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Abstract

When humans move in a lateral direction (frontal plane), they intuitively un-

derstand the motion parallax phenomenon while jointly developing sensory neu-

rons and pursuit eye movements with the help of their life-long learning experi-

ences. At that time, various ranges of motion parallax effects are used to extract

meaningful pieces of information such as relative depth of variously positioned

objects and the spatial separation between the robot and the fixating object

(absolute distance). By mimicking the visual learning in mammals to realize

an autonomous robot system, a visual learning framework [1] was proposed to

concurrently develop both visual sensory coding and pursuit eye movement with

an addition of depth perception. Within the proposed framework, an artificial

neural network was used to learn the relationship between the eye movements

and the absolute distance. Nonetheless, the limitation of the proposed frame-

work is that the predefined single lateral body movement can not fully evoke

the motion parallax effect for depth perception. Here, we extend the presented

visual learning framework to accurately and autonomously represent the various

ranges of absolute distance by using pursuit eye movements from multiple lat-

eral body movements. We show that the proposed model, which is implemented

in a HOAP3 humanoid robot simulator, can successfully enhance the smooth
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pursuit eye movement control with the self-calibrating ability and the distance

estimation comparing to the single lateral movement based approach.

Keywords: Active depth perception, Developmental Vision, Motion parallax,

Eye pursuit, Sensory-motor Coordination

1. Introduction

For living organisms such as humans and mammals, when they were born

they do not instantly understand how to use the information they perceived.

They continuously learn and improve their perception while interacting with

the environments around them during their lifetime. This is described as de-5

velopmental learning. The essence of building a biologically plausible cognitive

robot is based on the developmental learning of perceptual and behavioral abil-

ities in humans and developed organisms. Recently, there are many studies on

computer vision field that are related to human cognitive systems, inspired by

the facts that humans can autonomously develop and recover their perceptual10

and behavioral abilities to survive in various environments. These abilities are

not only useful for extracting visual information for guiding actions, but they

are also for perceiving the environments. Synthetic approaches based on ex-

planations and designs could be proposed to overcome the shallow knowledge

[2]. However, it is still a very challenging task to implement the cognitive de-15

velopmental system in an autonomous learning manner. In order to realize the

cognitive developmental robot, the system should equip two important learn-

ing principles which are (1) autonomous development through their artificial

life and (2) unified-learning of action and perception. By establishing a tight

connection between action and perception, the visual information can be used20

to improve the robot’s behavior, while the resulted actions effectively reinforce

the perceptual learning.

The same idea also applies to active depth perception which is a process

of producing different kinds of eye and body movement to utilize active visual

depth cues. Moreover, it is required that several cognitive developments such as25

2



visual representation (sensory coding), eye movement control (action strategy),

and depth representation (high-level sensory perception) are simultaneously per-

formed during their lifetime (life-long learning). However, the underlying ideas

of the active depth perception are still unclear. In [3, 4], they utilized the effi-

cient coding theory together with a reinforcement learning algorithm to tightly30

couple action and perception for a robot to generate vergence based eye move-

ments on the encoded information. The active efficient coding framework for

the autonomous self-calibration of active perception was proposed in [5, 6, 7].

It originates in the theories of efficient sensory coding in Neuroscience. The

main concept is that it exploits the statistical properties of the sensory signals35

to encode the sensory signals efficiently. Following the works, there are studies

proposed frameworks that can generate smooth pursuit eye movements to track

a moving object [8, 9] based on the same concept. Recently in [10], they also

took a similar approach by using Gabor filters for binocular disparity coding and

Hebbian learning for the eye movement control. In these mentioned studies, the40

behavior does not simply learn by itself, but it also learns with the help of the

perception part, and vice versa. In other words, action and perception are not

only connected, but they encourage each other to enhance themselves to extract

more meaningful information creating an action-perception cycle. However, the

works do not consider self-induced body movements and depth perception such45

as motion parallax.

Motion parallax is a phenomenon that can be observed in daily life. It pro-

vides useful information that helps the observer to visually understand the sur-

rounding environment. When the observer moves in a lateral direction (frontal

plane), various ranges of motion parallax effect occur by maintaining its visual50

fixation on a visual stimulus. Motion parallax effect provides two different kinds

of depth perception which are the distance from the observer to the fixating ob-

ject (egocentric distance), and the distance from the fixating object to other

objects (allocentric distance). Usually, allocentric distance is extracted from

the motion parallax phenomenon such as in [11], they discuss how it is possible55

to generalize the relationship between the eye movements and the allocentric
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distance. However, that is not the only strong point of utilizing the motion

parallax effect. In [12], they showed that it is possible for humans to extract

the egocentric distance information. Also, the retinal motion induced by the

motion parallax effect can be utilized to observe the apparent depth (egocentric60

distance) appears on the sagittal plane [13].

In [1], they proposed a developmental learning framework for active depth

perception that utilizes the motion parallax phenomenon. The study success-

fully created a model which could estimate the egocentric distance with a learn-

ing scheme. However, the limitation of the model is that the lateral body65

movement is limited to a single movement. The issue is that large lateral body

movement produces large parallax (angle between the two different lines of sight)

which raises the difficulty of fixating the visual stimulus. In addition, the pro-

posed model could only obtain the distance estimation after the training is done

which is inappropriate in the developmental learning scheme.70

Therefore, in this paper, we extend the concept of the related works to

generate reliable eye movements for various ranges of motion parallax. We show

that the eye movement information could be successfully used to represent the

egocentric distance information by coupling the action and perception.

2. Related Works75

Currently, there are two major approaches to implement a human-like visu-

ally guided cognitive system with visual depth perception ability. One of the

approaches is to individually develop perceptual and behavioral abilities. Per-

ceptual ability guides the behavior to solve a given task in a straightforward

way to link perception and action together.80

Remarkably, there are many studies that proposed image processing and

machine learning techniques to implement depth perception for solving a given

task [14, 15, 16, 17]. In [18], they utilized multiple frames captured with a single

camera to predict distances. Prediction algorithm was designed and used as a

distance estimator under the assumption that the camera motions are known.85
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[19] proposed a biologically plausible visual attention system to selectively lo-

calize a salient area. [20] used an information theoretic approach to minimize an

uncertainty. In [21], they utilized a monocular vision-based obstacle avoidance

system by coupling a reinforcement learner together with a linear regression

method. Some studies used a visual servo approach [22, 23, 24] to establish the90

coordination of action and perception by utilizing the kinematic link between

the visual information and the camera velocity. However, with the aforemen-

tioned works, it is quite challenging to create such a system that can develop

and adapt itself to the different environments by developing both of perceptual

and behavioral abilities at the same time. The main reason is that manual cali-95

brations and prior knowledge are required to finely tune the system during their

artificial life.

Nonetheless, developmental systems can learn and adapt to various environ-

ments, thus it could be the second approach to achieve the biologically inspired

cognitive robot. In [25], they proposed a way to implement developmental learn-100

ing of eye-head gaze control in human infants in a humanoid robot. They used

a constraint-based field-mapping approach for the learning of gaze control. In

[26], a convolutional network was used to train vergence eye movements, but it

required supervised signal to minimize the cost function. In [27], they success-

fully demonstrated a framework that generates multiple eye movements which105

are smooth pursuit and vergence eye movements to track an object. The model

encourages the relation between action and perception which are learned by

themselves without any supervision.

In this paper, we propose a solution to the issues based on the previous

studies [1, 3, 4, 8, 9, 27]. We analyze and examine how a visual system can110

understand various ranges of motion parallax effects through acquiring visual

sensory representations and eye movements control with multiple self-induced

lateral body movements. This study considers three important mechanisms to

obtain the smooth pursuit eye movement and the egocentric depth estimation:

(1) visual sensory representation for low level visual signal processing by using115

sparse coding technique, (2) eye movement generation that maximizes the re-
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dundancy between input visual signals by reinforcement learning algorithm, (3)

multiple lateral body movements for generating various motion parallax effects.

The extended framework can also be described as a low-level visual cue in

the primary visual cortex (V1) [28], as it only focuses on maximizing the sensory120

encoding efficiency (sparse coding) of the available visual stimuli. Since allocen-

tric depth requires a higher understanding of the concept of the object such as

border ownership which is represented by some of the V2 and V4 neurons in the

visual cortex [29], this research focuses on observing the egocentric distance.

To the best of our knowledge, no study has yet attempted to propose a mo-125

tion parallax based active depth perception framework for the cognitive develop-

mental robot under the efficient coding theory with multiple lateral movements.

This approach does not only enable the robot to autonomously learn sensory

representation and eye movement controls, but it is also the first step toward

creating active depth perception during self-induced body movements.130

3. Methods

Motion parallax is one of the visual depth cues to perceive the depth based

on monocular vision system. This phenomenon is generated when an observer

moves in a lateral direction, i.e., left or right direction (frontal plane), while

fixating a visual stimulus. Therefore, by letting a robot move laterally and135

capture the successive images, it can observe a motion parallax phenomenon

under different conditions, such as positions and translation speeds. Then, two

different kinds of depth can be extracted from the motion parallax effect. The

first one is the spatial interval that separates the robot and the visual stimulus

(egocentric distance). Second, the spatial interval between the fixating visual140

stimulus and other visual stimuli (allocentric distance). In this research, we

assume that the robot can perfectly control its lateral body movements without

uncertainty. The developments of the related cognitive functions, such as visual

representation and eye movements control, will only be focused on to understand

the motion parallax and the distance information (egocentric).145
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3.1. Model Architectures

The goal of this framework is to generate eye movements that can fixate on

certain visual stimuli at various lateral positions. Fig. 1 shows the architecture

of the framework. When the robot generates a self-induced lateral motion, the

robot rotates the camera to fixate the visual stimulus (smooth pursuit eye move-150

ment). The number of eye movements is used to represent the distance informa-

tion by mapping between the eye pursuit and distance. To achieve that, there

are three required main cognitive functions: (1) visual representation based on

sparse coding, (2) eye movements control based on reinforcement learning, (3)

artificial neural network to represent the distance information supervised by a155

human. First, we utilize multiple sparse coding schemes as a sensory coding

model coupled with a reinforcement learner to achieve the efficient coding for

the visual inputs. The sensory coding model learns to represent the input im-

ages, while the reinforcement learner tries to generate actions that increase the

efficiency of the coding model. Multiple lateral movements help the framework160

to understand various ranges of motion parallax. Finally, the generated number

of eye movements are used as inputs for the artificial neural network during the

human-robot interaction to represent the distance information.

3.2. Single & Multiple Lateral Positions

In this research, we consider two different learning strategies which are based165

on a single lateral body movement and multiple lateral body movements. The

key difference between the two strategies is visualized in Fig. 2. By having more

than one lateral body movement, the robot can go through the gradual steps

of learning difficulties. As shown in Fig. 2(a), if the lateral body movement is

large, then the learning difficulty is significantly larger which is inappropriate at170

the beginning of the learning stage. While, the multiple lateral body movements

strategy, Fig. 2(b), provides levels of learning difficulty. Therefore, the multiple

lateral movements strategy is helpful for the reinforcement learner to grasp the

control of small movements first.
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3.2.1. Position Setup175

At the beginning of the training, an image I0 is captured from the camera

at the original position as a reference. Then, the robot moves laterally from its

original position l0 to the lateral position l1 which is from the lateral position

list L = {l1, l2, . . . , lp, . . . , lr}. p is the index of lateral positions on the list L as

shown in Fig. 3. Then, the framework proceeds to the first iteration.180

3.2.2. Motion Parallax

After the robot moves laterally for l = l1 as shown in Fig. 4, the motion

parallax phenomenon is induced. In this research, the parallax angle is the

angle between the two different lines of sight which is shown as q in the figure.

To collect the information of the visual stimulus for generating smooth pur-185

suit eye movements, an image Ilk(t) is captured from the left eye camera at

the lateral position k-th. The two captured images I(t) =
[
I0 Ilk(t)

]
are then

input to the sensory encoder to generate one eye movement from the reinforce-

ment learner. This process of capturing Ilk(t) and generating eye movement

are repeated for th iterations (one trial). Theoretically, the framework should190

produce a total number of eye movements that is similar to q.

After one trial, the robot moves to the next lateral position (l2) in L. It

repeats the process until it reaches the final position lr. When the robot reaches

the final position in L, the robot simply moves back to the lateral position l0

preparing for the next visual stimulus.195

3.3. Sensory Coding Model

Sensory systems should encode sensory information in an efficient manner by

exploiting redundancies in their inputs [5, 6, 7]. We use sparse coding to learn

efficient representations of the sensory inputs. The key idea of this efficient

encoding is that the reinforcement learner receives the reward signal depending200

on how well the sensory model can represent the input.

Figure 5 visualizes the process and the flow of the input images for the eye

movement generation. The input images are first converted to gray-scale. There
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are two cropping windows representing fine and coarse scale images. They are

used to crop the input images I(t) by 150x150 pixels and 250x250 pixels from205

the center, respectively. The cropped images are then sub-sampled according to

the cropping windows. Coarse images are sub-sampled by a factor of PC
s = 8.

Fine images are sub-sampled by a factor of PF
s = 2. We use a Gaussian pyramid

algorithm for the sub-sampling.

The two scales of the images represent the foveal system in human eyes. The210

fine scale image represents a foveal region in eyes which can pick more detail

from the center of vision. While the coarse scale represents the parafoveal area

which has lower detail. Square patches where the lengths of each side are Pl = 10

pixels, i.e., 10 by 10 pixels patches, are then extracted from the sub-sampled

cropped images, whose locations are generated by 1 pixel and 4 pixels shifts215

horizontally and vertically for coarse scale and fine scale, respectively. The

patches are reshaped to be one-dimensional vectors which have zero mean and

unit norm, γji (t). i is the index of the patch, which j ∈ {C,F}. C is for coarse

scale, and F stands for fine scale.

The sub-sampled images let the framework handle image disparities that are220

larger than the patch width. Note that the fine scale helps in fine-tuning the eye

movements. Discussions and comparisons between using one scale and multiple

scales have been done in [4]. They discussed how gaining the access to multi-

scale images could improve the learning of the framework. On the other hand,

having only one scale might prevent the system from learning appropriately.225

For the coarse scale and the fine scale, the two one-dimensional vectors are

then combined into a single vector γj(t). The first 100 elements of the vectors

are from the first image I0 and the remaining are from the second image Ilk(t).

The resulted vectors (γC(t) and γF (t)) consist of K = 200 elements.

Later, the patches are encoded by a sparse coding algorithm in a linear230

fashion. Each patch is represented by a linear combination of basis functions

picked up from a dictionary φj(t) = {φjn(t)}Nn=1[30]. We use N = 288 basis

functions. Two dictionaries are randomly initialized and normalized. One is for

coarse scale and the another is for fine scale.
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We use the matching pursuit algorithm defined in [31] to estimate and find

the sparse representation of the input vector by the weighted sum as follows:

γji (t) ≈ γ̂ji (t) =

N∑
n=1

bji,n(t)φjn(t) . (1)

The matching pursuit algorithm suits to the concept of sparse coding, because it

can estimate γji (t) by using a limited number of coefficients. In this research, the

maximum number of non-zero scalar coefficients bi,n(t) is set to be 10 elements

to ensure the sparseness of the efficient coding. For later use in reinforcement

learner part, pooled activity, θjn(t), which represent the activity of each neuron

cell is calculated from the coefficients from the matching pursuit algorithm as

follows:

θj(t) =


θj1(t)

θj2(t)
...

θjN (t)

 . (2)

Where, each element of the vector θj(t) is described as:

θjn(t) =
1

PN

PN∑
i=1

bji,n(t)2, (3)

where PN is the number of patches extracted from one input image. A recon-

struction error is introduced as a unified cost function that links the sensory

coding model and the reinforcement learner. It measures the estimation error

of vector γ(t). The reconstruction error is defined as:

ej(t) =
1

PN

PN∑
i=1

‖γji (t)−
∑N

n=1 b
j
i,n(t)φjn(t)‖2

‖γji (t)2‖
. (4)

A gradient descent method is used to update the dictionaries with the recon-235

struction error as the cost function. After each update, the dictionaries are

normalized.
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3.4. Reinforcement Learning

The state representation of the reinforcement learner can be described by a

combination of coarse scale and fine scale pooled activity, θn(t) as follows:

θ(t) =

θC(t)

θF (t)

 . (5)

The reward is a negative of the summation of reconstruction error from both

scales which is described as:

R(t) = −(eC(t) + eF (t)) . (6)

An actor-critic algorithm number 3 proposed in [32] is employed for the leaner

agent. For action selection, we use Gibbs distribution (softmax) for probabilis-240

tically choosing an action as follows:

π(θ(t), at) =
exp(za)∑

a′∈A exp(za′)
, (7)

where exp: x 7→ ex is the exponential function. For each action, the activation

value za is given by:

za =

N∑
n=1

wa(t)θn(t) , (8)

where wa(t) is a weight vector from the state f(t) to action a. The action is pan

angle of the cameras in degrees. Possible actions a are contained in a set of ac-

tions A. In this research we use A = {−0.2◦,−0.1◦,−0.05◦, 0◦, 0.05◦, 0.1◦, 0.2◦}.

Thus, the policy maps θ(t) to a ∈ A.245

3.5. Egocentric Distance Representation

To extract the distance information, one may calculate it directly with the

knowledge it has, such as traveled distances and eye movements. Since in this

research, we focus on building the framework that can adapt to various configu-

rations and environments, it is impractical to specifically calculate the distance250

information which usually requires the exact system’s parameters.

To let the system learn the relationship between the distance and the eye

movements, the robot must know (1) lateral distance and (2) number of eye
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movements. Since the robot moves according to the lateral position list L, the

speed of the lateral translation is constant. So, the knowledge of the lateral255

distance can be excluded from the learning. The eye movements (q in Fig.3) are

memorized and accumulated in the vector s =
[
q1 q2 . . . qp . . . qr

]>
at

the end of each trial of each lateral position.

We suppose that the robot can remember c of its previous eye movement

vectors s. The previous eye movement vectors are concatenated to create a

queue-memory matrix

S =
[
s1 s2 · · · sc

]
, (9)

where s1 is the latest eye movement vector collected. sc is the oldest eye move-

ment vector that the robot can remember. When a new eye movement infor-260

mation s is available, sc in the matrix S is discarded (dequeued). The indexes

of the remaining vectors are then shifted by one, i.e., sk is assigned to be sk+1.

The new vector is then assigned (queued) as s1

Here, we use a feed-forward neural network with a hidden layer as the egocen-

tric distance learner to interpret the eye movements to the distance information.265

We use the Levenberg-Marquardt method [33] for training the neural network.

The input of the neural network is S (batch training). The sigmoid activation

function is used in the hidden layer which has 30 neurons. The output layer uses

the linear activation function. The target is ground truth distances provided

by the supervisor. The supervised signals (ground truth absolute distances)270

are provided for letting the robot understand the metric system. The neural

network starts to train after the robot has filled the memory matrix S, i.e., sc

exists. The training occurs every iteration when a new s is available.

3.5.1. Normalization of Generated Eye Movements for Neural Networks

Sensitive information should be carefully treated before inputting to a neural275

network since it could prevent the neural network from learning appropriately.

In this research, information from large lateral body movements is considered as

sensitive, because generating eye movement at those positions are more difficult.
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We consider a disparity score to distinguish lateral body movements that

gives sensitive eye movement information. The disparity score measures the280

spatial separation between the two viewpoints, which are the original position

and relocated positions in the lateral direction, in pixels. The score is simply

calculated by using geometry. As an example, Table 1 shows the disparity score

for simulations that will be done in the next section.

A lateral movement that has a disparity score larger than or approximately285

equal to the effective patch size is considered sensitive since it means that there

is no overlap between the two input images initially. If the images were not over-

lapped initially, the framework would have a difficulty finding the redundancy

in the inputs. The effective patch size is calculated as follows:

Pe = Pl ·
√
P j
s . (10)

290

If the lateral position lp is considered as the sensitive lateral position, then

the lateral positions from lp to lr are sensitive. To reduce the negative effect of

the sensitive eye movements, weighting is applied to the neural network input

S as follows:

S =



w1q1,1 w1q1,2 w1q1,c

w2q2,1 w1q2,2 w1q2,c
...

...

wpqp,1 wpqp,2 · · · w1qp,c
...

...

wrqr,1 wrqr,2 w1qr,c


. (11)

The weight wk is defined as:

wk =


1

(1 + lr − lk)
· 1

y
, if k ≥ p

1, otherwise

, (12)

where y is a hyper-parameter.295
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3.5.2. Input and Output of the Neural Network

Each column of the matrix S is the input of the neural network, as shown

in Fig. 6. There are 30 neurons in the hidden layer which are defined as

h1, h2, h3, · · · , h30. The activation function of the hidden layer is sigmoid acti-

vation function defined as follows:300

hn = σ(s · v(1)n + sb), (13)

σ(x) =
1

1 + exp(−x)
(14)

where s is any neural network’s input vector. v
(1)
n is a weight vector that

contains weights connecting every input in s to the hidden layer’s neuron hn. sb

is a bias in the input layer. Finally, the depth information is calculated by the

weighted sum of activations in the hidden layer including the bias hb as follows:

d = h · v(2) + hb, (15)

where h =
[
h1 h2 h3 · · · h30

]>
. The weight vector v(2) contains305

weights that connect every neurons in the hidden layer to the output d. Note

that the activation of the output layer is linear activation (f(x) = x).

After S is updated, i.e., a new s is available, the neural network is trained

by using the Levenberg-Marquardt method.

4. Simulations & Results310

4.1. Experimental Setup

We use V-REP, a robot simulator, as a 3-dimension environment visualiza-

tion for testing the framework, while the model is implemented and developed

in MATLAB. The simulated environment comprises a HOAP3 robot, an object

with an interchangeable texture, and a still background image as shown in the315

top picture in Fig. 1. The lateral movement of the robot is simplified to be

pick-and-place.

14



We test the depth cue to estimate the distance between the robot and the

object. The separation distance between the robot and the object is ranged

from 3 meters to 10 meters with 0.1 meters interval, i.e., 3.0, 3.1, 3.2, · · · , 10.0320

meters. The number of iterations in one trial, th, is 30 iterations. We prepared

a set of 100 different images for the framework to learn various visual stimuli.

4.2. Joint Development of Active Depth Perception

In this section, we test and analyze the performance of the framework.

Eye movement generation and reconstruction errors are observed to verify the325

progress of learning. c = 300 sets of eye movements are used as inputs for the

neural network. To track the performance of the eye movement generation, eye

movements at 30 iteration are recorded and compared with the expected eye

movements in form of mean absolute errors.The mean absolute error (MAE) is

computed to evaluate the training. MAE is defined as follows:330

MAE(t) =
1

1000

999∑
k=0

|α(t+ 29 + 30k)− α∗(t+ 29 + 30k)|, (16)

where α(t) and α∗(t) are the pan and the target pan at t.

4.2.1. Single Lateral Position and Multiple Lateral Positions

For comparison, we first do the single lateral position experiments. Each

experiment contains 3 simulations which use different lateral positions which

are L = 5, 7, 10, 13, 15 and 20 cm.335

We picked these lateral positions based on the disparity score which is an

approximated distance between the two input images in pixels, as seen in Table 1

below. The disparity score is calculated by using geometry at 3 meters distance

because at the closest distance we can observe the maximum disparity for each

lateral position.340

Because the coarse scale is sub-sampled from the original image by a factor

of 8, the maximum horizontal disparity that causes no overlap between two

10x10 pixels patches, i.e., the effective patch size, would be Pe = 10 ·
√

8 ≈ 28.

At 15 cm lateral position, two patches are barely overlapped at the start of each

15



Table 1: Disparity score of the two input images at the beginning of each trial at 3 meters

distance

Lateral Position (cm) Disparity (pixel) at 3 m

5 9

7 12

10 18

13 23

15 27

20 35

trial. While 20 cm lateral position completely separates the patches. These two345

lateral positions are good examples to show the effect of having large lateral

movement.

After we have confirmed the training of the single lateral position simulation,

we test the multiple lateral movements case. We perform two experiments. Each

experiment contains 3 simulations which use different sets of lateral positions350

which are L = {5, 6, 7, . . . , 10} (cm) and L = {5, 6, 7, . . . , 20} (cm).

4.2.2. Simulation Results

The training results from the multiple lateral positions simulations are shown

in Fig. 8, for 5-10 cm, and Fig. 9, for 5-20 cm, before the vertical dashed lines

in each figure. The blue dashed lines represent the variance of each trial from355

the 3 simulations. The solid line is the average of the MAE from 3 simulations.

Table 2 shows a comparison between the single lateral body movement and the

multiple lateral movements simulations.

As shown in Table 2, all of the simulations except for the 15 cm and 20

cm single lateral position show a similar performance for the last 100 trials360

eye movement MAE. In the beginning period of the training, there are a lot

of combinations of textures and distances of the object to be learned, so the

rises and the declines of the MAE can be expected as shown in Fig. 9. When

the lateral body movement is too large, it makes the separation between the
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Table 2: Performance of the single lateral position (Sing.) and multiple lateral positions

(Mult.)

Lateral Position
Average (Variance) of last 100 trials

Sing. Mult. 5-10 cm Mult. 5-20 cm

5 0.18 (0.10) 0.18 (0.08) 0.25 (0.13)

7 0.16 (0.06) 0.16 (0.06) 0.18 (0.06)

10 0.16 (0.02) 0.17 (0.06) 0.18 (0.07)

13 0.18 (0.02) - 0.17 (0.03)

15 0.30 (0.08) - 0.17 (0.03)

20 0.91 (1.15) - 0.19 (0.04)

two input images I1 and I2(t) initially large. Large separation hinders the365

framework’s ability to utilize the redundancy between the two images effectively.

This leads to unstable eye movement generation as shown in Fig 7. However, it

can still maintain the eye movement with some level of precision.

5. Robustness Test

We test the robustness of the framework by applying two kinds of perturba-370

tion to the system. First, we rotate the left camera by 15 degrees. Second, we

add blur to the camera by applying a Gaussian filter with the standard deviation

of 2 to the captured images.

The disturbances are applied after the training that is shown in sub-section

4.2.2. We then continue the training of the framework with the disturbances.375

As shown in Fig. 7 – Fig. 9 and Table 3, noticeable increases in the MAE

are observed right after the gray dashed lines in the figures. The dashed lines

represent the time when the disturbances are applied.

For the small single lateral positions, the framework can recover from the

disturbances with similar performances before the interferences. For the lateral380

positions from 10 cm, we can see that they do not have MAE similar to the

performances before the perturbations. However, they can still recover and
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Table 3: Performance of the single lateral position (Sing.) and multiple lateral positions

(Mult.) after perturbations applied.

Lateral Position
Average (Variance) of last 100 trials

Sing. Mult. 5-10 cm Mult. 5-20 cm

5 0.12 (0.01) 0.13 (0.01) 0.16 (0.02)

7 0.14 (0.01) 0.15 (0.01) 0.16 (0.03)

10 0.21 (0.04) 0.18 (0.02) 0.18 (0.01)

13 0.36 (0.12) - 0.21 (0.04)

15 0.54 (0.21) - 0.25 (0.04)

20 1.09 (1.03) - 0.39 (0.13)

maintain the MAE. Interestingly, for the 20 cm lateral position simulation, it

manages to maintain the MAE as shown in Fig. 7.

Noticeably, the lateral positions from 5 to 10 cm can fully recover to sim-385

ilar or even better performances from the disturbances. Some perform better

after the disturbances because they simply have more time to learn. Also, dis-

turbances encourage the framework to explore and learn more. While for the

lateral positions from 13 cm to 20 cm, the framework can not fully recover from

the disturbances. Because the effects of the high disparity scores and the dis-390

turbances obstruct the framework to learn to generate eye movement effectively.

However, they can still maintain the MAE.

6. Distance Estimation

Large lateral movements are useful for estimating far distances such as 5 m to

10 m. However, the eye movement information is not quite useful for estimating395

the close distances such as 3 m since the information is sensitive. However, based

on the proposed weighting, we show that the proposed model can successfully

represent not only for the close distance but also the far distance. Moreover,

the proposed model can recover from the perturbations.

We investigate the distance estimation performance and robustness test as400

18



Table 4: Average distance estimation error for each range of distances.

Simulation 3 to 4.9 (m) distances 5 to 6.9 (m) distances 7 to 10 (m) distances Total Average

5-10 cm without weighting 3.97% 4.09% 4.74% 4.33%

5-20 cm without weighting 6.39% 2.24% 3.06% 3.77%

5-20 cm with weighting 3.66% 1.89% 2.55% 2.69%

shown in Fig 10, Fig. 11, respectively. They show the distance estimation per-

formances of the single lateral position simulations and the multiple lateral

positions simulations. The dashed lines represent the minimum and the maxi-

mum values of the distance estimation errors for all of the single lateral position

simulations. The blue solid line is the average of the distance estimation errors405

of the single lateral position simulations. The other solid lines are the distance

estimation error for the multiple lateral positions simulations.

Fig. 10 shows that the multiple lateral positions strategies provide the better

overall performances comparing to the average and the minimum of the single

lateral position. With the weighting (red line), it shows a significant improve-410

ment in the 3-5 m distance range and a little improvement in the 9-10 m distance

range with respect to the multiple lateral positions without weighting (magenta

line). We can see that the proposed learning strategy with weighting improves

the distance estimation performance.

For Fig. 11, we can see that the performances after the disturbances are415

quite similar to the performances before the disturbances for all of the simu-

lations. Table 4 and Table 5 show the distance estimation error in each range

of distances. We can see that with the lateral position 5-20 cm with weighting

performs better than the other two strategies in every case. In addition, the

performances of every lateral movement strategy are robust to the perturba-420

tions. This means that the proposed learning scheme is robust to the changing

of the system’s parameters.
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Table 5: Average distance estimation error after perturbations for each range of distances.

Simulation 3 to 4.9 (m) distances 5 to 6.9 (m) distances 7 to 10 (m) distances Total Average

5-10 cm without weighting 3.95% 3.52% 5.50% 4.48%

5-20 cm without weighting 4.30% 2.76% 3.03% 3.31%

5-20 cm with weighting 2.29% 0.98% 0.82% 1.30%

7. Conclusion and Discussion

In this research, we propose a novel visual learning framework to actively

perceive the various ranges of distances from motion parallax by integrating425

the learning of sensory representation and the eye pursuit during self-induced

multiple lateral body movements. An artificial neural network is used to rep-

resent the egocentric distance by autonomously understanding the relationship

between the number of eye movements and the distance information under a

human supervision instead of a certain equation. The generated eye move-430

ments are effectively used to represent the distance information. The proposed

framework has a better accuracy to perceive the distance than a single lateral

body movement. Moreover, the proposed model can seamlessly recover from

the perturbations such as image blur and rotation.

To fully implement an autonomous learning system, two important future435

works are expected: (1) an appropriate body movement will be autonomously

selected by robot-self. It should let the robot be able to decide when to stop

moving laterally for generating enough information to perceive the distance

according to the lower bound of motion required to distinguish distances [34]

(2) An additional learning unit may be included to autonomously generate the440

meaning of depth and distance information by using embodied intelligences

instead of the human supervision. This means that the autonomous system

could be fully developed by itself without the external supervised signals such

as distance information.
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Figure 1: Model architecture. The robot captures a reference image and then moves to

the lateral position lk from L. To perform the motion parallax, the successive images I(t)

are inputted into the sensory encoders with multiple image scales. Then, an output reward

signal generated from the sensory encoders is sent to the reinforcement learner to generate

an appropriate eye movement to hold the fixation during the body movement. Finally, a

pan command is sent to the robot which then generates the smooth pursuit eye movement

to maximize the redundancy between the input images. The memorized eye movements (q1,

q2, . . . , qr) are used as an input for the neural network to represent the distance information

which is given by human-robot interaction.
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(a) Single lateral distance

(b) Multiple lateral distance

Figure 2: (a) shows a learning scheme when using only single lateral movement. It has only one

difficulty of learning signal. While, (b) shows the flow of performing the same task but with

multiple lateral body movements. It can provide multiple scales of difficulty of the learning

signal to the reinforcement learner.
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Figure 3: The lateral body movement of the robot and the total eye movements at each

position. The robot moves laterally for a certain distance from L. Then it tries to generate

eye movements q1, q2, · · · , qp, · · · , qr to fixate the visual stimulus at the center of the gaze.

Figure 4: The parallax angle q which is identical to the total eye movement required to fixate

the stimulus at a certain lateral distance l.
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Figure 5: Sensory coding model and eye movement generation. Images captured from the

camera are cropped and processed before inputting into the sensory encoders. The cropped

images are then sub-sampled and normalized with respect to the two scales which are coarse

and fine. The sensory encoders then encode the patches extracted from the processed images.

The reinforcement learner takes the pooled activities θj(t) and the errors from the sensory

encoders to learn and generate the eye movement (smooth pursuit)
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Figure 6: The 3 layers feed forward neural network for estimating the egocentric distance.

The feature inputs are the eye movements from each lateral position in L. Sigmoid activation

function is used in the hidden layer, while the output layer uses linear activation function.

The output layer has only one node which is the absolute distance.
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Figure 7: Eye movement MAE of single lateral position at 20 cm after the disturbances
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Figure 8: Eye movement MAE of multiple lateral positions 5-10 cm after the disturbances
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Figure 9: Eye movement MAE of multiple lateral positions 5-20 cm after the disturbances
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Figure 10: Distance estimation error

3 4 5 6 7 8 9 10

Depth

0

10

20

30

40

50

60

70

E
rr

o
r(

%
)

Multiple Lateral Distance (5-10cm) Depth Estimation Without Weighting

Multiple Lateral Distance (5-20cm) Depth Estimation Without Weighting

Multiple Lateral Distance (5-20cm) Depth Estimation With Weighting

Average Single Lateral Distance Depth Estimation

Min/Max Single Lateral Distance Depth Estimation

Figure 11: Distance estimation error at each distance after the disturbances
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