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Abstract

The electrical grid has operated on a centralized, top-down model for the past century and
heavily relied on fossil fuels for energy production. Grid operators are responsible for the
reliable delivery of electricity to consumers where electricity generation must be matched
with the total demand at all times. The main driving costs and capacity requirements are
the electricity demand that occurs during peak periods. These peaks in demand require
utility companies to operate costly and inefficient generators. Moreover, a concern of
climate change and greenhouse gas emission leads to an expected widespread demand-side
adoption of distributed energy resources (DERs), including renewable energy. The higher
penetration of renewable energy resources causes the challenges of the grid operators to
exacerbate. The intermittent nature of renewable resources and uncoordinated operation
of DERs substantially limit the ability of the supply adaptation to the fluctuating demand
and reverse power flow. One of the foreseeable solutions is to manage how end-users
consume their energy. Demand-side management (DSM) is a technique to exploit the
flexibility in the demand-side and change the consumption pattern of the end-users such
that demand profiles match better with the supply and thus lower energy costs.

In this dissertation, a DSM method for a residential community with high penetration
of DER is presented. In the proposed DSM method, a local energy sharing scheme is
incorporated into a price-based demand response to exploit the value of DER, benefiting
both the utility company and its customers. On the one hand, the utility company can
adopt the DSM method to motivate the customers to shift their energy consumption and
production such that peak demand and export energy can be reduced. As a result, the
aggregate consumption curve becomes more flat and smooth. Therefore, the utility com-
pany can lower energy costs from the costly peak-time energy procurement and mitigate
the problem of reverse power flow. On the other hand, the customers will be incentivized
from participating in DSM and motivated to share their energy locally. Thus, increasing
their energy bill savings and self-consumption, which maximize the value of DER.

We define a procedure of DSM into three sequential processes: day-ahead consumption
scheduling, consumption rescheduling, and energy billing. In the day-ahead consumption
scheduling, we propose energy price functions to motivate users to plan their energy
consumption and formulate an energy bill minimization problem for each user based
on appliance specifications and preferences. Then, we present an iterative distributed
algorithm to solve for optimal consumption schedules while preserving the privacy of the
users.

Furthermore, we aim to improve the practicality aspect of the proposed DSM model
by addressing the uncertainty of human behavior and energy billing fairness issues. We
propose the consumption rescheduling algorithm to allow the users to change their prefer-
ences during operating periods and recalculate consumption schedules for the remaining
time in order to avoid unnecessary costs. The energy billing mechanism with a penal-
ty/reward system is proposed to fairly allocate any energy bill discrepancy to users based
on their deviated consumption from the assigned schedules.
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Simulation results indicate the effectiveness of the proposed DSM model in terms of
peak demand and export energy reduction while maximizing the energy bill savings of
the users. Simulation on the impact of battery, PV generation, and user participation
in the system performance is carried out. Furthermore, the simulation results of the
proposed consumption rescheduling algorithm show improved consumption profile of the
community in response to the changing preferences of users. Finally, the results of the
proposed energy billing mechanism show the fair allocation of energy bills to each user
proportion to the amount of deviated consumption.

Keywords: Demand-Side Management, Distributed Energy Resource, Energy

Consumption Scheduling, Local Energy Sharing, Smart Grid
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Chapter 1

Introduction

1.1 World Energy Crisis

Human civilization has mainly relied on energy from fossil fuels to produce electricity in

order to propel our society forward. With the rise of the global population and industri-

alization in developing countries, the global demand for energy has reached extraordinary

levels. Burning coal, oil, and gas have been the primary reason behind the rising levels

of greenhouse gases in the Earth’s atmosphere, which is a leading contributor to climate

change. To prevent environmental disasters, humanity needs to reduce its energy demand

that relies on fossil fuel. Renewable energy resources, which are cleaner and emit less

greenhouse gas emissions such as solar and wind energy, could provide an alternative for

energy sources.

However, integrating these new energy sources into existing grids pose many challenges.

One of the big challenges is the intermittent nature of energy production. Wind and solar

energy are highly dependent on the weather and the time of day, and their production

may not necessarily coincide with the peaks in demand. Since storing a large quantity of

electricity is still impractical, shaping the demand to match the supply is another viable

solution. By coordination between supply and demand sides, we can manage how the

energy is consumed or produced more efficiently with cleaner energy resources.

In this dissertation, we are exploring a solution to manage energy usage from the
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demand-side with coordination from the supply in order to efficiently balance supply and

demand, promote renewable energy resources, and limit the use of fossil fuel for a global

sustainable energy practice.

1.2 Overview of the Electrical Grid Today

Before we go further into details, an introduction to the contemporary electrical grid

is necessary. Since the electrical grid first started growing in earnest in the early 20th

century, it has worked on a centralized, top-down model. The grid is divided into four main

components: generation, transmission, distribution, and consumption. Power is generated

at large-scale power plants, usually far from end-use customers, and fed into high-voltage

transmission lines. After being carried over a long-distance, power is injected from the

transmission system into local distribution areas (LDAs) via substations at transmission-

distribution (TD) interfaces, where the voltage is step-down by transformers. Finally,

power is carried along distribution wires in various directions to reach end-use consumers.

In general, the transmission network is managed by transmission system operators

(TSOs) to ensure the reliability of the transmission grid. In some countries or regions,

utility companies also own power plants and distribute electricity to their customers as

load-serving entities (LSEs). Whereas in other areas, the gird operation has been restruc-

tured, separating distribution from the transmission. In restructured areas, distribution

utilities do not own power plants and buy power from wholesale markets and resell it to

their local customers in retail markets. The wholesale markets, where competing power

generators selling their power, are administered by TSOs. The distribution utility com-

panies are acted as distribution system operators (DSOs), responsible for the reliability of

distribution networks and provide energy connection to end-users. The nature of electric-

ity is that it cannot be stored (in large quantity) and have to be consumed instantaneously

after being generated. Thus, utility operators need to balance supply and demand by gen-

erating electricity to meet demand at all times. The current electrical grid is designed

through a vertically integrated electric utility structure and one-way power flow with the

2



objective to serve the reliability of the grid by investing in the infrastructure to meet peak

load conditions. Fig. 1.1 shows the overview structure of the electrical grid.

Generation

Transmission
(TSO)

Consumption

Distribution
(DSO)

TD

LDA

Wholesale	
market

Retail
market

One-way
power	flow

Figure 1.1: Overview of the conventional electrical grid.

As the technology progress and environmental concern, electrical grids around the world

are in the state of significant transition toward the decentralization of electricity genera-

tion. Fig. 1.2 shows increasing trend in decentralization ratio of electricity generation by

country around the world [1]. The rise of distributed energy resources (DERs) and re-

newable energy are the leading driving technologies. DERs can be referred to small-scale

generation units that are located on the electricity end-users side, including solar PV sys-

tem, battery storage, electric vehicles, and other resources such as load shifting. Over the

past decade, there has been an acceleration of the infusion of the PV system, mainly due
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to the reduction in investment costs, advanced communication and control technologies,

and environmental concern. Moreover, battery storage technologies and costs are catching

up with the PV system and will be widely available in the consumer markets [1]. Accord-

ing to the Commonwealth Scientific and Industrial Research Organisation (CSIRO) [4],

a grid-connected PV and battery storage system will produce electricity more cheaply

than buying it from the grid in the near future. The Bloomberg New Energy Finance [5]

estimates that by 2050, half of all residential buildings will have solar PV systems, and

about one-third will also have battery storage.
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Figure 1.2: Decentralization ratio of electricity generation by country [1].

1.3 Challenges - Peak demand, Reverse Power Flow,

the Duck Curve

In this section, we present some of the challenges that the grid operator is facing in

the current electrical grid structure: matching peak demand, reverse power flow, and

dispersion of consumption profile.
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The electrical grid operators had only control over the supply. Since demand needs to

be matched instantaneously, the grid needs to build with enough power plants to satisfy

the highest possible peak in demand. However, most of the time, those costly “peak”

power plants are not operating and idle since they operate only during peak consumption

periods, which occur briefly. To meet the peak demand, the operators have to use those

costly power plants. Since a marginal cost of generating electricity increases with the

required demand, matching the peak demand increases the costs of the utility company.

That is, ideally, the utility operator would desire for a constant, flat, and smooth demand

curve in which they can achieve the most cost-effective power generation.

Furthermore, the rapid penetration of DER installation in the distribution networks

poses technical challenges for the network operator, including voltage maintenance, re-

verse power flow, and lack of DER generation visibility. Although consumers benefit from

having DER as it can reduce their electricity bills from self-consumption and/or become

prosumers to sell surplus energy to their retailers or local utility companies to earn ad-

ditional revenue in a feed-in-tariff (FIT) program [6], the aggregation of uncoordinated

behavior of DERs could impact the net energy consumption that the network operator

must serve. An example of DER’s impact on a low-voltage distribution network consists

of households equipped with PV systems is shown in Fig. 1.3. During day-time when PVs

generate energy simultaneously, and there is not enough load to absorb all the generated

energy, the surplus will be fed back to the network causing the voltage to rise and po-

tentially overcome the maximum voltage limit of the network. Another example is when

the operation of battery storage systems (act independently without coordination) could

coincidentally inject energy with the time of high solar irradiance [7], which causes even

more energy injection to the main distribution line and lead to violation of voltage and

thermal limits.
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Figure 1.3: Solar PV injection into low-voltage distribution networks causing voltage rise
problem

Both peak demand and over-generation PV create highly fluctuation in the consumption

profiles. As reported by the California Independent System Operator (CAISO) [2], the

net energy consumption could exhibit ”The Duck Curve,” (see figure 1.4) where a deep

drop of demand appears in the mid-afternoon due to over-generation and quickly raises to

the peak demand in the evening. This quick fluctuation of the consumption profile causes

the operator a challenge to adjust the energy supply rapidly with more cost-expensive

generators to meet the demand. Such operations are expensive and difficult to navigate.
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Figure 1.4: The duck curve of demand curve in California. (Figure source: CAISO [2])

The conventional solution used by distribution companies to manage the energy export

of DER is to curtail or limit how much DER energy can be injected into the grid. However,

the consumers lost financial benefits and letting clean, zero-carbon energy go to waste.

Thus, decrease the value of DER. Upgrading current distribution infrastructures such as

transformers, conductors, or feeding lines to expand the network capacity is also possible

solutions. However, investing in new equipment and assets would only solve the issue in

the short-term and not sustainable solutions. Besides, current power system management

is only done in the supply-side of the electrical grid, whereas the end-use customers in the

demand-side are considered passive and lack of participation in the management. The

retail energy price used to bill customers is mostly a flat-tariff scheme. In this scheme,

customers have no incentive to shift their consumption from peak-demand periods to

off-peak demand periods.

Hence, based on the above challenges, coordinate energy management from both supply

and demand sides is urgently required. If demand loads can be controlled, it can provide

energy flexibility and an option for the grid operator to balance supply and demand more

efficiently. Furthermore, a consideration of a more sophisticated active DER management
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method in the demand-side is needed to exploit the full potential value of DER while

limiting physical threats pose on the grid.

1.4 The Grid of the Future

One of the foreseeable solutions is to revise the structure of the electrical grid and how

it operates. A new paradigm of the electrical grid has emerged as “The smart grid”.

The smart grid is a digitally enabled grid, facilitated by an advance in information and

communication technology (ICT), smart meter, and home energy management system

(HEMS), which can potentially overcome the existing limitation in the current electrical

grid.

Instead of operating the electrical grid from a top-down one-way energy flow, a bottom-

up two-way energy flow operation approach could be an alternative. With DER, end-use

customers are seeking more control and choice over their energy uses and sources, as well

as the societies, are becoming more concerned about environmental impacts and climate

change. We can envision the future where DER can be managed from the demand-side to

help smooth out the variations in demand and renewable energy production locally, with

little supply from distant power plants. This would revise the electrical grid structure as

the DSO could be the responsibility for balancing supply and demand within its LDAs by

using flexibility from local DERs. Then, DSO presents the remaining aggregate supply

or demand into a single virtual unit to the TSO through a TD interface. Thus, reduce

operation complexity for the TSO. Fig. 1.5 shows a concept of the smart grid.
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Figure 1.5: The smart grid

In order to shape the consumption demand, a demand-side management (DSM) pro-

gram is one of the methods proposed for the smart grid to manage the consumption and

production of the end-users in the demand-side of the electrical grid. Previously, DSM has

focused on industrial and commercial consumers but, with an increasing number of DER,

the residential end-user sector also gained attention from both academic and industrial.

The price-based demand response (DR) method [8] is one of the DSM programs that the

utility company employs an energy pricing strategy to encourage consumers to change

their consumption behavior. Using different electricity prices at different times, the con-

sumers can have incentives to shift their energy consumption from high price periods to

low price periods. Thus, the design of energy price function and its character play an

important role for the utility to achieve the desired consumer’s response outcome.

1.5 Purpose of the Dissertation

The purpose of this dissertation is to develop a DSM method for a residential community

with high penetration of DER to achieve “win-win” strategies for both the utility company

and its customers. On the one hand, the utility company influences its customers to

change their energy consumption pattern by adopting a dynamic energy pricing strategy
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such that aggregate peak demand and export energy of the community can be reduced.

Therefore, the utility company can lower the energy cost from the costly peak-time energy

procurement and mitigate the problem of reverse power flow. On the other hand, the

users gain financial benefits from participating in DSM by providing flexibility from the

demand-side. Based on the energy prices, the users can plan their energy consumption to

minimize their energy bills. Also, the excess generation from DER can be shared among

users through the local energy market, which is incentivized by local energy prices. Thus,

increasing users’ energy bill savings and self-consumption, which maximize the value of

DER. Furthermore, we also consider improving the practicality aspect of the proposed

DSM model by addressing the uncertainty of human behavior and energy billing fairness

issues.

1.6 Structure of the Dissertation

The rest of the dissertation is organized as follows. Chapter 2 introduces the relevant

background topics for the discussed research, which includes an overview of the smart

grid, DSM, DR, and local energy sharing methods. Then, we present the motivations and

objectives of our proposed DSM method.

In Chapter 3, the structure of the residential community energy system proposed in the

dissertation is explained in detail, along with the definition and role of a utility company,

a community energy coordinator, and residential users. Then, we introduce the process

of the proposed DSM model.

Chapter 4 presents the day-ahead consumption scheduling, which includes the proposed

energy pricing functions, local energy sharing mechanism, and energy bill minimization

problem. An iterative distributed decision-making approach used to find optimal con-

sumption schedules of all users in the community is described. The simulation results

obtained are analyzed and discussed, and the impact of DER on the proposed system is

demonstrated.

Chapter 5 presents the consumption rescheduling process to deal with an uncertainty
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of human behavior. The proposed rescheduling algorithm is described and evaluated by

simulation. The results obtained are analyzed and discussed, demonstrating the impact

of human behavior uncertainty and the effectiveness of the proposed algorithm.

Chapter 6 presents the proposed energy billing mechanism to address the fairness issue

when consumption schedules are violated. The proposed penalty and reward factors are

defined. Then, a billing function is presented for distributing any energy bill discrepancy

fairly to all users. The simulation results are illustrated to confirm the feature of the

proposed billing mechanism.

Chapter 7 presents a discussion of the proposed DSM model and its application in the

future of the electrical grid.

Finally, Chapter 8 concludes the dissertation and suggests future work.
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Chapter 2

Background and Literature Reviews

In this chapter, we present related background research topics, which include an overview

of the smart grid, DSM, DR, and local energy sharing methods. Then, we describe

limitations in the existing literature, leading to the motivations of the proposed DSM

method. In the end, we summarize our research objectives.

2.1 Smart Grid and Demand-Side Management

The smart grid is a term that describes the modernization of the traditional electric grid

that delivers electricity from energy sources to end-use customers. Various advancements

in modern digital technologies reconstruct the traditional grid; it allows for two-way

communication between the utility and its customers, real-time data monitoring and

sensing along the transmission lines, and control automation [9]. Table 2.1 summarizes

the main features of the smart grid.

Table 2.1: Comparison between traditional grid and smart grid

Traditional grid Smart grid
One-way communication Two-way communication
Centralized generation Distributed generation

Passive consumers Active prosumers
Limited number of sensors Full grid sensor throughout

Manual restoration Self-healing
Failures and power outages Adaptive and islanded
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In the residential sector, two critical enabling technologies are HEMS [10] and Ad-

vanced Metering Infrastructure (AMI) [11]. The application of HEMS is intended to

automatically facilitate users in optimizing the use of household appliances and energy

consumption. HEMS also equipped with the capability of data collection, data processing,

data representation, and interaction with the user. With the installation of smart meter

and AMI, information related to the cost of energy, energy usage, and grid status can

be provided to the user from the utility company. This enhances the ability for HEMS

to optimally control the use of electric devices, e.g., to reduce peak power and electricity

bill.

DSM is one of the main feature technologies in the smart grid. Traditionally, utility

companies design the electricity grid for peak demand rather than the average demand to

achieve the high reliability required in power systems. This results in an under-utilization

of the designed system. Improving the utilization in power grids become a crucial point

due to the increasing demand for quantity and quality, limited energy resources, and

costly to exploit new resources and built new generations. Also, new types of loads, such

as electric vehicles (EVs) have emerged, which can potentially double the residential load.

Expanding the generation to meet the increasing demand faces great concern regarding

various environmental issues. For example, to meet the peak demand, oil and coal-fired

power plants are widely used, which emit a large amount of carbon dioxide and other

greenhouse gases. Thus, the development of DSM methods to manage the load in the

demand-side has emerged as an alternative solution, instead of increasing supply to meet

the demand. DSM has been invented and practiced since the 1980s by the Electric Power

Research Institute (EPRI) [12] as a series of activities that utility companies initiate to

change the user’s load profile of energy consumption for maximizing benefit, delaying

investment, and enhancing reliability. DSM is mainly categorized into two groups:

• Energy efficiency: A program in which promoting the reduction of energy require-

ment for the provision of services or products.

• Demand response: A program which defined by the US department of energy as
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“changes in electrical usage by end-use customers from their normal consumption

patterns in response to changes in the price of electricity over time or to incentive

payments designed to induce lower electricity use at times of high wholesale market

prices or when system reliability is jeopardized” [13].

The energy efficiency programs are aiming for a long-term goal to reduce the amount

of energy consumption by promoting the adaptation of a more efficient technology and

production process. For example, switching to LED lighting, replacing old inefficient home

appliances, or installing wall insulation for better indoor temperature control. Although

this approach proved to be a cost-effective strategy, it requires long-term and wide-area of

adaptation. On the other hand, the DR programs are focusing on a short-term strategy

to change the consumption pattern of consumers. Utilities can implement and tailor DR

strategy in order to achieve their designed system outcomes by the response from the

demand. The detail of various types of DR programs is presented in the following section.

2.2 Demand Response

Among different techniques considered for DSM, the DR program is one of the most

effective tools to shape the load profiles to improve the reliability and efficiency of the

power grid. It can be considered as the means or tariffs that the utility company takes to

incentivize users to change their energy usage patterns [14]. With the recent investment

in smart grid technologies, especially the large roll-out installation of smart meters, the

potentials of DR are fully exploited on a large scale, including a residential sector. DR

programs are further categorized into two main branches: incentive-based and price-based

programs. Summary of DR and DSM categories is shown in Fig. 2.1.

14



Demand-side	management
(DSM)

Demand-response
(DR) Energy	efficiency

Incentive-based	DR Price-based	DR

DLC I/C EDRP TOU CPP RTP

Figure 2.1: Categories of demand-side management programs

2.2.1 Incentive-based DR

In the incentive-based DR, an incentive is paid to the participating users for a reduction

of demand. Based on an event, triggered by system congestion or peak load, the program

provides load modification incentives to those users in addition to or separation from

electricity payments. Example of program variations are listed as follows:

• Direct load control (DLC): In the DLC program, the utility company has permission

from the participating users to remotely control specific electrical devices, e.g., air

conditioner and water heater, whenever necessary. Based on agreements, incentive

payments are provided for the demand reduction. Thus, the utility company can

mitigate peak loads during high demand periods without the need for a more costly

generation.

• Interruptible /Curtailable Service (I/C): In the I/C program, a discount or credit

in electricity bill is provided to the participating users for agreeing to change energy

consumption when necessary, such as during system contingencies.
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• Demand bidding/buyback (DB): In the DB program, a specific price or reward is

given to large customers for a specified amount of load reduction. This program is

mainly offered to larger industrial customers or aggregated small-customers with a

third party representing them for bidding.

• Emergency Demand Response Program (EDRP): In the EDRP program, a short-

notice load reduction request is sent to the participating users during emergency

events. The users receive incentive payments in reply to their load reductions.

Since the incentive is done through a contract with each individual customer, the

incentive-based DR is more suitable for commercial and industrial power users where

the amount of available demand flexibility is large. However, for residential users, due to

the smaller consumption scale and a large number, dynamic energy tariff strategies are

seen as a more suitable approach.

2.2.2 Price-based DR

In price-based DR, information on different electricity prices at a different time is provided

to the participating users as an alternative to the legacy flat-rate tariffs. Based on the

price information, users are motivated to use less electricity when prices are high and vice

versa. Thus, the utility company can design the electricity prices such that peak demand

can be reduced. In other words, opposed to the direct control method, the price-based DR

can be seen as an indirect load control method that induces users to change their energy

usage patterns according to the variance of electricity prices. To get maximum benefits of

the price-based DR program, HEMS and automate device control are required to facilitate

the load shifting of the users. Fig. 2.2 shows the conceptual design of price-based DR.

Example of program variations are listed as follows:

• Time-of-Use (TOU) Pricing: The TOU pricing is an electricity rate plan, which

varies according to the time of day, season, and type of day. Peak demand hours

are subjected to higher prices, and off-peak demand hours are subjected to lower
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prices. This price structure provides price signals to energy users to shift energy

consumption from peak hours to off-peak hours. Depending on the design, multiple

pricing tiers can be implemented: on-peak, mid-peak, and off-peak [15]. In order

to induce users to shift their loads over high-peak periods, high prices are imposed

compared to off-peak prices. TOU pricing is usually determined and announce to

the users in advance and keeps unchanged for an extended period of time [16–19].

• Critical peak pricing (CPP): The CPP is similar to the TOU pricing, except the

high-peak price is replaced by an extremely high price. The CPP is only imple-

mented on a small number of days in a year where the grid reliability is jeopardized,

e.g., extreme hot or cold day during summer or winter. Outside of CPP duration,

TOU pricing is typically employed [20–24].

• Real-time pricing (RTP): The RTP is also referred to as dynamic pricing, where the

electricity prices vary at a different time on an hourly or sub-hourly basis. The price

is adjusted based on the dynamic of the wholesale electricity market and intended

to convey the actual generation cost to the end-user. The RTP usually announces

on a day-ahead or hour-ahead basis. It has been widely considered more efficient

than other price-based DR programs [8, 25–32].

The implementation of the price-based DR is to announce energy prices to the target

customers in advance. The users then plan for their energy consumption, usually day-

ahead, to respond to different prices at different times. Once the energy consumption

plan is determined, the utility can determine its energy dispatch with more cost-efficient

from the flatter demand curve. Literature related to the price-based DR is presented in

the following section.
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Figure 2.2: Conceptual design of price-based DR.

2.2.3 Price-based DR - Literature Review

Time-varying price structures in price-based DR are designed with the aim of shifting the

timing of energy consumption so that peak demand is reduced. The ability to shift demand

depends on the type of users and the corresponding load specification. According to the

Smart Energy Demand Coalition (SEDC), residential DR relies mainly on price-based

DR while industrial and commercial sectors are primarily subjected to incentive-based

DR [33].

Various TOU and CPP residential DR pricing strategies have been studied in the early

literature [14, 16–24, 34–36]. They commonly designed the price strategy to exploit the

flexibility of the demand-side end-users by providing them particular energy price signals

in order to achieve some desired outcomes, e.g., reducing energy cost and production,

lower peak demand, and flattening the demand curves. Although TOU and CPP pricing

schemes show benefits to the overall power system, they cannot reflect variations of the

prices in the wholesale market in real-time, and thus are unable to effectively incentivize

customers to lower their energy usages during peak-demand periods or to shift their energy

18



usages from high-demand periods to low-demand periods. RTP is an effective solution to

the above problem.

RTP schemes have been considered in [8, 26–31], where the energy price strategies are

commonly related to the generation cost of the utility company. This generation cost is

usually formulated to reflect the dynamic of the wholesale market. The results of RTP

schemes show a better response from the customers in terms of peak and energy cost

reduction as well as economic benefits improvement for an individual user, compare to

less dynamic TOU and CPP schemes.

Some existing works in the literature also considered the context of high penetration of

DER in price-based DR schemes [37–44]. In [37], a day-ahead optimization is formulated

to minimize the cumulative monetary expense of each active user on the demand-side

by the scheduling of distributed energy production and storage. A dispatch strategy of

shared battery storage between customers and distribution network operators was pro-

posed in [38] to effectively respond to energy prices and network conditions. Authors

in [39] presented a game-theoretic approach analysis for interaction between users and

the utility in the presence of storage with selling-back to grid option. In [40], an energy

management scheme was carried out to minimize total energy cost to the central power

station while maximizing user benefits using the proposed utility and cost models with

DERs. In [41], energy consumption and storage optimization problem was formulated to

minimize the load deviation from the average demand over the consideration scheduling

horizon. Centralized and distributed algorithms were proposed to solve scheduling prob-

lems. The DR scheme with an aggregator was proposed in [42] to schedule dynamic loads

influenced by real-time pricing. The outcomes show a great reduction in PAR and overall

energy cost compared to other different pricing scenarios. In [43], a peak power-limiting

DR scheme was proposed for scheduling controllable loads, storage, and generation to

meet the demand of households in a dynamic pricing environment. However, the option

for selling energy back to the grid was omitted. A DSM scheme in [44] was proposed

with an option for the users to sell excess energy back to the grid, considering energy cost

minimization and comfort maximization in a distributed manner.
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Consideration of uncertainty in the DR system is discussed in [32, 45–48]. In [45], the

DR program is studied in the presence of an uncertain supply of renewable energy. An

online-DR algorithm is proposed to maximize the social welfare over two timescales: day-

ahead and real-time. The optimization problem is formulated as a dynamic program and

solved by a distributed heuristic algorithm. The simulation results show the performance

and impact of renewable energy on the maximum social welfare. The uncertainty of re-

newable energy sources is considered in the supply side in [46]. Power available from

the renewable is modeled using a discrete-time Markov chain. With knowledge of the

steady-state probabilities and, users can compute consumption schedules and choose an

energy supplier to minimize their energy costs. The results confirm cost reduction from

the proposed DSM by selecting an energy supplier and shifting of appliances. In [48], fore-

casting error of renewable generations is considered in microgrids. A two-stage real-time

algorithm is proposed using dynamic optimization to compensate for the uncertainties.

Numerical simulation results show the proposed method performs better than other ex-

isting methods when dealing with the uncertainties in terms of economic benefit and

netload characteristics. In [47], the uncertainty of renewable energy resources is handled

via information gap decision theory to reduce undesirable costs with maximum tolerable

a given worse-case procurement cost due to generation uncertainty. The simulation re-

sults show that the proposed method can reduce the impact of renewable energy source

uncertainty on the energy cost. In [32], forecast error in load and generation is addressed.

The author proposed a real-time DR scheme to update the forecast values and recalcu-

late the consumption schedule of every user in each hour during the operation day. This

process required all users to re-adjust their schedules to compensate for the forecast error.

The results showed better cost saving compared to a day-ahead scheduling scheme, which

suffered from the forecast error.

Another interesting aspect in DR is Fairness. While many works in DR can achieve

system optimality, they need contribution from all participants. To encourage users to

continue their contribution in the program, a proper design of the system fairness must

be done. Various fairness criterion in DR has been considered in [49–60]. In [49], a fair
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pricing model is proposed by considering the various type of fairness criteria such as type

of user, appliance category, and income level. Although the results showed improvement

in fairness level, detailed information of users might be difficult to access in order to

compute the energy bill in practice. In [50], a billing mechanism is proposed to fairly

bill the users by considering the load flexibility of each user. The billing rewards to

the users with a more flexible load by taking into account the exact shape of users’

load profiles. The results showed improvement in the fairness level in the DSM system.

Later, the same author extends her work in [51, 52] to address the trade-off between

system fairness and optimality. An alternative fair billing mechanism using the concept

of Shapley value is proposed to allocate energy costs across the users based on their

contribution to minimizing the total cost of the system. They concluded that there is a

trade-off between improving the fairness level and achieving an optimal solution. Fairness

consideration of the user’s discomfort was studied in [53]. They showed that when load-

adjustment and load-shifting become more effective, discomfort level increases and leads

to a system with unfairness. Again, they also observed a performance trade-off in the

design of DR programs. Authors in [54, 55] also considered fairness using the Shapley

value in their proposed billing mechanism. Both works used a sampling-based approach

that approximates the Shapley value. The results showed better savings, flattening the

load, and avoids peaks while maintaining fairness level. In [56], a billing mechanism is

proposed to fairly compensate a group of residential consumers who collectively reduce

demand during a load curtailment event. A weighted voting game and the Shapley value

are used to assess the fairness among users. The impact of the power loss and the voltage

deviation from each participating user is considered as a fairness measurement in [57].

In [58], the authors proposed a fairness index to compare the existing billing mechanisms

in the literature. They claimed that a fair mechanism should reflect the cost user induces

to the system. Works in [59,60] considered improving fairness level in energy billing when

the user’s actual consumption is different from the assigned schedules. A penalty is given

to each user based on the amount of deviated consumption. However, they did not take

into account the possibility when consumption decreases from the assigned level. That is
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when including DER in the system, consumption deviation can occur in both directions;

upward and downward.

2.3 Local Energy Sharing

The recent developments of the smart grid have opened an opportunity for consumers to

become more active players in the power system, instead of being passive energy end-users.

The new active users can participate in the energy generation and consumption process

by utilizing their local energy resources, managing their demand, and communicating

with other users. Although a high penetration of DER in the distribution networks could

cause network management issues, DER offers many potential benefits to the end-users.

Recently, an idea of local utilization of DER has emerged as local energy sharing, where

excess generation from DER can be shared among prosumers, instead of only exporting

back to the grid [61]. This energy sharing needs a local market to manage transactions

among different users. Local energy sharing can be classified into two categories based

on the interaction of the market players: full peer-to-peer and energy sharing through a

mediator :

• Peer-to-peer (P2P): In the P2P market, all participating users directly interact with

each other to sell or buy energy. Users can negotiate their preferred energy price

and amount of trading energy. There is no need for an intermediary entity.

• Energy sharing through a mediator: In this case, a third-party entity is presented

as an intermediary interface between energy buyers and sellers. It manages energy

transactions on behalf of all participating users and allocates energy from sellers to

buyers. The market rules and energy pricing also set up by the mediator.

Fig. 2.3 shows a simple example to illustrate the full P2P and mediator-based energy

sharing classification.
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Figure 2.3: Full P2P and mediator-based energy sharing designs.

Although the full P2P local energy sharing market shows great potential in utilizing

DER to its full value, advanced communication networks and technologies are required

to sustain the market designs. Blockchain technology can be the key factor in deploying

a P2P market in the energy sector [62–64]. However, with complexity involving the

negotiation process and transaction of energy from all peers, it is expected that the energy

sharing through a mediator or a platform would be the intermediate step toward the full

P2P markets [65]. Thus, in this research, we focus on the local energy sharing with a

mediator, which has the potential to be realized in the near future. Literature related to

local energy sharing with a mediator is presented in the following section.
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2.3.1 Local Energy Sharing - Literature Review

Recent local energy sharing schemes with mediators have been presented in the litera-

ture [66–78]. In [66], a joint load scheduling and power trading was proposed. The users

with excess generation offer their surplus and determine selling prices in order to max-

imize their revenues. The results showed a reduction in energy cost and reverse power

flows. A local energy sharing scheme facilitated by an intermediate entity was proposed

in [67] to manage the energy sharing inside a community. Internal sharing prices are

calculated using the ratio of local supply and demand. The users schedule their loads to

maximize bill saving. The proposed system achieved cost saving compared to the FIT

scheme, where users can only sell the surplus to the grid. Maximizing the profit of a

microgrid operator while considering the user’s utility in local energy sharing microgrid

was considered in [68]. The results confirmed that the profit of the operator and the

utility of the users increased by coordinating the energy sharing between users. In [69],

a discriminate energy sharing price model was proposed to maximize the sum benefits of

users while ensuring fairness among them. In the proposed system, the users sell surplus

energy to a shared facility controller inside the community, and a cake cutting game has

been proposed to calculate the energy prices. The results showed a better total monetary

benefit of the users compared to the FIT scheme. In [70], a distributed community-based

market framework was proposed to allow users to actively optimize their DER sharing. A

third-party node, e.g., community manager, was introduced to influence the users’ energy

dispatch decision as well as revenue and payments. Various possibilities of community

objectives and fairness measures are presented using the proposed market framework.

In [71], the centralized control strategy of battery storage and local energy pricing model

was proposed to maximize the economic benefits of the community. Individual users’ bill

saving was ensured using a compensate pricing strategy. A mid-market rate based energy

pricing scheme was proposed in [72]. The proposed energy trading scheme, inspired by a

canonical coalition game, achieved sustainable participation of active users with guarantee

cost-saving benefits. In [73], the benefit of energy storage in the local electricity market is
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presented with two different setups: decentralize and centralized storage. Improvement in

savings for the users can be achieved by the proposed market designs compared to the case

without local energy trading. Performance comparison of three different energy sharing

mechanisms was carried out in [74]: supply and demand ratio (SDR), mid-market rate

(MMR), and bill sharing (BS). The results showed that all local energy sharing schemes

have the potential for improving both economic and technical benefits. The SDR mecha-

nism outperforms other mechanisms in overall performance. In [75], a local energy sharing

market was proposed to integrate prosumer communities into the day-ahead and intra-

day market operations. A two-stage stochastic programming approach was developed for

a decision-making process under the uncertainty of generation and prices. The results

showed a significant decrease in electricity bills for the users while increasing the commu-

nity’s self-sufficiency. A concept of multi-class energy management in energy trading has

been presented in [76], which treat energy as a heterogeneous product accounting for in-

dividual prosumer energy preferences. The proposed energy market platform coordinates

energy trading between prosumers and the wholesale electricity market to minimize the

cost associated with losses and battery depreciation. In [77], an energy trading among

prosumers in a community was proposed as a game-theoretic model. The trading process

consists of two separate competitions: seller’s price competition and selection of seller

among buyers. The results showed that significant financial and technical benefits to the

community could be achieved from DER. Technical constraints of the network were con-

sidered in [78] under the proposed energy trading scheme. The proposed method ensures

that no network constraint is violated during energy sharing transactions among pro-

sumers. The results confirm the economic benefits of the users while keeping the network

under the limits comparing to other curtailment methods.

2.4 Research Motivations and Objectives

In this section, we will discuss the limitations of the existing literature and highlight our

research motivations and objectives.
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In order to design a DSM method for high penetration of DER in the residential commu-

nity, proper designs of energy price functions and interaction among entities are required.

Despite the aforementioned work have provided valuable methods and results, there are

still notable gaps in the existing literature in terms of DR pricing function: Firstly, the

existing research has failed to design the price signal to encourage the use of DER and

mainly focused on the aggregate energy consumption profiles. Secondly, the full potential

value of generated DER energy is still yet to exploit. In most of the price-based DR works,

the surplus energy is exported back to the grid or being limited to export to prevent from

damaging the power network. Therefore, the benefit to the user owning DER is reduced.

Noticing these shortcomings, the first motivation in our research is to design a DSM model

that taking into account various types of DER and exploiting the possibility of managing

the generated DER energy more efficiently.

On the other hand, inspired by the works in local energy sharing research, we notice the

potential to share the DER energy locally and leverage the benefit of DER. The design

of local energy markets in the existing literature mainly focused on the dynamic of local

supply and demand and incentivized the users to share their DER surplus. However,

they have failed to consider the possibility of interacting with the utility company and

ignored the outcome of the community consumption profiles. Without the dynamic of

grid conditions, the local energy market could influence the user’s consumption behavior

in an undesirable way, e.g., peak consumption during high-demand periods. Hence, our

second motivation for designing the DSM model is to consider the interaction of the utility

company in a local energy market mechanism. Thus, combining the first and second

motivations inspire us to incorporate local energy sharing mechanism with the price-

based DR and propose local energy price functions that depend on the dynamic of both

grid condition and local DER. We aim to encourage users to change their consumption

patterns to align with the system objectives, e.g., reducing peak demand and export

energy, while maximizing energy bill savings of the users by sharing energy locally.

Furthermore, since the DSM methods commonly consider energy consumption planning

ahead of time, e.g., day-ahead scheduling, various type of uncertainty can cause the
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realized consumption to be different from the expected consumption plan, resulting in

compromised outcomes. The most common uncertainty consideration is a forecast error

in renewable generation, e.g., PV and wind energy. The existing literature has proposed

various methods to address the issue, including real-time recalculation of the consumption

schedules during the operation periods. However, we notice a lack of consideration in

the existing research on user behavior uncertainty. While the production of renewable

energy resources can be predicted with high accuracy in short periods, the behavior of

users could be difficult to predict [79]. To cope with such uncertainty, we propose a

consumption rescheduling algorithm to allow users to request for change and recalculate

the consumption schedule in order to minimize the impact of the uncertainty to the overall

system and their bill savings. Different from the existing approaches, our consumption

rescheduling algorithm only allows the user who changes his preference to recalculate the

consumption schedule while other users kept their assigned schedule unaffected, preventing

from frequent schedule alternation.

Finally, to have an effective DSM program, consideration of improving fairness also

an important aspect. A DSM program which treats the participating users fairly would

be able to maintain active participation and able to exploit the available flexibility to

its full capacity, while the program with lack of fairness could discourage the users from

participating in the DSM activity and possibly opt-out from the program. As the above-

mentioned works related to fairness in price-based DR, fair allocation of energy cost

(or energy billing) to all users based on specific fairness criteria is a common approach.

Considering the existing fairness criteria, we notice that the realized energy consumption

could deviate from the optimal assigned schedules and cause unfair billing to users in

the community. Thus, we further propose an alternative fair billing mechanism in our

DSM model. Since we considered the residential community with high penetration of

DER, where energy consumption could deviate in both upward and downward directions,

the existing fair billing mechanisms are not applicable to our system. Thus, to fairly

address any billing discrepancy, we introduce penalty and reward factors based on the

user’s violation and commitment in our proposed billing mechanism.
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The objectives of this dissertation can be summarized as follows:

• To design a residential community energy structure with local energy sharing for

DSM which incorporates a local energy market with the price-based DR to efficiently

manage the energy consumption of a residential community that consists of high

DER penetration.

• To propose a dynamic price model for DSM that can motivate users to better utilize

energy from DERs and provide demand-side flexibility such that peak demand and

export energy of the community are reduced while maximizing the energy bill saving

of the users.

• To develop a consumption rescheduling algorithm in DSM that can reduce the im-

pact of uncertainty due to human behavior even in the case of last-minute preference

changes, such that demand peaks and unnecessary energy costs are avoided.

• To design a billing mechanism that can achieve fair energy billing in DSM where

an impact of rescheduling users and consumption violations are taken into account

when distributing the energy bill to all users based on their individual action.

2.5 Chapter Summary

In this chapter, we introduced the background of the smart grid and two of the main

technologies: DSM and local energy sharing. We explained the potential of the price-

based DR method to influence the users to change their energy consumption patterns.

We highlighted that, with high penetration of DER in the demand-side, the existing

price-based DR method in the literature still lacks consideration to exploit the value of

DER to its full potential. On the other hand, we also explained the potential of local

energy sharing among users to maximize the benefit of DER. We focused on the energy

sharing scheme with a mediator, which could be possible to implement in the near future.

We also highlighted the research gap of the existing local energy sharing schemes in the
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literature, which did not consider the interaction between the utility company and its

users in the energy sharing community. Those aforementioned limitations and research

gaps inspire us to propose a DSM method, which incorporates price-based DR and local

energy sharing. We proposed a local energy market to exploit the full potential value of

DER, where local energy prices are influenced by local energy supply and demand, as well

as the aggregate energy consumption profile of the community. Thus, our proposed DSM

method aims to encourage the users to shift their energy consumption to align with the

utility objectives (reducing peak demand and export energy) while benefit from energy

bill savings. Furthermore, we explained how human uncertainty and billing fairness could

have a negative impact on the performance of the DSM and proposed methods to address

the issues.
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Chapter 3

Residential community energy

structure

In this chapter, we present an energy system overview of a residential community and

the proposed DSM model. Two main entities are presented, the utility company and

the residential community, which is the set of users1 plus an energy coordinator. In

our system, the utility company provides energy to the users through the coordinator.

First, we explain the residential community. Second, we describe the model of residential

user’s energy consumption and their DER. Third, we introduce the DSM model and

explain the role and interaction among the utility company, the energy coordinator, and

its users. Finally, we present a procedure of our proposed DSM, which consists of day-

ahead consumption scheduling, consumption rescheduling, and billing process at the end

of this chapter.

3.1 Residential Community Energy System

Consider a residential community composed of a set of users N receiving energy service

from a single utility company. The utility company participates in wholesale markets to

purchase electricity from generators and then sell it to the users in the retail market.

1The word “users” represents energy end-users, including consumers or prosumers, interchangeably
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The residential community comprises of heterogeneous users n ∈ N with different

demand and generation. Each user is equipped with a smart meter and a HEMS, which

provide two-way communication among all entities and can automatically schedule and

control the operation of electric devices based on the user’s preference. We assumed that

each user may own some types of DERs (PV panels, battery storage or load shifting

capability). DER can be classified into two categories: passive or active DERs. An

example of passive DER is a rooftop PV, where its production can be forecast with a high

degree of confidence but controlling solar output is limited to a local algorithm and not

being remotely controlled by a third party. An active DER incorporates external control

inputs or data feeds that are being used to actively manage its behavior in response to

price signals or other conditions. Examples of active DERs include household battery

storage and shiftable load appliances. The residential properties are located in the same

proximity, such that the PV generation patterns among them are correlated. However,

since each user has different consumption patterns, the net energy consumption varies

widely among users and thus, DER energy is possible to be shared inside the community.

To facilitate local energy sharing, we introduce an entity called Community Energy

Coordinator (CEC). The CEC act as an agent representing the whole community, trad-

ing energy with the utility company on behalf of the users, and in charge of the local

community energy market.

Time in a day is divided into equal-length slot h ∈ H = [1, ..., H] over the operation

period, e.g. H = 24 hours in this work. Fig. 3.1 shows a concept of residential community

in our proposed DSM model.
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Figure 3.1: A residential community energy system for the proposed DSM.

3.2 Residential User Model

In this section, a residential user model is presented. Let lhn denotes a net energy con-

sumption of user n ∈ N in time slot h. Then, depending on lhn, a user can be classified

into one of the two roles: a buyer or a seller. The user is a buyer if the demand cannot be

satisfied by self-generated energy or by discharging from a battery (lhn ≥ 0) and thus extra

energy needs to be purchased. On the other hand, the user is a seller if the demand can be

fulfilled by local energy sources (lhn < 0) and has surplus energy to be sold. Self-generated

energy from PV is prioritized for self-consumption. Then, a surplus of locally generated

energy, if any, is sold to neighbors or the utility company through the CEC.

The users also schedule their appliances’ energy consumption and the charging/dis-
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charging of a battery H hours in advance, using energy price and community consump-

tion information provided by the CEC. The result of this scheduling determines whether

a user is a buyer or a seller at any given time, resulting in the corresponding offers to sell

or requests to buy energy to the CEC.

An energy consumption profile of a user can be described as a collection of electric

devices’ consumption behavior and constraints: household appliances, PV system, and

battery storage. Fig. 3.2 illustrates an example of a household with DERs. The mathe-

matical model of each of the electric devices and the user’s net energy consumption are

defined as follows:

Flexible
appliances

Non-flexible
appliances

HEMS

Smart
meter

Battery
storage

Solar
panel

GridPower	line

Communication	line

Control	signel

Power	flow	direction

Figure 3.2: A typical household with HEMS and DERs.
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3.2.1 Household Appliances

Each residential user has a number of appliances which can be classified into two types:

flexible and non-flexible:

• Non-flexible appliance: Appliances in which their operation schedule cannot be

shifted. The appliance consumption profiles are kept the same as their original

schedules, representing a user’s base energy consumption. Examples of such appli-

ances are a refrigerator, a freezer, a lighting device, etc.

• Flexible appliance: Appliances in which their operation time can be shifted from

the original schedules, respected to the user’s preference operating time slots and

daily energy requirement. The flexible appliance also considered as an active DER

of the user. Examples of such appliances are a washing machine, a vacuum cleaner,

dishwasher, etc.

We suppose that each user n ∈ N has a set of flexible appliances An, where An = |An|

is the number of flexible appliances. For each flexible appliance i ∈ An, the user n has

a predetermined daily energy demand ei and an operating time preference [αi, βi], where

1 ≤ αi ≤ βi ≤ H, for the appliance to operate. αi is the earliest time at which appliance

i can start its operation and βi is the deadline by which the appliance i needs to finish

its task. For example, a user can set the operation of a washing machine to start in the

evening and finish before the next morning. The user’s HEMS needs to schedule and

fulfill the energy requirement of each flexible appliance to finish its task within the time

preference, denoted as

ei =

βi∑
h=αi

xhn,i, ∀i ∈ An, (3.1)

where xhn,i is an energy consumption of the flexible appliance i belong to the user n in

hour h. Also, the energy consumption of appliance i has minimum and maximum bounds

it can consume in each hour as

xh,minn,i ≤ xhn,i ≤ xh,maxn,i . (3.2)
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The user also has a set of non-flexible appliances and the sum of its energy demand is

defined as xhn,o, which is predetermined and cannot be altered. An example of the energy

consumption pattern of appliances before and after scheduling is illustrated in Fig. 3.3.

Finally, the energy demand for household appliances of user n is defined as

dn
∆
= [d1

n, d
2
n, ..., d

H
n ] (3.3)

where dhn = xhn+xhn,o and xhn =
∑A

i=1 x
h
n,i is the sum of all flexible appliance’s consumption

in hour h.

�� ��

Before	scheduling

Time	slots

�� ��

After	scheduling

Time	slots

1 2 3 4 5 6 7 8 9 10

1 4 5 6 7 8 9 102 3

Flexible	appliance	consumption Non-flexible	appliance	consumption

Energy	
consumption

Energy	
consumption

Figure 3.3: Example for the energy consumption pattern of appliances before and after
scheduling.

3.2.2 Photovoltaics System

The users may be equipped with PV that can produce energy locally. A forecast daily

PV generation at the user n’s premises is denoted as

gn
∆
= [g1

n, g
2
n, ..., g

H
n ]. (3.4)
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Since energy generated from PV has only fixed installation cost and implies no strategy

regarding energy production, we assumed that PV generates electricity at its maximum

available power and considered as a passive DER. We also assumed an accurate day-

ahead PV generation forecast. We prioritize the user to directly consume energy from

PV whenever it available. Then, if the energy is not sufficient to meet the demand, the

user seeks energy from other available sources: battery storage, local energy sharing, or

the main grid.

3.2.3 Battery Storage System

The users may also own PV with battery storage systems at their premises. The operation

of the battery can be scheduled as an active DER, which is limited by its physical charac-

teristics. We denote the battery capacity by Qn and define yhn as the energy charging or

discharging of user n for her battery at time slot h, where yhn ≥ 0 indicates charging and

yhn < 0 indicates discharging. Charging and discharging are subjected to battery efficiency

rate ηc and ηd, respectively. Hence, the battery storage scheduling vector is defined as

yn
∆
= [y1

n, y
2
n, ..., y

H
n ]. (3.5)

The energy level stored in the battery at each time slot is indicated by state of charge

(SOC) as

SOCh
n = SOC(h−1)

n +
yhn
Qn

, (3.6)

where SOC
(h−1)
n is the SOC level in the previous time slot. An initial SOC0

n is predeter-

mined and the final SOC (SOCH
n ) is assumed to be the same as SOC0

n

SOCH
n = SOC0

n. (3.7)

The SOC level is usually limited by maximum and minimum SOC ranges as

SOCmin
n ≤ SOCh

n ≤ SOCmax
n , ∀h ∈ H. (3.8)
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Furthermore, maximum charging/discharging rates in each hour are limited as

− ymaxn ≤ yhn ≤ ymaxn . (3.9)

3.2.4 Net Energy Consumption

We define user n’s net energy consumption in time slot h as

lhn = dhn − ghn + (
1

ηc
)max(yhn, 0) + ηdmin(yhn, 0). (3.10)

and the corresponding consumption scheduling vector over H time slots as

ln
∆
= [l1n, l

2
n, ..., l

H
n ]. (3.11)

Based on the net energy consumption, in each time slot, a user’s role is classified as a

buyer or a seller :

• A buyer: When lhn > 0, the user needs to purchase energy from the CEC to meet

his demand

• A seller: When lhn < 0, the user has energy surplus to be sold to the CEC

Hence, we define the selling energy ehs,n and buying energy ehb,n of the user n in time slot

h as

ehs,n = min(lhn, 0) (3.12)

and

ehb,n = max(lhn, 0), (3.13)

respectively. As the net energy consumption is expressed as a sum of different device de-

mand and generation, including flexible and non-flexible parts, the user has the flexibility

to shift his consumption by the scheduling of flexible appliances xhn,i, ∀i ∈ An and charg-

ing/discharging of a battery yhn in each time slot h for all considered scheduling horizon
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H.

3.3 Demand-Side Management Model

In this section, we explain the detail of price-based DR and local energy sharing in the

proposed DSM model. A block diagram of the proposed DSM model is shown in Fig. 3.4.

The utility company and CEC interact with each other via grid energy prices. The utility

company determines the grid energy prices based on the aggregate consumption profile

of the community. The CEC receives a grid price function from the utility company and

incorporates into its local energy price functions. To incentivize local energy sharing,

the CEC sets the local energy prices between grid buying and selling prices so that all

prosumer receives an economic incentive from the local energy sharing at all times. Then,

when user’s HEMS receives local energy prices (selling and buying prices) from the CEC,

it schedules energy consumption of appliances and battery in order to maximize economic

benefits, e.g., bill savings. Since local energy prices depend on not only local supply

and demand but also a dynamic of grid prices, all user’s HEMSs need to coordinate

consumption scheduling which resulting in a reduction of peak demand and export energy.

Thus, the dynamic energy prices (more detail in Chapter 4) can be viewed as a method to

indirectly control the community consumption behavior to align with the utility company’s

desire consumption profiles. The details of the utility company and the CEC models are

described next.
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Figure 3.4: A block diagram of the proposed DSM model with the community energy
coordinator in a residential community.

3.3.1 Utility Company Model

The utility company is responsible for providing energy to the community or purchasing

any excess energy from the community as in the FIT program [80]. Even though wholesale

prices can fluctuate rapidly by significant amounts, most of the current utility companies

hide complexity and volatility from their customers and offer a fixed unit electricity price

(flat-rate tariff) or multiple tiers based on a customer’s consumption. Usually, the whole-

sale prices are determined by demand and supply and by congestion in the transmission

network, whereas, the retail prices are set statically independent of the real-time load and

congestion. The flat-rate pricing has the advantage of being predictable and straightfor-
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ward, but it does not encourage the efficient use of electricity.

To encourage efficient use of electricity, price-based DR schemes have been proposed in

recent literature. The utility company could use a dynamic pricing scheme in the retail

market, where the price of energy depends on the aggregate community consumption.

The design of the retail price needs to at least recover the running costs of the utility

company, including the payments it incurs in the wholesale market. Many works in

the DR literature [8, 30, 37, 41, 81] commonly summarized the energy cost of the utility

company into a cost function C(L, h) which specifies the cost for providing L amount of

energy to the users at any given time h. The energy price p(C(L, h)) can be set by the

utility company as a function of the energy cost and announce to the users. The price

function is used as a tool for encouraging users to follow the desired energy consumption

pattern of the utility company. Thus, the utility company can coordinate the users’

demand responses to the benefit of the overall system as well as individual users in the

community.

3.3.2 Community Energy Coordinator Model

With a traditional FIT scheme, users in the community usually manage PV and battery

systems from an individual user’s perspective by maximizing the self-consumption of the

customer’s generation. If there is insufficient energy from the private generation, the

users purchase deficit energy from the utility company, and when there is excess energy,

the surplus is sold back to the utility company. However, due to the significant lack

of equality and similarity between the buying and selling prices per unit of energy, the

economic benefit to users for participating in energy trading with the utility company is

not significant enough. With the little economic gain, the users may face difficulty to

payoff their DER investment and discourage the new customers from investing in DERs.

As a result, it is important to create new energy markets that allow users with small-scale

DERs to actively trade energy locally with each other and facilitate a sustainable and

reliable balance between the generation and consumption of energy within the community
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[82].

Local energy trading is being considered as a potential tool to promote the use of DERs

within the community. To facilitate the local energy sharing organization, the CEC is

introduced as the interface between the utility company and users inside the community.

We define the roles and responsibilities of the CEC in the community as follows.

• It ensures the energy balance of the community, by act as an agent to trade energy

with the utility company on behalf of users in the whole community.

• It manages local energy sharing between buyers and sellers by collects the energy

demand request and/or energy offer from the users and resolve energy discrepancies

by buying energy from, or selling excess energy back to the grid whenever necessary.

• It specifies the market rules for local trading which include local energy pricing

model, metering, billing mechanisms, and implementation process.

3.3.3 Demand-Side Management Procedure

In our proposed DSM model, we divide the DSM procedure into three sequential pro-

cesses shown in Fig 3.5: day-ahead consumption scheduling (Chapter 4), consumption

rescheduling (Chapter 5), and energy billing (Chapter 6). The detail of each procedure is

described as follows.

Chapter	4 Chapter	5 Chapter	6

Day-ahead
consumption
plans

Updated
consumption plans
(if any)

Energy bills
from actual
consumption

Day-ahead
consumption
scheduling

Consumption
rescheduling

Billing
process

Execution
timeline

Before	starting
of	next	day

During
operation	day

At	the	end	of
the	day

DSM
procedure

..
..

Figure 3.5: A flow diagram of the DSM procedure.

• Day-ahead consumption scheduling is executed at the end of each day to plan the

energy consumption of each user in the following day. Each user assigns flexible
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appliances and a period the appliances can operate in HEMS. Also, the utility com-

pany provides the grid price functions (price coefficients) to the CEC. Consequently,

the CEC incorporates the grid price function into its local price function and broad-

cast to all users at the beginning of the DSM process. Then, coordinated by the

CEC, all users’ HEMSs schedule day-ahead energy consumption of flexible appli-

ances and battery operation based on given price functions to minimize individual

daily energy bills. The resulting consumption schedules are sent back to the CEC.

Then, the CEC aggregates the energy request and offers from the users and de-

termines if it needs to import or export energy from the utility company. Finally,

the CEC informs the utility company of the final day-ahead aggregate community

consumption schedule.

• Consumption rescheduling process is executed during the operation period (dur-

ing h = [1, ..., H]). Before the beginning of each hour, if there is any user who

wants to change his preferences, he can request to the CEC for rescheduling of his

consumption plan. The CEC coordinates the request from all users and provides

updated community consumption information to the requested users. Then, the

users’ HEMSs recalculate the consumption schedule and battery operation for the

remaining time slots and inform the updated schedule back to the CEC for future

use.

• The Billing process is executed at the end of the operation period. The CEC calcu-

lates the energy bill of all users in the community based on their actual consumption.

If any violation of the assigned schedule, the CEC allocates penalty or reward to

the users based on their deviated consumption to maintain billing fairness in the

community.

42



3.4 Chapter Summary

In this chapter, we explained the structure of the community energy system, which consists

of the utility company and the residential community. The community is composed

of residential users equipped with DER. We defined the role and responsibility of each

entity in the considered energy system. Then, we explained the proposed DSM model

and described the procedure. The detail of each DSM procedure will be presented in

the following chapters. The publications related to this chapter can be found in the

publication list [1] and [3].
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Chapter 4

Day-ahead Consumption Scheduling

In this chapter, we propose energy pricing functions in the DSM model for day-ahead

consumption scheduling in a residential community with a high penetration of DER. We

introduce the CEC to facilitate energy sharing inside the community and a local energy

market that incentivize all user to share energy while benefiting the utility company,

creating a win-win scenario. Then, we formulate an energy bill minimization optimization

problem for each user. An iterative distribution decision-making approach is used to find

all users’ optimal consumption schedules in the community. Simulation results are given

to demonstrate the benefits of our proposed DSM model to the utility company and its

users at the end of this chapter.

4.1 Price-based Demand Response with Local En-

ergy Sharing Model

The goal of energy pricing design is to encourage users to change their consumption

patterns such that it smoothes the aggregate community consumption profile, reduces

peak demand and export energy, which in turn also reduces the total energy cost. The

users’ HEMSs use the energy price information to plan their consumption by shifting load,

scheduling of battery operation, and sharing energy among users to reduce their energy

bills. In this section, the detail grid energy pricing of the utility company and local energy
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pricing of the local energy market are described as follows.

4.1.1 Grid Energy Pricing Model

We design a grid energy pricing model for the utility company to charge for the energy

demand of the community. In our model, the utility company provides energy service for

the users through the CEC, who represents all the users inside the community.

Let Lh =
∑N

n=1 l
h
n be the aggregate net energy consumption of the community at time

slot h. A dynamic energy price (grid buying price) in hour h is determined by the utility,

which is a linear function of the total energy demand of the community (Lh ≥ 0), and

defined as

phg,b = ahLh + bh, (4.1)

where ah and bh are coefficients selected by the utility company. The grid buying price

function is related to an energy cost that the utility company procures energy from gen-

erators in the wholesale market. Due to the fact that a marginal cost of producing energy

is increasing as the amount of required energy increases, the energy cost is assumed to be

a quadratic function of the total energy demand. Thus, the energy cost in time slot h is

defined as

Ch = ah(Lh)2 + bhLh. (4.2)

Note that the choice of the quadratic energy cost function that varies with the total

energy demand is common assumptions in the literature [8, 30, 37, 41, 81], where the cost

function is a general approximation of efficient markets and not tailored to a specific

market. Fig 4.1 shows an example of energy cost and price as a function of energy. On

the other hand, when there is a surplus of energy in the community (Lh < 0), the CEC

sells the surplus back to the grid as in the FIT program. In this research, the grid selling

prices phg,s, ∀h ∈ H are assumed flat-rate tariffs. We also assumed that the utility company

employs a budget balanced scheme, where the total revenue of the utility company is equal

to its energy costs. The design of the linear price function will encourage users to shift
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their energy consumption from the peak-demand periods to off-peak periods to avoid high

energy prices and thus flatten the demand profiles.
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Figure 4.1: Example of grid energy cost and price as a function of energy.

4.1.2 Local Energy Pricing Model

For the local energy pricing model, we propose to incorporate the dynamic of the grid

price into the local energy sharing market by defining energy prices inside the community

to dynamically changed depending on local energy supply and demand as well as the

defined grid energy prices. We apply the concept in economics and the relation between

demand and supply [67] to formulate local energy price function. More specifically, the

local energy pricing model is a function of the aggregate net energy consumption Lh, as

well as the ratio of total local energy supply Eh
s and demand Eh

b . First, let define the

total selling energy and total buying energy of the community in hour h as

Eh
s =

N∑
n=1

ehs,n (4.3)
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and

Eh
b =

N∑
n=1

ehb,n, (4.4)

respectively. A supply and demand ratio (SDR) in hour h can be calculated as

SDRh =

∣∣Eh
s

∣∣
Eh
b

. (4.5)

To incentivize local energy sharing at all time, the local selling price phl,s = f(phg,b, SDR
h)

should always greater than or equal to the price of energy sold to the utility company

and the local buying price phl,b = f(phg,b, SDR
h) should always lower or equal to the price

of energy bought from the utility company. That is

phg,s ≤ phl,s ≤ phl,b ≤ phg,b. (4.6)

Based on inverse-proportional relationship between price and SDR, the local selling price

function is defined as

phl,s =


phg,sp

h
g,b

(phg,b−phg,s)SDRh+phg,s
, 0 ≤ SDRh ≤ 1

phg,s , SDRh > 1.
(4.7)

Assume that the CEC also employ a budget balanced scheme, e.g., total revenue is equal

to total expense, the local buying price function can be formulated as

phl,b =

p
h
l,sSDR

h + (1− SDRh)phg,b , 0 ≤ SDRh ≤ 1

phg,s , SDRh > 1.
(4.8)

When SDRh = 0 means that there is no seller in the community and the energy requested

from the buyers is imported from the grid by the CEC. Thus, both local selling and buying

prices of energy are set equal to the grid buying price phg,b. On the other hand, when the

community has a surplus of energy (SDRh > 1), all local demand is fulfilled by local

supply and community surplus is sold to the grid. Thus, both local selling and buying

prices drop to the grid selling price phg,s. The local selling and buying prices are different
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when 0 < SDRh < 1 and would dynamically change and bounded by the grid buying and

selling prices. A detail of the local price function formulation is provided in Appendix A.

A relationship between the local energy prices and SDR is shown in Fig. 4.2.
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Figure 4.2: A relationship between local energy prices and SDR.

To explain the relationship between local energy pricing and the response of the users,

we analyze as follows. With the increasing of SDR on the interval of [0, 1], the local

selling price pl,s and buying price pl,b decline. Since we desire to maximize the usage of

PV generation, the value of SDR is only be adjusted by the scheduling of the appliance’s

consumption and battery of users. In the user’s viewpoint, which aiming to reduce his

energy bill, when SDR is too small and the energy prices are too high, the buyers would

want to lower their energy consumption in this period, and the sellers would also want

to sell more energy for a high selling price. Thus, the SDR value would increase from

decreasing demand. On the other hand, if SDR is too large and the energy prices are

too low, the buyers would want to increase their energy consumption in this period, and

the sellers would also want to increase the amount of self-consumption by shifting energy

demand to this time since the selling price is low. Thus, the SDR value would decrease

from increasing demand. Since we assume that the users have a certain portion of active
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DERs, all users’ HEMS can coordinate to manage their DER until the final SDR value

has been agreed, which consequently affects the final local energy prices of the community.

Furthermore, both local selling and buying prices also affected by the change of the grid

buying price that depends on the net energy consumption of the whole community. This

would emphasize the energy prices, especially during peak-demand periods. As a result,

more demand would be shifted away from the peak time. Hence, the local energy market

can effectively encourage the responses of users through the proposed price-based DR

model.

4.2 Energy Bill Minimization Problem Formulation

In this section, we define a user’s objective function and formulate an energy bill mini-

mization problem for each user’s HEMS to schedule energy consumption for the next H

hours in the day-ahead consumption scheduling process. A user’s energy bill is calculated

from his energy consumption or production and the local energy prices in each time slot:

bhn = ehb,np
h
l,b + ehs,np

h
l,s. (4.9)

Since the user can only be a buyer role or a seller role in each hour h, we rewrite (4.9) as

bhn = lhnp
h
l , (4.10)

where phl =

p
h
l,b , lhn ≥ 0

phl,s , lhn < 0
. Each user is assumed to be selfish and has the objective of

minimizing his own daily energy bill. Total daily energy bill of user n can be calculated

as

Bn =
H∑
h=1

bhn. (4.11)

We denote Zn as a set of feasible energy consumption for the flexible appliances and

battery operation of the user n respected to the constraints in (3.1), (3.2), (3.7), (3.8),
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and (3.9). The individual user n’s optimization problem can be expressed as

minimize
zn∈Zn

Bn(zn)

subject to ei =

βi∑
h=αi

xhn,i,∀i ∈ An

xh,minn,i ≤ xhn,i ≤ xh,maxn,i ,∀h ∈ H

yminn ≤ yhn ≤ ymaxn ,∀h ∈ H

SOCmin
n ≤ SOCh

n ≤ SOCmax
n ,∀h ∈ H

SOCH
n = SOC0

n

(4.12)

where zn
∆
= [x1

n, x
2
n, ..., x

H
n , y

1
n, y

2
n, ..., y

H
n ] is a decision vector containing energy consump-

tion of the appliances and battery operation over the scheduling period H.

4.3 Iterative Distributed Decision-Making Approach

The optimization problem formulated in the previous section could be solved in a cen-

tralized fashion, with the central unit imposing every user how much energy he must

consume, produce, charge, and discharge at each hour. However, this approach is quite

an invasion solution since it requires each user to provide detailed information about his

preference and demand for each appliance, energy production, and battery storage ca-

pabilities. Such a privacy issue may discourage users from participating in the DSM.

Moreover, a centralized approach cannot account for an unpredictably expanding num-

ber of participants and not scalable. In consequence, we instead interest in a distributed

solution and apply an iterative decision-making approach that preserves the privacy of

individual users regarding their consumption details.

Let rewrite the aggregate net energy consumption as

Lh = lhn + Lh−n (4.13)

where Lh−n =
∑N

m=1,m 6=n l
h
m is the sum of all users’ net energy consumption except user n.

50



Furthermore, (4.3) can be rewritten as

Eh
s = ehs,n + Eh

s,−n (4.14)

where Eh
s,−n =

∑N
m=1,m 6=n e

h
s,m is the sum of all users’ selling energy surplus except user

n. Similarly, (4.4) can be rewritten as

Eh
b = ehb,n + Eh

b,−n (4.15)

where Eh
b,−n =

∑N
m=1,m 6=n e

h
b,m is the sum of all users’ buying energy demand except user n.

Now, the HEMS of user n can individually solve the problem (4.12) with only local vari-

ables as long as she has the information of the grid price function, local pricing functions,

aggregate net energy consumption L
∆
= [L1, ..., LH ], total buying energy Eb

∆
= [E1

b , ..., E
H
b ],

and total selling energy Es
∆
= [E1

s , ..., E
H
s ] of the community. The information necessary

for solving the optimization problem is provided by the CEC as public information and

does not reveal any private information of the user.

The overall process is implemented in a closed-loop iterative fashion. The summary of

the consumption scheduling procedure for each user is presented in Algorithm 1. Initially,

a HEMS of each user n ∈ N randomly initializes consumption vector zn since no prior

information about the community energy consumption is known. The CEC selects a

user, in random order, to schedule energy consumption and sends the current community

consumption information (L,Es and Eb) and local energy price functions to the selected

user’s HEMS. Then, the HEMS solves the optimization problem to minimize daily energy

bill according to (4.12). If the consumption schedule solutions different from the previous

solution, the HEMS updates the community parameters L,Es and Eb by substituting the

previous solutions with the new one and announces them back to the CEC. The CEC

selects the next user and repeats the process until no user changes her schedule and the

algorithm is terminated. Otherwise, when the algorithm reaches predetermine maximum

iterations, it terminates with the solutions in the last iteration. Finally, the CEC collects
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final consumption schedules from all users’ HEMSs. Note that users do not need to reveal

the details of their preferences and appliance specification, only total energy consumption

is sent to the CEC and not reveal to other users, which protect the privacy of the users.

A flow chart of the algorithm is shown in Fig. 4.3.

Algorithm 1 Consumption scheduling: executed by HEMS of each user n ∈ N
Input: L,Es and Eb
Output: Consumption schedule z∗n
choose any feasible starting point z0

n ∈ Z
repeat

when receive execute command and L,Es,Eb from the CEC
solve local optimization problem (4.12) for zn
if zn changes compare to the previous consumption schedule (‖zn − zn,prev‖ ≥ ε)
then

update L,Es and Eb with the new zn
announce L,Es and Eb to CEC

end

until no consumption schedule is updated or reach maximum iteration threshold

NO

YES
Exceed 
iteration

limit?

YES

NO

Is user pool
empty?

Selects a user
from the user

pool randomly

Send information
to user's HEMS

- price function
- aggregate community
consumption plan 

Schedule energy
consumption to
minimize the bill

Based on:
user preferences,
appliance and battery
constraints

NO

YES

Is new schedule 
different from

the previous one

Remove from
user pool

Update community
consumption information
and send back to CEC

Increase
iteration
number

Collects the
final

consumption
schedules

[end]

[start]
Community Energy Coordinator (CEC) User's HEMS

Figure 4.3: Flow chart of the iterative distributed decision-making algorithm
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4.4 Simulation Results

In this section, we define system performance metrics and conduct numerical simulations

to demonstrate the ability to reduce the energy bill of the community while flattening the

grid demand profile of our proposed DSM system. We further compare our model with

other models based on price feature differences and analyze the value of each feature on

the system performances. Furthermore, several study cases are provided to evaluate the

impact of battery, PV generation, and user participation in the proposed system.

4.4.1 System Performance Metrics

We define assessment metrics to quantify the performance of the proposed DSM model

as follows:

Total Community Energy Bill

The energy bill of the community is calculated from the sum of all users’ energy bills.

This is also the payment of the CEC to the utility company as it trades energy on behalf

of the whole community.

Total Energy Export and Self-consumption Rate

The surplus of PV generation is exported back to the grid if it exceeds the demand of the

whole community. The total energy export is calculated as the sum of energy inject to the

grid in each hour. A large injected energy could cause issues to the existing equipment

and practices used to manage the local distribution networks. A self-consumption rate is

defined as the ratio between the PV generation utilized locally within the community and

the aggregate PV generation from all users. It measures how much local generation has

been consumed on site. In other words, it focuses on where the local generation goes.
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Total Energy Import and Self-sufficiency Rate

The energy demand of each user can be supplied from local or external energy sources:

local PV generation, local battery storage, local energy sharing, and grid import. The

total energy import is defined as the energy required to fulfill the community demand

from the grid. A self-sufficiency rate is defined as the ratio between the energy demand

that is fulfilled by the local generation and the total energy demand of the community.

It measures how much users’ demand can be supplied by local generation, including local

energy sharing within the community. That is, it reflects the energy dependency of the

community on external sources.

Peak Demand and Peak-to-average Ratio

The utility company interests in the aggregate consumption profile of the community

as it needs to procure the energy from generators or the wholesale market to meet the

demand. Peak demand is one of the critical concerns that the utility company uses to

determine economic dispatch. The peak demand is defined as the maximum value of the

aggregate energy consumption profile of the community. Furthermore, a peak-to-average

ratio (PAR) is defined as the ratio of peak load and average load over a period of time

(24 hours in this case). It measures the flatness of the consumption profiles and reflects

the maximum dispersion of the demand from the average. The utility company favors

low peak demand and PAR as it can eliminate the need for more expensive generation

sources and, thus, lower the energy costs and prices.

4.4.2 Simulation Setting

We performed simulations based on a residential community with N = 100 users equipped

with a PV system. We assume that 30% of the population also owns an additional battery

storage system [1]. The consumption scheduling process is done for the next H = 24

hours. A lithium-ion battery specification is based on a small-scale household battery

from sonnenBatterie eco 8.0 [83] with a capacity of 6 kWh. The battery has a one-way
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efficiency of 98% and an inverter efficiency of 96%. The SOCmin
n and SOCmax

n is set

to 0.08 and 0.88, respectively. The maximum charging/discharging rates are 3 kW. The

initial SOC of 0.5 is assumed for all users at the beginning of the scheduling period.

The coefficients of the energy generation cost function are assumed to be ah = 0.47 and

bh = 18.62, ∀h ∈ H and are determined by line fitting of a modified tiered pricing structure

of the TEPCO electric power company [84]. Note that, in practice, the selection of price

coefficients could be different by each utility company and can be computed from real data

used in the energy dispatch problem of the utility company or designed artificially such

that the energy consumption of users can be manipulated according to the system desired

outcome. Without loss of generality, we select the price coefficients as to demonstrate the

impact of the proposed energy pricing functions on user’s consumption behavior and the

aggregate community consumption profiles. For the grid selling price phg,s, we set as 14

JPY/kWh.

For appliance energy constraints, we assume xh,minn,i = 0 and xh,maxn,i equal to the maxi-

mum value observed in the generated consumption profiles. The type of appliance (flexible

or non-flexible) is assigned to each appliance based on the importance of the appliance

being used. For example, a refrigerator is needed to be on all the time and is classified

as a non-flexible appliance. While a washing machine can be seen as a flexible appliance

since a user can prepare clothes to be washed in advance and only concern for the time

it finishes washing. Some of the appliances may be difficult to classify due to differences

in the lifestyle of users. Also, each user specifies the preference for using his flexible

appliances. We randomly assigned the preference for each user based on the generated

appliance consumption profile such that the start and end time of the appliance can be

shifted from the original value within two hours. For the iterative distributed algorithm,

we set ε = 0.01 and maximum iteration number of 500.

MATLAB software is chosen for the implementation of the DSM model, including

the modeling of the appliances, battery, energy pricing mechanism, and consumption

scheduling of HEMS. The optimization problem (4.12) of each user’s HEMS is solved

using MATLAB constrained nonlinear optimization toolbox. Note that, in this work, we

55



focus on the effect of the proposed energy pricing schemes on the user’s response behavior

in the DSM context. The physical constraints of the electrical network are omitted in the

model. To simulate more detailed simulation related to network parameters, other smart

grid simulation tools, e.g., Gridlab-D [85], can be integrated, where the control function

and decision-making on energy consumption are provided from MATLAB implementation

in future work.

Domestic electricity generation tool

To generate appliance demand profiles for each user (house), we use a domestic electricity

demand generation tool developed by the Centre for Renewable Energy Systems Technol-

ogy (CREST) [3], which is also widely used in related research community [71,74,86–88].

A simplified structure of the CREST model is shown in Fig. 4.4. A summary of the

tool is presented as follows: The CREST tool is capable of generating a synthetic daily

electricity demand data of each installed appliance in the home, using an active occu-

pancy data and daily activity profiles. The active occupancy data (indicates when people

are at home and awake) is generated from an occupancy model, which uses a first-order

time-inhomogeneous Markov-chain technique based on a time-use survey. The daily ac-

tivity profile, also derived from the time-use survey, is representing the probability of the

specified activity being undertaken, e.g., ”cooking,” as a function of time during a day,

the number of active occupants, and whether it is a weekday or weekend. For each sim-

ulated house, a set of appliances and associated annual demand in kWh/year is assigned

randomly based on a statistical ownership data. Thus, each house may have a different

number of appliances. The total number of appliances in the selected pool is 31. The full

list of appliances used in the simulation can be found in Appendix B. Each appliance is

assigned to one of the daily activity profiles. There may be multiple appliances assigned

to a single activity. For example, oven and microwave are all assigned to the cooking

activity.
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For each simulating house

For each appliance:

Determine power use
characteristic based on
switch-on event
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Washing
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A set of daily activity profiles
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A set of installed
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Total daily power consumption

Daily power consumption

Mapping activity
profile to each

appliance

Figure 4.4: Simplified CREST demand generation model [3].

The CREST tool generates appliance consumption data by determining whether the

appliance is switched on at each time step of a simulation. For each appliance, a procedure

to determine the switch-on event is as follows: First, the activity profile associated with

the appliance is selected. Second, the corresponding probability of any active occupants

are engaged in the activity is read from the activity profile. Third, the probability is

multiplied by the calibration scalar (which is the value to adjust the switch-on probability

of the appliance such that the mean annual consumption of the appliance is agreed with

the referenced statistical data) to get the probability of appliance switch-on at each time

step. Finally, a random number between zero and one is generated and compared to the

switch-on probability. If the probability is larger, the appliance is switched on, and power

consumption is calculated. The process is repeated for each appliance in each time step

until the end of the day. All of the generated consumption profile is then converted into

a one-hour time step energy consumption.

The CREST model also provides a PV module to simulate PV generation using incident

irradiance, PV panel array size, and system efficiency as input parameters. The incident

irradiance is subjected to a panel orientation and surface area of the PV panel array.

The solar irradiance profile is generated using a combination of clear sky irradiance and

sky clearness index. The sky clearness index is representing the additional attenuation

of the solar irradiance (due to weather condition) as compared to clear sky condition,
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which is constructed using the first-order Markov-chain technique based on the measured

irradiance data set. We use a solar panel area of 10 m2 with a system efficiency of 0.15 for

all users. Due to a relatively small community area, all user’s PV systems were considered

to have the same generation profile.

The CREST model is validated with real-world measured data collected from 22 vol-

unteer dwellings in UK. High-resolution meters were installed at each dwelling to collect

the whole-house demand consumption, where 1-min intervals demand consumption were

recorded throughout the year 2008. The measured data is then compared with the syn-

thetic profile, generated from the CREST model. Similar characteristics were observed

from both profiles which exhibit low electricity usage during late night and early morning

periods, an increased usage throughout the day-time with similar spikiness. The individ-

ual dwelling’s mean annual electricity demand of the synthetic and measured data sets is

verified with only 1.2% deviation. Using a Mann-Whitney U -test with 5% level of signifi-

cance, no significant statistical difference between the synthetic and measured data sets of

annual and daily electricity demand between dwellings. Some discrepancies were observed

in the daily demand profiles between two data sets. This is because of other factors that

were not considered in the CREST model which affect the real-world electricity usage

behavior such as employment profiles, energy conservation attitude, multi-tasking, and

socio-economic factors. However, when comparing the synthetic data with national mea-

sured data, the CREST model is matched more closely than the actual measured data.

Thus, the model is considered well represent of the overall domestic electricity demand

rather than a specific small set of measured data.

The CREST electricity demand model is suitable for generating individual house con-

sumption profiles for simulating the response of users in our DSM model. The availability

of each appliance consumption profile in each house can be used for modeling user prefer-

ence and flexibility of consumption schedules. Also, the CREST model can be configured

for generating different types of houses and human activities associated with each appli-

ance which can represent variation in the practice.
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4.4.3 Case Scenarios

As of the current electricity structure, consumers are at the end of the electricity supply

chain in a still predominant top-down structure: Generators sell their energy to retailers

who offer electricity at flat-rate tariff electricity prices to the end-users. The price-based

demand response program, with the installation of smart meters and HEMS, will open

the possibility for end-users to see dynamic prices instead of a flat tariff in the near future.

To identify the value of each of the proposed DSM local market features: dynamic

of grid condition and local energy supply and demand, three further case scenarios are

compared: We add dynamic grid pricing and local energy sharing possibilities one by

one to investigate its value to the system. We assume that exporting energy from the

community to the grid is possible in all cases (users either directly export energy to the

utility company or through the CEC). We summarized the case scenarios in Table 4.1 and

detailed as follows:

• The P2G+OTS case is defined as a base case for the current’s electricity structure.

The users are only allowed to trade energy directly with the utility company, as in

peer-to-grid (P2G) FIT scheme [6]. No energy price information is provided to the

users, and the implementation of DSM is disabled. Thus, the users have no incentive

to schedule their flexible appliance consumption, and the original consumption value

is taken from the dataset. Battery operation of the individual house is applied “Off-

the-Shelf (OTS)” control strategy [7,89], where the battery is charged based on the

surplus of PV generation and discharged when local demand is higher than a local

generation. Based on the above assumption, if the battery is not full, the battery

charges as soon as the net consumption is negative. If the battery is not reached

the minimum SOC level, it will discharges when the net consumption is positive.

The OTS control strategy also constrained by the charge/discharge power limit of

the system.

• The P2G+DGP case enables the DSM program where the grid energy prices de-

pend on aggregate community consumption. The users still directly trade with the
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Table 4.1: Feature summary of case scenarios

Case Appliance Battery Dynamic Local energy
scenario scheduling scheduling grid price sharing

P2G + OTS 7 3 (OTS) 7 7

P2G + DGP 3 3 3 7

LES 3 3 7 3

LES + DGP 3 3 3 3

utility company as in the P2G FIT scheme and schedule their flexible appliance con-

sumption and the operation of the battery based on the dynamic grid price (DGP)

information. These assumptions are similar to the existing schemes in the literature,

e.g., in [37,39,41].

• The LES case implements the local energy sharing (LES) mechanism inside the

community through the CEC. The users in the community trade energy through

the CEC and receive local energy price information from the CEC to schedule their

flexible appliance and the operation of the battery. However, opposed to the P2G +

DGP case, the dynamic of the grid price is not given to the users. These assumptions

are similar to the existing schemes in the literature, e.g., in [67,71,74].

• The LES+DGP case is our proposed DSM model, where it offers both dynamic of

the grid price and local energy sharing incentives in the energy price functions. The

users trade energy with the utility company through the CEC, which determines

local energy prices based on the SDR and DGP. The users’ HEMSs use the local

price information to determine consumption schedule of flexible appliances and the

operation schedule of a battery.

4.4.4 Energy Consumption Profiles

First, we compare and analyze the energy profiles of the P2G+OTS (without DSM) case

and our proposed LES+DGP (with DSM) case. Fig. 4.5 shows the energy profiles of the

P2G+OTS. We can observe that the battery under the OTS algorithm discharged energy

to supply the demand during morning and evening periods when there is no PV generation.

60



During mid-day, where PV generation is high, the battery charged the PV surplus until

fully charged. However, since local energy sharing is not implemented, once the battery is

fully charged, the exceed PV generation is export to the grid. Thus, creating a deep valley

of the net energy profile. Furthermore, the battery can only suppress the peak demand

until it reaches the minimum SOC level, and peak demand cannot be further reduced.

Note that there is no shifting of flexible appliance consumption in this case, and thus,

the reduction of export energy and peak demand are made solely by the battery. On the

other hand, the energy profile in the LES+DGP cases is shown in Fig. 4.6. As a result of

shifting flexible appliance consumption, the shape of the total demand is aligned with the

PV generation. Then, together with the battery, the PV surplus, after fulfilling the local

demand, is charged to the battery, resulting in zero export energy to the grid. The battery

behavior is similar to the P2G+OTS case in timing but different in magnitude, where it

discharged during morning and evening periods to supply the demand and charged during

mid-day to absorb the PV surplus. Since some of the demand for flexible appliances can

be shifted from the peak period, the battery can supply energy to the fixed appliance

demand and thus able to further reduce the peak consumption than in the P2G+OTS

case.
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Figure 4.5: Aggregate energy profiles of P2G + OTS case scenario (base case)
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Figure 4.6: Aggregate energy profiles of LES + DGP case scenario (proposed)
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4.4.5 Case Scenario Comparison

To compare the influence of dynamic grid pricing and local energy sharing features, the

aggregate net energy consumption of the community in different cases is illustrated in

Fig. 4.7. We observe a decrease in peak demand compare to the base case (P2G+OTS )

when appliance consumption and battery scheduling is applied. In the proposed case

(LES+DGP), when using a combination of dynamic grid pricing and local energy sharing

features in the price functions, minimum peak demand is achieved. This is because the

users react to the prices which reflect both the dynamic of the local supply and demand

in SDR and also the dynamic of grid prices that depend on the total community energy

consumption. The dynamic grid price feature, which only considered in the P2G+DGP

case, performs better in terms of peak demand reduction than the LES case since the

total community consumption is reflected in the price functions. However, since the users

aim for minimizing individual energy bills without considering local supply and demand,

the users’ HEMSs tend to schedule energy consumption such that they can receive some

profit from selling the excess energy back the grid. This is resulting in higher export

energy compare to the cases that local energy sharing is enabled. On the other hand,

in the LES case where only the dynamic of local supply and demand is presented in the

price functions, the community export energy is eliminated and instead utilized inside

the community via local energy sharing mechanism. The incentives provided by the local

energy sharing motivate the users’ HEMSs to schedule energy consumption such that the

PV generation is locally consumed within the community.
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Figure 4.7: Net energy consumption of P2G + OTS (base case), P2G + DGP, LES and
LES + DGP (proposed) case scenarios

The system performance of different case scenarios is summarized in Table 4.2. In terms

of total energy bill reduction, the proposed LES+DGP case entails the highest monetary

saving of the community with 43% bill reduction compared to the base case and 19.5%

compared to the P2G+DGP. This confirm the benefit to the users in the community for

participating in the proposed DSM. On the other hand, the influence of dynamic grid

price in the P2G+DGP and LES+DGP cases can be found in peak demand and PAR

reduction. The proposed LES+DGP case reduced PAR by 57.7% compared to the base

case and 20% compared to LES case. This confirm the benefit to the utility company for

flattening the demand curve of the community. Furthermore, the implementation of local

energy sharing in the LES and LES+DGP cases show better improvement in export and

import energy reduction leading to higher self-consumption (100%) and self-sufficiency

(77.44%).

In short, the proposed LES+DGP case gain benefits from combining both the dynamic

of grid price and local supply and demand into the price functions thus outperforms the
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cases when only one of the feature is applied. Therefore, we can conclude that the proposed

energy price function could significantly reduce the total energy bill and efficiently reduce

the peak demand and PAR in the aggregate load while improving the self-consumption

and self-sufficiency of the whole community, achieving the “win-win” strategies for both

the utility company and its customers. To sum up, the insights are highlighted as follows:

• The introduction of DSM with dynamic grid price with local energy sharing features

leads to a total bill saving of 43%.

• The dynamic of the grid price implemented in the price function leads to a consid-

erable reduction in peak demand and PAR.

• The local energy sharing incentive pricing leads to better improvement in self-

consumption and self-sufficiency rates by the reduction in export and import energy.

• The combination of pricing features shows more considerable system improvement

than implementing one of each feature separately.

Table 4.2: Comparison performance of difference case scenarios

Case Total community Self-consumption Self-sufficiency Peak demand PAR Total export Total import
scenario energy bill (Yen) rate (%) rate (%) (kWh) energy (kWh) energy (kWh)

P2G + OTS 14256 63.31 64.47 69.49 8.05 175.46 382.58
P2G + DGP 10029 75.61 71.88 39.56 3.74 66.11 319.74

LES 8263.2 100 77.39 45.72 4.25 0 257.99
LES + DGP 8072.2 100 77.44 36.54 3.40 0 257.36

4.4.6 Analysis of the Proposed LES+DGP Case

In this section, we analyze the characteristic of the proposed LES+DGP case. Fig. 4.8

shows the aggregate demand curve and the corresponding source of supply fulfilling the

demand. We can observe that the grid import energy is exclusively necessary during

evening peak hours. While most of the day, the majority of the demand can be fulfilled

within the community by shifting flexible appliance consumption to meet with the peak

PV generation and leveraging the local energy sharing from the surplus of PV generation

to the individual user’s demand. Batteries play a major role in supplying energy in the
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peak periods when PV generation is unavailable. Details of the battery’s behavior can

be seen from the SOC level shown in Fig. 4.9. The batteries tend to discharge at the

beginning of the day to meet the morning demand. Then, starting to charge as the PV

generation become available until reach the maximum SOC limit in the late afternoon.

To meet the peak demand in the evening, all battery discharge again until it reaches the

initial SOC level at the end of the day. Notice that the amount of charging is different from

user to user as each user has different local demand and consumption shifting flexibility.

Grid and local energy prices of each hour are illustrated in Fig. 4.10. The grid buying

prices dynamically change depending on the total community consumption profile, and

the price is peaked in the evening when the community demands the highest energy from

the grid. The local selling and buying prices lie between the grid prices to incentive

the users to share their energy within the community. When the local energy surplus is

high during the day, the local energy prices drop near the grid selling price limit while,

during morning and evening periods, only energy from batteries is shared among users

resulting in local prices rising toward grid buying price level. Lastly, the convergence of

the proposed LES+DGP is shown in Fig. 4.11. The total energy bills reduce dramatically

until the 100th iteration and continue slightly decreases until saturating around 200th

iteration, reaching the convergence, and the algorithm is terminated. All users’ HEMSs

reach the optimal consumption schedules, and the final energy prices are settled.
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Figure 4.11: Convergence of the proposed LES+DGP case
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4.4.7 Analysis of Computation Time and Convergence

In this section, we analyze a computation time of the proposed consumption scheduling

for each house and convergence test of the algorithm 1. We use a computer with 2.9 GHz

Quad-Core Intel Core i7 with 16 GB memory as a testing environment. Fig. 4.12 shows a

computation time of individual house equipped with a battery for a different number of

flexible appliances from 1 to 15. The computation time rapidly increased as the number

of flexible appliances increased since more variables are needed to be optimized. Fig. 4.13

shows a number of iterations required for algorithm 1 to converge to the optimum solutions

with a different number of houses in the community. From the convergence results, we

can see that the algorithm converges in less than 4N iterations, where N is the number

of houses in the community, in all simulation runs.

From the computation time and convergence test results, we determine the practicality

of the proposed algorithm by analyzing an extreme case where all houses in the community

are equipped with a battery and 4N iterations are required for convergence. Fig. 4.14

shows an estimation of a number of houses in the community where computation time of

the algorithm reaches 24 hours in the extreme case, which is assumed to be the maximum

limit for scheduling day-ahead energy consumption. In a case where each house has 1

flexible appliance, the number of houses is limited to 36,080. The maximum number of

houses declined as the number of flexible appliances increases. For 5, 10, and 15 flexible

appliances per house, the number of houses in the community is limited to 6,100, 1,313,

and 360, respectively. Thus, we conclude that the proposed algorithm is applicable to

a community with the size of thousands of houses and up to 10 flexible appliances per

house. Note that the computation time could be improved by increasing computation

power, e.g., using cloud computing service with more computation power. Another way

to speed up the computation time is to redesign the algorithm and apply the divide and

conquer technique with parallel computing, which is considered in future work.
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Figure 4.14: Maximum number of houses in the community for the extreme case

4.4.8 Performance with Various Numbers of Users with Battery

Storage Systems

In practice, the users who purchase a household PV system might not always equip with

a battery storage system. However, as the price of battery continues to decline, it is

expected that more customers, in the near future, will choose the PV-battery solution for

their DER systems. To evaluate the impact of battery systems in the community, a study

was carried out considering different numbers of PV-battery owners in the community.

The number was varied from 0% to 100% (with an increment of 20%). 0% means all users

only equipped with PV generation without battery storage. On the other end, 100%

means all users are equipped with the PV-battery system. Table 4.3 presents the system

performance metrics of the study.

71



Table 4.3: System assessment metrics with different percentage of PV-battery system
owners

Percentage of PV-battery Total community Self-consumption Self-sufficiency Peak demand PAR Total export Total import
system owner (%) energy bill (Yen) rate (%) rate (%) (kWh) energy (kWh) energy (kWh)

0 9,934 87.32 72.88 55.37 7.11 119.42 306.11
20 7,774 95.81 79.32 43.01 5.26 39.39 235.40
40 6,272 100.00 82.35 31.55 3.74 0 201.95
60 5,427 100.00 81.96 23.22 2.68 0 207.33
80 5,028 100.00 81.63 15.68 1.77 0 211.98
100 4,977 100.00 81.40 11.86 1.32 0 215.28

Increasing the number of batteries decrease the total energy bills since more users can

store PV energy and use it when the prices are high. However, the marginal bill saving

decreases when there are moderate numbers of battery (40%) presented in the system as

all PV generation has been utilized locally, resulting in fewer profits from energy sharing.

Both self-consumption and self-sufficiency increase to 100% and 82%, respectively, around

40% of the users owning batteries. Increasing the numbers of battery beyond 40% has

no significant impact on both self-consumption and self-sufficiency since the utilization

of the local energy reached the maximum. However, peak demand and PAR continue to

decline until 100% of the users have a battery. This is because each user, with battery

storage, can suppress individual peak demand independently, leading to accumulating

peak reduction of the community and improving PAR. In short, battery storage benefits

the whole community in terms of bill and PAR reduction while total utilization of local

generation can be achieved with a moderate number of the battery. A higher number

of batteries can result in less marginal gain achieved when the local generation is wholly

used up locally.

4.4.9 Performance with Various PV Generation

The amount of local energy generation, e.g., from PV, can cause the energy system several

issues if not appropriately managed. The network voltage tends to rise, and temperature

can reach the capacity limit if the power from PV is injected in the system too much. To

evaluate the impact of local generation on the system, a study was carried out considering

a different amount of daily PV generation per user in the community. The daily average

PV production per user was varied from 0 to 11.78 kWh. All users are assumed to
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equipped with a PV unit, and 30% of the users also own battery storage systems. Table 4.4

shows the system performance of the study.

Table 4.4: System assessment metrics with different amount of PV generation

Average daily PV Total community Self-consumption Self-sufficiency Peak demand PAR Total export Total import
generation per user (kWh) energy bill (Yen) rate (%) rate (%) (kWh) energy (kWh) energy (kWh)

0 47,332 NA 0 52.75 1.11 0 1,137.60
2.35 32,871 100 20.72 40.90 1.08 0 901.06
4.71 21,341 100 41.44 38.12 1.37 0 665.88
7.06 12,725 100 62.08 36.72 2.04 0 431.69
9.42 6,938 98.68 81.46 36.66 4.41 12.41 211.56
11.78 3,507 79.43 81.97 36.72 24.09 242.27 205.69

We observe that as the amount of PV generation increases, the total energy bill de-

creases dramatically. This is the case since the users required less energy from the grid,

and the demand can be fulfilled from the local generation. However, as the PV generation

reaches a certain amount (from 9.42 kWh/user), community starts to export energy back

to the grid as the system flexibility approaches the limit: load shifting and battery storage

available in the community can only handle the PV generation up to a certain amount.

Thus, the self-consumption rate drops below 100% in high PV generation. PAR also

suffers from the raise of local supply, and the effect amplifies when export energy reaches

a peak during mid-day since the difference of minimum and maximum community net

consumption becomes larger. In short, the local generation benefits users in terms of bill

saving, but the system can suffer from high PAR if there is a surplus of energy. System

flexibility can help the system to maintain a good performance (self-consumption remains

100%) up to a certain level of PV generation before the community needs to export energy

back to the grid and significantly raise PAR.

4.4.10 Performance with Various Numbers of Users Participat-

ing in the DSM Programs

The DSM programs required flexibility from the participation of individual users to

achieve their desired outcomes. However, in practice, there might be a fraction of users

in a community participating in the program, while others remain solely passive con-

sumers. To evaluate the impact of user engagement in the program, a study was carried
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out considering different numbers of users participating in the proposed DSM program.

We varied user participation percentage from 0% to 100% (with an increment of 20%).

When there is no participating user (0%), all users become passive users without schedul-

ing their energy consumption. When 100% user participation, all users schedule their

consumption and trade their energy through the CEC with local energy sharing enable.

Table 4.5 shows the system performance of the study.

Table 4.5: System assessment metrics with different user participation percentage

Participation Total community Self-consumption Self-sufficiency Peak demand PAR Total export Total import
percentage (%) energy bill (Yen) rate (%) rate (%) (kWh) energy (kWh) energy (kWh)

0 14,256 63.31 64.47 69.49 8.05 175.46 382.58
20 12,505 83.85 69.37 63.29 7.72 152.15 348.78
40 9,089 92.71 76.30 46.38 5.49 68.70 271.32
60 6,357 100 81.88 29.80 3.43 0 208.50
80 5,169 100 81.59 17.96 2.02 0 212.52
100 4,977 100 81.40 11.86 1.32 0 215.28

As the number of participating users increases, higher reduction of energy bills, peak

demand, and PAR are observed. This is because more system flexibility can be exploited

by active participants. The passive users also gain economic benefits even though they

did not participate in the DSM program since the grid energy prices become lower as the

community aggregate demand flattens. We also observe that, at a high participation rate

(beyond 60%), the marginal gain of having more participants reduces when the system

reaches 100% self-consumption. In short, the whole community can benefit from the DSM

program at any participation rate: both active and passive users can enjoy bill saving while

the system performance also improves. However, the marginal gain is reduced at a high

participation rate as self-consumption already reached 100%.

4.5 Chapter Summary

In this chapter, we present a price-based DR with an integrated local energy sharing

market for day-ahead consumption scheduling in a community with a high penetration

of DERs. The proposed local energy pricing scheme is coordinated by the CEC, which

incorporated the dynamic of grid price while also taking into account the aggregate users’
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local energy supply and demand. Energy consumption scheduling is formulated as the en-

ergy bill minimization problem which is solved through the iterative distributed decision-

making algorithm, without revealing details regarding individual energy consumption,

thus preserving user privacy. Simulation results show a mutually beneficial relationship

between users and the utility company. The users achieved higher economic benefit when

participating in the proposed DSM method compared to other existing methods. The

utility company received a benefit from overall flatter community aggregate energy de-

mand: lower peak demand and export energy. The better utilization of DER resulting in

improving the community’s self-consumption and self-sufficiency. Furthermore, the im-

pacts of battery storage, PV generation, and user participation in the performance of the

system have been analyzed. The publications related to this chapter can be found in the

publication list [1] and [3].
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Chapter 5

Consumption Rescheduling

In this chapter, we focus on addressing the research gap in DSM by considering the

uncertainty of human behavior, which is difficult to predict. We make an assumption that

the users’ appliance preference might be changed after the day-ahead schedules have been

computed. To accommodate such last-minute changes, we propose an energy consumption

rescheduling algorithm to cope with the deviating users during the operation periods. The

objective is to minimize the total energy bill by giving the users the option to request

new schedules, which would also result in a reduction of peak demand and export energy

of the aggregate energy consumption profiles. Simulation results demonstrate the effect

of the human uncertainty on the system performance and verify the effectiveness of the

proposed rescheduling algorithm when applied.

5.1 Energy Consumption Rescheduling Algorithm

In this section, we present the proposed energy consumption rescheduling algorithm to

address any change of the user preference by allowing the user’s HEMS to recalculate

appliance consumption and battery operation schedules of the remaining hours.

The initial scheduling time horizon H that we consider for the day-ahead schedules

via DSM starts at h = 1 and stop at h = H, with hourly time-slot. The “rescheduling

algorithm” computes the consumption schedule on time horizon {t+ 1, ..., H}, where t is
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the time-slot that a user request to change operation time preferences of his appliances.

The rescheduling algorithm would be executed during time-slot t and finish before the

starting of the next time-slot t+ 1.

For better understanding, considering the following example: A user was preferred to

operate a vacuum cleaner between 12:00 - 16:00 the next day. However, when the user

wakes up in the morning at 8:00 and discovers that he has to go to his office in the

afternoon due to an urgent meeting. Thus, he wants to change his preference for using

the vacuum cleaner to 18:00 - 20:00 after he comes back home. So, he can set his new

preference in his HEMS. Then, the HEMS automatically sends a request to the CEC.

Before 9:00, the CEC starts a rescheduling process and sends community consumption

information to the HEMS to find the best time for using the vacuum cleaner during

18:00-20:00.

Note that the user may have more than one appliance that he wants to reschedule the

energy consumption plan for, and there may be more than one user who also wants to

reschedule in each time-slot. Without any mechanism to provide the update consump-

tion schedule, the user has no idea when to use the appliance during his new preferred

periods and may use the appliance when the energy price is high. This could have a

negative impact on the community consumption profile if many users change their energy

consumption from the assigned schedule without considering the community consumption

condition.

Let assume that a user m ∈M, whereM is a set of users who request for rescheduling

at time-slot h = t ∈ H, has a set of flexible appliances A′
m ∈ Am that need to recalculate

its consumption schedules. For each appliance i ∈ A′
m, the associated time preference is

changed from [αi, βi] to new time preference [α
′
i, β

′
i] by the user m. Note that only the

appliance that its operation has not start before h = t can be rescheduled. The energy

constraints of the appliance i is updated with the new preference as

ei =

β
′
i∑

h=α
′
i

xhm,i,∀i ∈ A
′

m. (5.1)
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Each user m ∈M recalculate his optimal consumption schedule of all appliances in the

set A′
m and battery operation at time t to minimize his daily energy bill for the remaining

time horizon H′
= {t+ 1, . . . , H} as in the following optimization problem:

minimize
z′m∈Z

′
m

Bm(z
′

m)

subject to ei =

β
′
i∑

h=α
′
i

xhm,i,∀i ∈ A
′

m

xh,minm,i ≤ xhm,i ≤ xh,maxm,i ,∀h ∈ H′

yminm ≤ yhm ≤ ymaxm ,∀h ∈ H′

SOCmin
m ≤ SOCh

m ≤ SOCmax
m ,∀h ∈ H′

SOCH
m = SOC0

m

(5.2)

where Z ′
m is the updated set of feasible energy consumption for the user m respected to

the constraints in (5.1), (3.2), (3.7), (3.8), and (3.9) and z
′
m

∆
= [xt+1

m , xt+2
m , ..., xHm, y

t+1
m , yt+2

m , ..., yHm ]

is a decision vector containing energy consumption of the appliances in A′
m and battery

operation over the remaining scheduling period [t+ 1, ..., H].

The rescheduling procedure for all users inM is coordinated by the CEC at any time-

slot t ∈ H, similar to the day-ahead scheduling algorithm in Chapter 4. The summary

of the rescheduling procedure for each user is presented in Algorithm 2 and the follow-

ing details. At any time-slot instant t ∈ H, the CEC receives rescheduling requests

from all users in M. Then, the CEC randomly selects user m ∈ M to recalculate his

energy consumption schedule according to (5.2) by providing the expected community

energy consumption for the remaining time {t + 1, ..., H}. The selected user’s HEMS

solves the optimization problem to minimize her remaining daily energy bill. Then, if the

consumption schedule solutions different from the previous solution, the HEMS updates

the community energy consumption information by substituting new solution with the

previous one and announce it back to the CEC. Once the CEC received the update, it

randomly selects the next user in M to reschedule. The process is repeated until the
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CEC receives no update from the users and the algorithm is terminated. If the number

of iteration reached a predetermined maximum limit, the final solutions are taken as in

the last iteration. A flow chart of the rescheduling algorithm is shown in Fig. 5.1. Note

that when a user’s HEMS reschedules, the consumption schedules of other users n /∈ M

remain unchanged. The reason is that we want to minimize the impact of the reschedul-

ing process to other users such that their consumption schedules remain the same as in

the day-ahead schedules and not causing any frequent schedule change for the users that

can promise to the schedules. However, the energy bills may be changed due to the local

price functions that depend on the aggregate energy consumption of the community which

would be realized in real-time. This energy bill discrepancy will be addressed in Chapter

6.

Algorithm 2 Consumption rescheduling: executed by HEMS of each user m ∈M
Input: z∗m, L, Es and Eb for {t+ 1, ..., H}
Output: Consumption schedule z∗

′
m

at any time-slot instant t
update appliance i’s preference to [α

′
i, β

′
i],∀i ∈ A

′
m

send request for rescheduling to the CEC
repeat

when receive execute command and L,Es,Eb from the CEC
solve local optimization problem (5.2) for z

′
m

if z
′
m changes compare to the previous consumption schedule (

∥∥z′
m − z

′
m,prev

∥∥ ≥ ε)

then
update L,Es and Eb with the new z

′
m

announce L,Es and Eb to CEC
end

until no consumption schedule is updated or reach maximum iteration threshold
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Figure 5.1: Flow chart of the proposed rescheduling algorithm

5.2 Simulation Results

In this section, we present a numerical comparison of our proposed energy consumption

rescheduling algorithm with three other case scenarios as follows:

• The uncoordinated P2G+OTS case is defined as an original consumption profile of

the users with an off-the-shelf battery control algorithm. In this case, no DSM is

implemented to control or incentivize the users: the consumption profiles are taken

as the observed values in the sampling data.

• The perfect commitment case is assumed that all users perfectly commit to the day-

ahead optimal schedules when DSM is implemented and no consumption deviates

from the day-ahead schedules.
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• The deviated schedule without rescheduling case is assumed that users have changed

their preferences without applying the rescheduling algorithm. The users will change

the operation time of the appliances and use them as early as possible according to

their new preferences.

• The deviated schedule with rescheduling case is assumed that the users have changed

their preference and the proposed rescheduling algorithm is applied to recalculate

new appliance consumption respect to their new preferences.

5.2.1 Simulation Setting

The simulation setting in this chapter is similar to the setting in the previous chapter.

For completeness, we will briefly present the simulation setting in this chapter. In the

simulations that follow, the CREST demand model [3] was used as the residential user

demand consumption. This model is a high-resolution (one-minute resolution) stochastic

model of domestic electricity demand that incorporates appliance composition, human

occupancy model and electrical parameters derived from time-use survey data. In the

simulations, a population of 100 households (N = 100) on one ordinary weekend day in

summer was considered. Appliance types and power rating parameters, the human occu-

pancy, and user demand were gathered by randomly sampling from the CREST model.

Examples of non-flexible appliances (i.e., critical appliances that their energy consump-

tion cannot be shifted and must keep the power level as the original schedules) include

refrigerator, television, personal computer, and lighting. Flexible appliances, including

dishwasher, washing machine, and electric shower, were modeled using (3.1) and (3.2).

The full list of 31 appliances used in the simulation can be found in Appendix B. The

number of appliances each user owns is determined by the result of sampling from a given

probability distribution based on realistic statistics from a time-use survey. Note that

not all appliances in the list are occupied by every user. We assumed the daily energy

requirement for each appliance corresponds to the data sampled. For appliance energy

constraints, we set xh,minn,i = 0 and xh,maxn,i equal to the maximum observed value. The
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user preferences in the day-ahead consumption scheduling are randomly assigned for each

flexible appliance considering the original schedules within two hours. For the demonstra-

tion, the number of users who change their preferences and the corresponding appliances

are randomly drawn from the uniform distribution for each time-slot from 5:00 to 18:00.

Also, the new preferences for each appliance are randomly assigned after the time of the

request t.

A lithium-ion battery specification is based on a small-scale household battery from

sonnenBatterie eco 8.0 [83] with a capacity of 6 kWh. The battery has a one-way efficiency

of 98% and an inverter efficiency of 96%. The SOCmin
n and SOCmax

n is set to 0.08 and

0.88, respectively. The maximum charging/discharging rates are 3 kW. The initial SOC

of 0.5 is assumed for all users at the beginning of the scheduling period.

The coefficients of the grid buying price function are set as ah = 0.47 and bh = 18.62,

∀h ∈ H. The grid selling price phg,s is set to be 14 JPY/kWh. The optimization in (4.12)

and (5.2) were solved using MATLAB optimization toolbox. For the iterative distributed

algorithm, we set ε = 0.01 and maximum iteration number of 500.

5.2.2 Results of Consumption Rescheduling

Figure 5.2 shows the corresponding aggregated energy consumption of the community in

different scenarios and we observe that the perfect commitment case performs the best

with the lowest peak demand and the smoothest net energy consumption curves (as also

shown in Chapter 4). This is because of the assumption of ideal user behavior which

achieved the optimal performance given the available flexibility of the users. The result

of the deviated schedule without rescheduling case suffered from the assumption of the

uncertainty of human behavior, resulting in increased peak demand and export energy.

With the proposed rescheduling algorithm, a peak demand and export energy can be

reduced compared to the case where rescheduling is not applied. This is because of the

rescheduling algorithm schedules devices in such a way as to minimize the user’s energy

bill by shifting the consumption from high price periods to low price periods. However, the
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Figure 5.2: Aggregate net energy consumption profiles of 100 users in the case of uncoordi-
nated P2G+OTS, perfect commitment, deviated schedule without and with rescheduling
algorithm

available flexibility of the devices is lower than the day-ahead scheduling, the performance

is not as good as in the perfect commitment case. The results also showed that when

DSM is implemented we can still achieve better performance than the uncoordinated

P2G+OTS case, even when we assume the uncertainty of the user’s behavior.

A summary of the numerical results is shown in Table 5.1. The deviated schedules,

both with and without rescheduling, lead to higher total energy bills and lower both

self-consumption and self-sufficiency compared to the perfect commitment case. The case

without rescheduling increases the total bill by 13.1% and increases both PAR and peak

demand by 22.5% whereas both self-consumption and self-sufficiency decrease by 3.9% and

2.3%, respectively. With the proposed rescheduling algorithm, we can improve the system

performance from the deviated schedule without rescheduling algorithm: 3.0% decrease

in total energy bill, 11.8% decrease in both PAR and peak demand, 3.0% increase in

self-consumption, and 1.5% increase in self-sufficiency. In short, with the rescheduling
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Table 5.1: System performance comparison of uncoordinated P2G+OTS, perfect com-
mitment, deviated schedule without and with scheduling algorithm cases

Case scenario Total community Self-consumption Self-sufficiency Peak demand PAR Total export Total import
energy bill (Yen) rate (%) rate (%) (kWh) energy (kWh) energy (kWh)

Uncoordinated P2G+OTS 14,256 63.31 64.47 69.49 8.05 175.46 382.58
Perfect commitment 8,068 100 77.45 36.65 3.42 0 257.19

Deviated schedule without rescheduling 9,294 96.11 75.63 47.30 4.41 20.73 277.91
Deviated schedule with rescheduling 9,012 99.12 76.76 41.70 3.89 7.78 265.02

algorithm, the system performance would always be improved from the deviated schedule

without rescheduling case. However, the amount of performance improvement of the

rescheduling algorithm significantly depends on variables such as the request rescheduling

time and new preference periods, the number of rescheduling users, and the number of

rescheduling appliances.

5.3 Chapter Summary

In this chapter, we proposed energy consumption rescheduling algorithms for the DSM

programs. We considered the implications of allowing users to deviate from their original

preferences and request new energy consumption schedules that are different from the

assigned day-ahead optimal schedules. The rescheduling algorithm recalculates the devi-

ating user’s schedule to find the best possible consumption schedule that minimizes the

users’ energy bills. Simulation results confirmed that the proposed rescheduling algorithm

reduces the total energy bills of the community from the deviated day-ahead schedules

by adaptively rescheduling user loads in response to their changing preferences. By being

able to address changes in user preferences, the proposed algorithms will further help DSM

programs to achieve a practical deployment in the future smart grid. The publications

related to this chapter can be found in the publication list [2], [5] and [6].
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Chapter 6

Fair Billing Mechanism

In this chapter, we focus on addressing the fairness issue of energy billing in the DSM

when consumption schedules are violated from the assigned schedules. When users devi-

ate their consumption, the realized energy prices change from the expected prices, which

in turn, affects the energy payments of all other users in the community. To cope with

unfair energy pricing, we propose an alternative energy billing mechanism that allocates

any billing discrepancy to users based on their amount of deviated consumption, which

indicated by the proposed penalty and reward factors. The simulation results are demon-

strated to confirm the feature of the proposed billing mechanism.

6.1 Energy Billing Mechanism

In this section, the details of the proposed energy billing mechanism are explained. As

mentioned in Chapter 4, the energy bill is calculated by the CEC for all users in the

community at the end of each day for the amount of energy he consumed or sold. In

the ideal scenario, a full commitment of users to their assigned consumption schedules

is assumed. This assumption is based on the fact that violating the assigned schedules

would decrease the economic benefit of the users and, thus, no reason for the users to

violate the schedules. However, in practice, the ideal assumption rarely holds true due

to various sources of uncertainty, e.g., load and generation forecast errors, change in

85



human behavior, and unexpected events. Those violations from users would alter the

aggregate community energy consumption profiles and consequently alter the realization

of the energy prices. The change in energy prices will have an effect on the user’s energy

bill not only to the users who deviated the assigned schedules but also the users who

committed to their assigned schedules. Hence, the situation is unfair to those committed

users who expect a certain amount of bill savings or revenue.

6.1.1 Energy Bill Difference

To address the energy bill discrepancy, we proposed a fair billing mechanism using penal-

ty/reward systems to proportionally allocate any bill difference to the users regarding the

amount of energy deviation. Let define Bh
RL as the total community realized energy bill

in hour h:

Bh
RL =

N∑
n=1

bhn,RL =
N∑
n=1

lhn,RL · phl,RL (6.1)

where lhn,RL is the actual load of user n in hour h and phl,RL is the corresponding realized lo-

cal energy price. Note that the CEC needs to collect the daily payments BRL =
∑H

h=1 B
h
RL

from the users for the amount of energy they consumed or sold and pay to the utility

company.

Since the day-ahead local energy price, denoted by pl,DA, is determined by the coordi-

nation of all users in the community, the users have the expectation that this price will

be realized when calculating their energy bills. However, due to schedule deviation, the

realized energy prices could differ from the expected prices (pl,RL 6= pl,DA). The energy

bill difference causes by changing energy prices, in hour h can be calculated as

∆Bh =
N∑
n=1

lhn,RL · phl,RL −
N∑
n=1

lhn,RL · phl,DA. (6.2)

Thus, to enforce fair billing, the energy bill difference will be the responsibility of the

users who did not commit to their assigned schedules.
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6.1.2 Penalty and Reward Factors

In order to fairly allocate the bill difference to the responsible users, we define the cause

of schedule deviation into two types as follows:

• Deviation from sudden violation is caused by the user who suddenly increases or

decreases consumption level from the assigned schedule without any notification to

the CEC. This type of deviation is undesirable and has a negative impact on the

overall system.

• Deviation from the rescheduling process is caused by the user who changed his pref-

erence and requested the CEC to recalculate his consumption schedule (proposed in

Chapter 5). This type of deviation is less severe to the system since the consumption

is allocated optimally according to the new preference.

Furthermore, we defined the penalty and reward factor for any user n and hour h as

follows:

• The penalty factor Θh
n indicates the degree that user n deviates from the assigned

schedule compare to all other users in the community. The sum of penalty factors

in each hour is one.
N∑
n=1

Θh
n = 1 (6.3)

• The reward factor Ωh
n indicates the degree that user n commits to the assigned

schedule compare to all other users in the community. The sum of reward factors

in each hour is one.
N∑
n=1

Ωh
n = 1 (6.4)

Let define the total amount of energy deviation of user n in hour h, denoted as ∆lhn,

consists of a sum of deviation from sudden violation (∆l̃hn) and rescheduling process (∆l̂hn)

as

∆lhn = ∆l̃hn + w∆l̂hn (6.5)
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where we introduce a load deviation weight w > 1 to weigh the amount of energy deviation

from the sudden violation more than the deviation by the rescheduling process, since

from the system perspective the violation of the assigned schedule is undesirable than

the deviation from the rescheduling process. The value of w can be set by the system

operator, depending on how much he valued the severity of the sudden schedule violation.

Finally, the penalty and reward factors can be calculated as in the following equations,

respectively:

Θh
n =

∆lhn
∆Lh

, (6.6)

Ωh
n =

∆lhmax −∆lhn∑N
n=1(∆lhmax −∆lhn)

(6.7)

where ∆Lh =
∑N

n=1 ∆lhn is the total energy deviation in hour h and ∆lhmax = max(∆lh1 , ...,∆l
h
N)

is the maximum energy deviation from a single user in hour h.

6.1.3 Proposed Billing Function

The proposed billing mechanism allocates penalty or reward to the users in the commu-

nity when calculating their energy bills on an hourly basis. There are two billing cases,

depending on the value of ∆Bh in each hour.

1. When ∆Bh > 0:

In this case, the CEC allocates the extra cost of energy to user n based on his

corresponding penalty factor as

bhn,prop = lhn,RL · phl,DA + Θh
n ·∆Bh. (6.8)

2. When ∆Bh ≤ 0:

In this case, the CEC allocates the extra revenue of energy to user n based on his

corresponding reward factor as

bhn,prop = lhn,RL · phl,DA + Ωh
n ·∆Bh. (6.9)
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Finally, the total energy bill in each hour can be calculated from the sum of users’ energy

bills as

Bh
prop =

N∑
n=1

bhn,prop. (6.10)

Note that amount of energy bill Bh
prop in each hour h is equal to the realized energy bill

Bh
RL and only different in how the energy bill of individual user is allocated.

An example of the proposed billing mechanism is shown in Fig. 6.1, where energy

bills of rescheduled, violated, and committed users are illustrated when the penalty is

applied (∆Bh > 0). For demonstration, we set the same amount of energy deviation for

both rescheduled and violated users. In Fig. 6.1, since committed users did not receive

any penalty, their energy bills remain the same as in the expected day-ahead energy

bills, while the users who deviate their assigned schedules have their bills increased (both

rescheduled and violated users). Also, since the violated users subject to more penalty

than the rescheduled users, the energy bills of the violated users are higher than the

rescheduled users.
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Figure 6.1: Example of the proposed billing mechanism
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6.1.4 Fairness Index

In order to assess the fairness of the proposed energy billing mechanism, we define the

fairness index F based on similar concept in [67,90] as the variance in the deviated energy

consumption to energy bill difference ratios of users, which is expressed as follows.

F =
1

N

N∑
n=1

(
∆ln
∆bn

− 1

N

N∑
n=1

∆ln
∆bn

)2

(6.11)

∆ln =
H∑
h=1

∆lhn (6.12)

∆bn = b∗n − bn,DA (6.13)

where ∆ln is the total amount of deviated energy consumption of the user n from the

assigned day-ahead consumption schedule. ∆bn is the total energy bill difference of user

n, bn,DA and b∗n is expected day-ahead energy bill and realized energy bill of user n,

respectively.

From 6.11, a lower fairness index F indicates a more fair billing. F = 0 means all users

are allocated energy bills exactly proportionally to their deviated energy consumption.

Larger values of F means that users are allocated with more or less energy bill than their

“fair value” of schedule commitment.

6.2 Simulation Results

In this section, we present a numerical comparison of the proposed energy billing mecha-

nism with the conventional energy billing mechanism. The demonstrating case scenarios

are defined as follows:

• The day-ahead scheduled energy bill : Energy bills, in this case, are calculated as

the expected energy bills when users schedule their consumption in the day-ahead

scheduling process. Ideally, if no schedule is violated, the realized energy bills at

the end of the day would be the same as the expected energy bills.
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• The conventional billing : In this case, no penalty/reward system is implemented.

The realized energy bills are calculated from realized energy prices after the users

violated their schedules as

bn,conv =
H∑
h=1

lhn,RL · phl,RL. (6.14)

• The proposed billing : In this case, the penalty/reward system is applied to allo-

cate any energy bill difference to the users proportionally. the realized energy bills

are calculated using the proposed billing mechanism after the users violated their

schedules as

bn,prop =
H∑
h=1

bhn,prop. (6.15)

6.2.1 Simulation Setting

In the simulation that follows, we consider the community in which the setting is based on

previous chapters. We limit the population in the community to 20 users to demonstrate

the effect of the penalty/reward system in the proposed energy billing mechanism. In

each case scenario, we select users 1-5 to be “rescheduled users”, user 6-10 to be “violated

users”, and user 11-20 to be ”committed users”. We assumed that the day-ahead schedul-

ing and rescheduling processes of all users are finalized and all consumption demand has

been realized as in Chapter 4 and 5. The amount of consumption deviation of rescheduled

and violated users are randomly selected from a uniform distribution in the range of [0,

0.5] kWh in each time slot. The load deviation weight w is set equal to 2.

6.2.2 Results of the Proposed Billing Mechanisms

Figure 6.2 shows the impact of the users’ consumption deviations on the energy bills

with conventional billing mechanism. We observe that the energy bills differ from the

expected day-ahead bills because of the deviated consumption of the rescheduled and vi-

olated users. Despite the commitment to the allocated schedules, some of the energy bills
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of the committed users have been increased. Those users are unfairly charged with extra

cost for unused energy. The unfairness in billing could undesirably influence the users’

contribution and involvement in the DSM program. To promote fairness in billing, the

results from the proposed billing mechanism is shown in Fig. 6.3. All the committed users

received the rewards for their commitment and, thus, reducing their energy bills. On the

other hand, the rescheduled and violated users received penalties and, thus, have their

bills increase compare to the conventional billing mechanism. The corresponding deviated

consumption and penalty/reward are shown in Fig. 6.4. By applying the proposed billing

mechanism, the same proportion of rewards are allocated to each committed user because

they are all perfectly followed the schedules. Moreover, since the penalty factor for each

user is proportional to the amount, time, and type of deviation, the proposed billing mech-

anism also maintains fairness among the users who deviate consumption. Furthermore,

with the same amount of deviated energy, the violated users received more penalty than

the rescheduled users according to the weight w.
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Figure 6.2: Energy bills of users with the conventional billing mechanism
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Figure 6.3: Energy bills of users with the proposed billing mechanism
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Figure 6.4: The corresponding deviated consumption and penalty/reward cost

Table 6.1 shows a comparison of the fairness index between conventional and proposed

billing. As expected, the proposed billing achieved a lower value of F than the conven-
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tional billing method, which indicates that the energy bills are proportionally allocated

to the users based on their consumption behavior.

Table 6.1: Comparison of fairness index

Billing method Conventional billing Proposed billing
Fairness index (F ) 0.5655 0.0382

6.3 Chapter Summary

In this chapter, we proposed the alternative billing mechanism for DSM which fairly

allocates energy bills to each user based on schedule deviation and commitment. The

proposed billing utilized the penalty and reward factors based on a user’s realized con-

sumption level compared to the consumption level promised in the assigned day-ahead

schedules. Users that commit to the schedules are protected from an increase in energy

bills due to schedule deviation by other users and possible to receive economic incentives.

For users that deviate their consumption, the proposed billing mechanism ensures the

calculation of each user’s payment based on their behavior and deviated consumption

level. Thus, the proposed billing mechanism improved the level of billing fairness and

expected to motivate users to continue participating in DSM and commit to the optimal

day-ahead consumption schedules, which will further help DSM programs to achieve a

practical deployment in the future smart grid. The publications related to this chapter

can be found in the publication list [2] and [4].
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Chapter 7

Discussions

In this chapter, we discuss a potential application of the proposed DSM method in the

future of the electrical grid. We envision that the future of the electrical grid structure

would change from top-down to bottom-up operation approach such that the profusion

of DERs can be managed more efficiently. In the following, we explain the detail of our

vision of the future grid and the impact on our society.

7.1 Toward Decentralized Layered Grid Structure

In the future bottom-up grid structure, the grid operation is divided into a layered struc-

ture: each layer would be responsible for its own optimization and reliability. The trans-

mission layer, operated by TSOs, and distribution layer, operated by DSOs, would coor-

dinate with each other via a single point of contact.

Moreover, inside the distribution layer, it could have another layer beneath it where

the relationship between TSO and DSO is replicated. For instance, microgrids or com-

munities of energy end-users could form a sub-layer, optimize their own energy usage,

and communicate with that first distribution layer. Again, inside each microgrid and

community, a sub-layer could be formed from smaller end-users and DERs cluster, e.g.,

households, solar panels, batteries, buildings. The process can be replicated until reaches

the edge of the grid. All of the sub-layer is responsible for itself and interacts with the
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layer above via a single point of contact. In this way, the responsibility for the entity

which operates each layer is decomposed to the layer beneath. Each layer interacts with

the layer above or below and only responsible for itself. As a result, the bottom-up struc-

ture reduces the complexity of the grid, where no single entity needs to track and manage

a vast number of DERs. Furthermore, the layered gird structure opens up a possibility

for a distribution-level energy market, e.g., a local energy market that would aggregate

DER offer to the upper-level wholesale market, obtain support services from DER, and

enable local energy sharing within a given layer or even across adjacent layers. Each layer

in the distribution network will have a smart controller maximizing its efficiency and only

seek power from the upper layer when necessary. This would shifts the priority of big

centralized power plants to the last and mainly reserved for backup power. Fig. 7.1 shows

the envision the decentralized layered structure of the electrical grid with DERs.

TSO

DSOs

Microgrids,	Communities	

End-users,	DERs,	Buildings,	etc.

Transmission	layer

Distribution	layer

Figure 7.1: A conceptual diagram of the decentralized layered grid structure

Our proposed DSM model can be applied at the bottom layer of the grid, where DERs

are located, and can be seen as one of the ways to manage a single layer (the residential

community) with the interaction to the layer above (the utility company). Inside the

considered layer, local demand and supply are optimized by a representing entity (the

CEC) with local energy markets. We showed that the aggregate consumption curves could

be flattened and yield substantial cost saving by creating incentives and requirements to

shape the demand and manage the DERs locally.
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7.2 Impact on Key Actors

The decentralized layered grid structure supports our electrical grid objectives to reduce

environmental impacts, which includes electrification with clean energy and increased

capability for end-user to choose and control their energy sources. However, building the

grid from the bottom-up required many adaptations from all parties involved.

For the supply-side, the business model and structure need to be changed in order

to serve new services from DERs. Traditional power generation will continue to exist

but in a smaller scale. This eliminates the necessity for future investment in new power

plants. The business model of the supply will shift its focus to new energy services rather

than just delivering energy to customers. The invention that focuses on sustainable and

environmentally friendly business models is necessitated.

The majority impact would be on the demand-side. End-users will need to change their

habit and mindset in energy consumption. They will be more aware of how and when

they consume their energy. Breaking from traditional habits, they need to adapt to a new

lifestyle by efficiently plan their energy consumption to match with local energy supply.

Local market design with incentives will motivate the end-users to participate in the local

optimization. Home automation will be the primary technology to facilitate the users to

control and optimize their energy plan without requiring too much attention from the

users. Users can set their goals and preferences once and let their HEMS do the rest.

Once in a while, the users may revise their energy usage performance and adjust their

target if necessary.

With cooperation among energy users from the grid edge and hierarchically grid oper-

ations, sustainable energy practice could be achieved. Dependent on fossil fuel and large

centralized power plants will be reduced, and energy responsibility will be decomposed to

each of the grid layers with its own objective and operation. DERs will provide a better

alternative source of energy with cleaner and more efficient than the traditional one. The

decentralized layered grid structure will pave the way for managing the complex grid,

speeding global decarbonization, and enhancing local resilience to overcome the world
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energy crisis and fight against climate change.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

This dissertation proposed a DSM method to efficiently manage the energy consumption

of users in a residential community with a high penetration of DERs. The main objective

is to flatten the community consumption profile by reducing peak demand and the amount

of export energy through the proposed energy pricing in the local energy sharing market.

The proposed DSM model consists of three sequential procedures: day-ahead consumption

scheduling, consumption rescheduling, and energy billing process.

In the proposed day-ahead consumption scheduling, we introduced the community en-

ergy coordinator to facilitate local energy sharing among users and responsible for the

local energy market and balancing community supply and demand. The local energy

prices are proposed as a function of the dynamic of grid energy prices and local supply

and demand. The users are incentivized by scheduling their energy consumption and

battery operation for the next day in order to minimize their electricity bills. The bill

minimization problem is formulated for each user, which subject to preference, energy

requirement, and device specification. The day-ahead consumption schedule of all users

is then solved using the iterative distributed decision-making algorithm to preserve the

information privacy of individuals. Simulation results showed a reduction in peak demand

and export energy of the community consumption profile while maximizing users’ energy
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bill savings. Also, the impact of battery, PV generation, and user participation on the

system performance is studied and analyzed.

The consumption rescheduling process is used to address the uncertainty of human

behavior. We made the assumption that users may change their preference, even the

day-ahead consumption schedules are finalized. This could have a negative impact on the

overall system if the users change their appliance consumption without considering the

community consumption profile. Therefore, we proposed the consumption rescheduling

algorithm to allow the users’ HEMSs to recalculate their consumption schedule for the

remaining time by request current community consumption status from the CEC. Simu-

lation results showed a better aggregate consumption curve than the scenario where the

uncertainty of human is overlooked.

Finally, we proposed the energy billing mechanism, which addresses the fairness issue

in DSM due to consumption deviation from the assigned schedule. Since energy prices de-

pend on total community consumption and local supply and demand, schedule violations

would affect the energy prices. Fairness in users’ energy bills is one of the most important

factors to encourage users to contribute in the DSM programs. To fairly bill each user,

we proposed the penalty/reward system, which allocates any energy bill discrepancy to

each user based on the amount of violated consumption. We also considered a type of

consumption deviation and penalized more on the users who violate their consumption

suddenly. Simulation results showed a fair allocation of electricity bills to each user based

on their consumption behavior. Furthermore, the fairness index is defined to assess the

effective of the proposed billing mechanism.

The contributions of this dissertation are summarized as follows:

• The proposed DSM model provides utility companies a solution to manage the en-

ergy consumption of residential users with DER. Thus, reduce the cost of balancing

supply and demand by flattening demand curves.

• The proposed DSM model provides energy end-users the opportunity to increase

financial benefits and investment returns for their DER. Thus, exploiting the full

100



value of DER through local energy sharing and DSM.

• The proposed DSM model facilitates the integration of DER toward the decen-

tralization of the future electrical grid. Thus, help reduce global greenhouse gas

emission and fight against climate change.

• The proposed rescheduling algorithm and fair billing mechanism improve the prac-

ticality of the DSM considering uncertainty from human behavior and schedule

deviation.

8.2 Future Work

Although this dissertation fulfills the aim of developing a DSM method to manage energy

consumption in a residential community with DERs, there still some works that can be

developed in the future. Firstly, we consider battery storage and load shifting as an active

DER in this dissertation. Further consideration of other types of DER such as load cur-

tailment and EV could be added to increase flexibility capacity in the demand-side. As a

new type of DERs, different scheduling strategies and responses can be invented to further

improve the desired system outcomes. Secondly, in the future, the cost of battery storage

will decrease and wildly affordable to most of the users. This provides more application for

batteries services in the demand-side, e.g., use as a buffer to compensate power fluctuation

from intermittent production of renewable energy and prevent deviation of consumption

from assigned schedule. Thirdly, the proposed DSM method can be extended to model

the interaction and energy sharing among communities (or microgrids). Each community

is treated as a single unit and coordinated with the neighboring community in order to

trade supply or demand. Due to relatively short distances, utilizing energy close to energy

sources would provide more efficient energy usage, less transmission loss, and promoting

renewable energy adaptation.
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Appendices

Appendix A: Local energy price functions

We use the inverse-proportional relationship between price and SDR, 1/(ax + b), as a

fitting function to formulate the local selling price function as follows

pl,s =
1

a · SDR + b
. (8.1)

We also consider the following points,

• When SDR = 0, a local selling price (pl,s) should equal to a price that the CEC

purchase energy from the utility company (pg,b) since no local supply is available

and all the demand need to be fulfilled from the grid.

• When SDR ≥ 1, a local selling price (pl,s) should equal to a price that the CEC sold

energy to the utility company (pg,s) since the excess PV energy must export back

to the grid according to the FIT program.

Hence, we can obtain the following equations:

1

a · (0) + b
= pg,b (8.2)

and

1

a · (1) + b
= pg,s (8.3)
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Solving for a and b, we get

a =
pg,b − pg,s
pg,bpg,s

(8.4)

and

b =
1

pg,b
(8.5)

By substitute a and b into (8.1), the local selling price function can be formulated as

phl,s =


phg,sp

h
g,b

(phg,b−phg,s)SDRh+phg,s
, 0 ≤ SDRh ≤ 1

phg,s , SDRh > 1.
(8.6)

For the local buying price function, we first assume that the CEC also employ a budget

balanced scheme, e.g., total revenue is equal to total expense, as in the following expression

Eb · pl,b = |Es| · pl,s + (Eb − |Es|) · pg,b. (8.7)

By substituting |Es| = Eb · SDR, we get

pl,b = pl,s · SDR + (1− SDR) · pg,b. (8.8)

When SDR ≥ 1, the local buying price also equal to the FIT similar to the condition of

the local selling price. Thus, the local buying price function can be formulated as

phl,b =

p
h
l,sSDR

h + (1− SDRh)phg,b , 0 ≤ SDRh ≤ 1

phg,s , SDRh > 1.
(8.9)

Appendix B: Household appliance list

The list of appliance and type are shown in Table 8.1. The full detail of appliance spec-

ification can be referred in [3]. Note that the classification of activities as flexible or

non-flexible may be perceived as arbitrary. However, by applying different user prefer-

ences, an activity can be effectively reclassified as to fulfill the user’s needs.
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Table 8.1: List of appliances.

Appliance Type

Cassette/CD player Non-flexible
Chest freezer Non-flexible
Dish washer Flexible

Domestic electric storage water heater Flexible
Electric instantaneous water heater Flexible

Electric shower Flexible
Electric space heating Non-flexible

Fax Non-flexible
Fridge freezer Non-flexible

Hi-Fi Non-flexible
Hob Flexible
Iron Flexible

Kettle Flexible
Lighting Non-flexible

Microwave Flexible
Oven Flexible

Personal computer Non-flexible
Printer Non-flexible

Refrigerator Non-flexible
Small cooking group Flexible

Storage heaters Non-flexible
Tumble dryer Flexible

TV 1 Non-flexible
TV 2 Non-flexible
TV 3 Non-flexible

TV receiver box Non-flexible
Upright freezer Non-flexible

Vacuum Flexible
VCR/DVD Non-flexible

Washer dryer Flexible
Washing machine Flexible
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