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Abstract

A personal thermal comfort (PTC) model is a novel approach to predicting
thermal sensation of individuals rather than groups of humans. The limita-
tions of previous works are the difficulties of collecting feedback of thermal
sensation, especially for feedback of neutral comfort, and the requirements
of data size to achieve an acceptable performance of prediction. In this
paper, we present a modified PTC model to predict real-time personal
thermal sensation for cyber-physical human centric system (CPHCS), where
psychological parameters are necessary for operating Heating, Ventilating,
and Air Conditioning (HVAC) control system in order to offer satisfactory
thermal comfort. The function of the proposed PTC model is given after
data analysis of seven participants’ experiments in smart home plant-iHouse.
Then we presented a Personalized Predictive Classifier (PPC) specifically
designed for CPHCS, which uses online learning and incomplete supervision
to predict the 7-level thermal sensation of individuals. The results showed
the appropriateness of using machine learning, Random Forest (RF) in
particular, in the field of predicting personal thermal sensation with the
performance of median accuracy of 0.86 using one RF classifier (RFC). Then
we explored PPC using two cascaded RFCs, and it results in faster learning
speed in most situations. We conclude that PTC model with PPC inside is
able to offer psychological parameters(e.g., thermal sensation) inference in a
timely manner to a continuous satisfactory control system in smart homes,
for example, Energy Efficient Thermal Comfort Control (EETCC) system,
so that satisfactory thermal comfort is available for individual living in smart
home.

Keywords: Personal thermal comfort, Machine learning, Cyber-physical
human centric system.
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Chapter 1

Introduction

1.1 Research Background

The comfort that the indoor environment provides is of great significance to
people’s satisfaction[1], productivity[2, 3], and health[4]. Thermal comfort
is particularly important due that it is an important goal that Heating,
Ventilating, and Air Conditioning (HVAC) systems, which are commonly
installed to make people easeful, need to accomplish. Thermal comfort is an
approach to evaluate people’s satisfaction with the surrounding environment,
which can be affected by both environmental and personal factors. The
criteria for TC are described in standard as ASHRAE Standard 55[5] and
ISO 7730[6], in which Predictive Mean Vote (PMV) and adaptive comfort
models are mainly used. Fanger et al. gave mathematical expression in PMV
model to describe the thermal sensation of occupants by subjective evaluation
in [7].

Home is one of the most crucial indoor environments that can offer
occupants with a safe and comfortable place satisfying both physical and
psychological requirements. A smart home is one of the scenario applying
ubiquitous computing and refers to the cooperation of Information and
Communication Technologies (ICT) and smartness in home control, which
includes appliance control and actuator automation, to provide services
of comfort, healthcare, security, and power saving[8, 9]. Cyber-Physical
Home System (CPHS), which is based on the concept of Cyber-Physical
Systems (CPSs), combines many kinds of services and applications into smart
home systems. Especially aiming for improving comfortability, providing
healthcare monitoring, and reducing energy consumption, numerous pilot
studies on CPHS have been conducted. One excellent research in CPHS
domain is the work that Yuto et al. implemented Energy Efficient Thermal
Comfort Control (EETCC) system in the real testbed to improve occupant’s
thermal comfort and optimize the energy consumption ate the same time.[10]
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1.2 Problem Statement

However, there are limitations for PMV model to predict thermal comfort in
the scenario of smart homes. First, Fanger et al. derived PMV model from
chamber data during experiments, and PMV model is designed to satisfy the
majority of a large occupant group. This leads to poor prediction power when
PMV model is applied to predict individuals’ thermal comfort[11]. Second,
the input variables of PMV model are often assumed or simplified because
specific variables that full implementation of PMV model needs, such as
metabolic rate, are difficult to acquire in real-time in real environments.
Third, the occupant’s particular living conditions cannot accord with the
experimental one perfectly hence it is hard to measure and quantify the input
settings as what we do in a standardized experimental environment. Lastly,
new variables cannot be taken into consideration, which has been proved
relevant to thermal sensation (e.g., age, gender, and BMI [12]). In essence,
these new variables are significant for predicting thermal comfort. Due to
the above limitations, even though many proposed system models, which
are based on PMV as an indicator of thermal comfort, are widely accepted
and adopted, several studies [13, 14, 15] point out that these models are
weak in predicting accurate thermal sensation of an occupant. Therefore,
PMV-based EETCC system is inadequate in reflecting the actual thermal
preference of an individual.

Also, There is no tight synchronization between occupants’ preferences
and systems in many research works in field of CPHS that consider human
factors in the system design. Meanwhile, such system design ignores the
variation of occupants preferences in a long term.

1.3 Research Motivation

To overcome the aforementioned shortcomings, Personal Thermal Comfort
(PTC) model is proposed to satisfy the thermal comfort of an individ-
ual rather than the majority of a large population. There are several
works[14, 16, 15, 13, 17] that have proposed PTC model, but only one of
them considering using an online learning approach. What is more, None
of them considered the difficulties of obtaining examples of neutral thermal
sensation or thermal preference of no change. In this paper, a novel PTC
model is presented to predict the real-time thermal sensation of an individual
occupant in the field of smart home. This Proposed PTC model is able to
distinguish whether an occupant is in a neutral comfort zone without gaining
feedback on feeling comfort. The prediction of personal thermal sensation can

2



help HVAC system with refined and precise control strategies as personalized
profiles to offer not only a comfortable indoor environment but also happiness
and well-being in smart home.

1.4 Research Objective

The objectives of this paper are to enhance the availability and accuracy
of psychological parameters for PTC model by using an online learning and
incomplete supervision method in Cyber-Physical Human Centric System
(CPHCS), and to ensure the psychological parameters are always available
for the continuous satisfactory control of a home control system (e.g., EETCC
system) in a timely manner. In addition, the contributions that we offer in
this papers are: (i) deciding necessary input variables for PTC model in order
to make the model precise and simple; (ii) taking advantage of vast unlabeled
data meanwhile reducing the dependence of thermal sensation feedback; (iii)
proposing online learning method so that makes it possible for a quick start
after implementation.

1.5 Thesis Organization

In chapter 2, background research information is listed in detail. We talk
about Smart Homes, CPHCS, thermal comfort and sensation of humans.
Then the concepts of PTC model and EETCC, which is implemented in
the experiment base, are demonstrated. In chapter 3, a modified CPHCS
framework is proposed. Based on this framework and the obtained data,
we explain the reason that we use machine learning with an online learning
method and incomplete supervision. In chapter 4, we introduce five metrics
for evaluating performance. What is more, results are illustrated in detail.
In chapter 5, we make a conclusion of our work.

3



Chapter 2

Background

2.1 Smart Homes

According to [18], Smart Home was first officially used in the form of term
’smart house’ in 1984 by American Association of House Builders, which
aimed to include new technologies in designing new homes. Smart home
is defined in [19] as a home-like environment that adopts the combination
of ambient intelligence and automatic control to react to the behaviors of
occupants with a variety of facilities. Smart Home is one important branch
ofCPS domains, which means that one key characteristic is the ability of
interactions between the physical world and the cyber range. As one kind of
these interactions, the interaction between the occupant and home appliances
brings benefits of improving comfort, providing health care, ensuring security,
and saving energy.[20] Smart homes are one of the key technologies facing
the problem of an aging society. In the future, a smart home will integrate
into daily life with dedicated artificial intelligence, computational power,
communication skills, monitoring, and controlling abilities needed to improve
everyday activities.

There are several implementations of smart home, and one of them is
iHouse, in which our experiments are conducted in this paper. iHouse is a
typical two-story building of Japanese style located in Nomi City, Ishikawa
Prefecture, Japan. It is equipped with home appliances which are connected
via ECHONET Lite version 1.1 and ECHONET version 3.6.2. Moreover,
it incorporated more than 300 sensors and actuators to provide ample
parameters for thermal comfort control and prediction.

2.2 Cyber-Physical Human Centric Systems

(CPHCS)

Human and system are indivisible as systems are designed for satisfying
people’s needs. There are studies shown that it is of essence to interact

4



CPS with humans. Higashino and Uchiyama proposed the human centric
cyber-physical system application in which the influence of human behaviors
is taken into account to design CPS based societal system. Sowe et al.
presented people in the loop of cyber-physical-human systems. Based on
the consideration that human or occupant ought to be the first factor in
CPS, we proposed the concept of Human Centric CPS shown in Figure 2.1.

Figure 2.1: Concept of Human Centric CPS

Fang et al. proposed a CPHCS framework with the concept of Human
Centric CPS. It centers human as the core element in the whole scheme so
that human can interact with the surrounding physical environment and the
user applications in the cyber world. Moreover, it provides energy saving
and satisfies human’s thermal comfort needs at the same time with sensing
individual’s thermal sensation. In order to make psychological parameters
always available, we proposed a modified CPHCS framework based on
the concept of CPHS, which is illustrated in Figure 2.2, for the sake of
implementing PTC model into CPHCS.

5



Figure 2.2: Cyber-physical Human Centric System Framework

2.3 Thermal Comfort of Human

Thermal comfort is in the description of the state that expresses whether
ambient surroundings are satisfactory. Fanger et al. proposed the predicted
mean vote/predicted percentage of dissatisfied (PMV/PPD) in the last cen-
tury and has been included by ISO-7730 [6]. However, there are limitations
for PMV/PPD model to predict thermal comfort in the scenario of smart
home. For example, PMV/PPD derived model from chamber data during
experiments, and PMV/PPD model is designed to satisfy the majority of
large occupant groups other than an individual.
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Even though the PMV/PPD model offers us a judging method for
evaluating thermal comfort level, subjective evaluation is still needed. In
this paper, make the subjective evaluation level into seven-level based on
standard ASHRAE 55 [5], which is shown in Table 2.1. This subjective
evaluation level has been modified into the Subjective Comfort Level (SCL)
to collect direct human sensation by answering online questionnaires in [9].

Cold Cool Slightly Cool Neutral Slightly Warm Warm Hot
-3 -2 -1 0 +1 +2 +3

Table 2.1: Human’s comfort degree on 7-point ASHRAE scale

PMV is calculated with a combination of air temperature, mean radi-
ant temperature, relative humidity, airspeed, metabolic rate, and clothing
insulation, which is defined as (2.1).

PMV = fpmv(ta, t̄r, var, pa,M, Icl) (2.1)

where ta is air temperature, t̄r is mean radiant temperature, var is relative
air velocity, pa is water vapor partial pressure, M is the metabolic rate, and
Icl is the human’s clothing insulation factor.

2.4 Thermal Sensation of Human

With the assumption that occupants tend to regain comfort when encoun-
tering discomfort, occupants play an active role in seeking comfortability
by interacting with related elements such as using thermostats[23], openable
windows[24], or fans[25]. Such interactions demonstrate thermal sensation
or thermal preference of occupants. Compared to survey participation, these
interactions can be tracked as the feedback of current thermal sensation
requiring no additional effort except for normal behavior. In addition,
obtaining thermal sensation in this way can be automated in Smart Homes
with the help of CPHCS. However, when occupants feel comfortable with no
preference of tending to be comfortable, it is of great difficulty to obtain such
examples by inferring the thermal comfort of occupants from interaction with
thermostats, etc.

2.5 Personal Thermal Comfort Model

A general personal thermal comfort aims to predict the thermal comfort
sensation or preference of individuals other than the majority of a group of
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occupants and therefore improves the performance of HVAC control system.
In[14], heating and cooling behaviors were adopted to predict personal ther-
mal preference of 3 categories. In[13], several physiological signals (e.g., skin
temperature, heart rate) were used to predict personal thermal preference
of 3 categories. In[26], the authors presented a novel infrared thermography
based technique to monitor an individual’s thermoregulation performance
and thermal comfort levels. Jung and Jazizadeh have investigated the
effect of personal thermal comfort in selecting setpoints for thermostat and
probabilities of thermal satisfaction. These works show the significance of
considering personal thermal comfort instead of conventional predictors like
PMV.

In the domain of CPHCS, PTC model diverts attention much more
into human factors comparing with traditional control algorithms like model
predictive control and proportional–integral–derivative controller. This pro-
posed PTC model provides reliable psychological parameters output as the
input for the PCA module shown inFigure 3.1. The PCA module outputs
personal PMV for controllers, which are mainly driven by PMV index
strategy. Therefore PTC model benefits the effect of these controllers(e.g.,
EETCC).

2.6 Energy Efficient and Thermal Comfort

Control

EETCC algorithm is a rule-based control strategy that controls multiple
actuators to maintain thermal comfort level dynamically. It is developed
for smart homes, where PMV is adopted to evaluate the level of thermal
comfort. [27] There are different control strategies (illustrated in Table 2.2)
differing from the category of PMV range, which indicates thermal comfort
circumstances.

Category PMV
A -0.2 < PMV < +0.2
B -0.5 < PMV < +0.5
C -0.7 < PMV < +0.7

Table 2.2: Categories of thermal comfort demands

EETCC system gives out adaptive PMV as a controlling index. However,
as it is mentioned that PMV model is limited inherently in predicting the
thermal comfort of an occupant in a real implementation, EETCC algorithm

8



can not offer occupant highly acceptable thermal comfort and high energy
efficiency simultaneously. In this paper, PMV value that we used is collected
from EETCC system, and it is a little bit different from the original PMV.

9



Chapter 3

Machine Learning Method for
CPHCS

In this chapter, a modified PTC model is first presented. Then we introduce
the experiment setup and conduct the data analysis. Based on the result of
data analysis, we present a novel supervised machine learning method using
incomplete supervision and online learning for CPHCS.

3.1 Modified Personal Thermal Comfort Model

for CPHCS

3.1.1 Architecture of Personal Thermal Comfort Model

iHouse, which is the experiment base, has evolved several times. Fang et al.
have proposed CPHCS framework in [9], whose experimental base is iHouse
as well. In the dissertation of Fang, which has not publicly published yet,
she demonstrates a state-of-the-art work that combines time task, human
factors, and control strategy in CPHCS. In order to fully utilize develop it,
we proposed a modified system architecture for the implementation of PTC
model in Figure 3.1.

10



Figure 3.1: Architecture of Personal Thermal Comfort Model
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This PTC model is specially designed for individuals rather than groups.
First, we designed it in a smart home environment instead of experiment
chambers. Second, it does not take the percentage of discomfort(PPD)
into account. In other words, it aims to satisfy one individual in a specific
environment.

3.1.2 Reasons for Adopting a 7-level Subjective Com-
fort Level (SCL)

In the design of PTC model, we adopt 7-level SCL as one psychological input
variable. The main reason is that the energy consumption of HVAC systems
accounts for half of building energy consumption in the USA[28]. In[29],
five levels of thermal discomfort are set, and the results demonstrate the
improvement of a 12% reduction in average airflow rate, which means lower
power consumption. It is believed that more classes make it possible that
we create elaborate profiles for HVAC control system in order to offer better
thermal comfort and save energy meanwhile.

3.2 Experiment Setup

This experiment was conducted in corporation with Fang and the the data
we used in this paper is extension of data set used in [9].

3.2.1 Plant: iHouse

Bedroom 1 on the second floor of iHouse was selected as the experiment
environment this time. The layout of iHouse is shown in Figure 3.2. The
bedroom 1 is 5.0 m in length, 4.1 m in width, and 2.4 m in height. Specific
parameters of primary sensors installed in iHouse are shown in Table 3.1.

Type Name Range
Indoor temperature sensor SHT75 digital sensor [-40,125]°C ± 0.3 °C

Air velocity sensor hot-wire anemometer sensor [0.015,5]m/s ± 0.2%
Relative humidity sensor SHT75 digital sensor [0,100]% ± 1.8%

Table 3.1: Brief information of main sensors

12
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Figure 3.2: Overall appearance and internal structure of iHouse

3.2.2 Obtained Dataset

First, random submissions were adopted to record thermal sensation of
participants when they felt a change in thermal comfort. The questionnaire
link was sent to each participant, and they independently filled the ques-
tionnaire form via their personal computers or personal smartphones. The
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questionnaire form is made in Google Forms, and it consists of three parts:
(a) date and time; (b) ID of participants; (c)thermal sensation. Because it
takes time to fill a form, it will be automatically copied two times for ten
seconds before and after the submission time. Examples of form are presented
in Table 3.2. The questionnaire form will be named as SCL vote afterward.

Participant ID Date and Time Thermal Sensation SCL
F1 2019/05/31 10:29:03 Hot 3
M1 2019/05/31 11:14:23 Warm 2
M2 2019/06/28 11:19:44 Slightly Cool -1

Table 3.2: Examples of questionnaire form

Second, environment parameters and adaptive PMV value were recorded
uninterruptedly per 10 seconds with the support of EETCC system. One
example of records is presented in Table 3.3. Set M = 1.0, Icl = 0.5 for
summer and M = 1.0, Icl = 0.8 for winter as default parameters for EETCC
calculating adaptive PMV.

state window1 state curtain sensor TemperatureIndoor sensor TemperatureOutdoor ... PMV timestamp
49 49 27.5 23.1 ... 0.653136 2019/05/31 10:59:41

Table 3.3: EETCC record example

3.3 Data Analysis

3.3.1 Information of Participants and Weather Condi-
tions

There are seven participants of three female adults and four male adults.
Consents of all participants are obtained before we experimented. All
participants had no physical or mental illness, no alcohol intake before the
experiment, and no lack of sleep. Detailed information on these participants
is shown in Table 3.4.
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ID Gender Age Experiment date

F1 Female 38(39)
May 31, 2019
Feb. 02, 2020

F2 Female 26 Feb. 04, 2020
F3 Female 27 Feb. 01, 2020
M1 Male 26 May 31, 2019
M2 Male 23 June 28, 2019
M3 Male 24 June 28, 2019
M4 Male 27 Jan. 31, 2020

Table 3.4: Brief information of participants

Experiments conducted in Nomi City, Japan, were distributed over six
days in 2019 and 2020. Detailed weather conditions information is shown in
Table 3.5

Mean temperature(SD) °C Mean air velocity(SD) m/s Mean relative humidity(SD) %
Date Indoor outdoor Indoor outdoor Indoor outdoor

May 31, 2019 26.5(0.5) 17.9(2.4) 0.10(0.05) 1.77(1.48) 45.9(2.8) 92.0(15.6)
June 28, 2019 27.0(1.1) 22.9(2.1) 0.16(0.10) 2.56(1.41) 48.3(6.7) 85.4 (18.1)
Jan. 31, 2020 23.4(0.8) 2.7(0.4) 0.10(0.05) 1.9(0.8) 36.9(1.4) 100(0.0)
Feb. 01, 2020 21.0(3.3) 4.5(0.5) 0.13(0.07) 2.3(0.7) 38.8(5.2) 98.9(1.2)
Feb. 02, 2020 24.0(3.6) 8.4(1.7) 0.11(0.06) 1.2(0.6) 31.8(6.1) 68.2(8.1)
Feb. 04, 2020 21.4(2.5) 5.6(2.2) 0.11(0.05) 1.9(1.1) 39.0(4.2) 80.5(20.2)

Table 3.5: Weather conditions (SD: standard deviation)

3.3.2 SCL Distribution of Participants

We got eight sets of records of seven participants. The detailed information
is as follows.

ID of participant ID of dataset data size
number of
SCL vote

F1
ID1
ID8

1998
744

57
115

F2 ID5 768 66
F3 ID7 744 89
M1 ID2 1998 60
M2 ID3 1133 114
M3 ID4 1133 114
M4 ID6 767 36

Table 3.6: Information of recorded data
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Figure 3.3: Distribution of SCL vote

3.3.3 Data Preprocessing

3.3.3.1 Personal Thermal Sensation Label

There are few samples with SCL = −3 or SCL = 3 as a result of distribution
analysis. Therefore we made a simple map from SCL, which is seven levels,
to Personal Thermal Sensation Label (PTSL), which is five levels. Note that
if the dataset from SCL is large and sufficient, PTSL can be extended to
equivalent to the SCL.

SCL PTSL
3

2
2
1 1
0 0
-1 -1
-2

-2
-3

Table 3.7: Correspondence between SCL and PTSL
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3.3.3.2 Data preprocessing

Data preprocessing is conducted before analyzing the correlation among
all recorded data. Average and difference values are calculated as the
preprocessing method to temperature, air velocity, and relative humidity.
Meanwhile, SCL will be transformed into PTSL pattern(e.g., SCL = 3
will be converted into SCL = 2), but the name will not be modified.
The abbreviations and description of newly generated variables and original
variables are shown in Table 3.8.

3.3.4 Correlation Analysis

In order to have an intuitive understanding of the relationship among envi-
ronment parameters, adaptive PMV, and SCL, pairwise relationship figures
are firstly plotted in Figure 3.4. Averaged variables are chosen rather than
both of them. For example, average indoor temperature in 60 seconds will
be selected to plot instead of using indoor temperature. Note that different
color represents different SCL categories, and the legend is on the upper right
of the figure. In order to orthogonalize these variables, the related variables
will be removed. For example, ControlSignal is highly related to air velocity
indoor.
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Variable name description abbreviations
mathematical
representation

unit type

sensor TemperatureIndoor indoor temperature Ti Tin °C numerical

avg.TemperatureIndoor.60
average

indoor temperature
in 60 seconds

avg.Ti.60 T̄in °C numerical

avg.TemperatureIndoor.d.60
difference of average
indoor temperature

in 60 seconds
avg.Ti.d.60 ∆T̄in °C numerical

sensor TemperatureOutdoor outdoor temperature To Tout °C numerical

avg.TemperatureOutdoor.300
average

outdoor temperature
in 300 seconds

avg.To.300 T̄out °C numerical

avg.TemperatureIndoor.d.300
difference of average
outdoor temperature

in 300 seconds
avg.To.d.300 ∆T̄out °C numerical

sensor AirSpeedIndoor indoor air velocity Ai Ain m/s numerical

avg.AirSpeedIndoor.60
average

indoor air velocity
in 60 seconds

avg.Ai.60 Āin m/s numerical

avg.AirSpeedIndoor.d.60
difference of average
indoor air velocity

in 60 seconds
avg.Ai.d.60 ∆Āin m/s numerical

sensor AirSpeedOutdoor outdoor air velocity Ao Aout m/s numerical

avg.AirSpeedOutdoor.60
average

outdoor air velocity
in 60 seconds

avg.Ao.60 Āout m/s numerical

avg.AirSpeedOutdoor.d.60
difference of average
outdoor air velocity

in 60 seconds
avg.Ao.d.60 ∆Āout m/s numerical

sensor HumidityIndoor indoor relative humidity Hi Hin % numerical

avg.HumidityIndoor.60
average

indoor relative humidity
in 60 seconds

avg.Hi.60 H̄in % numerical

avg.HumidityIndoor.d.60
difference of average

indoor relative humidity
in 60 seconds

avg.Hi.d.60 ∆H̄in % numerical

sensor HumidityOutdoor outdoor relative humidity Ho Hout % numerical

avg.HumidityOutdoor.60
average

outdoor relative humidity
in 300 seconds

avg.Ho.300 H̄out % numerical

avg.HumidityOutdoor.d.60
difference of average

outdoor relative humidity
in 300 seconds

avg.Hi.d.300 ∆H̄out % numerical

PMV
adaptive PMV value

from EETCC
PMV PMV - numerical

ControlSignal state of actuators - - - category

TimePeriod morning or afternoon - - - category

Season Summer or Winter - - - category

SCL subjective thermal sensation SCL SCL - category

Table 3.8: Abbreviation and description of variable
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Figure 3.4: Pairwise plot of variables
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As SCL is in the form of category, we selected the Spearman’s rank corre-
lation coefficient as the index of correlation analysis, which is demonstrated
in(3.1).

rS = 1− 6Σd2i
n (n2 − 1)

(3.1)

where:

di = rg (Xi)− rg (Yi) is the difference between the two ranks of each
observation,

n is the number of observations

After calculating Spearman’s rank correlation coefficient of all variables
for all participants, the variable which has a coefficient greater than 0.1 was
kept. If the average one and original one (e.g., average indoor temperature
in 60 seconds and indoor temperature) are both kept, the original one is
removed. In addition, PMV value is always reserved for the sake of demon-
strating a weak correlation between PMV and SCL. Correlation coefficient,
which is in the form of heatmaps shown in Figure 3.5. The summary chart,
which shows the difference between each participant, is shown in Figure 3.6.
It clearly demonstrates that PTC model is necessary for the reason that the
correlation coefficient is diverse among these participants.

(a) F1

Figure 3.5: Heatmap of Spearman’s Correlation coefficient
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(b) F2

(c) F3

Figure 3.5: Heatmap of Spearman’s Correlation coefficient

21



(f) M1

(g) M2

Figure 3.5: Heatmap of Spearman’s Correlation coefficient
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(j) M3

(k) M4

Figure 3.5: Heatmap of Spearman’s Correlation coefficient
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Figure 3.6: Correlation over each participant
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As a result of correlation analysis, in order to make PTC model accurate
and simplified, 11 variables are selected as the input for PPC. Hence we got
the function of PTC model in (3.2).

FPTC(t) = fPPC(X(t)) = fPPC

(
T̄in(t),∆T̄in(t), T̄out(t),∆T̄out(t),

Āin(t), Āout(t),∆Āout(t),

H̄in(t),∆H̄in(t), H̄out(t), PMV
)

(3.2)

3.4 Random Forest Classifier

In [14], authors compared several popular machine learning algorithms,
which include Gaussian Process Classification, Gradient Boosting Method,
Kernel Support Vector Machine, Random Forest (RF), etc. Random Forest
displayed the best performance among the tested algorithms. Random forest
is used for classification or regression using ensemble learning by constructing
several decision tress. Therefor, it decrease the possibilities of overfitting
compared to using one decision tree. In this paper, we choose Random
Forest Classifier (RFC) as a primary classification algorithm in designing a
specialized classifier for predicting thermal sensation. The algorithm of RFC
is provided by Scikit-learn [30] of version 0.23.1.

3.5 Incomplete Supervised Learning

In binary classification, there are scenarios where negative samples consist of
the majority, but they hard to be labeled. Retrieval [31, 32, 33], incomplete
supervised learning is able to distinguish by using all unlabeled data as
negative and then heuristically identifying reliable negative samples from
unlabeled data. Shown inFigure 3.3, votes of SCL = 0 consist of the
majority in the data set. However, we face the difficulties of obtain data with
this label using occupant’s thermal response introduced in the background.
Therefore, incomplete supervised learning is suitable for resolving this issues.
The primary process of incomplete supervised learning used for PTC model,
which is in the framework of CPHCS, is illustrated in Figure 3.7.
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Figure 3.7: Process of incomplete supervised learning

3.6 Personalized Predictive Classifier

3.6.1 Architecture of Personalized Predictive Classifier

By illustrating where PTC model is in Figure 3.8, it is of great significance
to offer accurate input so that controllers are capable of satisfying occupants
with thermal comfort. We take variables from the filed of physical world,
cyber world, and human. They have been examined in 3.3.

Figure 3.8: Proposed System Architecture

There are two main problems that we should take into account when
designing the specific classifier: (i) observations of SCL are sparse along with
time series so that proposed online classification algorithm ought to have the
ability to learn quickly; (ii) proposed classifier ought to have the ability to
predict PTSL of neutral comfort even no such data are given during training.

26



The core part of PTC is one classifier named Personalized Predictive
Classifier (PPC), and the general design of PPC is illustrated in Figure 3.9.
It is a classifier that is able to update in real-time and demarcate the comfort-
able and uncomfortable zone by just providing feedback of uncomfortableness
only when occupant encounters thermal discomfort. It aims to achieve an
acceptable level of performance using the method of online learning. In
order to gain performance faster than traditional supervised machine learning
algorithms, we take advantage of the vast numbers of unlabeled data.

Figure 3.9: Personalized Predictive Classifier

Due that neutral comfort consists majority of SCL votes in the environ-
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ment equipped with HVAC system, i.e., we get SCL information sparsely,
we designed two cascaded classifiers to distinguish neutral comfort zone and
which PTSL it belongs to. The function and output of the cascaded classifiers
are illustrated in Figure 3.10.

Figure 3.10: Cascaded Classifiers

3.6.2 Algorithm of Training Personalized Predictive
Classifier

In this paper, we use a machine learning algorithm with incomplete supervi-
sion to resolve the multiclass classification of PTSL. This time questionnaire
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of SCL, other than thermal sensation response behavior, is adopted as the
ground truth to verify the thermal sensation of an occupant at a specific
time. Then, we expound the process of training these cascaded classifiers
using incomplete supervised learning in the following algorithm tabulation.

Algorithm 3.1 Training process using incomplete supervised learning

Input: X(t), SCL
1: function Sampling()
2: decide sampling interval based on size of training set
3: sample buffer and put them into training set
4: end function
5: function Update(X(t), SCL)
6: put X(t), SCL into training set
7: classifier2.fit()
8: classifier1.fit()
9: for x in training set do

10: if probability(x | 1) is similar to probability(X(t) | 1) then
11: set SCL of x = 1
12: end if
13: end for
14: end function
15: function Refine()
16: if size of training set is small then
17: clean over fitting data
18: else
19: clean imprecise data
20: end if
21: end function
22: while X(t) do
23: if SCL is None then
24: set SCL = 0
25: push X(t), SCL into buffer
26: continue
27: else
28: Sampling()
29: Update(X(t), SCL)
30: Refine()
31: empty buffer
32: end if
33: end while
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Chapter 4

Simulation Results and Discus-
sions

4.1 Performance Evaluation Metrics

In this paper, we adopted five commonly adopted metrics: accuracy, preci-
sion, recall, Area Under the Receiver Operating Characteristic (ROC) Curve
(AUC), and Cohen’s kappa coefficient.

4.1.1 Confusion Matrix

In order to clearly express selected metrics, confusion matrix is introduced
at the very beginning.

actual
class

predicted class

p n total

p′ TP FN P′

n′ FP TN N′

total P N

Table 4.1: Confusion Matrix

Where: p, P = positive; n, N = negative; TP = True Positive; FP =
False Positive; TN = True Negative; FN = False Negative.

30



4.1.2 Accuracy

The accuracy represents the percentage of predicting the thermal sensation
of occupants correctly, whose formula is shown in (4.1). However, it also
causes an issue for imbalanced dataset. For instance, if a dataset consists of
80% data where SCL = 0, a naive predictive model is able to result in 80%
accuracy.

Accuracy =
TP + TN

P +N
(4.1)

4.1.3 Precision

Precision gives the result of the proportion of positive identification that is
correct in fact. The formula of precision is shown in (4.2). Precision is also
called positive predictive value (PPV).

Precision =
TP

TP + FP
(4.2)

For multiclass situation, we use macro precision which is the average of
precision of each class with same weight.

4.1.4 Recall

Recall demonstrates the proportion of actual positive example that is iden-
tified correctly. The formula of recall is shown in (4.3). Recall is also called
true positive rate (TPR) or sensitivity.

Recall =
TP

TP + FN
(4.3)

For multiclass situation, we use macro recall which is the average of recall of
each class with same weight.

4.1.5 Area Under the Receiver Operating Characteris-
tic Curve

ROC curve shows the performance of a classifier at all classification thresh-
olds. The x-axis and y-axis of ROC curve are false positive rate (FPR) and
true positive rate (TPR) respectively. The definitions of FPR and TPR are

31



as follows.

TPR =
TP

TP + FN
(4.4)

FPR =
FP

FP + TN
(4.5)

AUC measures the two-dimensional area underneath the ROC curve from
(0,0) to (1,1). The relationship between ROC and AUC is illustrated in
Figure 4.1.

Figure 4.1: ROC and AUC

For multiclass situation, we use macro AUC which is the average of AUC
of each class with same weight.

4.1.6 Cohen’s Kappa Coefficient

Cohen’s kappa measures the agreement between two raters who each classify
N items into C mutually exclusive categories.[34] The definition of Cohen’s
kappa (κ) is shown in (4.6),

κ =
po − pe
1− pe

(4.6)

where po is accuracy and pe is hypothetical probability of chance agreement.
Cohen’s Kappa has a range from 0-1 in general, with larger values indicating
better reliability.
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4.2 Performance of RFC

In order to evaluate the performance of RFC, we designed one RFC for PTC
model and trained this RFC with the full dataset(i.e., including records of
SCL = 0). The hyperparameters of RFC are as follows.

RFC: min sample leaf = 2, class weight = ’balanced’

The ratio of the training set and test set is 0.6:0.4 with stratification of
labels, which means that examples of each class have the same ratio between
the training set and test set. We ran this program 1000 times with randomly
splitting training sets and test sets to get an average performance considering
reducing contingency. The summary table is shown in Table 4.3.

Participant
ID

Data
Size

Average
Accuracy(SD)

Average
Precision(SD)

Average
Recall(SD)

Average
AUC(SD)

Average
Cohen’s kappa(SD)

F1 172 0.86(0.05) 0.88(0.06) 0.86(0.06) 0.98(0.02) 0.81(0.07)
F2 66 0.94(0.06) 0.88(0.13) 0.94(0.10) 0.99(0.02) 0.89(0.12)
F3 89 0.82(0.08) 0.81(0.09) 0.86(0.06) 0.82(0.08) 0.74(0.11)
M1 60 0.95(0.06) 0.94(0.11) 0.92(0.10) 0.99(0.01) 0.85(0.17)
M2 114 0.76(0.08) 0.82(0.08) 0.76(0.09) 0.95(0.04) 0.68(0.1)
M3 114 0.85(0.06) 0.85(0.09) 0.79(0.09) 0.96(0.04) 0.76(0.09)
M4 36 0.82(0.08) 0.81(0.09) 0.86(0.06) 0.97(0.02) 0.74(0.11)

Average 93 0.87(0.07) 0.88(0.09) 0.86(0.09) 0.97(0.03) 0.79(0.13)
Median 102 0.86(0.06) 0.87(0.09) 0.86(0.06) 0.98(0.02) 0.80(0.11)

Table 4.2: Predictive performance of RFC(SD:standard deviation)

Related work Performance index Result Result of RFC

[14] Median AUC 0.73 0.98

[13]
Median AUC

Median accuracy
Median Cohen’s kappa

0.79
0.78
0.24

0.98
0.86
0.80

[15] Average accuracy 0.7(SD:0.08) 0.87(SD:0.07)

Table 4.3: Performance of RFC vs. related work

4.3 Performance of PPC vs. RFC

Hyperparameters for two classifier of PPC are set as:
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RFC 1: min sample leaf = 2, class weight = ’balanced’
RFC 2: min sample leaf = 1, class weight = ’balanced’

For the sake of evaluating the performance with a small-size training set,
we changed the ratio of the training set and test set to 0.5:0.5. To emphasize
again, what needs special attention is that records of SCL = 0 are removed
from training sets of PPC, but records of SCL = 0 are still kept in training
sets of RFC and test sets of RFC and PPC. The result was the average of
repeating 1000 times with no specified random seed.

4.3.1 Accuracy

The summary figure is shown in Figure 4.2. First of all, except for F3, the
results of other participants show that PPC, which is designed using an online
learning method, improves performance quickly than RFC. For results of F2,
M2, and M3, it is clear that the performance after training is equivalent to
or beyond one RFC. For results of F2, M1, and M4, the size of the training
data is small, and the samples of SCL = 0 consists of more than 60% of
the training set. So that the performance does not get equivalent because
update and refine function has not been executed for enough times. As to
the result of F3, it is degraded.

(a) Average

Figure 4.2: Accuracy result of PPC vs. RFC
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(b) F1

(c) F2

Figure 4.2: Accuracy result of PPC vs. RFC
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(f) F3

(g) M1

Figure 4.2: Accuracy result of PPC vs. RFC
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(j) M2

(k) M3

Figure 4.2: Accuracy result of PPC vs. RFC
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(n) M4

Figure 4.2: Accuracy result of PPC vs. RFC

4.3.2 Precision

The summary figure is shown in Figure 4.3. First of all, the results of
all participants show that PPC improves its performance more quickly
than RFC. For results of F1, F2, F3, M2, and M3, it is evident that the
performance after training is equivalent to or beyond one RFC. For results of
M1 and M4, the size of training data is small so that the performance does
not get equivalent because update and refine function has not been executed
enough times. Compared to accuracy, the result of F2 gets improved. The
reason for it is, compared with M1 and M4, F2 has fewer samples of SCL = 0.
As mentioned before, the neutral zone is ambiguous. Index of precision gives
the result of proportion of the positive identification that is correct in fact.
So it means PPC is good at recognizing scenes seen before.
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(a) Average

(b) F1

Figure 4.3: Precision result of PPC vs. RFC
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(c) F2

(d) F3

Figure 4.3: Precision result of PPC vs. RFC
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(g) M1

(h) M2

Figure 4.3: Precision result of PPC vs. RFC
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(k) M3

(l) M4

Figure 4.3: Precision result of PPC vs. RFC
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4.3.3 Recall

The summary figure is shown in Figure 4.4. First of all, except for F3,
the results of other participants show that PPC improves its performance
more quickly than RFC. For results of F2, M1, M2, and M3, it shows that
the performance after training is equivalent to or beyond one RFC. For
results of F1 and M4, it shows that PPC is not skilled in recognizing all
scenario of neutral comfort. We paid much more attention to enable PPC
judge correctly. In other words, PPC makes fewer mistakes than radical
predictions.

(a) Average

(b) F1

Figure 4.4: Recall result of PPC vs. RFC
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(c) F2

(d) F3

Figure 4.4: Recall result of PPC vs. RFC
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(g) M1

(h) M2

Figure 4.4: Recall result of PPC vs. RFC
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(k) M3

(l) M4

Figure 4.4: Recall result of PPC vs. RFC
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4.3.4 AUC

Note that AUC was calculated after all classes appeared, which is different
from others. The summary figure is shown in Figure 4.5. First of all,
except for F3, the results of other participants show that PPC improves
its performance more quickly than RFC. For results of F2, M1, M2, and
M3, it shows that the performance after training is equivalent to or beyond
one RFC. All results are in the acceptable level, and it means that PPC
distinguishes different classes very clearly.

(a) Average

(b) F1

Figure 4.5: AUC result of PPC vs. RFC
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(c) F2

(d) F3

Figure 4.5: AUC result of PPC vs. RFC
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(g) M1

(h) M2

Figure 4.5: AUC result of PPC vs. RFC
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(k) M3

(l) M4

Figure 4.5: AUC result of PPC vs. RFC
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4.3.5 Cohen’s kappa Coefficient

The summary figure is shown in Figure 4.6. First of all, except for F3,
the results of other participants show that PPC improves its performance
more quickly than RFC. For results of F2, M2, and M3, it shows that the
performance after training is equivalent to or beyond one RFC. Similar to
recall, PPC lays emphasis on predicting positive samples correctly but not
good at finding a boundary for the neutral zone. In other words, the classifier
1 in PPC is not well trained.

(a) Average

(b) F1

Figure 4.6: Cohen’s kappa result of PPC vs. RFC
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(c) F2

(d) F3

Figure 4.6: Cohen’s kappa result of PPC vs. RFC
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(g) M1

(h) M2

Figure 4.6: Cohen’s kappa result of PPC vs. RFC
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(k) M3

(l) M4

Figure 4.6: Cohen’s kappa result of PPC vs. RFC
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4.3.6 Summary of PPC vs. RF

The performance improvements in percentage compared with RFC is shown
in Table 4.4.

Participant
ID

Average accuracy
5%/10%/25%/50%/100%

Average precision
5%/10%/25%/50%/100%

Average recall
5%/10%/25%/50%/100%

Average AUC
5%/10%/25%/50%/100%

Average Cohen’s kappa
5%/10%/25%/50%/100%

F1 54.4/24.7/15.3/9.1/5.3 260.3/49.2/36.4/27.3/16.4 45/15.6/7.9/3.9/2.1 -/208/24/0.1/-0.4 557.1/53.8/22.4/11.4/6.7)
F2 42.8/43.9/39.6/30/22.1 233.1/262.6/193/60/41 59/82.6/84.1/54.3/41.2 -/1192.6/526.2/262/117.5 -/-/1319.3/179.6/78.7
F3 11.8/-0.8/-5.1/-6.2/-2.6 326.7/57.9/24.7/20.8/17.2 34.4/13.1/4.1/0.7/-0.2 -/59.4/-2.6/1.1/4.8 -/-40.3/0.8/-0.7-3.1
M1 22.7/22.7/9.2/7/7.4 189.9/189.9/209/209.9/105.6 125.4/125.4/170.1/189.7/124.7 -/-/-/1316.1/3473.9 -/-/-/2251.1/209.8
M2 29.1/21.1/16.9/14.8/14.9 403.9/79.6/46.4/40.3/25.2 34/20.1/11.7/10.4/13.3 -/622.1/85.3/29.1/5.4 -/103.4/35.3/25.4/24.1
M3 32.4/30.4/28.9/26.2/21.9 302.3/226.4/84.5/66.4/39.6 62/62.4/39.2/36.7/36.1 -/-/649.5/204.8/44.8 -/761.3/109.8/66.8/47.3/
M4 10.4/10.4/10.4/13.5/19.2 114.1/114.1/114.1/124.1/100.9 28.2/28.2/28.2/45.2/54.2 218.9/218.9/218.9/144.1/63.1 -/-/-/-/1459.6

Table 4.4: Performance improvement of PPC vs. RFC in percentage

4.4 Time Cost of PPC

We conducted time cost evaluation to prove that PPC is able to be im-
plemented as a real-time prediction into CPHCS. It is shown in Figure 4.7
that time consuming for predicting is low, but time-consuming for training
is getting close to one second when the size of training sets increases. The
refinement procedure for decreasing computational cost is future work.

(a) Training

Figure 4.7: Time Cost
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(b) Predicting

Figure 4.7: Time Cost

4.5 Discussion

Concluded from the results above, PPC learns faster than one RFC in
most situations. Meanwhile, it achieves equivalent or better prediction
performance for half of the participants scaled by five metrics: accuracy,
precision, recall, AUC, and Cohen’s kappa. The reason for degradation for
some situations is due to extremely unbalanced training sets, size of data,
and the inherent weakness of distinguishing the neutral comfort zone without
being trained with these data from the architecture design. However, this
degradation can be solved by enlarging the training set with the conclusion
in[14] of the requirement of over 60 responses.
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Chapter 5

Conclusion

5.1 Concluding Remark

Thermal comfort is of high subjectivity, which is diverse among occupants.
Hence, based on the concept of CPHCS, correct inference of personal comfort
sensation makes HVAC controller ’understands’ what human really needs. In
this paper, we present a modified personal comfort model that ensures the
availability of psychological parameters(e.g., thermal sensation) for CPHCS.
From the results, we concluded:

1) A novel PTC model has been proposed. It is designed that which
variables are related to personal thermal sensation and how these
variables are adopted to work for CPHCS. The result of data analysis
proves that PTC is necessary for that correlation coefficient differs over
individuals.

2) Under the structure of PTC model, machine learning is proved to be
capable of improving comfort predictions of actual occupants in smart
homes. Random Forest algorithm has been evaluated, and it is one
suitable supervised machine learning algorithm for predicting personal
thermal sensation due that it produced satisfactory performance. The
median performance of PTC model using an RFC is 0.86, 0.87, 0.86,
0.98, 0.80 for accuracy, precision, recall, AUC, and Cohen’s kappa,
respectively.

3) With the assumption that occupant’s thermal sensation behavior is not
obvious, we proposed PPC that is trained using only discomfort labels.
Based on RF, the proposed PPC is able to judge the neutral comfort
zone precisely without training date of neutral comfort, which is named
as incomplete learning in this paper. Meanwhile, PPC adopts online
learning methods to overcome the limitation of requiring a considerable
amount of training data. The results show that PPC improved its
performance more quickly in most cases and got equivalent or better
performance in more than half of situations(except Cohen’s kappa,
which is less than a half).
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PTC model enhanced by PPC provides the real-time prediction of personal
thermal sensation, which represents occupants’ comfort level. What’s more,
it offers Personal Correlation Analysis module reliable sensation inference,
which is of necessity for PMV-driven HVAC control system(e.g., EETCC).
However, there are many questions unsolved, such as how to divide a comfort
zone and a discomfort zone more precisely. Meanwhile, the relationship
between thermal sensation and thermal preference is still unclear. These
topics are on the way to go along the development of CPHCS.

5.2 Contributions

In this paper, we explored the adoption of incomplete supervised learn-
ing with online learning method for CPHCS to predict personal thermal
sensation. The predictions of personal thermal sensation help systems in
CPHCS satisfy occupants with desired thermal comfort level, and generate
specific user profiles for energy saving. In conclusion, we made the following
contributions to PTC model:

1) We proposed a modified CPHCS framework and a PTC model. The
CPHCS framework if an extension of CPHS, so it take human factors
more into the balance between systems and environments.

2) We conducted the correlation analysis and presented the function of
PTC model in the field of a smart home, whose name is iHouse.

3) we evaluated the appropriateness of RF for prediction of personal
thermal sensation. Then we compared it with the proposed PPC, which
showed a fast learning pace.

58



References

[1] M. Frontczak, S. Schiavon, J. Goins, E. Arens, H. Zhang, and P. War-
gocki, “Quantitative relationships between occupant satisfaction and
satisfaction aspects of indoor environmental quality and building de-
sign,” Indoor air, vol. 22, no. 2, pp. 119–131, 2012.

[2] D. P. Wyon, “The effects of indoor air quality on performance and
productivity,” Indoor air, vol. 14, no. 1, pp. 92–101, 2004.

[3] K. W. Tham and H. C. Willem, “Room air temperature affects oc-
cupants’ physiology, perceptions and mental alertness,” Building and
Environment, vol. 45, no. 1, pp. 40–44, 2010.

[4] J. G. Allen, P. MacNaughton, J. G. C. Laurent, S. S. Flanigan, E. S.
Eitland, and J. D. Spengler, “Green buildings and health,” Current
Environmental Health Reports, vol. 2, no. 3, pp. 250–258, 2015.

[5] A. ANSI/ASHRAE Standard 55-2013, “Thermal environmental condi-
tions for human occupancy,” 2013.

[6] I. ISO, “7730: Ergonomics of the thermal environment—analytical
determination and interpretation of thermal comfort using calculation
of the pmv and ppd indices and local thermal comfort criteria,” Man-
agement, vol. 3, no. 605, p. e615, 2005.

[7] P. O. Fanger et al., “Thermal comfort. analysis and applications in
environmental engineering.” Thermal comfort. Analysis and applications
in environmental engineering., 1970.

[8] B. L. R. Stojkoska and K. V. Trivodaliev, “A review of internet of
things for smart home: Challenges and solutions,” Journal of Cleaner
Production, vol. 140, pp. 1454–1464, 2017.

[9] Y. Fang, Y. Lim, S. E. Ooi, C. Zhou, and Y. Tan, “Study of human
thermal comfort for cyber–physical human centric system in smart
homes,” Sensors, vol. 20, no. 2, p. 372, 2020.

59



[10] L. Yuto, O. S. En, M. Yoshiki, T. T. Kin, R. Alfred, and T. Yasuo,
“Implementation of energy efficient thermal comfort control for cyber-
physical home systems,” Advanced Science Letters, vol. 23, no. 11, pp.
11 530–11 534, 2017.

[11] F. Auffenberg, S. Stein, and A. Rogers, “A personalised thermal comfort
model using a bayesian network,” in Twenty-Fourth International Joint
Conference on Artificial Intelligence, 2015.

[12] P. Tuomaala, R. Holopainen, K. Piira, and M. Airaksinen, “Impact of
individual characteristics such as age, gender, bmi and fitness on human
thermal sensation,” in Proceedings of the thirteen Internatinal Building
Performance Simulation Association conference, 2013, pp. 2305–2311.

[13] S. Liu, S. Schiavon, H. P. Das, M. Jin, and C. J. Spanos, “Personal ther-
mal comfort models with wearable sensors,” Building and Environment,
vol. 162, p. 106281, 2019.

[14] J. Kim, Y. Zhou, S. Schiavon, P. Raftery, and G. Brager, “Personal
comfort models: predicting individuals’ thermal preference using occu-
pant heating and cooling behavior and machine learning,” Building and
Environment, vol. 129, pp. 96–106, 2018.

[15] A. Ghahramani, C. Tang, and B. Becerik-Gerber, “An online learning
approach for quantifying personalized thermal comfort via adaptive
stochastic modeling,” Building and Environment, vol. 92, pp. 86–96,
2015.

[16] A. C. Cosma and R. Simha, “Machine learning method for real-time
non-invasive prediction of individual thermal preference in transient
conditions,” Building and Environment, vol. 148, pp. 372–383, 2019.

[17] W. Jung and F. Jazizadeh, “Comparative assessment of hvac control
strategies using personal thermal comfort and sensitivity models,” Build-
ing and Environment, vol. 158, pp. 104–119, 2019.

[18] R. Harper, Inside the smart home. Springer Science & Business Media,
2006.

[19] L. C. De Silva, C. Morikawa, and I. M. Petra, “State of the art of smart
homes,” Engineering Applications of Artificial Intelligence, vol. 25, no. 7,
pp. 1313–1321, 2012.

60



[20] M. Alaa, A. A. Zaidan, B. B. Zaidan, M. Talal, and M. L. M. Kiah, “A
review of smart home applications based on internet of things,” Journal
of Network and Computer Applications, vol. 97, pp. 48–65, 2017.

[21] T. Higashino and A. Uchiyama, “A study for human centric cyber
physical system based sensing–toward safe and secure urban life–,”
in International Workshop on Information Search, Integration, and
Personalization. Springer, 2012, pp. 61–70.

[22] S. K. Sowe, E. Simmon, K. Zettsu, F. de Vaulx, and I. Bojanova, “Cyber-
physical-human systems: Putting people in the loop,” IT professional,
vol. 18, no. 1, pp. 10–13, 2016.

[23] S. Karjalainen, “Thermal comfort and use of thermostats in finnish
homes and offices,” Building and Environment, vol. 44, no. 6, pp. 1237–
1245, 2009.

[24] Y. Zhang and P. Barrett, “Factors influencing the occupants’ window
opening behaviour in a naturally ventilated office building,” Building
and Environment, vol. 50, pp. 125–134, 2012.

[25] I. A. Raja, J. F. Nicol, K. J. McCartney, and M. A. Humphreys,
“Thermal comfort: use of controls in naturally ventilated buildings,”
Energy and buildings, vol. 33, no. 3, pp. 235–244, 2001.

[26] A. Ghahramani, G. Castro, B. Becerik-Gerber, and X. Yu, “Infrared
thermography of human face for monitoring thermoregulation perfor-
mance and estimating personal thermal comfort,” Building and Envi-
ronment, vol. 109, pp. 1–11, 2016.

[27] Z. Cheng, W. W. Shein, Y. Tan, and A. O. Lim, “Energy efficient
thermal comfort control for cyber-physical home system,” in 2013 IEEE
International Conference on Smart Grid Communications (SmartGrid-
Comm). IEEE, 2013, pp. 797–802.
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