph
to sequence strategies, which are dominating in solving this problem. Our proposed
method obtains competitive results on a benchmark AMR dataset, with an improve-
ment of 3.2 BLEU score over the baseline sequence-to-sequence model.

Despite several developments in AMR parsing and generation for text in the gen-
eral domain, current methods for these tasks still struggle in dealing with the legal
domain. The legal text is often structurally complicated, consists of longer sentences
and contains specific terminologies that are rarely seen in general-domain text. This
also causes lots of difficulties in natural language understanding in general, and AMR
parsing in our study. In the second part of our thesis, we provide a literature survey
over different methods in AMR parsing and show their performances on analyzing legal
documents. We conduct empirical experiments of various AMR parsers on a benchmark
AMR dataset with various ranges of sentence length, and our annotated legal dataset.
Our results show the current limitations and also open a room for improvements of
current parsing techniques for legal domain adaptation.

For the generation direction, we observe that text generated from AMR using current
deep learning models usually become awkward with lots of ”out of vocabulary” tokens.
In the second part of our thesis, we propose some modifications in the training and
decoding phase of the encoder-decoder AMR generation model to have a better text
realization. Our model is tested using an annotated legal dataset extracted from the
English version of the Japanese Civil Code, showing an improvement compared to the
baseline model.

To summarize, our study in AMR parsing and generation along with the legal do-
main adaptation contributes to the literature of semantic representation. Despite some
improvements and findings, our work still remains specific drawbacks. Since our first
results are still preliminary, we figure out several ideas to improve our performance in
the future.

Keywords: Abstract Meaning Representation, Deep Learning, Semantic
Parsing, Legal Domain, Text Generation.

Acknowledgment

The small contributions of this thesis to the literature remind that this study cannot
be completed without the support of many people.

First, I would like to deeply thank my supervisor, Professor Nguyen Le Minh, for
his support and motivation. He gave me a lot of valuable comments, advice, and
discussion, which guide me to approach my research problem. He always encourages
me with great enthusiasm and encouragement not only in my research but also in many
other aspects of the academic career. I still remember one time, in a late evening when
I sent my manuscript for him to review before submitting to a conference, he spent
nearly the whole night to help me edit and finish the manuscript until the conference
deadline. Without his guidance and inspiration, I would have never finished my work.

I appreciate useful comments from committee members: my second supervisor Pro-
fessor Satoshi Tojo, my sub-theme advisor Associate Professor Kiyoaki Shirai, Asso-
ciate Professor Shinobu Hasegawa, and Associate Professor Ashwin Ittoo. Through
the discussion, they pointed out the limited points of my research in several aspects
and provided suggestions for improving my thesis.

I must thank my collaborators in Nguyen’s Laboratory for their useful discussions
during weekly seminars. I enjoyed fascinating discussions with their clever minds,
which inspire several interesting ideas for my research. I love the friendly working
atmosphere in our laboratory, in that members can freely discuss research questions
and assist together to find out appropriate solutions. I learned many things from my
collaborators, especially the former students Dr. Nguyen Minh Tien, Dr. Phan Viet
Anh, Dr. Tran Van Khanh and also my tutor Dr. Nguyen Tien Huy.

I want to thank all members of the Vietnamese Community. Thanks to them, I can
adapt my lifestyle quickly when I first come to Japan. Another special thank to our
Vietnamese Soccer Club, by playing soccer every week, I could maintain my attitude
and physical health to avoid stress in doing my research.

Last but not least, I would not be who I am today without the love, encouragement,
and unconditional support from my family. Especially, I would like to express the
deepest appreciation to my wife for her love and inspiration during my Ph.D. time.
She brings a little angel, Suki-chan, to my life, takes care of her and always be on my
side during the difficult years.

There are also many other people I have to thank, but it is difficult to list all their
names. I will keep all of you in my mind with my best regards.

The work in this dissertation was financially supported by the Vietnamese Govern-
ment Scholarship (Project 911) and the Japanese JST CREST Grant Number JP-
MJCR1513. By working in the CREST project, I also have the chance to experience
intensive research in various areas, which broadens my viewpoint a lot.

Vu Trong Sinh

Contents

1 Introduction 1
1.1 Research Direction . 1

1.1.1 AMR Generation with the Self-Attention Mechanism 2
1.1.2 Legal Domain Adaptation . 2

1.2 Dissertation contributions . 4
1.3 Dissertation Outline . 4

2 Preliminary 6
2.1 Abstract Meaning Representation (AMR) 6
2.2 AMR Datasets . 8

2.2.1 Benchmark Dataset . 8
2.2.2 Legal Dataset . 9

2.3 Parsing and Generation Evaluation . 10
2.3.1 Parsing Evaluation . 10
2.3.2 Generation Evaluation . 11

2.4 Deep Learning for AMR Parsing and Generation 12
2.4.1 Encoder-Decoder Architecture 12
2.4.2 The Rise of Attention . 15

2.5 Chapter Summary . 17

3 AMR Generation with Self-attention Mechanism 18
3.1 Introduction . 18
3.2 Related Works . 19
3.3 The incorporated self-attention mechanism 21

3.3.1 Our baseline model . 21
3.3.2 Self-attention in the sequence-to-sequence model 21
3.3.3 Self attention in the graph-to-sequence model 23

3.4 Experiments and Results . 24
3.4.1 Dataset and Experiment setup 24
3.4.2 Experimental results . 25

3.5 Analysis . 26
3.5.1 Effect of the input size . 26
3.5.2 Error Analysis . 29

3.6 Chapter Summary . 29

4 AMR Parsing for Legal Document 31
4.1 Introduction . 31
4.2 AMR Parsing - Main Approaches . 32

4.2.1 Alignment-based parsing . 33

i

4.2.2 Grammar-based parsing . 35
4.2.3 Neural-based parsing . 37

4.3 Experiments . 39
4.3.1 Datasets . 39
4.3.2 Metrics for Evaluation . 40
4.3.3 Experimental Results and Discussions 40
4.3.4 Error Analysis . 42

4.4 Chapter Summary . 44

5 Legal Text Generation from Abstract Meaning Representation 46
5.1 Introduction . 46
5.2 Preliminaries . 47

5.2.1 Deep learning approaches in AMR-to-text Generation 47
5.2.2 The baseline model . 47

5.3 Legal AMR generation . 47
5.3.1 Conditional training . 47
5.3.2 Decoding in legal style . 48

5.4 Experiments and Results . 49
5.4.1 Dataset Preparation . 49
5.4.2 Results and Analysis . 49

5.5 Chapter Summary . 50

6 Conclusion and Future Work 52
6.1 Conclusion and Main Findings . 52
6.2 Future Work . 53

Bibliography 54

Publications 65

ii

List of Figures

1.1.1 Number of papers about AMR in top NLP conferences through years . 2
1.1.2 Applications of AMR in Text Summarization and Machine Translation 3
1.1.3 An example of AMR Parsing and Generation 3
1.3.1 Dissertation Outline . 5

2.1.1 AMR in three formats: logical triples, PENMAN notation and graph
structure (from left to right) . 7

2.4.1 Encoder-decoder architecture for Neural Machine Translation 13
2.4.2 Encoder-decoder model with global attention 14
2.4.3 Transformer architecture . 16

3.2.1 Sequence to sequence model in NeuralAMR [1] 20
3.3.1 Sequence to sequence model with the incorporated self-attention layers

for AMR generation . 22
3.3.2 Graph state transition from gt−1 to gt 23
3.5.1 BLEU scores of Graph2Seq models when generating text from each

range of length . 27
3.5.2 BLEU scores of Seq2Seq models when generating text from each range

of length . 27
3.5.3 BLEU scores of Graph2Seq models when generating text from each

range of nodes number . 28
3.5.4 BLEU scores of Seq2Seq models when generating text from each range

of nodes numbe . 28

4.1.1 AMR Parsing and Generation in Legal Domain 31
4.2.1 Three main approaches in Abstract Meaning Representation parsing . . 32
4.2.2 Alignment between the words span ”New York City” and its correspond-

ing AMR fragment [2] . 33
4.2.3 Relation identifier: predicting the relation between two nodes: boy and

go-02 relying on the two concepts and their corresponding RNN states 34
4.2.4 The dependency tree (on the left) and the AMR graph (on the right)

corresponding to the sentence ”Private rights must conform to the public
welfare” . 35

4.2.5 Transition rules when parsing the sentence “The boy and the girl.” . . . 36
4.2.6 Sentence and AMR linearization in Ch-AMR 38
4.2.7 Sequence to graph transduction model 39
4.3.1 Statistic about common parsing errors 42

5.1.1 AMR graph for the sentence ”Unless otherwise provided by applicable
laws, regulations or treaties, foreign nationals shall enjoy private rights”. 46

iii

List of Tables

2.2.1 Statistic of AMR2.0 (LDC2017T10) corpus 8
2.2.2 An example of preprocessing and annotating in our dataset JCivilCode 9
2.2.3 VNCivilCode and JCivilCode statistic 10
2.3.1 Example of calculating Smatch score 11

3.1.1 AMR graph corresponding to the sentence ”Choose 3 from them to
submit to an assessment committee to assess.” in graph format and
Penman notation format . 19

3.4.1 Hyper-parameter settings for our proposed models 24
3.4.2 Results on LDC2017T10 test set in BLEU and METEOR scores 25
3.5.1 Output comparison among our proposed model with the baseline

Seq2Seq and Graph2Seq models . 29

4.2.1 The AMR-like sequence obtained from linearizing the graph correspond-
ing to the sentence ”How Long are We Going to Tolerate Japan?”, which
we extract from the dataset LDC2017T10 37

4.3.1 Statistic for our dataset JCivilCode . 39
4.3.2 Statistic of dataset LDC2015E86 and LDC2017T10 with our subsets

division . 40
4.3.3 Smatch scores on the divided subsets of LDC2017T10 41
4.3.4 Smatch scores and sub-scores on the dataset JCivilcode 41
4.3.5 Example of common error types: Incorrect concept identification

- Missing concept - Incorrect relation identification - Missing
attribute . 43

5.4.1 Statistics of the three dataset used in our experiments 49
5.4.2 Generation results in BLEU score, METEOR score and number of OOV

generated. The baseline Graph2Seq is trained on benchmark dataset
only. The next four lines show our proposed modifications, with and
without finetuning data. The last two lines are the results of two best
pretrained models with extra corpus. 49

5.4.3 Output comparison with an example from JCivilCode dataset 50

iv

v

Chapter 1

Introduction

1.1 Research Direction
Who did what to whom, where, when and how? These types of questions do not cause
any difficulties for human to answer in a given context, but they are very challenging
for computers to directly understand. For more than twenty years, intelligent lan-
guage processing heavily based on syntactic treebanks, e.g. Penn Treebank, Prague
Dependency Treebank. The syntactic information exploited from these treebank helps
natural language understanding systems analyze the grammar inside texts. However,
the lack of semantic understanding still causes lots of ambiguities. This leads to a
trend of moving from the analysis of the grammatical structure to sentence semantics
recently. Many semantic representations (SR) have been proposed, such as Universal
Conceptual Cognitive Annotation (UCCA) [3], Groningen Meaning Bank (GMB) [4],
Abstract Meaning Representation (AMR) [5]. In which, the AMR has shown great
impact and potential, gained lots of attention in the computational linguistics commu-
nity. Since first introduced in 2013 by Banarescu et al. [5], the number of papers about
AMR in top NLP conferences increases year by year. Figure 1.1.1 shows a detailed
statistic about this statement. One can easily find an AMR paper in ACL, EMNLP or
NAACL at this time. This confirms the interest of NLP researchers for this semantic
language.

Research about AMR can be categorized into various types:

• Parsing: analyzing a human language string and mapping it to an AMR graph
[6][7][8][9][10][11],

• Generation: generating a human language string from a source AMR graph
[12][13][1][14][15][16][17][18][19],

• Evaluation: designing metrics to evaluate the result of parsing or generation task
[20][21][22],

• Multilingual: developing the Propbank frameset and annotating AMR corpus in
different languages [23][24][25][26][27][28][29],

• Application: using AMR to solve other tasks in natural language processing
[30][31][32][33] [34][35] [36] [37] [38].

AMR can be applied as an intermediate meaning representation beyond human text,
help solve various NLP tasks, such as machine comprehension [38], machine translation

1

1.1Research Direction

0

2

4

6

8

10

12

14

16

18

20

2014 2015 2016 2017 2018 2019

ACL EACL EMNLP NAACL Semeval COLING IJCNLP LREC

Figure 1.1.1: Number of papers about AMR in top NLP conferences through years

[39][30], text summarization [31][34][35][36], question answering [37], event extraction
[32]. Figure 1.1.2 illustrates some typical ideas in applying AMR for summarization
and machine translation.

For AMR to be applied in those tasks, the problem of AMR Parsing and AMR-
to-text Generation are both important. In this thesis, we focus on these two tasks,
aiming to improve the performance of parsing and generation by using deep learning
techniques. We describe an example of AMR Parsing and Generation in Figure 1.1.3.

We also study the challenge of AMR adapting to the legal domain, where the text
is logically complicated with lots of long sentences and domain-specific terms. We use
English as our main language, due to the completeness in the Propbank dictionary as
well as the availability of a huge amount of training data.

1.1.1 AMR Generation with the Self-Attention Mechanism
One of the most successful approaches in the AMR-to-text Generation problem relies on
the encoder-decoder architecture. Previous works considered this problem as a trans-
lation problem and applied sequence-to-sequence models to ”translate” a linearized
AMR string into human language. Later, graph-to-sequence models were proposed
to reduce the information loss during the linearization process and achieve significant
improvement in the quality of AMR generation. In our work, we attempt to improve
this encoder-decoder approach by incorporating a self-attention mechanism. This work
is motivated by the success of the transformer network [40], in which the self-attention
(or multi-head attention) plays a crucial role, in various NLP tasks. On a standard
benchmark dataset, our incorporating method obtains comparative results comparing
to existing neural methods in the literature.

1.1.2 Legal Domain Adaptation
As mentioned in section 1.1, the legal text is often structurally complicated, and contain
specific terminologies that are rarely seen in general-domain text. This causes lots of

1.1Research Direction Applications

‣ Text Summarization (Liu et al., 2015)

summary
AMR graph:sentences:

Parse
sentence
AMR graphs:

The children told that lie

So
ur

ce

その うそ は ⼦子供 たち が つい た

sono uso-wa kodomo-tachi-ga tsui-ta

that lie-TOP child-and others-NOM breathe out-PASTTa
rg

et

Graph-to-graph
transformation:

tell

child lie

that

ARG0 ARG1

ARG0-of

tsuku

kodomo
tachi

sono

ARG1 ARG0

ARG0-of

‣ Machine Translation (Jones et al., 2012)

Generate
summary:

Parse AMR
graph:

Generate
translation:

Figure 1.1.2: Applications of AMR in Text Summarization and Machine Translation

I observed that the army moved quickly

move-01

observe-01

i

:arg0 :arg1

army quick-02

:arg0 :manner

AMR Generator

The army is moving quickly in my observation

I observe the army, they are moving quickly

Generating

Parsing

AMR Parser

Figure 1.1.3: An example of AMR Parsing and Generation

difficulties in both natural language understanding as well as generation. In this thesis,
we study the challenges of both AMR parsing and generation in the legal domain.

Specifically, for the parsing direction, we provide a literature survey over different
methods in AMR parsing, which we category in three groups, and show their perfor-
mances on analyzing legal documents. We conduct empirical experiments of various
AMR parsers on a benchmark AMR dataset with various ranges of sentence length,
and our annotated legal dataset. Our results show the challenges and also suggest
room for improvements of current parsing techniques for legal domain adaptation.

For AMR generation, we observe that text generated from AMR using current deep
learning models usually become awkward with lots of ”out of vocabulary” tokens. We
propose some modifications in the training and decoding phase of the encoder-decoder
AMR generation model to have a better text realization. Our model is tested using
the legal dataset above, showing an improvement compared to the baseline model.

1.3Dissertation Outline

1.2 Dissertation contributions
The main contributions of this dissertation can be summarized as follow:

• Legal Dataset JCivilCode : We extract the first four chapters in the Japanese
civil code (in the English version) and manually annotate in the format of AMR.
This is the first AMR dataset in the legal domain, rather than popular datasets
mainly taken from news, blog posts. Though the number of samples is still
small, this dataset helps develop the research in domain adaptation in the legal
domain. We conduct experiments of different AMR parsers in three main parsing
approaches on our annotated dataset to see the quality of legal text parsing. Our
results show the difficulties as well as suggest several ideas for future improvement
in AMR parsing for legal documents.

• Self-attention text generation from AMR graphs: We propose a trans-
former approach in converting an AMR graph into a natural language sentence.
We incorporate the self-attention mechanism into the encoder-decoder model in
both sequence to sequence and graph to sequence strategies. Evaluating by a
benchmark dataset, our method obtains comparative results comparing to exist-
ing neural models in the literature.

• Legal Style Text Generation: We propose two modifications in the training
and decoding phase of the neural graph to sequence AMR generation model.
With these modifications, we provide more constraints to tackle the problem
of generation from legal AMR. Our model is tested using JCivilCode dataset,
showing an improvement compared to the baseline model.

1.3 Dissertation Outline
We have introduced our research direction and presented the abstract of our work
in this Chapter. In the following chapters, we provide some necessary background
knowledge, then dwell on the details of the implementations of our methods. The
detail is as follow:

• In Chapter 2, we present an overview of the AMR with the definition, examples,
the datasets used in our thesis and the evaluation metrics. We also briefly describe
the encoder-decoder architecture with various types of attention mechanism in
this chapter.

• In Chapter 3, we present our approach for incorporating the self-attention mech-
anism to an AMR generation model.

• In Chapter 4, we report our empirical evaluation of different AMR parsing meth-
ods when applying to legal text.

• In Chapter 5, we present our modifications to the training phase and decoding
phase to generate legal text from AMR.

Finally, Chapter 6 concludes with a summary of our findings throughout the disser-
tation and the potential future directions of our research. Figure 1.3.1 summarizes this
thesis outline.

1.3Dissertation Outline

move-01

observe-01

i

:arg0 :arg1

army quick-02

:arg0 :manner

Self-attention
Mechanism

Neural
Encoder-decoder

Generator

Chapter 3
AMR Generation with Self-attention Mechanism

Training Data: LDC2017T10, Gigaword
Test Data: LDC2017T10Dataset

I observed that the army moved quickly

Chapter 4
Evaluation: AMR Parsing for legal text

Chapter 5
Generating Legal Text from AMR

Unless this article applies,
the controller must transfer its personal data
to a third country

transfer-01

:arg1

article

data

:arg1:arg0

country

ordinal-
entity

:poss

:arg2

:ord

:value

controller

obligate-01
:condition

personal-02

:arg1-of

apply-02

:arg1

this

-

3

:mod

:polarity
AMR Parser

* Alignment-based
* Grammar-based
* Neural-based

AMR Generator

+ Conditional Training
+ Legal Decoding

Training Data: LDC2017T10
Finetuning Data: VnCivilCode
Test Data: JCivilCodeDataset

General
Domain

Legal
Domain

Figure 1.3.1: Dissertation Outline

Chapter 2

Preliminary

In this chapter, we present an overview of the AMR with the definition, examples
of annotation in different formats. We introduce the datasets used in our thesis and
the evaluation metrics for both parsing and generation. Later, we briefly describe the
encoder-decoder architecture, with different types of attention that is originally used
in machine translation and adapt to AMR problems recently.

2.1 Abstract Meaning Representation (AMR)
The Abstract Meaning Representation (AMR) is a whole-sentence semantic represen-
tation with the ability of capturing relational semantics in that sentence, or “who-is-
doing-what-to-whom” in a graph structure. Among various semantic representations
being proposed [3][4], the major innovation of AMR is that it has been designed for
rapid large-scale annotation. It also has been used to annotate a large corpus of natural
language sentences, creating a semantics bank or SemBank [5]. This sizable sembank
is believed to lead to new works in natural language understanding (NLU), resulting in
semantic parsers that are as ubiquitous as syntactic ones, and support natural language
generation (NLG) by providing a logical semantic input [5].

AMR encodes the meaning of a sentence as a rooted, directed, edge-labeled, leaf-
labeled graph. Typically, the main verb of the source sentence will be chosen as the
root of the graph. Since each verb has various meaning and can be used in different
contexts, a sense ID will be assigned. Then every vertex and edge of the graph are
labeled according to this sense. For instance, consider the verb ”look” in two sentences:
”He is looking at his car”, and ”It looks like a gun”. In the first sentence, ”look” is used
to express the vision, so it will be labeled as look-01, with the looker (ARG0): ”He”
and the thing is being looked at (”ARG1”): ”his car”. But in the second sentence,
”look” means something seems/appears to be something (”look-02”), thus ”It” and
”like a gun” will be labeled as ”ARG0” and ”ARG1”, respectively.

There are three ways to represent an AMR graph:

• PENMAN notation: or more accurately ”Sentence Plan Language” [41], is used
to encode arbitrary graphs in the text format. This format is easy to read and
write by human, thus convenient to annotators to create their AMR datasets.

• Graph structure: suitable for a computer to store in the memory, e.g. for calcu-
lating the neighbors, descendants, siblings, etc.

6

2.1Abstract Meaning Representation (AMR)

• Logical triples: suitable for measuring the difference among AMRs, which we will
illustrate the evaluation process in the later part of this dissertation.

Figure 2.1.1 illustrates an example of AMR annotation for the sentence ”He is looking
at the car” with the three formats mentioned above. AMR abstracts away many surface
form of words in a sentence, e.g. the verb tense, quantity, etc. It also removes words
that do not contribute to the core meaning, e.g. the article, preposition.

 l / look-01
 :arg0 h / he
 :arg1 c / car
 :poss h

∃	l,	h,	c:	
instance(l,	look-			
01)	∧	instance(h,
he)	∧	instance(c,
car)	∧	arg0(l,	h)	∧	arg1(l,
c)	∧	poss(c,	h)
			

car

look-01
:arg0 :arg1

he
:poss

Figure 2.1.1: AMR in three formats: logical triples, PENMAN notation and graph
structure (from left to right)

In AMRs, each graph node is named by a variable, specified by a unique ID. This
variable represents the semantic concept, which can be a single word (e.g. he), a
PropBank verb sense (e.g. look-01) or a special keyword. The keywords in AMR
include: entity types (e.g. ordinal-entity, percentage-entity, date-entity), quantities
(e.g. distance-quantity, money-quantity), and logical operation (e.g. and, or). The edge
between two nodes is labeled by a relation types. According to Propbank dictionary,
there are more than 100 relation types, consisting of:

• Frameset argument, from ”:arg0” to ”:arg5”, following PropBank conventions

• Semantic relations, e.g. “:purpose”, “:manner”, ”:instrument”, ”:time”

• Quantity relations, e.g. ”:quant”, ”:unit”

• Date entity relation, e.g. ”:day”, ”:month”, ”:year”, ”:time”

• Listing relation, from ”:op1” to ”:op10”.
AMR also provides the inverse form of all relations by converting a relation R to

R-of (e.g. :ARG1 vs :ARG1-of, :purpose vs :purpose-of). Hence, if R is a directed
relation of two entities e1 and e2, we have R(e1, e2) ≡ R− of(e2, e1).

Currently, the AMR version does not support inflectional morphology for tense,
number and articles. It also has no representation for quantifier, e.g. ”all”. The
purpose of this exclusion is to speed up the annotation process and the authors state
that the syntactic representation could be embedded inside via an automatic post-
process.

It is necessary to emphasize that AMRs are semantic representation. Unlike syn-
tax, which can be represented as trees (e.g. dependency tree, combinatory categorial
grammar), semantics is best represented as a graph structure since an entity can have
multiple relations with more than one other entity in the sentence. This motivates
the development of new algorithms for handling semantic graphs, e.g. graph neural
network, graph to sequence learning which we also based on in our research.

2.2AMR Datasets

2.2 AMR Datasets
In this section, we provide the datasets information for both AMR Parsing and Genera-
tion that we use in our experiments. Since introduced in 2013 [5], several AMR datasets
have been annotated and published, e.g. ”The Little Prince” (2016), ”BioAMR”
(2016), ”LDC AMR Corpora” (2014, 2015, 2016, 2017). In which, ”LDC AMR Cor-
pora” are considered the benchmark datasets for AMR related tasks, due to their large
amount of samples and also the quality of annotation. We also introduce our legal
datasets JCivilCode and VNCivilCode in this section.

2.2.1 Benchmark Dataset
Following many other works in the literature, we use the benchmark dataset developed
by the Linguistic Data Consortium (LDC), the University of Colorado’s Computational
Language and Educational Research group, SDL/Language Weaver, Inc., and the In-
formation Sciences Institute at the University of Southern California. The version we
use in our research was released in 2017, namely LDC2017T10, or AMR 2.0 1. It
contains a semantic treebank (or sembank for short) of nearly 40,000 English natu-
ral language sentences from the source of newswire, discussion forum and other web
logs, television transcripts. The latest version of this dataset includes 59,255 samples
in total. LDC also introduced AMR 1.0 (LDC2014T12), which was common used by
previous research in AMR.

The data is collected from various sources, including discussion forums in the DARPA
BOLT and DEFT programs, transcripts; English translations of Mandarin Chinese
broadcast news programming from China Central TV; Wall Street Journal text, Xinhua
news texts (also in English translation); various newswire data from NIST OpenMT
evaluations and weblog text used in the DARPA GALE program. The table below
gives a summary about the number of samples splitted into training, dev, and test sets
for each dataset in the latest release LDC2017T10 as well as the total statistics.

Dataset Training Dev Test Totals
BOLT DF MT 1,061 133 133 1,327
Broadcast conversation 214 0 0 214
Weblog and WSJ 0 100 100 200
BOLT DF English 6,455 210 229 6,894
DEFT DF English 19,558 0 0 19,558
Guidelines AMRs 819 0 0 819
2009 Open MT 204 0 0 204
Proxy reports 6,603 826 823 8,252
Weblog 866 0 0 866
Xinhua MT 741 99 86 926
Totals 36,521 1,368 1,371 39,260

Table 2.2.1: Statistic of AMR2.0 (LDC2017T10) corpus

1https://catalog.ldc.upenn.edu/LDC2017T10

https://catalog.ldc.upenn.edu/LDC2017T10

2.2AMR Datasets

2.2.2 Legal Dataset
In our thesis, we study the domain adaptation for AMR Parsing and Generation in
the legal domain. Regarding this purpose, we collect data from several legal texts in
English version, i.e. the Japanese Civil Code and the Vietnamese Civil Code.

The first one, which we call JCivilCode, is collected from the Japanese Civil Code.
The Modern Japanese Legal System comprises of six codes: the Civil Code, the Com-
mercial Code, the Criminal Code, the Constitution of Japan, the Code of Criminal
Procedure, the Code of Civil Procedure. In which, the Civil Code was first created in
1896 and updated by time. In the current version, the Civil Code is divided into five
parts, each part contains chapters and each chapter contains articles. There are totally
1044 articles in the Civil Code. An article can be a single sentence, or a sentence with
multiple itemization, or multiple sentences. In our research, we extract the first four
chapters in Part I to annotate.

The pre-processing pipeline consists of the following steps: gathering articles, remov-
ing all article prefixes and article IDs, then splitting the article into sentences. Then,
we labeled each sentence with an ID containing article name, paragraph index and
sentence index. To annotate a sentence, we used the web-based editor provided by
ISI group 2. This editor provides a combination of command line, graphical interface
and the detailed guidelines. The Propbank frameset is already integrated in the search
engine to reduce the time to choose a proper sense of a word. A group of annotators
are given a list of article sentences and annotate corpus independently. After finishing
their individual works, the annotators will discuss together, choose the most appropri-
ate annotation and aggregate their outcomes into a single result (Table 2.2.2). The first
version of this dataset was introduced in 2017 [42] with 63 samples, and the revised
version was updated in 2018 with 128 samples [43]. This updated version contain the
first four chapters in Part I of the Japanese Civil Code. Each sample includes one sen-
tence and its corresponding AMR in Penman notation. Readers can follow this URL
address to find our dataset https://github.com/sinhvtr/legal_amr.

(Age of Majority) # ::id 4.1.1
Article 4 The age of majority
is reached when a person has
reached the age of 20.

::snt The age of majority is reached when
a person has reached the age of 20.

(r / reach-01
:ARG1 (a / age

:mod (m / majority))
:time (r2 / reach-01

:ARG0 (p / person)
:ARG1 (a2 / age

:quant (t / temporal-quantity :quant 20
:unit (y / year)))))

Table 2.2.2: An example of preprocessing and annotating in our dataset JCivilCode

The remaining dataset is created from the Vietnamese Civil Code (VNCivilCode).
We use two common AMR parsers, namely JAMR and CAMR, to automatically parse
the whole corpus. Each source sentence will provide two AMR graphs using these two

2https://www.isi.edu/cgi-bin/div3/mt/amr-editor/login-gen-v1.7.cgi

https://github.com/sinhvtr/legal_amr
https://www.isi.edu/cgi-bin/div3/mt/amr-editor/login-gen-v1.7.cgi

2.3Parsing and Generation Evaluation

parsers. Since this dataset is not verified by human experts, we call it the silver data
and only use for fine-tuning our model in chapter 5. Table 2.2.3 shows some overview
information about JCivilCode and VNCivilCode.

Table 2.2.3: VNCivilCode and JCivilCode statistic

VNCivilCode JCivilCode
Total number of samples 3,070 128
Average sentence length 29 31
Max sentence length 151 107
Average number of nodes in a graph 17 28
Max number of nodes in a graph 93 96
Vocabulary size 3,026 796
Total number of tokens 68,614 4,042

2.3 Parsing and Generation Evaluation
2.3.1 Parsing Evaluation
To measure the similarity of two semantic graphs, Cai et al. [20] introduced the Smatch
(Semantic Match) score. This score measures the level of element overlapping between
two input graphs by aligns variables from one graph to another and compares the
matching triples. Smatch score has been widely used in measuring the accuracy of
AMR parsers. Given the parsed graph H (hypothesis) and the gold annotation graph
G in Penman format, the Smatch metric operates in two steps. First, (i) it aligns the
variables in H and G in the best possible way, by finding a mapping function that
yields a maximal set of matching triples between H and G. Then (ii) it computes
Precision, Recall and F1 score based on the set of matching triples returned by the
alignment search.

We give an example of calculating Smatch score as follow: assume that a machine
generates the AMR graph of the sentence ”The boy eats the pizza” and the gold
standard AMR graph is the graph of the sentence ”The boy wants his pizza”.

Smatch score computes the F-score on the overall of two given graphs. To have a
deeper analysis of parsing performance, Damonte et al. [21] proposed a test-suite which
calculates F-score on various perspectives as follow:

• Unlabeled: the Smatch score computed on the predicted graphs after removing
all edge labels (e.g., :ARG1, :poss)

• No WSD: the Smatch score when ignoring Propbank senses (e.g., want-01 vs
eat-02)

• Name Entity: the F-score computed on the named entity recognition (every
:name roles)

• Wikification: the F-score computed on the concept related to definition in
Wikipedia (:wiki roles)

2.3Parsing and Generation Evaluation

Sentence The boy eats the pizza The boy wants his pizza

PENMAN
(a / eat-01

:arg0 (b / boy)
:arg1(c / pizza))

(x / want-01
:arg0 (y / boy)
:arg1(z / pizza)

:poss y)
Logical triples ∃a, b, c : instance(a, eat−

01) ∧ instance(b, boy) ∧
instance(c, pizza) ∧
arg0(a, b) ∧ arg1(a, c)

∃x, y, z :
instance(x,want −
01) ∧ instance(y, boy) ∧
instance(z, pizza) ∧
arg0(x, y) ∧ arg1(x, z) ∧
poss(z, y)

Alignments Matches Precision Recall F-score
a=x, b=y, c=z 4 4/5 4/6 0.73
a=x, b=z, c=y 0 0/5 0/6 0
a=y, b=x, c=z 1 1/5 1/6 0.18
a=y, b=z, c=x 0 0/5 0/6 0
a=z, b=x, c=y 0 0/5 0/6 0
a=z, b=y, c=x 1 1/5 1/6 0.18

SMATCH 0.73

Table 2.3.1: Example of calculating Smatch score

• Negation: the F-score on the negation detection (:polarity roles)

• Concepts: the F-score on the concept identification task

• Reentrancies: the Smatch computed on reentrant edges only (a node participates
in multiple semantic relations)

• SRL: the Smatch score computed on :ARG-i roles only

2.3.2 Generation Evaluation
Basically, the AMR graph abstracts away many surface form of words in a sentence,
e.g. the verb tense, quantity, etc. From a given graph, there are multiple possible
sentences represent the idea in that graph. However, in the benchmark AMR dataset,
there is only one sentence corresponding with one graph. This leads to the use of
machine translation metrics for evaluating AMR generation performances, instead of
other metrics used in image captioning or text summarization.

The most common approach to evaluate a text generator is to use the bilingual
evaluation understudy score, or BLEU for short [44], that originates from the machine
translation task. A perfect match results in a score of 1.0, whereas a perfect mismatch
results in a score of 0.0. Given a candidate sentence (hypothesis) c and a reference
sentence r, the core idea of BLEU is to count the number of matching phrases, or n-
grams (i.e. contiguous phrases consisting of n words), between c and r. This matching
number is then divided by the total number of n-grams in c to normalize the final result.
In most cases, this computation is done not only for one but for several values of n and
the their results are averaged subsequently to obtain the final one. A common choice
of n is 1, 2, 3, 4. BLEU metric is considered to use a modified version of the precision

2.4Deep Learning for AMR Parsing and Generation

score since machine translation systems often generate more words than the reference
text. There are no calculation of Recall in BLEU, instead, the authors introduced
“Brevity Penalty” to prevent very short candidates from receiving too high a score.
Other versions of BLEU such as clipping the count of candidate n-gram matches must
be made in order to make the resulting score more meaningful. In our work, we do
not discuss these modifications, readers are recommended to refer to Papineni et al.
[44] for the detail computation. We use the multi-bleu script in PERL language that
is commonly used in this field 3.

Another metric we use for evaluating the generation performance is METEOR [45],
which scores machine translation hypotheses by aligning and counting explicit word-to-
word matches between the translation and a given reference translation. Alignments are
based on exact, synonym, stem, and paraphrase matches between words and phrases in
the hypothesis and the reference. All matches are generalized to phrase matches with a
span in each sentence. Any word occurring within the span is considered to be covered
by the match. Alignment resolution is conducted as a beam search using a heuristic
based on specific criteria. Comparing to BLEU score, METEOR combines Precision
and Recall instead of BLEU’s brevity penalty, and METEOR matches between trans-
lation and references including semantic equivalents (e.g. synonyms, paraphrases).
METEOR is also capable of optimizing correlation with different types of human judg-
ments for each language thank to the ability to tune its parameters. Hence, METEOR
score shows better correlation with human evaluation, especially at the segment-level
of sentence. In our work, we use the METEOR version 1.5, latest released in 2020 4.

Taking an example of calculating METEOR score, given the human translated sen-
tence (reference): ”the US weapon will be handed over to the army within two
weeks” and the generated sentence (candidate): ”in two weeks US weapons will
give army”. We have:

length(reference) = 13, length(candidate) = 8
P = 5

8
, R = 5

13
, Fmean = 10×P×R

(9×P+R)
= 0.4

Fragment: 3 frags over 5 words, frag = (3− 1)/(5− 1) = 0.5
Discounting factor: DF = 0.5× (frag3) = 0.0625
METEOR score = Fmean × (1−DF) = 0.4× 0.9375 = 0.375

2.4 Deep Learning for AMR Parsing and Genera-
tion

In this section, we provide some background knowledge in neural encoder-decoder
architecture, along with the attention mechanism that is widely used in lots of NLP
tasks. Recent research in AMR parsing and generation also relies on this architecture
to build their models.

2.4.1 Encoder-Decoder Architecture
Introduced by Sutskever et al. [46], sequence to sequence (seq2seq) models opened
a successful era for machine translation using deep neural netwoks (Neural Machine

3https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/
multi-bleu.perl

4https://www.cs.cmu.edu/~alavie/METEOR/

https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
https://www.cs.cmu.edu/~alavie/METEOR/

2.4Deep Learning for AMR Parsing and Generation

Translation - NMT), rather than traditional methods mostly based on statistics. NMT
is a neural network that is trained in an end to end fashion for translating one language
into another. In seq2seq models, the idea is to have two recurrent neural networks
(RNNs) with an encoder-decoder architecture: read the input words one by one to
obtain a vector representation of a fixed dimensionality (encoder), and, conditioned on
these inputs, extract the output words one by one using another RNN (decoder). The
figure below shows an overview of the encoder-decoder architecture for NMT.

Figure 2.4.1: Encoder-decoder architecture for Neural Machine Translation

NMT directly models the conditional probability p(y/x) of translating a source sen-
tence (x1, x2, ..., xn) into a target sentence (y1, y2, ..., yn). A typical NMT includes
two core elements: An encoder which is responsible to compute the representation S
from the input sentence; A decoder which generates output words one at a time and
decomposes the conditional generation probability as:

logP (y|x) =
∑m

j=1 logP (yj|y<j, S)

One could parameterize the probability of decoding each word y(j) as:

P (yj|y<j, S) = softmax(g(hj))

where h(j) could be modeled as: h(j) = f(hj−1, S)
in which:

• g: a transformative function that produces the output as a vocabulary size vector

• h: a Recurrent Neural Network (RNN) hidden unit

• f : a function which computes the current hidden state given the previously one.

The training objective for the translation process could be framed as: Jt =∑
x,y∈D −logP (y|x)
The trouble with seq2seq is that the only information that the decoder receives

from the encoder is the last encoder hidden state, a vector representation that is like a
numerical summary of an input sequence. Thus, for a long input text, we unreasonably
expect the decoder to use just this one vector representation to output a translation.
Instead of just one vector representation, let’s give the decoder a vector representation

2.4Deep Learning for AMR Parsing and Generation

Figure 2.4.2: Encoder-decoder model with global attention

from every encoder time step so that it can make well-informed translations. Attention
was created to perform that.

The above figure illustrates an RNN based encoder-decoder architecture with atten-
tion. Where:

• h(t): The hidden target state

• c(t): The context vector from source side

• y(t): The current target word

• h(t): The attention hidden state

• a(t): The alignment vector

There are 2 types of attention, as introduced in Luong et al. [47]. The type of
attention that uses all the encoder hidden states is also known as global attention. In
contrast, local attention uses only a subset of the encoder hidden states.

Both two attention based methods above follow these common steps:

• Both attention types first take the hidden state h(t) at the top layer of a stacking
Long Short Term Memory (LSTM) network as their input.

• They derive the context vector c(t) to capture relevant source side information in
order to predict y(t). Basically, c(t) is the context built for every word depending
upon its alignment weights and hidden state of encoders.

• Compute h(t) by concatenating h(t) and c(t).

ht = tanh(Wc[ct;ht])

2.4Deep Learning for AMR Parsing and Generation

• The attention vector is transformed using the softmax layer to produce the pre-
dictive distribution. The softmax layer is commonly used in this circumstance to
help find the most probable word from all the available words in the vocabulary.

The global attention takes into account all encoder hidden states to derive the context
vector (c(t)). In order to calculate c(t), a variable length alignment vector a(t) has to
be computed. It is obtained by computing a similarity measure between the source
hidden state h(t) and the target hidden state h(t). The greater similar states in encoder
and decoder, the more the same meaning should be referred.

Alignment Vector (a(t, s)):

at(S) =
exp(score(ht,hs))∑′
s exp(score(ht,hs))

Where score(ht, ht) could be computed by dot product, general or concatenation.

2.4.2 The Rise of Attention
RNN with attention mechanism provided an effective translation architecture. How-
ever, some problems are still not solved, e.g. processing inputs (words) in parallel is
not possible. For a large corpus of text, a parallel computing mechanism increases
the translating time a lot. In 2017, Vaswani et al. [40] introduced the Transformer
network, which solves this problem by using Convolutional Neural Networks (CNN)
together with attention models.

The Transformer employs an encoder-decoder structure, consisting of stacked en-
coder and decoder layers. Given a list of vectors as input, the encoder passes these
vectors into a self-attention layer (or multi-head attention), then into a position-wise
feed-forward neural network, and then sends out the output to the next encoder. The
decoder uses masking in its self-attention to prevent a given output position from in-
corporating information about future output positions during training. It uses residual
connections around each of the sub-layers, followed by layer normalization [48]. Figure
2.4.3 illustrates the overall architecture of the Transformer network.

In detail, self-attention is a sequence-to-sequence operation: it takes a sequence of
vectors x = (x1, ..., xn) as input, and produce a sequence of vectors z = (z1, ..., zn) by
taking a weighted sum over all the input vectors:

zi =
∑

j wijxj

where the weight wij is not a parameter, it is derived from a function over xi and xj.
In the basic self-attention, every input vector xi is used in three different ways in the
self attention operation:

• It is compared to every other vector to determine the weights for its own output
zi (query)

• It is compared to every other vector to determine the weights for the output of
the j-th vector zi (key)

• It is used as part of the weighted sum to compute each output vector once the
weights have been established. (value)

2.4Deep Learning for AMR Parsing and Generation

Figure 2.4.3: Transformer architecture

Let’s denote new vectors for each role, by applying a linear transformation to the
original input. In practice, we add three weight matrices Wq, Wk, Wv and compute
three linear transformations of each xi, for the three different role. These controllable
weight matrices allow the self-attention to modify the incoming vectors to suit the
three roles they must play.

qi = Wqxi, ki = Wkxi, vi = Wvxi

w′
ij =

qTi kj√
k

wij = softmax(w′
ij)

zi =
∑

j wijxj

In the original paper[40], the author refined the self-attention layer by adding a
mechanism called multi-headed attention. For an input xi, each attention head produces
a different output vector zri . We concatenate these, and pass them through a linear
transformation to reduce the dimension back to k. This improves the performance
of the attention layer by expanding the model’s ability to focus on different positions
of the source sequence. Furthermore, multi-head mechanism gives the attention layer
multiple sets of Query/Key/Value weight matrices, enlarging the representation spaces.

2.5Chapter Summary

Unlike RNN networks, the self-attention network cannot naturally understand the
order of the words in the input sequence. Hence, the output of the self-attention
network could be the same if we shuffle the words in the input. That is why the authors
introduced Positional encoding method to encode the relative/absolute positions of the
input sequence as vectors and added them to the input embeddings. There are many
choices of positional encodings, by choosing a function f : N −→ Rk to map the positions
to real valued vectors, and let the model figures out how to interpret these encodings (in
the original paper[40], the author use sine and cosine functions of different frequencies).

At the time of introduction in 2017, the Transformer outperformed other NMT
approaches in translation quality while being more parallelizable, helps reduce training
time significantly. This succcess leads to a broaden applications of the Transformer
architecture in various tasks, not only in NLP field.

2.5 Chapter Summary
In this chapter, we already presented the necessary background knowledge for the
AMR problems. We introduced the AMR with definition, basic notations, illustration
examples and potential application in NLP. We introduced the AMR datasets used
in our experiment, including our annotated legal dataset JCivilCode. We provided
useful statistical information about these datasets as well as the evaluation methods
for both parsing and generation tasks that will be used in our experiments in the next
chapters. Recent development in deep learning techniques for AMR, i.e. the encoder-
decoder architecture and the transformer network, were also briefly described. In the
upcoming chapter, we will propose our first model for AMR-to-text generation using
the self-attention mechanism.

Chapter 3

AMR Generation with
Self-attention Mechanism

3.1 Introduction
As mentioned in Chapter 1, AMR can be applied as an intermediate meaning repre-
sentation to help solve various tasks in NLP, such as machine translation [39], text
summarization [31], or machine comprehension [38]. For applying in those tasks, the
AMR parsing and generation problems have to be done effectively. Comparing to a
number of methods proposed for the parsing task, there are not so many published
generation approaches. This generation problem is challenging because AMR graphs
abstracted away tense, number as well as functional words such as articles, preposi-
tions. In the example shown in Table 3.1.1, the AMR graph is parsed from the source
sentence: ”Choose 3 from them to submit to an assessment committee to assess.”. There
are two nodes expressing the concept assess-01, but the surface words corresponding to
them are different: assessment and assess. Several words are excluded from the AMR,
e.g. from, to, for and several nodes have reentrancies, e.g. assess-01, submit-01.

Recent methods for AMR generation problem are based on the success in deep neural
network with the encoder-decoder architecture, which is commonly used in machine
translation problems. Previous works considered the input for the encoder side could be
a sequence of AMR in the Penman notation ([13][1][15]) or a graph structure ([14][16]
[18][19]). Both these two approaches are capable of decoding natural text, but still
suffer from several types of error, e.g. word repetition, ungrammatical sentence, etc.

In this work, inspired by the transformer architecture introduced by Vaswani et
al. [40] in 2017 that achieved outstanding performance on machine translation task,
we investigate the use of its core component, the self-attention mechanism. Specifi-
cally, we attempt to incorporate this component to the encoder-decoder architecture in
order to generate text from AMR graphs. We conduct experiments on both sequence-
to-sequence model and graph-to-sequence model. Our experimental results show a
comparative BLEU score on the benchmark AMR dataset LDC2017T10, i.e. 18.36
and 19.45 BLEU score with sequence-to-sequence approach and graph-to-sequence ap-
proach, respectively.

18

3.2Related Works

Table 3.1.1: AMR graph corresponding to the sentence ”Choose 3 from them to submit
to an assessment committee to assess.” in graph format and Penman notation format

3.2 Related Works
In this section, we provide a brief summary of previous methods in AMR generation
using deep neural network approaches. Most studies in AMR-to-text generation regard
it as a translation problem and are motivated by the recent advances in neural machine
translation (NMT). The first NMT model for AMR generation was proposed by Pour-
damghani et al. [13]. Given an AMR graph in Penman notation format, the authors
converted that graph to a sequence of text through a linearization and simplification
process. For instance, the graph in the previous example can be linearized as follow:

choose-01 :ARG1 (thing :quant 3 :ARG1-of (submit-01 :ARG2 (committee :ARG0-of
(assess-01)) :ARG3 (assess-01 :ARG0 committee :ARG1 thing))) :ARG2 they :purpose
submit.

With these pairs of linearized AMRs and the corresponding sentences, the AMR
generation task could be treated as a translating a sequence from AMR language to
a sequence in human language. The authors implemented a phrase-based translation
model (PBMT), followed string-based statistical machine translation that ignored much
of the structure in both ”language” but provided a strong baseline.

Following this approach but instead of using phrase-based, Konstas et al. [1] pro-

3.2Related Works

posed the first neural model (NeuralAMR). Their method could be applied for both the
parsing and generation directions. The authors used an encoder-decoder architecture
with a LSTM neural network, which we illustrate in Figure 3.2.1. Since this model
required a huge amount of training data, Konstas et al. (2017) adopted a self-training
algorithm. Specifically, they first built a baseline parser with the labeled data only,
then used this parser to automatically produce millions of unlabeled sentences extracted
from a text corpus before training their main system. The AMR graphs obtained from
this process are then used as additional training data for both parsing and generation
system. Since many tokens in the training data do not appear in the vocabulary of
AMR, there is a risk of data sparsity which was addressed by Peng el al. [49]. To
tackle this problem, NeuralAMR adopts an anonymization algorithm. Specifically, the
subgraphs that represent open-class tokens (such as “country :name name :op1 United
:op2 Kingdom”) was first replaced with several kinds of predefined placeholders (such
as loc0) before feeding to the decoder. Then the corresponding surface tokens (such as
”United Kingdom”) would be recovered after decoding.

After the success of this neural method, Cao and Clark [15] factor the generation
process by leveraging syntactic information to improve the performance. However, both
the AMRs and the constituency graphs are linearized, which implies that important
parts of the graphs are unable to be represented well (e.g., coreference).Sequence-to-sequence model

Attention

Encoder Decoderinput output

know ARG0 I ARG1 (planet ARG1-of inhabit

<s>

I

know

the

planet

of

I
The
A
…

know
knew
planet
…

a
planet
man
…

…

inhabit
inhabited
was
…

ŵ = argmax

w

Y

i

p
�
wi|w<i,h

(s)�

k
n
o
w

A
R
G
0 I

A
R
G
1 (

h1(s) h2(s) h3(s) h4(s) h5(s)

[] [] [] [] []h1(s) h2(s) h3(s) h4(s) h5(s)

Figure 3.2.1: Sequence to sequence model in NeuralAMR [1]

Another neural-based method for AMR generation was proposed by Song et al.
[14]. The author incorporated a character-level LSTM over the characters of input
tokens and a copy network [50] on top of the decoder side. This architecture not only
prevented the data sparsity problem, but also helped generate the named entities, dates
and numbers effectively. The authors also proposed the first novel graph to sequence
model (Graph2Seq) for AMR generation, in which they encoded the AMR with a graph
state encoder, performing through a graph-state transition rather than normal hidden
state transition in a typical LSTM network. This graph encoder reduced the problem
of information loss through the linearization and anonymization process, especially

3.3The incorporated self-attention mechanism

when the graph becomes large. The author did not use a self-training strategy like
Konstas et al., instead, they used an external AMR parser call JAMR to automatically
annotate AMR. With two millions of external data samples, this graph to sequence
model achieved the state of the art result on the benchmark dataset LDC2017T10 in
the year of 2018.

In 2019, deep learning approaches continued to dominate in AMR-to-text gener-
ation problem. Damonte et al. [16] provided a survey of various types of neural
encoders. They investigate the impact of reentrancies (nodes with multiple parents)
on the generation performance by comparing graph encoders to tree encoders, where
reentrancies are not satisfied. Their results showed that the information obtained from
reentrancies and long-range dependencies contribute to higher overall scores for graph
encoders architecture. Later, Leonardo et al. [18] proposed a graph encoder with a
dual graph representation method, which encodes different but complementary per-
spectives of the structural information contained in the AMR graph. Their model
was capable of learning both top-down and bottom-up representations of AMR nodes,
which capture contrasting views of the graph. The author also investigated differ-
ent node message passing strategies by employing different types of graph encoders to
compute node representations based on incoming and outgoing nodes. Their method
achieved competitive result on BLEU and METEOR scores on the benchmark dataset
LDC2017T10.

3.3 The incorporated self-attention mechanism
3.3.1 Our baseline model
In our work, we adopt both the sequence to sequence and graph to sequence model
provided by Song et al. work [14] to build our baseline model. The input for these
models could be either the linearized sequence from an AMR graph (in Penman nota-
tion) or the graph itself in the graph format. To tackle the data sparsity problem, we
keep using the character-level LSTM over input tokens and the copying mechanism.
As reported in the original paper, this baseline model obtained 20.6 and 22.8 BLEU
scores when testing with the dataset LDC2015E86 for sequence-to-sequence model and
graph-to-sequence model, respectively. However, when we retrain these models with
the default configurations along with the source code provided by the authors, the
BLEU scores only reach 15.49 and 20,76, respectively.

3.3.2 Self-attention in the sequence-to-sequence model
With an input AMR in the Penman notation format, we adopt the linearization and
simplification algorithm introduced by Konstas et al. [1] to obtain a sequence of tokens
v1, ... , vn , where n is the number of tokens. We remove all verb senses and variable
names from the annotation so that all vertices in the preprocessed AMR could be
considered as a word in the normal dictionary. This helps the popular word embedding
like Word2Vec, Glove, Fastext can easily apply in the embedding layer. For example,
the AMR annotation shown in Table 3.1.1 can be preprocessed as follow:

choose :ARG1 (thing :quant 3 :ARG1-of submit :ARG2 (committee :ARG0-of assess)
:ARG3 (assess :ARG0 committee :ARG1 thing))) :ARG2 they :purpose submit.

3.3The incorporated self-attention mechanism

Figure 3.3.1: Sequence to sequence model with the incorporated self-attention layers
for AMR generation

(Remove -01 from choose-01, -01 from assess, all the variables p, t, s, etc. are
excluded)

The whole model architecture is represented in Figure 3.3.1. We follow the trans-
former architecture in Vaswani et al. work [40] to build the lower layers for our sequence
to sequence model. Specifically, the source tokens will be feed into two sub-layers: self-
attention layer followed by a position-wise feed forward layer; and the target tokens will
be processed with three sub-layers: self-attention layer followed by a vanilla attention,
then followed by a position-wise feed forward layer. The outputs of these layers are
sent to a bidirectional LSTM model similar to the one designed in Song et al. work. In
the decoder sidce, the self-attention layers use masking to prevent a given output posi-
tion from incorporating information about future output positions during the training
process.

In both the encoder and decoder side, the self-attention sub-layers employ h atten-
tion heads. To produce the sub-layer output, results from each head are concatenated
together by applying a parameterized linear transformation. Each attention head op-
erates on an input sequence of tokens, v = (v1, ..., vn) of n elements where vi ∈ Rdv ,
and computes a new sequence z = (z1, ..., zn) of the same length where zi ∈ Rdz . When
generating the t-th word, the decoder relies on the attention memory, the previous

3.3The incorporated self-attention mechanism

hidden state of the LSTM layers, the probability distribution to decide whether to
copy the word from source tokens or generate a new one (the value c, s and p in Figure
3.3.1, respectively).

3.3.3 Self attention in the graph-to-sequence model
Differ from the sequence input, to deal with the graph structure of the original AMR,
we adopt the graph encoding method in Song et al. [14]. For a graph G = {V,E},
each node vi ∈ V is represented by a hidden state vector hi. The state of the graph
can thus be represented by the set g = {hi}. We capture the information exchange
between a current node vi and all nodes connected to it (both incoming and outgoing
nodes) by a sequence of state transitions {g0, g1, ..., gk}. In detail, the transition from
gt−1 to gt consists of a hidden state transition for each node hi

t−1 to hi
t. The initial

state g0 includes a set of initial node states hj
0 = z0, where z0 is a vector of zero valuee.

A LSTM network is used to model the graph-state transition process. At each graph-
state transition step t, the model performs direct communication between a node and
all of its incoming and outgoing nodes. The memory for hj

t is stored in a cell cjt ,
with the use of an input gate ijt , an output gate ojt and a forget gate f j

t to control
information flow from the inputs and to the output. Figure 3.3.2 demonstrates the
graph state transition process, in which, the information from the current node h3

t−1,
its incoming node h2

t−1 and outgoing nodes h4
t−1, h5

t−1 are all captured by LSTM gates
and transferred to h3

t .

h1t-1

h2t-1

h4t-1

h3t-1

h5t-1

h6t-1

h1t

h2t

h4t

h3t

h5t

h6t

Figure 3.3.2: Graph state transition from gt−1 to gt

The inputs include the edge representations of any edges that are connected to a
node vj, where vj can be either the source or the target node of the edge. Each edge
is defined as a triple (i; j; l), where i and j are the indices of the source and the target
nodes, respectively, and l is the edge label (e.g. ARG0, location, purpose. xl

i;j is
the representation of edge (i; j; l). The inputs for vj are grouped into incoming and
outgoing edges:

ϕj,in =
∑

(i,j,l)∈Ein(j)
xl
i,j

ϕj,out =
∑

(j,k,l)∈Eout(j)
xl
j,k

3.4Experiments and Results

where Ein(j) and Eout(j) are the sets of incoming and outgoing edges of the node vj,
respectively. We also use an edge embedding to represent the vector of an edge label,
with the initial embedding values are all set randomly.

In addition to the edge representations, the model also takes the hidden states of
the incoming and outgoing neighbors of each node during a graph-state transition. For
example, the states of the incoming and outgoing neighbors of vj are summed up before
being passed to the cell and the gate nodes:

δj,in =
∑

(i,j,l)∈Ein(j)
hi
t−1

δj,out =
∑

(j,k,l)∈Eout(j)
hk
t−1

Based on the above definitions of ϕj, δj, the state transition from gt1 to gt, as
represented by hj

t , can be defined as:

ijt = σ(Wi,inϕj,in +Wi,outϕj,out + Ui,inδj,in + Ui,outδj,out + bi)
ojt = σ(Wo,inϕj,in +Wo,outϕj,out + Uo,inδj,in + Uo,outδj,out + bo)
f j
t = σ(Wf,inϕj,in +Wf,outϕj,out + Uf,inδj,in + Uf,outδj,out + bf)

uj
t = σ(Wu,inϕj,in +Wu,outϕj,out + Uu,inδj,in + Uu,outδj,out + bu)

cjt = f j
t · c

j
t−1 + ijt · u

j
t

hj
t = ojt · tanh(c

j
t)

where ijt , o
j
t and f j

t are the input, output and forget gates mentioned earlier.
Wx,in,Wx,out, Ux,in, Ux,out, bx, where x ∈ {i; o; f ;u}, are model parameters.

After k iterations, the last hidden state of the graph is obtained. It contains all the
hidden vectors of nodes inside. k is often chosen to be the maximum graph diameter
in the dataset (we choose k = 9 in our experiments). These node hidden vectors are
then passed through the self-attention encoder similar to section 3.3.2.

3.4 Experiments and Results
3.4.1 Dataset and Experiment setup

Table 3.4.1: Hyper-parameter settings for our proposed models

Word vocab size 27,876
Edge vocab size 119
Edge label dimension 100
dmodel 300
Nheads 6
Nblocks 6
Feed forward dimension 1200

We use the AMR corpus released by LDC (LDC2017T10) to conduct our experi-
ments. This dataset contains 36,521 instances for training, 1,368 for development and
1,371 for testing. Each instance contains an English sentence and an AMR graph in
Penman notation, as introduced in Chapter 2. Due to the lacking of hardware re-
sources, we skip the experiments on silver data sampled from a external corpus (like
NeuralAMR and Graph2Seq using two million sentences from Gigaword corpus).

3.4Experiments and Results

Table 3.4.2: Results on LDC2017T10 test set in BLEU and METEOR scores

Model Corpus Number
of training
samples

BLEU
score

METEOR

Seq2Seq LDC2017T10 36,521 15.49 23.15
Seq2Seq + Selfatt
(Ours)

LDC2017T10 36,521 18.36 25.77

Seq2Seq + Selfatt (Ours) +
silver data

LDC2017T10
+ Gigaword

36,521 +
200k

21.15 27.70

Graph2Seq LDC2017T10 36,521 20.76 1 26.71
Graph2Seq + Selfatt (Ours) LDC2017T10 36,521 19.45 24.76
Graph2Seq + Selfatt (Ours)
+ silver data

LDC2017T10
+ Gigaword

36,521 +
200k

24.44 29.74

Graph2Seq LDC2015E86
+ Gigaword

16,833 +
2M

33.0 31.81

NeuralAMR LDC2015E86
+ Gigaword

16,833 +
2M

32.3 28.32

TSP LDC2015E86 16,833 22.4 -
SNRG LDC2015E86 16,833 25.6 -
JAMR-generator LDC2014T12 10,000 22.0 -
PBMT LDC2014T12 10,000 26.9 -

In the sequence to sequence experiment, we share the vocabulary between the en-
coder and the decoder side. The input word embeddings are initialized from the Glove
pretrained word embeddings [51] with the embedding size is set to 300. In the graph
to sequence experiments, we extract the edge label vocabulary to be used in the graph
encoder. The total number types of edge is 118 and the edge label dimension is set to
100. All the baseline hyper-paramenters for the graph-to-sequence and the sequence-
to-sequence model are kept the same as in [14]. Other hyper-parameters for the self-
attention mechanism, as well as dataset information can be found in Table 3.4.1. Fol-
lowing previous work, we evaluate the generation results with the BLEU metric [44]
and METEOR metric [45].

3.4.2 Experimental results
Beside our baseline model, we also compare the performance of our self-attention in-
corporated models with other works in the literature, i.e. JAMR-generator (alignment-
based) [12], PBMT (phrase-based) [13], TSP [52] (graph-based), SNRG (graph-based)
[53], NeuralAMR [1] and Graph2Seq [14]. In term of training data, JAMR-generator
and PBMT were trained on the old AMR corpus LDC2014T12 with a small number
of training samples (13,051 samples); TSP, SNRG, NeuralAMR and Graph2Seq were
trained by a newer version, LDC2015E86 (19,572 samples). In our experiments, we
train our models with the latest release AMR corpus, LDC2017T10, which remains the
same test set as LDC2015E86, but a bit less than the number of samples in the splitted
test set of LDC2014T12. Since Song et al. did not publish their results of sequence to
sequence model trained on gold data only, we use their default configuration to train
a new one on LDC2017T10 (Seq2Seq). We shows the BLEU scores of all the models

3.5Analysis

on the LDC test set in Table 3.4.2 .
From the result table, it can be recognized that Selfatt+Seq2Seq outperforms the

baseline sequence to sequence model with 2.9 BLEU score increased (from 15.49 to
18.36), and 2.6 METEOR score increased (from 23.15 to 25.77). This proves the
effectiveness of our method in incorporating the self-attention mechanism with the
baseline sequence to sequence model. However, the graph-to-sequence model combining
with the default transformer architecture does not produce high-quality text. It is
reported that the Selfatt+Graph2Seq obtains a slightly lower score than the original
Graph2Seq model (20.76 to 19.45 in BLEU score, and 26.71 to 24.76 in METEOR
score). This result is probably due to the use of position encoding method in our
architecture, which is naturally suitable for a sequence of words rather than graph
nodes. This motivates us to investigate more further techniques to adapt the graph
encoding mechanism.

Comparing to other neural generation model, i.e. the full Graph2Seq model, the
NeuralAMR model as well as other traditional methods, our BLEU and METEOR
scores are still lower by a large margin. Even when we train our models with more
200,000 samples generated from the Gigaword corpus, similar to the strategy in Song et
al. [14], our BLEU score only increases to 24.44, a little lower than SNRG and PBMT
which were trained with small dataset. As this neural approach requires a huge amount
of training data (e.g. Graph2Seq obtains more than 10 BLEU scores improvement after
this process), we plan to explore more transfer learning and semi-supervised learning
techniques to solve this problem, such as the use of pretrained language model or Noisy
Student approach.

3.5 Analysis
3.5.1 Effect of the input size
To observe the effect of various sizes of the source input, we divide the test set to
several subsets based on two criteria: the number of tokens in the source linearized
AMR and the number of nodes in the source graph. In the first criteria, we divide by
the following ranges: less than 10, 10-20, 20-40, 40-60, 60-80, 80-100 and more than
100 tokens. We obtain corresponding subsets with the following number of samples:
126, 120, 258, 265, 231, 161, 210. In the second criteria, we split the test set by
different ranges: less than 10, 10-20, 20-30, 30-40 and more than 40 nodes, we obtain
corresponding subsets with the following number of samples: 323, 397, 337, 193, 121.

We present the detailed BLEU scores by using Graph2Seq models to generate text
from each subsets in Figure 3.5.1, 3.5.3, and by using Seq2Seq models in Figure 3.5.2,
3.5.4. For each architecture, we take the baseline model, the model trained with sil-
ver annotated data, the model incorporated with the self-attention mechanism and
the model combined both the incorporated self-attention and trained with silver data
(200.000 samples extracted from Gigaword corpus and parsed automatically by JAMR
[9]).

1Though we train the Graph2Seq model with the same setting as the publish source code in
https://github.com/freesunshine0316/neural-graph-to-seq-mp, but the BLEU score is lower
than reported in the original paper (20.76 vs 22.7)

https://github.com/freesunshine0316/neural-graph-to-seq-mp

3.5Analysis

0

5

10

15

20

25

30

10 10 - 20 20-40 40-60 60-80 80-100 100

Graph2Seq+silverdata Graph2Seq+SelfAtt+silverdata Graph2Seq+SelfAtt Graph2Seq

Figure 3.5.1: BLEU scores of Graph2Seq models when generating text from each range
of length

0

5

10

15

20

25

30

10 10 - 20 20 - 40 40 - 60 60 - 80 80 - 100 100

Seq2Seq+SelfAtt+silverdata Seq2Seq+SelfAtt Seq2Seq Seq2Seq+silverdata

Figure 3.5.2: BLEU scores of Seq2Seq models when generating text from each range
of length

Both the Graph2Seq and Seq2Seq models perform well with the source input length
in the range between 20 and 100 tokens, and 20 to 40 nodes in the graph, and perform
worst with the very small source input. The reason for this low performance may
comes from the fact that almost of these short input are single words, dates, name
entities and non-grammatically short sentences. Thus, a minor wrong generated word
will cause the BLEU scores to decreases a lot.

3.5Analysis

0

5

10

15

20

25

30

< 10 10 to 20 20 to 30 30 to 40 > 40

Graph2Seq+silverdata Graph2Seq+SelfAtt+silverdata Graph2Seq+SelfAtt Graph2Seq

Figure 3.5.3: BLEU scores of Graph2Seq models when generating text from each range
of nodes number

0

5

10

15

20

25

30

< 10 10 to 20 20 to 30 30 to 40 > 40

Seq2Seq+SelfAtt+silverdata Seq2Seq+SelfAtt Seq2Seq Seq2Seq+silverdata

Figure 3.5.4: BLEU scores of Seq2Seq models when generating text from each range
of nodes numbe

When the number of tokens in the source input becomes longer or the graph size
becomes bigger, Seq2Seq models’ performances drop significantly (e.g. from 24.5 in
range 80-100 to 17.9 in range over 100, with the Seq2Seq+SelfAtt+silverdata), while
Graph2Seq models perform more consistently. In Figure 3.5.1, the BLEU score of all
the four models only decrease by a little margin.

The two figures also show the difference between Graph2Seq and Seq2Seq archi-
tecture when incorporating the self-attention mechanism. In Seq2Seq, the baseline
model combined with the self-attention performs much better than the baseline only.
Seq2Seq+self_attention even got higher BLEU score than the Seq2Seq+silverdata in

3.6Chapter Summary

some ranges. While in Graph2Seq architecture, incorporating the self-attention does
not improve the performance. The gap in Figure 3.5.1 only shows the effective of silver
annotated data to the baseline model.

3.5.2 Error Analysis
We extract some real outputs of each model in Table 3.5.1 to analyze. Since the
AMR graph abstracts away all the tense, number and functional words, there is no
information for any model to generate exactly the original text. We select some featured
samples to see how different each model provides the output.

Gold Annota-
tion

SelfAtt +
Seq2seq

Seq2Seq Graph2Seq

it’s the same old
problem

old problem is the
same

the same problem
is

the same problem
is that the same
old problem

a large virus repos-
itory is located in
Siberia

a large virus repos-
itory is located in
siberia

large virus is in 1 the large virus is in
siberia in siberia

the pirates have
consistently ex-
pressed willingness
to negotiate the
financial figures

the pirate has con-
sistently expressed
a s willing to nego-
tiate with financial

the pirate will con-
sistent with the pi-
rate will will will
negotiate a finance
figure

the pirates con-
sistently expressed
the willingness to
negotiate financial
figure

Table 3.5.1: Output comparison among our proposed model with the baseline Seq2Seq
and Graph2Seq models

In the two first samples, our proposed model Seq2seq+SelfAtt performs better than
the others. The outputs generated are close in meaning with the original sentences,
despite the differences in words order. Graph2Seq also generates meaningful sentences,
however there exists some unnecessary words or phrases (”the same problem” and ”in
siberia”. Regarding this aspect, Seq2Seq+SeflAtt helps decrease the repetitive words
generated comparing to the two baseline models.

In the third sample, when the sentence becomes longer, the source graph is also
more complex. Our model makes some spelling errors (” a s ”), compared to the
Graph2Seq, but the result still expresses the meaning of the sentence. In this case,
Graph2Seq recovers almost correctly the source sentence. While the baseline Seq2Seq
even produces more repetitive words (”will will will”).

3.6 Chapter Summary
To summarize this chapter, we investigated the use of self-attention mechanism in
generating natural language from AMR graphs. We incorporated this mechanism with
both the sequence-to-sequence and the graph-to-sequence baseline models to observe
the effective. Experimental results show that self-attention mechanism improves the
performances in sequence-to-sequence models, but does not contribute to the graph-to-
sequence models. Overall, our proposed approach obtaine promising results compared

3.6Chapter Summary

to other deep learning ones, however it is still lower than the state of the art results
with the similar amount of training data.

For the future work, we would like to explore more transfer learning and semi-
supervised learning techniques, such as the use of pretrained model like BERT, XL-
NET to provide a better semantic embedding representation for the input tokens, or
Teacher-Student architecture to acquire more high quality training data rather than
using silver annotated data like many previous work. We also aim to build a graph to
sequence transformer model for AMR generation by applying the relative position en-
coding introduced by Shaw et al recently [54] as a replacement to the current positional
encoding, that is naturally suitable for sequence input.

Chapter 4

AMR Parsing for Legal Document

4.1 Introduction
Legal Engineering is a field that studies the methodology and applies information sci-
ence and software engineering to legal systems in order to support legislation and to
implement laws and rules using computers. Since proposed by Katayama et al. in
2007 [55], Legal Engineering has grown to become a new trend in computer science.
Many tasks related to Legal Engineering need to be solved, e.g. Law Search System,
Law Question Answering, Law Summarization System. All of them require the com-
puter to automatically process the text from legal documents, where Natural Language
Processing techniques get involved. However, most of the methods for representing a
legal sentence are based on logical patterns [56] [57], skipping the semantic information
among the words in the sentence. That motivates us to investigate a more semantic
approach, i.e. Abstract Meaning Representation, for representing texts in this domain.

I observed that the army moved quickly

move-01

observe-01

i

:arg0 :arg1

army quick-02

:arg0 :manner

AMR Generator

The army is moving quickly in my observation

I observe the army, they are moving quickly

Generating

Parsing

AMR Parser

Private rights must conform to the public welfare

conform-01

obligate-01

right

:arg1 :arg2

welfare

:arg2

AMR Generator
:arg0

public-02
:arg1-of

The private right have to conform to the public welfare

Legal Generating

Legal Parsing

AMR Parser
:arg1-of

private-02

General Domain

Legal Domain

Figure 4.1.1: AMR Parsing and Generation in Legal Domain

Generally, the AMR parsing problem faces a lot of challenges, such as name entity
recognition, word-sense disambiguation, data sparsity, etc. Those challenges lead to
many proposed approaches, from grammar-based to machine translation methods. Al-
most of them conduct experiments on a general domain dataset released by Linguistic

31

4.2AMR Parsing - Main Approaches

Data Consortium, i.e. LDC2014T10, LDC2015E86, LDC2017T10. However, there are
no research for AMR in the legal domain yet, despite lots of differences between text in
the general documents and text in the legal documents, e.g. longer sentences, complex
logical structures, domain specific terminologies (Figure 4.1.1). These legal characteris-
tics cause lots of difficulties for current AMR parsers comparing to the general domain.
In this chapter, we will provide an empirical evaluation of various approaches in AMR
parsing on our annotated legal dataset to prove this claim. Specifically, we divide
AMR parsing models into three main approaches: Alignment-based, Grammar-based
and Neural-based. From each approach, we choose typical models which achieve high
scores in the benchmark dataset and re-implement their source codes to parse texts
in our legal dataset to AMR. We further report the score of each model and deeper
analyze the parsing output.

4.2 AMR Parsing - Main Approaches
As mentioned in the previous section, the task of parsing a natural language text into
an AMR graph faces a lot of challenges. To tackle these, many approaches have been
proposed, which we group into three main categories: alignment-based, grammar-based
and neural-based (Figure 4.2.1). From each approach, we provide a brief description,
then choose the best systems that already published the source code to conduct our
experiments.

w1 w2 w3 w4 w5

relation

(a) Alignment-based method (b) Grammar-based method

w1 w2 w3 <s> c2 c3

c1 c2 </s>

source sentence graph concept

graph concept

(c) Neural-based method

Figure 4.2.1: Three main approaches in Abstract Meaning Representation parsing

4.2AMR Parsing - Main Approaches

4.2.1 Alignment-based parsing
Flanigan et al. in 2014[2] introduced JAMR in 2014, which build a two-stage algo-
rithm: (i) first identifying concepts with an automatic aligner and then (ii) detecting
the relations that it obtains between these by searching for the maximum spanning con-
nected subgraph from an edge-labeled, directed graph representing all possible relations
between the identified concepts. This method was considered the pioneer in AMR pars-
ing, provided a strong baseline in AMR parsing. Follow this alignment approach, Zhou
et al. [58] extended the relation identification tasks with a component-wise beam search
algorithm. Chunchuan et al. [8] improved this method by considering alignments as
latent variables in a joint probabilistic model. They used variational autoencoding tech-
nique to perform the alignment inference and archieved the state-of-the-art in AMR
parsing in 2018. In our work, we take the JAMR model [2] 1 and LatentGraph [8] 2 to
analyze and to conduct experiments.

Basically, the idea of alignment-based methods is to obtain the alignment between
words in the source sentence and the graph fragment in AMR. Flanigan et al. construct
a concept set by aligning the Propbank concepts with the words that evoke them. The
authors build an automatic aligner that uses a set of heuristic rules to align concepts
to words greedily. They use WordNet dictionary to generate candidate lemmas and a
fuzzy match of a concept, that is a word in the sentence containing the longest string
prefix match with that concept’s label. For example, the fuzzy match for extend-01
could be aligned with ”extension” if this word is the best match in the given sentence.
We show an example of alignment in Figure 4.2.2, where the span includes three words
that express a location name and the aligned graph fragment contains five nodes. This
JAMR aligner is widely used in many later works, both for AMR parsing and generation
[59][60][13].

Figure 4.2.2: Alignment between the words span ”New York City” and its correspond-
ing AMR fragment [2]

In Flanigan et al. method, the first stage is to identify concepts. Given a sen-
tence w = {w1, w2, ..., wn}, their system segments w into subsequences, denoted
{wb0:b1 , wb1:b2 , ..., wbk−1:bk}, which they called contiguous spans. A span {wbi−1:bi} is
then assigned to a concept ci from the concept set clex{wbi−1:bi}, or to θ for words that
evoke no concept. The assigning score between the sequence of spans b and the graph

1https://github.com/jflanigan/jamr
2https://github.com/ChunchuanLv/AMR_AS_GRAPH_PREDICTION

https://github.com/jflanigan/jamr
https://github.com/ChunchuanLv/AMR_AS_GRAPH_PREDICTION

4.2AMR Parsing - Main Approaches

fragment c is calculated as follow:

score(b, c; θ) =
k∑

i=1

θTf(wbi−1:bi , bi−1, ci), (4.1)

where f is a feature vector representation of a span and one of its concept graph
fragments in the sentence. The features can be fragment of given words, name entity
recognition, length of the matching span or bias.

To find the highest-scoring between b and c, the authors use a semi-Markov model.
Let S(i) be the score of the first i words of the sentence (wo:i). Then S(i) will be
calculated recurrently via the previous scores, and S(0) will be initialized as zero.
Obviously, S(n) becomes the highest score. To obtain the best scoring concept labeling,
JAMR uses a back-pointers method, similar to the idea of the conventional Viterbi
algorithm [61].

The second stage of this algorithm is relation identification, which decides the edge
label among the concept subgraph fragments assigned in the previous stage. The
authors consider this problem like a graph-based techniques for non-projective depen-
dency parser problem. While the dependency parser aims to find the maximum-scoring
tree over words from the sentence, the relation identifier tries to find the maximum-
scoring among subgraphs (MSCG) that preserve concept fragments from the previous
stage.

A later success in alignment-based parsing is the work of Lyu et al. [8] in 2018.
They introduce a neural parser which considers alignments as latent variables within a
joint probabilistic model of concepts, relations and alignments. In their system, every
graph node is assumed to be aligned to a word in a sentence: each concept is predicted
based on the corresponding RNN state. Similarly, graph edges (or relations between
nodes) are predicted based on the representations of concepts and aligned words. As
alignments are latent, exact inference requires marginalizing over latent alignments,
which is infeasible. Instead they use variational inference, specifically the variational
autoencoding framework.

Figure 4.2.3: Relation identifier: predicting the relation between two nodes: boy and
go-02 relying on the two concepts and their corresponding RNN states

The author assume injective alignments from concepts to words: every node in the
graph is aligned to a single word in the sentence and every word is aligned to at

4.2AMR Parsing - Main Approaches

most one node in the graph. This injective alignment is necessary for two reasons.
Firstly, it allows them to treat the concept identification task as sequence tagging at
the test time. For every word they simply predict the corresponding concept or give the
value NULL to signify that no concept should be generated at this position. Secondly,
Gumbel-Sinkhorn can only work under this assumption. This constraint, though often
appropriate, is problematic for certain AMR constructions (e.g., named entities). In
order to deal with these cases, they re-categorized AMR concepts in a similar way to
previous works. They obtained 73.1 Smatch score, a great improvement in the year of
2018.

4.2.2 Grammar-based parsing
After the success of Flanigan et al., Wang et al. [59] introduced another approach,
namely CAMR. This parser employs a greedy strategy to select among a set of shift-
reduce actions (transition rules) performed on the generated dependency graph from
the input sentence. The authors first use a dependency parser to create the depen-
dency tree for the input sentence, then transform the dependency tree to an AMR
graph by applying some transition rules. This method takes advantages of the greate
achievements in dependency parsing, with the available of a much larger training set
than AMR parsing. This grammar-based approach is also applied by a number of later
researchers, e.g. Damonte et al. [21]. Brandt et al. [62], Goodman et al. [63] and Peng
et al. [64] [65][66][11], obtaining competitive results. In Figure 4.2.4, we describe an
example of the dependency tree and the AMR graph parsed from the same sentence
”Private rights must conform to the public welfare” to see the similarity and differences
between these two structures.

conform

rights must welfare

Private to the public

amod

nsubj aux nmod

case amod
det

conform-01

right obligate-01 welfare

private-02 public-02

:ARG1-of

:ARG1 :ARG2-of :ARG2

:ARG1-of
:ARG1

Figure 4.2.4: The dependency tree (on the left) and the AMR graph (on the right)
corresponding to the sentence ”Private rights must conform to the public welfare”

Unlike the dependency tree of a sentence, where each word corresponds to a single
node in the tree, in AMR graph, some words become abstract concepts or relations
while other words are even removed because they do not contribute to the whole
meaning of the sentence. This difference causes some challenges for aligning words
in the sentence and concepts in the graph. In order to learn the transition from the
dependency tree to AMR graph, the authors adopt the algorithm from JAMR parser
to produce the alignment. This heuristics based aligner that can align the words in a
sentence and concepts in its AMR with a 0.9 F1 score (but there are some concepts in
the AMR that cannot be aligned to any word in a sentence, e.g. ”have-org-role-91”).
They also construct a span graph to represent an AMR fragment that is aligned with
the word tokens in a sentence. This span graph is a directed and labeled, denoted
G = (V,A), where V = {si,j|i, j ∈ (0, n) and j > i } is a set of nodes, and A ⊆ V × V
is a set of arcs. Each node si,j in G is assigned a concept label from concept set LV

4.2AMR Parsing - Main Approaches

and is mapped with a continuous span (wi, ..., wj−1) in the sentence w. Each arc is also
assigned a relation label from relation set LA.

Basically, CAMR will perform three types of transition actions to transform the
dependency tree into the AMR graph:

• actions performed when an edge is visited: NEXT-EDGE, SWAP, REATTACH,
REPLACE-HEAD, REENTRANCE and MERGE

• actions performed when a node is visited: NEXT-NODE, DELETE-NODE

• actions used to infer abstract concepts in AMR that do not correspond to any
word in the sentence: INFER

For the details of these transition rules, readers can refer to the original work [59], the
Boosting version [60] and their paper at Semeval2016 contest [7]. One disadvantage
of this method is that it limits the parsing ability to a single sentence, because the
dependency tree can cover only the structure inside a sentence.

Follow this transition method, Damonte et al. [21] developed a model called AM-
REager that also parses the AMR graph based on a linear-time transition system,
inspired by the ARCEAGER transition system for dependency tree parsing. Differs
from CAMR which requires the full dependency tree to be obtained and then process
the tree in a bottom-up manner, this parser process the sentence in the left-to-right
direction. Specifically, AMREager defines a stack, a buffer and a configuration to per-
form the transition actions, which can be: Shift, LArc, RArc or Reduce. An example
of transition process can be found in Figure 4.2.5. AMREager also uses the alignment
obtained from JAMR aligner to map indices from the sentence to AMR graph frag-
ments. Although the result in Smatch score is still lower than CAMR and JAMR by
a small margin, AMREager obtains best results on several subscores such as Name
Entity Recognition and Negation. The authors also proposed a test suite to evaluate
F-score on the specific subtasks, which is widely used by later AMR parsing models.

Figure 4.2.5: Transition rules when parsing the sentence “The boy and the girl.”

The idea of transition-based parsing is simple but effective. Researchers often adopt
this method to build the baseline system for AMR parsing in other languages than

4.2AMR Parsing - Main Approaches

English. Some examples can be figured out: A rule-based AMR parser for Portuguese
by Rarael et al. [67], Transition-based Chinese AMR Parsing by Wang et al. [26],
Cross-lingual AMR Parsing by Damonte et al. [27].

Grammar-based or transition-based approach has been investigated by combining
with deep neural network and obtained some improvement. For instance, Ge et al. [68]
modeled source syntax and semantics into neural seq2seq AMR parsing, Liu et al. [66]
used a transition-based parser to tune their aligner via picking the alignment that leads
to the highest scored achievable AMR graph, Naseem et al. [11] enriched the Stack
LSTM transition-based AMR parser by augmenting training with Policy Learning and
rewarding the Smatch score of sampled graphs. All of these extensions lead to an
increasing of accuracy for parsing. However, source code for their models are still not
available yet. In our experiments, we choose CAMR [59] 3 and AMREager [21] 4 to
analyze the text.

4.2.3 Neural-based parsing
Recent advances in deep neural networks, with the great achievement of encoder-
decoder architecture, lead to the rising of neural supervised learning models in AMR
parsing. To adopt the encoder-decoder architecture, they attempt to linearize the AMR
in the Penman notation format to a sequences of text, at word-level [1][49][69] [70] or
at character-level [71]. After a linearization process, the parsing task can be considered
as a translation task, which transforms a sentence into an AMR-like sequence. Later,
Zhange et al. [72] proposed an attention-based model that treats AMR parsing as
sequence-to-graph transduction. In this work, we choose NeuralAMR (word-level
linearization) [1] and Ch-AMR (character-level linearization) [71] and Seq2Graph [72]
to run our experiments.

Table 4.2.1: The AMR-like sequence obtained from linearizing the graph corresponding
to the sentence ”How Long are We Going to Tolerate Japan?”, which we extract from
the dataset LDC2017T10

(t / tolerate-01
:ARG0 (w / we)
:ARG1 (c / country :wiki ”Japan”

:name (n / name :op1 ”Japan”))
:duration (a / amr-unknown))

(tolerate-01 :ARG0 (we) :ARG1 (coun-
try :name (name :op1 ”Japan”)) :dura-
tion (amr-unknown))

Given an AMR graph represented in Penman notation format, NeuralAMR prepro-
cesses the graph through a series of steps: linearization, anonymization, and further
modifications. These steps aim to reduce the complexity of the linearized sequences and
to address sparsity from certain out of vocabulary tokens, such as named entities and
quantities (Table 4.2.1). By this preprocessing method, NeuralAMR takes advantage
of encoder-decoder architecture by using a stack bidirectional LSTM network to en-
code the input sequence and a stacked LSTM network to decode from the hidden states
produced by the encoder. The output string of the model is converted back to AMR

3https://github.com/c-amr/camr
4https://github.com/mdtux89/amr-eager

https://github.com/c-amr/camr
https://github.com/mdtux89/amr-eager

4.2AMR Parsing - Main Approaches

format by a delinearization algorithm to produce the final parsing result. Since this
approach requires a huge amount of labeled data, NeuralAMR uses a paired training
procedure to bootstrap a high-quality AMR parser from millions of unlabeled sentences
extracted from the Gigarword corpus [73]. With this extra dataset, the parsing result
increases significantly, from 0.55 to 0.62 in Smatch score. However, one disadvan-
tage of this linearization method is to keep the semantic relation among nodes in the
original graph. In the example shown in Table 4.2.1, the distance between two nodes:
”tolerate-01” and ”amr-unknown”, which are directly connected in the graph, becomes
10 (tokens) in the linearized sequence, as shown in Table 4.2.1. This distance can be
even larger in long sentences with complicated structure, which can cause unexpected
noises in the learning data distribution.

Figure 4.2.6: Sentence and AMR linearization in Ch-AMR

In 2017, Noord and Bos [71] introduced another approach in linearization which
transforms the AMR graph to the character-level sequence. Their method removes all
variables from the AMRs and duplicates co-referring nodes. After tokenizing the input
sentence to sequence of characters, their model attaches the part-of-speech (POS) tag
of the original tokens to provide more linguistic information to the decoder. We show
an example of such preprocessed AMR in Figure 4.2.6, where the original sentence is
extracted from our legal dataset JCivilCode:”Private rights must conform to the public
welfare” (the original corresponding AMR will be presented in the later section of this
chapter). It can be seen that this preprocessing method causes loss of information,
since the variables of the original AMR cannot be recovered perfectly. To tackle this
limitation, the authors proposed an approach to restore the co-referring nodes to the
final output. Specifically, all wikification relations present in AMRs in the training
set are also removed and restored in a post-processing step. They use OpenNMT 5,
an open source neural machine translation system, to build their bidirectional LSTM
model with general attention. This model archives a better result comparing to word-
level preprocessing method in NeuralAMR, with 0.71 Smatch score reported in their
paper.

Lastly, Zhang et al. introduced a different way to handle reentrancy, and proposed
an attention-based model that treats AMR parsing as sequence-to-graph transduction.
They considered the AMR tree with indexed nodes as the prediction target, then
their approach to parsing is formalized as a two-stage process: node prediction and
edge prediction. They designed their model with two main modules: an extended
pointer-generator network for node prediction; and a deep biaffine classifier for edge
prediction. The two modules correspond to the two-stage process for AMR parsing, and
they are jointly learned during training. Figure 4.2.7 shows the overview architecture
of their model. With the powerful pretrained language model BERT as a part of the
input embedding, this sequence to graph model obtained state-of-the-art result for

5https://opennmt.net/

https://opennmt.net/

4.3Experiments

Figure 4.2.7: Sequence to graph transduction model

AMR parsing in 2019. The best reported Smatch score is 76.3 for the latest version
LDC2017T10 dataset.

4.3 Experiments
4.3.1 Datasets
In our experiments, we mainly use two datasets: JCivilCode and LDC2017T10. The
first one, which is first introduced in Lai et al. work in 2017 [42], is revised carefully
with some modifications and additions. Table 4.3.1 shows some statistics of this dataset
after our revision.

Table 4.3.1: Statistic for our dataset JCivilCode

Total number of samples 128
Average sentence length 31
Maximum sentence length 107
Average number of graph nodes 28
Maximum number of graph nodes 96
Vocabulary size 796
Number of tokens 4.042

As we mentioned in section 4.1, one of the major difficulties in analyzing legal doc-
uments is dealing with long sentences. In our experiments, we also aim to assess the
performances of the seven models with various ranges of length of the sentence. Since
the current legal dataset JCivilCode is still small to have a full evaluation, we use sen-

4.3Experiments

tences extracted from the well-known LDC2017T10 dataset, which consists of nearly
40,000 sentences in the news domain. We divide the test set of LDC2017T10 into four
subsets LDC-20, LDC-20-30, LDC-30-40, LDC-40 with the lengths of the sentences in
range 0-20, 21-30, 31-40 and greater than 40 words, respectively. Samples containing
sub-sentences inside (which are annotated ”multi-sentence” by the annotators) are ex-
cluded from the subsets. This exclusion guaranteed a fair comparison among the seven
parsers since CAMR is unable to parse a text containing multiple sentences.

Table 4.3.2: Statistic of dataset LDC2015E86 and LDC2017T10 with our subsets di-
vision

Dataset Total Train Dev Test
LDC2015E86 19,572 16,833 1,368 1,371
LDC2017T10 39,260 36,521 1,368 1,371
LDC-20 - - - 694
LDC-20-30 - - - 284
LDC-30-40 - - - 143
LDC-40 - - - 82

In Table 4.3.2, we provide some statistics about the dataset LDC2017T10 and its
subset after our division. The first row of the table show the number of samples in the
previous version, namely LDC2015E86, which is commonly used to train several parsers
as reported in their corresponding papers. English sentences in these two datasets are
collected from web blogs, TV program transcriptions and forums in general domain.
Each sample in these datasets includes a pair of sentence and the corresponding AMR
graph, annotated by a group of expert from Linguistic Data Consortium (LDC).

4.3.2 Metrics for Evaluation
We mainly use Smatch score [20] to evaluate the parsing performance. Given the parsed
graphs from each parser and the gold annotation graphs in the Penman format, Smatch
first tries to find the best alignments between the variable names for each pair of graphs
and then calculates precision, recall and F1 of the concepts and relations.Smatch score
computes the F-score on the overall of two given graphs. To have a deeper analysis
of parsing performance, we use the test-suite introduced by Damonte et al. [21] which
calculates F-score on various perspectives, as mentioned in Chapter 2. In our legal
experiment with the JCivilcode dataset, we do not include the Wikification and Name
Entity subscores, since there are no Wiki concepts included in this dataset, and the
number of existing named entities is small to evaluate.

4.3.3 Experimental Results and Discussions
To evaluate the performance of different parsing strategies on legal text, we conduct
experiments on seven models that already provided their source codes: JAMR [2]
and LtGraph [8] for alignment-based, CAMR [59] and AMR-Eager [21] for grammar-
based, NeuralAMR [1], Ch-AMR [71] and Seq2Graph [72] for neural-based. While
JAMR, CAMR and AMR-Eager were trained with the LDC2015E86 dataset only (the
older version of LDC2017T10), NeuralAMR and Ch-AMR initialized the parser by
LDC2015E86 and then used an extra corpus of 2 millions sentences extracted from a

4.3Experiments

free text corpus Gigaword [73] to train the complete models. LtGraph and Seq2Graph
were not trained by this extra corpus, but they used the latest version of LDC data
(LDC2017T10) 6.

Table 4.3.3: Smatch scores on the divided subsets of LDC2017T10

Method Model LDC-20 LDC-20-30 LDC-30-40 LDC-40

Alignment-based JAMR 0.71 0.68 0.66 0.65
LtGraph 0.74 0.73 0.72 0.68

Grammar-based CAMR 0.66 0.62 0.60 0.59
AMR-Eager 0.69 0.64 0.62 0.62

Neural-based
NeuralAMR 0.65 0.59 0.56 0.54
Ch-AMR 0.45 0.43 0.42 0.40
Seq2Graph 0.72 0.76 0.75 0.71

Table 4.3.4: Smatch scores and sub-scores on the dataset JCivilcode

Method Model Smatch Unl WSD Neg Con Ree SRL

Alignment-based JAMR 0.45 0.50 0.47 0.23 0.59 0.32 0.43
LtGraph 0.53 0.57 0.55 0.47 0.67 0.38 0.52

Grammar-based CAMR 0.48 0.56 0.50 0.16 0.63 0.35 0.47
AMREager 0.43 0.53 0.45 0.32 0.62 0.31 0.41

Neural-based
NeuralAMR 0.39 0.46 0.40 0.35 0.52 0.29 0.40
Ch-AMR 0.28 0.37 0.28 0.19 0.35 0.22 0.28
Seq2Graph 0.46 0.54 0.47 0.31 0.62 0.34 0.45

Parsing results are summarized in Table 4.3.3 (LDC2017T10 long sentences exper-
iments) and Table 4.3.4 (JCivilCode experiments). Overall, the Smatch score of all
the parsers on JCivilCode is still lower than on LDC2017T10 by a large margin (0.2
Smatch score on average). This downgrade is predictable since all the models were
trained in general domain and test in a different one.

In LDC long sentences experiments, Seq2Graph remains the best parser in almost
ranges of sentence length, except from the shortest one that witnesses the excellence
of LtGraph. Other neural-based methods still produce low-quality AMRs, despite
the huge amount of training data. The oldest parser JAMR got competitive results
comparing to other recent methods. In this experiment, grammar-based methods does
not obtain high score overall, but they perform consistently when the input sentence
become longer. One of the reason for this consistent performance is that they are
capable of recover the syntactic structure of the sentence through its dependency tree.

In the legal experiment, LtGraph outperforms other methods with a score of 0.53.
All the subscores of LtGraph remain the first rank. More specifically, in the subscore
of Negation and SRL, there are big gaps between this method and the others. Despite
the best performance in general domain, Seq2Graph stands at third position, even
lower than CAMR and only competitive with JAMR. Looking at the detail subscore,
it can be figured out that all the models struggle with detecting the negation parts
and reentrancy concepts in the input sentence. The highest Smatch subscores for these
aspect are only 0.47 and 0.38, respectively.

6We keep the original trained models without retrained on the new dataset LDC2017T10

4.3Experiments

4.3.4 Error Analysis
We analyze some common errors in parsing outputs of legal sentences, which we divided
by four main types: Incorrect concept identification (e.g. case-03 vs. case, Missing
concept (e.g. missing node obligate-01), Incorrect relation identification (e.g. :arg1 vs.
:arg3 and Missing attribute (e.g. missing :polarity - in the negative clause). We use the
script provided along with the JAMR parser to collect these statistical information.
We provide the error statistics in Figure 4.3.1 and the examples provided in Table
5.4.3.

0

200

400

600

800

1000

1200

1400

1600

1800

Incorrect relation Incorrect concept Missing concept Missing attribute

N
u

m
b

er
 o

f
er

ro
rs

Error types

JAMR LtGraph CAMR AMREager NeuralAMR CharBased Seq2Graph

Figure 4.3.1: Statistic about common parsing errors

One of the most common errors that alignment-based and grammar-based produce
is concept missing and incorrect relation assignment, often related to modal verbs (e.g.
”may”, ”can”, ”must”. In general domains, these words do not contribute a lot to
the sentence meaning, thus the verbs following these modal verbs are often labeled as
the root of a graph or sub-graph in AMR as they express more important meaning.
However, in legal text, modal verbs play a crucial role in a sentence and decide whether
an action is permitted or not. Statistically, the word ”may” appears in 29%, the word
”must” appears in 19% of samples in our dataset. As shown in the example 1 in Table
5.4.3, only LtGraph and NeuralAMR are capable of identifying the concept ”obligate-
01” while other models totally ignore it.

4.3Experiments

Table 4.3.5: Example of common error types: Incorrect concept identification -
Missing concept - Incorrect relation identification - Missing attribute

Example Private rights must conform to the
public welfare (1)

No abuse of rights is permitted (2)

Gold an-
notation

(o / obligate-01
:ARG1 (r / right-05

:ARG1-of (p / private-02))
:ARG2 (c / conform-01

:ARG1 r
:ARG2 (w / welfare

:ARG1-of (p2 / public-02))))

(p / permit-01
:polarity -
:ARG1 (a / abuse-01

:ARG1 (r / right-05)))

JAMR (c / conform-01
:ARG1 (r / right

:ARG1-of (p2 / private-03))
:ARG2 (w / welfare

:domain-of (p / public)))

(missing concept “obligate-01”)

(p / permit-01
:ARG1 (a / abuse-01

:ARG1 (r / right))
:polarity -)

LtGraph (o2 / obligate-01
:ARG1 (r1 / right-05

:ARG1-of (p0 / private-03)
:ARG1-of c3)

:ARG2 (c3 / conform-01
:ARG2 (w5 / welfare

:ARG1-of (p4 / public-02))))

(p3 / permit-01
:ARG1 (a1 / abuse-01

:ARG1 (r2 / right-05)
:polarity -))

CAMR (x2 / right-05
:ARG1-of (x1 / private-03)
:ARG1-of (x4 / conform-01

:ARG2 (x8 / welfare
:mod (x7 / public))))

(missing concept “obligate-01”)

(x6 / permit-01
:ARG1 (x2 / abuse-01

:ARG1 (x4 / right)))

(missing attribute “:polar-
ity -”)

AMR-
Eager

(v3 / conform-01
:ARG1 (v2 / right

:ARG1-of (v1 / private-03))
:ARG2 (v5 / welfare

:mod (v4 / public)))

(missing concept “obligate-01”)

(v3 / permit-01
:ARG1 (v1 / abuse-01

polarity -
:ARG1 (v2 / right)))

Neural-
AMR

(o / obligate-01
:arg2 (r / rule-out-02

:arg0 (r2 / right
:arg1-of (p / private-03))

:arg1 (w / welfare
:mod (p2 / public))))

(p / permit-01
:polarity -
:arg1 (a / abuse-02

:arg1 (r / right)))

4.4Chapter Summary

Table 4.3.5 – continued from previous page
Example Private rights must conform to the

public welfare (1)
No abuse of rights is permitted (2)

Ch-AMR (vv1conform-01 / conform-01
:ARG1 (vv1person / person

:ARG1-of (vv1private-03 /
private-03))

:ARG2 (vv1welfare / welfare
:ARG1-of vv1))

(missing concept ”right-05”,
”public-02”, ”obligate-01”)

(vv3permit-01 / permit-01
:ARG1 (vv3no-abuse / no-

abuse))

(missing concept ”right-05”)

Another challenge in analyzing text in the legal domain is the complexity of logical
relations. Regarding this aspect, all the parsers in the experiments still produce lots
of errors when facing negative clause. The reason almost comes from the fact that
many negations are encoded with morphology (e.g., such as “un-” prefix in ”unless”
or ”unable”), thus cause difficulties for parsing models to detect. In Table 5.4.3, we
show the outputs from all the parsers for the source sentence: ”No abuse of rights is
permitted”. It can be seen that NeuralAMR and JAMR succeeded in converting the
negation to :polarity -, while AMREager and LtGraph did not put this edge in the
exact position (However, in this case, it is still acceptable because the meaning of the
sentence is not changed a lot). Char-AMR labels this negation as a phrase ”no-abuse”
and CAMR even skips this important information. In term of Smatch score, all the
parsers still obtain very low results. The highest negation F-score is LtGraph with
0.47, and the lowest is CAMR with only 0.16 score.

4.4 Chapter Summary
In this chapter, we provided a brief survey on three main approaches in AMR parsing,
where we choose seven parsers to conducte experiments. All the seven parsers are
tested on the legal dataset JCivilCode and general domain dataset LDC2017T10 with
different ranges of sentence length. We evaluate the parsing outputs by Smatch score in
several aspects including overall F-score and sub-score on specific tasks. Experimental
results showed the domain adaptation abilites of seven models in the legal domain. All
the performances decreased by approximately 0.2 on the Smatch score, comparing to
their parsing results for text in general domain. This result shows the difficulties in
AMR parsing for this legal field.

Currently, our legal dataset JCivilcode is still too small, with only 128 samples,
to have a complete evaluation. In order to improve the domain adaptation ability for
current parsing techniques, we need to enlarge our dataset, in both the quantity and the
quality aspects. This work is challenging since it requires efforts from experts in both
linguistic and legal domain. We also plan to adopt semi-supervised or unsupervised
learning methods in the future work. Specifically, we plan to investigate the Teacher-
Student approach, in which the teacher model is trained by the labeled data first, then
this model is used to annotate the unlabeled data. We select a subset of this unlabeled
data by filtering out the predictions using a threshold for the score, then combine
this subset with the original labeled data to train the student model. Recently, this

4.4Chapter Summary

approach got significant improvements by adding noise to the student model during
its training [74][75] (NoisyStudent), obtaining new state of the art results on image
classification tasks.

Chapter 5

Legal Text Generation from
Abstract Meaning Representation

5.1 Introduction
As mentioned in the previous chapter, several neural-based approaches have been pro-
posed to tackle the AMR-to-text generation problem by leveraging a large amount of
silver data [14], [1]. Most of them rely on the encoder-decoder architecture with atten-
tion mechanism, resulting in high scores in the BLEU metric on a benchmark AMR
dataset. Despite acceptable performance on general domain text, those generating
models struggle in dealing with the legal domain, where the sentences are complicated
structure and contain domain-specific terms.

We give an example of AMR annotation in Figure 5.1.1, where the nodes (e.g. “enjoy-
01”, “right-05”, ...) represent concepts, and the edges (e.g. “:arg0”, “:condition”,
...) represent relations between those concepts. This example is extracted from our
legal dataset JCivilCode [43]. When conducting a survey with different generation
methods, we figure out that lots of out-of-vocabulary words are generated, and almost
the negation and conditional sentences are generated incorrectly.

enjoy-
01

national

foreign

right-05

private-02

provide-
01 -

or law

regulate-01

treaty
applicable

:op1
:op2

:op3:mod

:arg0

:mod

:arg1

:condition
:arg1

:arg1-of

:polarity

:arg0

Figure 5.1.1: AMR graph for the sentence ”Unless otherwise provided by applicable
laws, regulations or treaties, foreign nationals shall enjoy private rights”.

In this chapter, we propose a our domain adaptation method applied to the training
phase and decoding phase of the baseline graph-to-sequence model to improve the
generation quality. Specifically, in the training process, we constrain the encoder-
decoder model by a controllable variable to avoid the repetitive token generating as

46

5.3Legal AMR generation

well as guiding the model to recognize the negation and conditional sentences more
appropriately. After training, the model is fine-tune with a silver-annotated dataset
generated from a civil code in the English version. Moreover, we adopt weighted
decoding with a modified beam-search algorithm to avoid out-of-vocabulary words.
The model is tested using our legal dataset JCivilCode, showing improvement over the
baseline model.

5.2 Preliminaries
5.2.1 Deep learning approaches in AMR-to-text Generation
Given an AMR graph G = (V ;E), where V and E are the sets of vertices and edges,
respectively, the goal is to generate a sentence W = (w1, w2, ..., wn) expresses the
meaning in the graph, where wi are words in the vocabulary. Since first introduced as
a shared task at SemEval-2017 [76], several approaches have been proposed to tackle
this generation problem, with a dominance of deep learning models. Konstas et al.
[1] linearized AMR graphs, then adopt an encoder-decoder model to translate these
string-like objects into the natural language (NeuralAMR). Song et al. [14] modified
the encoder side architecture to capture the graph structure data more properly. This
resulted in a graph-to-sequence model (Graph2Seq) capable of generating well-written
text, obtaining the state of the art BLEU score in this generation problem in 2018.

However, these models still struggle when dealing with legal text, i.e. Graph2Seq
obtains 9.86 BLEU score on JCivilCode [43], comparing to the score of 32.0 on LDC2017
test set. In our paper, we rely on Graph2Seq to build our baseline model.

5.2.2 The baseline model
As mentioned before, we adopt the graph-to-sequence model in [14] as our baseline.
With a given AMR graph G = (V ;E), each vertex vi is represented by a hidden
state vector hi, initializing by the word embedding of that node. The graph state
g is defined as the set of hi. The information exchange between a current vertex vi
and all incoming nodes and outgoing nodes are captured through a sequence of state
transitions g0, g1, ..., gk. The encoder side used a long short term memory (LSTM)
network to perform this graph state transition. By using this mechanism, information
containing in each vertex is propagated to all of its neighboring vertices after each
transition step. After k steps, each vertex hidden state contains the information of a
large context, including the vertex’s ancestors, descendants, and siblings, where k is the
maximum graph diameter in the dataset (we choose k = 9 in our experiments). The
decoder side is also an LSTM network incorporated with a copy mechanism [50] to deal
with decoding objects like name entities, numbers, and dates. The detail computation
in each step can be found in Chapter 3.

5.3 Legal AMR generation
5.3.1 Conditional training
Conditional Training (CT) [77] is a method to learn an encoder-decoder model
P (y|g, z), where z is a discrete control variable and g is the AMR graph. We de-

5.3Legal AMR generation

sign z by annotating every (g, y) pair in the training set with the attribute we wish
to control, e.g. the number of nodes in the graph, the length of the linearized graph,
or whether g contains negation or not. This attribute value will be determined during
training, depend on each training sample. We use an embedding value with size v to
represent the control variable z, where v is a hyper-parameter.

There are several possible ways to condition the sequence-to-sequence model on z –
for example, append z to the end of the input sequence, or use z as the START symbol
for the decoder. We find it most effective to concatenate z to the decoder’s input on
every step.

The objective function of training is given by the cross-entropy loss:

lossCT = − 1
T

∑T
t=1 logP (y|g, z, y1, ..., yt−1).

Where y = y1, ..., yn is the expected output that the model has to produce.
Parameters of the model are initialized when training with the benchmark general

domain dataset, then finetuning with the silver legal dataset to optimize lossCT .

5.3.2 Decoding in legal style
To enhance the probability of generating words with certain features, we adopt
Weighted Decoding (WD) that was introduced by Ghazvininejad et al. [78]. On the
tth step of decoding, the generated hypothesis y<t = y1, ... , yt−1 is expanded by
computing the score for each possible next word w in the vocabulary by the formula:

score(w, y<t; g) = score(y<t; g) + logPLSTM(w|y<t, g) +
∑

iwi ∗ fi(w; y<t, g).

In which logPLSTM(w|y<t, g) is the log probability of the word w calculated by the
bi-LSTM network, score(y<t; g) is the accumulated score of the generated words in the
hypothesis y<t and fi(w; y<t, g) are decoding features with the corresponding weights
wi. There can be multiple features fi to control multiple attributes, and the weights wi

are hyperparameters. A decoding feature fi(w; y<t, g) assigns a real value to the word
w. The feature can be continuous (e.g. the unigram probability of w) or discrete (e.g.
the length of w in characters). A positive weight wi increases the probability of words
w that scores highly with respect to fi and vice versa.

Another problem of generating text from legal AMR is the out of vocabulary (OOV)
tokens, where lots of words in the legal domain are not included in well-known word
embedding, e.g. Word2Vec or Glove. We collect the vocabulary of three datasets: a
benchmark dataset in general domains and two datasets obtained from Vietnamese
and Japanese civil code. Our observation shows that more than 30% of the words in
these vocabulary sets do not appear in Glove [51].

To deal with this OOV problem, we modified the beam search decoding algorithm.
Specifically, after collecting an extra-vocabulary from the legal finetune set, we assign
a binary feature to each word w in the test set representing whether w is in the legal
vocab or not. This increases the probability of words in the legal vocabulary to be
selected to the top-k generation, where k is the beam size.

5.4Experiments and Results

5.4 Experiments and Results
5.4.1 Dataset Preparation
In our experiments, we use three datasets: (i) the benchmark dataset LDC2017T10
for training the baseline model, (ii) silver data generated from a Vietnamese Civil
Code for fine-tuning the model, and (iii) the JCivilCode dataset 1 [43] for testing the
performance. We train our model without using silver annotated data sampled from
external corpora (like NeuralAMR and Graph2Seq extracted external sentences from
Gigaword and used a parser to automatically annotate their AMRs).

Table 5.4.1: Statistics of the three dataset used in our experiments

Dataset LDC2017T10 VN Civil Code JCivilCode
Number of samples 36.521 3,073 128
Vocabulary size 29,943 3,026 778
Number of words out of vocab 4,453 602 270
:condition edge 1,794 190 69
Negation 10,947 356 57

In dataset (i) we use the linearization and anonymization algorithm provided by
Song et al. [14] and Konstas et al. [1]. For dataset (ii), the silver data is obtained by
performing two best parsers for legal text: JAMR [2] and CAMR [7] as suggested by
Vu et al. [43]. Each sample sentence in the corpus will provide two AMR graphs, this
also enlarges the dataset for finetuning our models. The statistics of these datasets can
be found in Table 5.4.1.

5.4.2 Results and Analysis
We evaluate our models mainly by BLEU score [44] and METEOR score [45]. We also
report the number of OOV words generated from each model.

Table 5.4.2: Generation results in BLEU score, METEOR score and number of OOV
generated. The baseline Graph2Seq is trained on benchmark dataset only. The next
four lines show our proposed modifications, with and without finetuning data. The
last two lines are the results of two best pretrained models with extra corpus.

Model BLEU METEOR OOV
Baseline Graph2Seq 5.50 16.78 135
Graph2Seq + CT 6.82 17.42 112

Graph2Seq + Finetune data 8.31 17.74 145
Graph2Seq + Finetune data + Conditional Training 8.56 18.61 143

Graph2Seq + Finetune data + LD 8.42 17.98 57
Graph2Seq + Finetune data + CT + LD 8.43 18.04 57

Graph2Seq Pretrained on 2M Gigaword corpus 9.31 21.38 29
NeuralAMR Pretrained on 2M Gigaword corpus 9.07 20.55 35

From Table 5.4.2, it can be observed that our both proposed modifications improve
the performance of text generation. Compared to the baseline model, Conditional

1https://github.com/sinhvtr/legal_amr

https://github.com/sinhvtr/legal_amr

5.5Chapter Summary

Training (CT) helps increase the BLEU score and METEOR score by a little margin
(1.32 and 0.76, respectively). While Legal Decoding (LD) helps reduce the OOV rate
significantly (from 143 tokens to 57 tokens). However, combining both two techniques
does not result in the best score overall, where BLEU and METEOR score decrease
slightly after LD, since this algorithm sometimes eliminates non-legal words from the
top-k space.

Our experimental results also confirm the important role of in-domain data. After
finetuning with the legal dataset VNCivilCode, we obtain 2.81 and 0.96 improvement on
BLEU and METEOR score, respectively. We also report the results of text generation
from several pre-trained neural models, i.e. Graph2Seq [14] and NeuralAMR [1]. When
comparing to those pre-trained models, with a huge amount of data (2 millions samples
extracted from Gigaword corpus), our proposed modifications still got lower results by
a small margin.

Table 5.4.3: Output comparison with an example from JCivilCode dataset

Gold data
Unless otherwise provided by applicable laws, regulations or treaties, foreign nation-
als shall enjoy private rights.
Baseline model
the foreign national enjoy a private right not if the applicable law or economic treaty
Baseline model + finetune data
when it is not provided for by law or the treaties to enjoy the private rights , the
foreign national shall have the enjoy private rights .
Baseline model + finetune data + CT
the foreign national will enjoy private rights without providing applicable regulate
regulate or treaty
Baseline model + finetune data + CT + LD
when a foreign national enjoys the private right , if not provided for by law or the
provisions of law or the provisions of law .
Graph2Seq Pretrained on 2M Gigaword
foreign nationals will enjoy private rights while there are no laws or regulations if
the or or without the regulations are provided .

To have a closer look, we provide some output examples for each model in Table
5.4.3. All the models still generate low-quality sentences, with grammatical errors and
repetitive words. The baseline model trained without any legal data provides an out-
domain word that does not appear in the source AMR graph. After finetuning, the
sentences generated become longer but not so meaningful except for the output of CT
model, which includes almost correct information. LD, as mentioned earlier, could
help reduce the OOV rate overall, but may cause some words or fragments missing and
repetitive.

5.5 Chapter Summary
In this chapter, we figure out the difficulties of AMR generation in the legal domain,
where the logical structure is complicated and lots of domain-specific terms are not in
the well-known vocabulary. To tackle these difficulties, we propose two modifications

5.5Chapter Summary

to the training and decoding phases of the neural graph to sequence model. We then
finetune our models using a silver annotated dataset in legal domain. The experimental
results prove the effectiveness of our method over the baseline model. Despite the
improvement, all models in our experiments still generate low-quality text from legal
AMR. The best-reported score is only 9.31 for BLEU and 21.38 for METEOR, leaving
a challenge for research in this domain. This also confirms the important role of in-
domain training data. Currently, the number of labeled data in AMR format is still
small comparing to other sematic role labeling datasets, even in general domain. In
the future work, we plan to discover some data augmentation techniques, such as data
recombination [79], to obtain more high-quality legal data.

Chapter 6

Conclusion and Future Work

In this thesis, we study the problem of AMR Parsing and Generation for both general
domain text and legal domain adaptation. In this chapter, we summarize our study,
point out main findings, and discuss some directions for future work.

6.1 Conclusion and Main Findings
The objective of this thesis is to improve the performance of parsing and generation
by using deep learning techniques, aiming to apply to text in the legal domain. In
order to achieve our objective, we first provide necessary knowledge in Chapters 1
and 2, including the definition of our parsing and generation tasks, data preparation,
evaluation procedure and recent techniques in deep neural networks. We present our
main work in three next chapters.

• Chapter 3: in this chapter, we propose our AMR-to-text generation model with
the incorporating of the self-attention mechanism. Motivated by the domination
of the Transformer architecture in various Natural Language Processing tasks, we
adopt its core component - the self-attention - to build our generation models. We
investigate in both the sequence-to-sequence and graph-to-sequence strategies. In
the sequence-to-sequence model, we incorporate the self-attention layer followed
by a position-wise feed forward layer to the encoder, and the self-attention layer
followed by a vanilla attention, followed by a position-wise feed forward layer in
the decoder. With this method, we obtain an improvement of 2.9 BLEU score and
2.6 METEOR score comparing to the baseline model. In the graph-to-sequence
model, we apply self-attention layers on the graph hidden state, derived through
a LSTM state transition process. However, the generation result decreases by a
little margin, i.e. 1.3 BLEU score and 1.9 METEOR score.

• Chapter 4: in this chapter, we provide a survey of different methods in AMR pars-
ing. We category them into three main approaches: alignment-based, grammar-
based and machine translation based. We show their performances when ana-
lyzing legal documents by conducting experiments of seven parsers, chosen from
the three main approaches, on our annotated legal dataset JCivilCode and the
benchmark dataset LDC2017T10 in various ranges of sentence length. We figure
out major challenges, i.e. negation detection, modal verb annotation, long de-
pendency parsing. These difficulties cause a decreasing by approximately 0.2 on
the Smatch score of the seven models we choose.

52

6.2Future Work

• Chapter 5: beside the challenges we figure out in chapter 4, we observe that
text generated from AMR using current deep learning models usually become
awkward with lots of ”out of vocabulary” tokens. This is due to the fact that
lots of words in the legal domain are not included in well-known word embeddings,
e.g. Word2Vec or Glove, which are commonly used in neural generation models.
To tackle this problem, we propose our method in modifying the training and the
decoding phase of the encoder-decoder AMR generation model to have a better
text realization. We then finetune our models using a silver annotated dataset in
legal domain. Our model is tested using our legal dataset JCivilCode, showing
an improvement compared to the baseline model.

Limitations: Despite some improvements and findings, our work still remains draw-
backs.

• In chapter 3, we succeed in improving the performance of the sequence-to-
sequence generating model with the self-attention mechanism. But incorporating
this mechanism into the graph-to-sequence model does not produce better results
compared to the baseline. This means our proposed method could not benefit
from the graph structure in the source AMR.

• We publish the first AMR dataset in legal domain, namely JCivilCode. This
annotated dataset is used in chapter 5 and 4 for evaluating our proposed methods
in legal domain adaptation. However, the amount of data is still small, with
only 128 samples available, to show a complete evaluation of both parsing and
generation performances.

• We figure out the challenges in parsing legal text to AMR, i.e. the complicated
logical structure and long sentences, but we have not proposed the solution for
tackling them.

6.2 Future Work
Based on promising results of this thesis, we figure out some directions for future:

• Data augmentation: Training data play an important role in training deep neu-
ral network models for parsing and generation. Currently, the number of la-
beled data in AMR format is still small comparing to other sematic role labeling
datasets, even in general domain. To tackle this problem, we need to discover
some data augmentation techniques, semi-supervised or unsupervised leaning
strategies. Specifically, we plan to investigate the Teacher-Student approach, in
which the teacher model is trained by the labeled data first, then this model is
used to annotate the unlabeled data. We select a subset of this unlabeled data
by filtering out the predictions using a threshold for the score, then combine
this subset with the original labeled data to train the student model. Recently,
this approach got significant improvements by adding noise to the student model
during its training [74][75], obtaining new state of the art results on image clas-
sification tasks.

6.2Future Work

• Long sentence dependency is still the major challenge for AMR parsing, in both
general and legal domain. We aim to tackle this problem by discovering recent
technique namely SPk Languages to explore the characteristics of long-distance
dependencies [80]. In detail, we try using Strictly k-Piecewise languages to gen-
erate AMR datasets with various properties. From this, we can compute the
characteristics of the long distance dependencies in these datasets and analyze
the impact of factors such as the length of the long dependencies, the vocabulary
size, or the dataset size.

• Logical complexity: as mentioned in Chapter 4 and 5, this complexity causes lots
of errors for both AMR parsing and generation models. Several research have
been proposed to generate logical forms from text and entities graph [81][82]. We
plan to explore these works to build a logical attention mechanism to capture
these information more effetively.

• AMR applications: we plan to apply AMR in several downstream problems such
as Legal Question Answering. Despite the capablity of AMR in expressing the
”who is doing what to whom” aspects, there are not many works investigate
the application of AMR in question answering (QA), especially for legal domain.
Previous work built a QA system for the Little Prince dataset (nearly 1.500
samples of AMR) and use CAMR [7] to parse a given question to AMR. Then
the authors performed a graph matching algorithm to find the best candidate
answers in the dataset. They relied on the heuristic rules of AMR annotation,
e.g. who corresponding to the relation :arg0 in the graph, or where corresponding
to :location. We expect our legal dataset can be enlarged and contributes to a
similar legal QA system.

Bibliography

[1] Ioannis Konstas, Srinivasan Iyer, Mark Yatskar, Yejin Choi, and Luke Zettle-
moyer. Neural AMR: Sequence-to-sequence models for parsing and generation.
In Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 146–157, Vancouver, Canada, July
2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1014.

[2] Jeffrey Flanigan, Sam Thomson, Jaime Carbonell, Chris Dyer, and Noah A. Smith.
A discriminative graph-based parser for the abstract meaning representation. In
Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1426–1436, Baltimore, Maryland,
June 2014. Association for Computational Linguistics. doi: 10.3115/v1/P14-1134.

[3] Omri Abend and Ari Rappoport. Universal conceptual cognitive annotation
(UCCA). In Proceedings of the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 228–238, Sofia, Bul-
garia, August 2013. Association for Computational Linguistics. URL https:
//www.aclweb.org/anthology/P13-1023.

[4] Valerio Basile, Johan Bos, Kilian Evang, and Noortje Venhuizen. Developing
a large semantically annotated corpus. In Proceedings of the Eighth Interna-
tional Conference on Language Resources and Evaluation (LREC’12), pages 3196–
3200, Istanbul, Turkey, May 2012. European Language Resources Association
(ELRA). URL http://www.lrec-conf.org/proceedings/lrec2012/pdf/534_
Paper.pdf.

[5] Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt, Ulf
Hermjakob, Kevin Knight, Philipp Koehn, Martha Palmer, and Nathan Schneider.
Abstract meaning representation for sembanking. In Proceedings of the 7th Lin-
guistic Annotation Workshop and Interoperability with Discourse, pages 178–186,
Sofia, Bulgaria, August 2013. Association for Computational Linguistics.

[6] Zi Lin and Nianwen Xue. Parsing meaning representations: Is easier always bet-
ter? In Proceedings of the First International Workshop on Designing Meaning
Representations, pages 34–43, Florence, Italy, August 2019. Association for Com-
putational Linguistics. doi: 10.18653/v1/W19-3304.

[7] Chuan Wang, Sameer Pradhan, Xiaoman Pan, Heng Ji, and Nianwen Xue. CAMR
at SemEval-2016 task 8: An extended transition-based AMR parser. In Proceed-
ings of the 10th International Workshop on Semantic Evaluation (SemEval-2016),
pages 1173–1178, San Diego, California, June 2016. Association for Computational
Linguistics. doi: 10.18653/v1/S16-1181.

55

https://www.aclweb.org/anthology/P13-1023
https://www.aclweb.org/anthology/P13-1023
http://www.lrec-conf.org/proceedings/lrec2012/pdf/534_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/534_Paper.pdf

[8] Chunchuan Lyu and Ivan Titov. AMR parsing as graph prediction with latent
alignment. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 397–407, Melbourne,
Australia, July 2018. Association for Computational Linguistics. doi: 10.18653/
v1/P18-1037.

[9] Nima Pourdamghani, Yang Gao, Ulf Hermjakob, and Kevin Knight. Aligning En-
glish strings with abstract meaning representation graphs. In Proceedings of the
2014 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 425–429, Doha, Qatar, October 2014. Association for Computational Lin-
guistics. doi: 10.3115/v1/D14-1048.

[10] Deng Cai and Wai Lam. Core semantic first: A top-down approach for AMR pars-
ing. In Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 3790–3800, Hong Kong, China, November
2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1393.
URL https://www.aclweb.org/anthology/D19-1393.

[11] Tahira Naseem, Abhishek Shah, Hui Wan, Radu Florian, Salim Roukos, and
Miguel Ballesteros. Rewarding Smatch: Transition-based AMR parsing with rein-
forcement learning. In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 4586–4592, Florence, Italy, July 2019. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/P19-1451.

[12] Jeffrey Flanigan, Chris Dyer, Noah A. Smith, and Jaime Carbonell. Genera-
tion from abstract meaning representation using tree transducers. In Proceedings
of the 2016 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pages 731–739, San
Diego, California, June 2016. Association for Computational Linguistics. doi:
10.18653/v1/N16-1087.

[13] Nima Pourdamghani, Kevin Knight, and Ulf Hermjakob. Generating English from
abstract meaning representations. In Proceedings of the 9th International Natural
Language Generation conference, pages 21–25, Edinburgh, UK, September 5-8
2016. Association for Computational Linguistics. doi: 10.18653/v1/W16-6603.

[14] Linfeng Song, Yue Zhang, Zhiguo Wang, and Daniel Gildea. A graph-to-sequence
model for AMR-to-text generation. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pages
1616–1626, Melbourne, Australia, July 2018. Association for Computational Lin-
guistics. doi: 10.18653/v1/P18-1150.

[15] Kris Cao and Stephen Clark. Factorising AMR generation through syntax. In
Proceedings of the 2019 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 2157–2163, Minneapolis, Minnesota, June 2019.
Association for Computational Linguistics. doi: 10.18653/v1/N19-1223.

[16] Marco Damonte and Shay B. Cohen. Structural neural encoders for AMR-to-
text generation. In Proceedings of the 2019 Conference of the North Amer-

https://www.aclweb.org/anthology/D19-1393

ican Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers), pages 3649–3658, Min-
neapolis, Minnesota, June 2019. Association for Computational Linguistics. doi:
10.18653/v1/N19-1366.

[17] Emma Manning. A partially rule-based approach to AMR generation. In Proceed-
ings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Student Research Workshop, pages 61–70, Min-
neapolis, Minnesota, June 2019. Association for Computational Linguistics. doi:
10.18653/v1/N19-3009.

[18] Leonardo F. R. Ribeiro, Claire Gardent, and Iryna Gurevych. Enhancing AMR-
to-text generation with dual graph representations. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
pages 3174–3185, Hong Kong, China, November 2019. Association for Computa-
tional Linguistics. doi: 10.18653/v1/D19-1314. URL https://www.aclweb.org/
anthology/D19-1314.

[19] Jie Zhu, Junhui Li, Muhua Zhu, Longhua Qian, Min Zhang, and Guodong Zhou.
Modeling graph structure in transformer for better AMR-to-text generation. In
Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 5462–5471, Hong Kong, China, November 2019.
Association for Computational Linguistics. doi: 10.18653/v1/D19-1548. URL
https://www.aclweb.org/anthology/D19-1548.

[20] Shu Cai and Kevin Knight. Smatch: an evaluation metric for semantic feature
structures. In Proceedings of the 51st Annual Meeting of the Association for Com-
putational Linguistics (Volume 2: Short Papers), pages 748–752, Sofia, Bulgaria,
August 2013. Association for Computational Linguistics.

[21] Shay B. Cohen Marco Damonte and Giorgio Satta. An incremental parser for
abstract meaning representation. In Proceedings of European Chapter of the ACL
(EACL), 2017.

[22] Linfeng Song and Daniel Gildea. SemBleu: A robust metric for AMR parsing
evaluation. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4547–4552, Florence, Italy, July 2019. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/P19-1446.

[23] Ha Linh and Huyen Nguyen. A case study on meaning representation for viet-
namese. In Proceedings of the First International Workshop on Designing Mean-
ing Representations, pages 148–153, Florence, Italy, August 2019. Association for
Computational Linguistics. doi: 10.18653/v1/W19-3317.

[24] Bin Li, Yuan Wen, Weiguang Qu, Lijun Bu, and Nianwen Xue. Annotating the
little prince with Chinese AMRs. In Proceedings of the 10th Linguistic Annotation
Workshop held in conjunction with ACL 2016 (LAW-X 2016), pages 7–15, Berlin,
Germany, August 2016. Association for Computational Linguistics. doi: 10.18653/
v1/W16-1702.

https://www.aclweb.org/anthology/D19-1314
https://www.aclweb.org/anthology/D19-1314
https://www.aclweb.org/anthology/D19-1548

[25] Noelia Migueles-Abraira, Rodrigo Agerri, and Arantza Diaz de Ilarraza. Annotat-
ing abstract meaning representations for Spanish. In Proceedings of the Eleventh
International Conference on Language Resources and Evaluation (LREC-2018),
Miyazaki, Japan, May 2018. European Languages Resources Association (ELRA).

[26] Chuan Wang, Bin Li, and Nianwen Xue. Transition-based Chinese AMR pars-
ing. In Proceedings of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pages 247–252, New Orleans, Louisiana, June 2018.
Association for Computational Linguistics. doi: 10.18653/v1/N18-2040. URL
https://www.aclweb.org/anthology/N18-2040.

[27] Marco Damonte and Shay B. Cohen. Cross-lingual abstract meaning representa-
tion parsing. In Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 1146–1155, New Orleans, Louisiana, June 2018.
Association for Computational Linguistics. doi: 10.18653/v1/N18-1104.

[28] Rafael Anchiêta and Thiago Pardo. Towards AMR-BR: A SemBank for Brazilian
Portuguese language. In Proceedings of the Eleventh International Conference on
Language Resources and Evaluation (LREC-2018), Miyazaki, Japan, May 2018.
European Languages Resources Association (ELRA).

[29] Hyonsu Choe, Jiyoon Han, Hyejin Park, and Hansaem Kim. Copula and
case-stacking annotations for Korean AMR. In Proceedings of the First In-
ternational Workshop on Designing Meaning Representations, pages 128–135,
Florence, Italy, August 2019. Association for Computational Linguistics. doi:
10.18653/v1/W19-3314.

[30] Linfeng Song, Daniel Gildea, Yue Zhang, Zhiguo Wang, and Jinsong Su. Seman-
tic neural machine translation using AMR. Transactions of the Association for
Computational Linguistics, 7:19–31, March 2019. doi: 10.1162/tacl_a_00252.

[31] Fei Liu, Jeffrey Flanigan, Sam Thomson, Norman Sadeh, and Noah A. Smith.
Toward abstractive summarization using semantic representations. In Proceed-
ings of the 2015 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pages 1077–1086,
Denver, Colorado, May–June 2015. Association for Computational Linguistics.
doi: 10.3115/v1/N15-1114.

[32] Sudha Rao, Daniel Marcu, Kevin Knight, and Hal Daumé III. Biomedical event
extraction using abstract meaning representation. In BioNLP 2017, pages 126–135,
Vancouver, Canada„ August 2017. Association for Computational Linguistics. doi:
10.18653/v1/W17-2315. URL https://www.aclweb.org/anthology/W17-2315.

[33] Fuad Issa, Marco Damonte, Shay B. Cohen, Xiaohui Yan, and Yi Chang. Abstract
meaning representation for paraphrase detection. In Proceedings of the 2018 Con-
ference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1 (Long Papers), pages 442–452,
New Orleans, Louisiana, June 2018. Association for Computational Linguistics.
doi: 10.18653/v1/N18-1041.

https://www.aclweb.org/anthology/N18-2040
https://www.aclweb.org/anthology/W17-2315

[34] Hardy Hardy and Andreas Vlachos. Guided neural language generation for ab-
stractive summarization using abstract meaning representation. In Proceedings of
the 2018 Conference on Empirical Methods in Natural Language Processing, pages
768–773, Brussels, Belgium, October-November 2018. Association for Computa-
tional Linguistics. doi: 10.18653/v1/D18-1086.

[35] Kexin Liao, Logan Lebanoff, and Fei Liu. Abstract meaning representation for
multi-document summarization. In Proceedings of the 27th International Con-
ference on Computational Linguistics, pages 1178–1190, Santa Fe, New Mexico,
USA, August 2018. Association for Computational Linguistics.

[36] Shibhansh Dohare, Harish Karnick, and Vivek Gupta. Text summarization using
abstract meaning representation. arXiv preprint arXiv:1706.01678, 2017.

[37] Arindam Mitra and Chitta Baral. Addressing a question answering challenge
by combining statistical methods with inductive rule learning and reasoning. In
Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[38] Mrinmaya Sachan and Eric Xing. Machine comprehension using rich semantic
representations. In Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers), pages 486–492, Berlin,
Germany, August 2016. Association for Computational Linguistics. doi: 10.18653/
v1/P16-2079.

[39] Bevan Jones, Jacob Andreas, Daniel Bauer, Karl Moritz Hermann, and Kevin
Knight. Semantics-based machine translation with hyperedge replacement gram-
mars. In Proceedings of COLING 2012, pages 1359–1376, Mumbai, India, Decem-
ber 2012. The COLING 2012 Organizing Committee.

[40] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need.
In Advances in Neural Information Processing Systems, pages 5998–6008, 2017.

[41] Robert T. Kasper. A flexible interface for linking applications to penman’s
sentence generator. In Speech and Natural Language: Proceedings of a Work-
shop Held at Philadelphia, Pennsylvania, February 21-23, 1989, 1989. URL
https://www.aclweb.org/anthology/H89-1022.

[42] Lai Dac Viet, Vu Trong Sinh, Nguyen Le Minh, and Ken Satoh. Convamr:
Abstract meaning representation parsing for legal document. arXiv preprint
arXiv:1711.06141, 2017.

[43] Vu Trong Sinh and Nguyen Le Minh. An empirical evaluation of amr parsing
for legal documents. In New Frontiers in Artificial Intelligence JSAI-isAI 2018
Workshops, JURISIN, AI-Biz, SKL, LENLS, IDAA, pages 131–145, Yokohama,
Japan, 2018.

[44] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method
for automatic evaluation of machine translation. In Proceedings of 40th Annual
Meeting of the Association for Computational Linguistics, pages 311–318, Philadel-
phia, Pennsylvania, USA, July 2002. Association for Computational Linguis-
tics. doi: 10.3115/1073083.1073135. URL https://www.aclweb.org/anthology/
P02-1040.

https://www.aclweb.org/anthology/H89-1022
https://www.aclweb.org/anthology/P02-1040
https://www.aclweb.org/anthology/P02-1040

[45] Michael Denkowski and Alon Lavie. Meteor universal: Language specific transla-
tion evaluation for any target language. In Proceedings of the EACL 2014 Work-
shop on Statistical Machine Translation, 2014.

[46] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with
neural networks. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and
K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 27,
pages 3104–3112. Curran Associates, Inc., 2014. URL http://papers.nips.cc/
paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf.

[47] Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches to
attention-based neural machine translation. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing, pages 1412–1421, Lisbon,
Portugal, September 2015. Association for Computational Linguistics. doi: 10.
18653/v1/D15-1166. URL https://www.aclweb.org/anthology/D15-1166.

[48] Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization.
CoRR, abs/1607.06450, 2016. URL http://arxiv.org/abs/1607.06450.

[49] Xiaochang Peng, Chuan Wang, Daniel Gildea, and Nianwen Xue. Addressing the
data sparsity issue in neural AMR parsing. In Proceedings of the 15th Conference
of the European Chapter of the Association for Computational Linguistics: Vol-
ume 1, Long Papers, pages 366–375, Valencia, Spain, April 2017. Association for
Computational Linguistics.

[50] Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O.K. Li. Incorporating copying
mechanism in sequence-to-sequence learning. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-
pers), pages 1631–1640. Association for Computational Linguistics, 2016. doi:
10.18653/v1/P16-1154. URL http://aclweb.org/anthology/P16-1154.

[51] Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global
vectors for word representation. In Proceedings of the 2014 Conference on Em-
pirical Methods in Natural Language Processing (EMNLP), pages 1532–1543. As-
sociation for Computational Linguistics, 2014. doi: 10.3115/v1/D14-1162. URL
http://aclweb.org/anthology/D14-1162.

[52] Linfeng Song, Yue Zhang, Xiaochang Peng, Zhiguo Wang, and Daniel Gildea.
AMR-to-text generation as a traveling salesman problem. In Proceedings of the
2016 Conference on Empirical Methods in Natural Language Processing, pages
2084–2089, Austin, Texas, November 2016. Association for Computational Lin-
guistics. doi: 10.18653/v1/D16-1224.

[53] Linfeng Song, Xiaochang Peng, Yue Zhang, Zhiguo Wang, and Daniel Gildea.
AMR-to-text generation with synchronous node replacement grammar. In Pro-
ceedings of the 55th Annual Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 7–13, Vancouver, Canada, July 2017.
Association for Computational Linguistics. doi: 10.18653/v1/P17-2002.

[54] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with rela-
tive position representations. In Proceedings of the 2018 Conference of the

http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
https://www.aclweb.org/anthology/D15-1166
http://arxiv.org/abs/1607.06450
http://aclweb.org/anthology/P16-1154
http://aclweb.org/anthology/D14-1162

North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 2 (Short Papers), pages 464–468. Associ-
ation for Computational Linguistics, 2018. doi: 10.18653/v1/N18-2074. URL
http://aclweb.org/anthology/N18-2074.

[55] Takuya Katayama. Legal engineering-an engineering approach to laws in e-society
age. In Proc. of the 1st Intl. Workshop on JURISIN, 2007.

[56] Makoto Nakamura, Shunsuke Nobuoka, and Akira Shimazu. Towards translation
of legal sentences into logical forms. In Annual Conference of the Japanese Society
for Artificial Intelligence, pages 349–362. Springer, 2007.

[57] María Navas-Loro, Ken Satoh, and Víctor Rodríguez-Doncel. Contractframes:
Bridging the gap between natural language and logics in contract law. In Kazuhiro
Kojima, Maki Sakamoto, Koji Mineshima, and Ken Satoh, editors, New Frontiers
in Artificial Intelligence, pages 101–114, Cham, 2019. Springer International Pub-
lishing. ISBN 978-3-030-31605-1.

[58] Junsheng Zhou, Feiyu Xu, Hans Uszkoreit, Weiguang Qu, Ran Li, and Yanhui
Gu. AMR parsing with an incremental joint model. In Proceedings of the 2016
Conference on Empirical Methods in Natural Language Processing, pages 680–689,
Austin, Texas, November 2016. Association for Computational Linguistics. doi:
10.18653/v1/D16-1065.

[59] Chuan Wang, Nianwen Xue, and Sameer Pradhan. A transition-based algorithm
for AMR parsing. In Proceedings of the 2015 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language
Technologies, pages 366–375, Denver, Colorado, May–June 2015. Association for
Computational Linguistics. doi: 10.3115/v1/N15-1040.

[60] Chuan Wang, Nianwen Xue, and Sameer Pradhan. Boosting transition-based
AMR parsing with refined actions and auxiliary analyzers. In Proceedings of the
53rd Annual Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing (Volume 2: Short
Papers), pages 857–862, Beijing, China, July 2015. Association for Computational
Linguistics. doi: 10.3115/v1/P15-2141.

[61] L. R. Rabiner. A tutorial on Hidden Markov Models and selected applications
in speech recognition. Proceedings of the IEEE, 77(2):257–286, Feb 1989. ISSN
0018-9219. doi: 10.1109/5.18626.

[62] Lauritz Brandt, David Grimm, Mengfei Zhou, and Yannick Versley. ICL-HD at
SemEval-2016 task 8: Meaning representation parsing - augmenting AMR parsing
with a preposition semantic role labeling neural network. In Proceedings of the 10th
International Workshop on Semantic Evaluation (SemEval-2016), pages 1160–
1166, San Diego, California, June 2016. Association for Computational Linguistics.
doi: 10.18653/v1/S16-1179.

[63] James Goodman, Andreas Vlachos, and Jason Naradowsky. UCL+Sheffield at
SemEval-2016 task 8: Imitation learning for AMR parsing with an alpha-bound. In

http://aclweb.org/anthology/N18-2074

Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-
2016), pages 1167–1172, San Diego, California, June 2016. Association for Com-
putational Linguistics. doi: 10.18653/v1/S16-1180.

[64] Giorgio Satta Xiaochang Peng, Daniel Gildea. AMR Parsing With Cache Transi-
tion Systems. In AAAI, 2018.

[65] Zhijiang Guo and Wei Lu. Better transition-based AMR parsing with a refined
search space. In Proceedings of the 2018 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1712–1722, Brussels, Belgium, October-November
2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1198.

[66] Yijia Liu, Wanxiang Che, Bo Zheng, Bing Qin, and Ting Liu. An AMR aligner
tuned by transition-based parser. In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing, pages 2422–2430, Brussels, Bel-
gium, October-November 2018. Association for Computational Linguistics. doi:
10.18653/v1/D18-1264.

[67] Rafael Torres Anchiêta and Thiago Alexandre Salgueiro Pardo. A rule-based amr
parser for portuguese. In Guillermo R. Simari, Eduardo Fermé, Flabio Gutiér-
rez Segura, and José Antonio Rodríguez Melquiades, editors, Advances in Artifi-
cial Intelligence - IBERAMIA 2018, pages 341–353, Cham, 2018. Springer Inter-
national Publishing. ISBN 978-3-030-03928-8.

[68] DongLai Ge, Junhui Li, Muhua Zhu, and Shoushan Li. Modeling source syntax
and semantics for neural amr parsing. In Proceedings of the Twenty-Eighth Inter-
national Joint Conference on Artificial Intelligence, IJCAI-19, pages 4975–4981.
International Joint Conferences on Artificial Intelligence Organization, 7 2019. doi:
10.24963/ijcai.2019/691. URL https://doi.org/10.24963/ijcai.2019/691.

[69] Miguel Ballesteros and Yaser Al-Onaizan. AMR parsing using stack-LSTMs. In
Proceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing, pages 1269–1275, Copenhagen, Denmark, September 2017. Association
for Computational Linguistics. doi: 10.18653/v1/D17-1130.

[70] William Foland and James H. Martin. Abstract meaning representation parsing
using LSTM recurrent neural networks. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 463–472, Vancouver, Canada, July 2017. Association for Computational
Linguistics. doi: 10.18653/v1/P17-1043.

[71] Rik van Noord and Johan Bos. Neural semantic parsing by character-based trans-
lation: Experiments with abstract meaning representations. Computational Lin-
guistics in the Netherlands Journal, 7:93–108, 2017.

[72] Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin Van Durme. AMR parsing
as sequence-to-graph transduction. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages 80–94, Florence, Italy, July
2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1009.

https://doi.org/10.24963/ijcai.2019/691

[73] Courtney Napoles, Matthew Gormley, and Benjamin Van Durme. Annotated
Gigaword. In Proceedings of the Joint Workshop on Automatic Knowledge Base
Construction and Web-scale Knowledge Extraction (AKBC-WEKEX), pages 95–
100, Montréal, Canada, June 2012. Association for Computational Linguistics.
URL https://www.aclweb.org/anthology/W12-3018.

[74] Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V. Le. Self-training with
noisy student improves imagenet classification, 2019.

[75] Shayne Shaw, Maciej Pajak, Aneta Lisowska, Sotirios A Tsaftaris, and Alison Q
O’Neil. Teacher-student chain for efficient semi-supervised histology image classi-
fication, 2020.

[76] Jonathan May and Jay Priyadarshi. SemEval-2017 task 9: Abstract meaning
representation parsing and generation. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017), pages 536–545, Vancouver,
Canada, August 2017. Association for Computational Linguistics. doi: 10.18653/
v1/S17-2090.

[77] Angela Fan, David Grangier, and Michael Auli. Controllable abstractive sum-
marization. In Proceedings of the 2nd Workshop on Neural Machine Transla-
tion and Generation, pages 45–54, Melbourne, Australia, July 2018. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/W18-2706. URL https:
//www.aclweb.org/anthology/W18-2706.

[78] Marjan Ghazvininejad, Xing Shi, Jay Priyadarshi, and Kevin Knight. Hafez: an
interactive poetry generation system. In Proceedings of ACL 2017, System Demon-
strations, pages 43–48, Vancouver, Canada, July 2017. Association for Computa-
tional Linguistics. URL https://www.aclweb.org/anthology/P17-4008.

[79] Robin Jia and Percy Liang. Data recombination for neural semantic parsing.
In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 12–22, Berlin, Germany, August 2016.
Association for Computational Linguistics. doi: 10.18653/v1/P16-1002. URL
https://www.aclweb.org/anthology/P16-1002.

[80] Abhijit Mahalunkar and John Kelleher. Multi-element long distance depen-
dencies: Using SPk languages to explore the characteristics of long-distance
dependencies. In Proceedings of the Workshop on Deep Learning and For-
mal Languages: Building Bridges, pages 34–43, Florence, August 2019. As-
sociation for Computational Linguistics. doi: 10.18653/v1/W19-3904. URL
https://www.aclweb.org/anthology/W19-3904.

[81] Peter Shaw, Philip Massey, Angelica Chen, Francesco Piccinno, and Yasemin Al-
tun. Generating logical forms from graph representations of text and entities.
In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pages 95–106, Florence, Italy, July 2019. Association for Computa-
tional Linguistics. doi: 10.18653/v1/P19-1010. URL https://www.aclweb.org/
anthology/P19-1010.

https://www.aclweb.org/anthology/W12-3018
https://www.aclweb.org/anthology/W18-2706
https://www.aclweb.org/anthology/W18-2706
https://www.aclweb.org/anthology/P17-4008
https://www.aclweb.org/anthology/P16-1002
https://www.aclweb.org/anthology/W19-3904
https://www.aclweb.org/anthology/P19-1010
https://www.aclweb.org/anthology/P19-1010

[82] Li Dong and Mirella Lapata. Language to logical form with neural attention.
In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 33–43, Berlin, Germany, August 2016.
Association for Computational Linguistics. doi: 10.18653/v1/P16-1004. URL
https://www.aclweb.org/anthology/P16-1004.

https://www.aclweb.org/anthology/P16-1004

Publications

[1] Vu Trong Sinh and Le Minh Nguyen. A study on self-attention mechanism for
amr-to-text generation. In Natural Language Processing and Information Systems -
24th International Conference on Applications of Natural Language to Information
Systems, NLDB 2019, Salford, UK, June 26-28, 2019, Proceedings, pages 321–328,
2019. doi: 10.1007/978-3-030-23281-8_27. URL https://doi.org/10.1007/
978-3-030-23281-8_27.

[2] Vu Trong Sinh and Nguyen Le Minh. An empirical evaluation of amr parsing
for legal documents. In New Frontiers in Artificial Intelligence JSAI-isAI 2018
Workshops, JURISIN, AI-Biz, SKL, LENLS, IDAA, pages 131–145, Yokohama,
Japan, 2018.

[3] Lai Dac Viet, Vu Trong Sinh, Nguyen Le Minh, and Ken Satoh. Convamr:
Abstract meaning representation parsing for legal document. arXiv preprint
arXiv:1711.06141, 2017.

[4] Vu Trong Sinh, Nguyen Le Minh, and Satoh Ken. Legal text generation from ab-
stract meaning representation. In Proceedings of the 32nd International Conference
on Legal Knowledge and Information Systems, Madrid, Spain, 2019.

[5] Vu Trong Sinh, Nguyen Le Minh, and Satoh Ken. Abstract meaning representation
for legal documents. submitted to the Journal of Artificial Intelligence and Law -
Springer Nature, 2020.

65

https://doi.org/10.1007/978-3-030-23281-8_27
https://doi.org/10.1007/978-3-030-23281-8_27

	Introduction
	Research Direction
	AMR Generation with the Self-Attention Mechanism
	Legal Domain Adaptation

	Dissertation contributions
	Dissertation Outline

	Preliminary
	Abstract Meaning Representation (AMR)
	AMR Datasets
	Benchmark Dataset
	Legal Dataset

	Parsing and Generation Evaluation
	Parsing Evaluation
	Generation Evaluation

	Deep Learning for AMR Parsing and Generation
	Encoder-Decoder Architecture
	The Rise of Attention

	Chapter Summary

	AMR Generation with Self-attention Mechanism
	Introduction
	Related Works
	The incorporated self-attention mechanism
	Our baseline model
	Self-attention in the sequence-to-sequence model
	Self attention in the graph-to-sequence model

	Experiments and Results
	Dataset and Experiment setup
	Experimental results

	Analysis
	Effect of the input size
	Error Analysis

	Chapter Summary

	AMR Parsing for Legal Document
	Introduction
	AMR Parsing - Main Approaches
	Alignment-based parsing
	Grammar-based parsing
	Neural-based parsing

	Experiments
	Datasets
	 Metrics for Evaluation
	Experimental Results and Discussions
	Error Analysis

	Chapter Summary

	Legal Text Generation from Abstract Meaning Representation
	Introduction
	Preliminaries
	Deep learning approaches in AMR-to-text Generation
	The baseline model

	Legal AMR generation
	Conditional training
	Decoding in legal style

	Experiments and Results
	Dataset Preparation
	Results and Analysis

	Chapter Summary

	Conclusion and Future Work
	Conclusion and Main Findings
	Future Work

	Bibliography
	Publications

