JAIST Repository

https://dspace.jaist.ac.jp/

iUy UUg o

Title goooooooo

Author(s) a, o0

Citation

Issue Date 2003-03

Type Thesis or Dissertation

Text version

aut hor

.net/101p09/1690

URL http:/7/7 hdl handl
Rights
Description Supervisor: oo 0O4d, ooooooo oo

AIST

JAPAN
ADVANCED INSTITUTE OF
SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology



Programming Environment for the Evolutionary
Prototyping Technique with Abstract Interpretation

Shingo Ban (110106)

School of Information Science,
Japan Advanced Institute of Science and Technology

February 14, 2003

Keywords: Abstract Interpretation, Java, Programming Environment,
Prototyping, Stepwise Refinement.

1 Background

In recent years, we need high technology to develop large and complex
software, which requires to control complex hardware systems and many
computers within a large network. For example, a mobile phone system, a
network application for Internet and so on.

Stepwise refinement is one of an efficient technique for developing large
and complex software. In the refinement, we initially develop a simple and
critical part of software, then we refine the software on demand repeatedly
until the software is complete. The problem of the refinement is that we
cannot execute the program under development. Hence, we cannot detect
bugs in the early stage of the development.

The evolutionary prototyping technique solves this problem by program-
ming using abstracted data. In this technique, we develop a primitive
system with abstracted data first, then decide the system details as reifing
them. The technique allows us to execute the system as a whole with ab-
stract interpretation, even though some parts of the system are abstracted
or partially implemented. Hence, we can detect bugs of the system in the
early stage of the development.

Copyright © 2003 by Shingo Ban



However, we cannot evaluate the effectivity of the technique since the
execution and development environments, to which we can apply the tech-
nique, does not still exist. Moreover it is not still clear how to realize the
environments, because the technique is new.

Applying abstract interpretation to software developments is not new.
ISDR (Incremental Software development method based on Data Reifica-
tion) introduced by Yoshioka deals with function refinement in ML. The
drawback of this work is that they cannot cope with side-effects, flow-
controls and so on. In constract, our technique is based on Java which is
Object-Oriented Language with side-effects.

2 Objective

In this research, we propose a support environment for the evolutionary
prototyping technique. We also evaluate the technique by experimental
developments on the environment. Our environment, which we build, con-
sists of two parts as follows;

e Interpreter for abstract interpretation in Java

e GUI applications, which visualize evolution relations

First, we develop the interpreter for abstract interpretation. The evolu-
tionary prototyping technique is characterized by allowing us to execute a
whole system including objects in several evolution levels. In order to real-
ize the execution, we clarify the structure of the interpreter and algorithms
for execution with abstract interpretation.

Secondly, we develop useful GUI applications on software development.
In prototyping, the documents are not often written. But, in our technique,
we need many programs, since software is made in stepwise development.
Since their evolution relations are complex, we cannot understand correctly
the relations without documents, which are written about the relations.

We propose two GUI applications as follows:

e Evolution Relation Editor.



e Visualizer for execution with abstract interpretation.

The evolution relation editor express static evolution relations of pro-
grams and edit the relations. The visualizer express behavior of the pro-
grams with abstract interpretation.

3 Approach

In execution with abstract interpretation, in order to realize method
invocation between objects in different evolution levels, it is essential that
an object can refer to some objects in different evolution levels. There is a
possibility that each of the objects has different type. But Java is a strongly
typed object-oriented language. Therefore, standard Java programs can
not meet above requirement.

To solve this problem, we propose Proxy Object for abstract interpreta-
tion. The proxy object combines objects in different evolution levels. The
proxy object is realized by the Java Reflection API and XML. The Reflec-
tion allows an executing Java program to examine itself, and manipulate
internal properties of the program. The proxy object can cope with many
objects in different evolution levels by this technology. We express evolu-
tion relations as XML Document. XML is suited to express the relations,
since they construct tree structures.

We built the GUI applications with Swing. Swing is a graphical user
interface(GUI) component kit for Java. We visualize static evolution re-
lations of programs with JTree, which is a tree structure component of
Swing. We realize the visualizer for execution with abstract interpretation
by using sequence diagram, which is one of UML diagrams. The diagram
shows object interaction, which focus on temporal relationship. The di-
agram makes easy for us to understand when an abstraction occurs in
execution.

4 Experiment

We conducted two experiments on our environment. The experimental
applications are BLACKJACK game and Inventory Management System.



In the former experiment, first, we abstract trump cards to a value and
develop the most abstracted program with the value. Secondly, we develop
concrete programs stepwisely, as we gradually reify the value to real trump
cards. In this experiment, we showed that execution with abstract inter-
pretation is effective with two examples, if abstracted data is well-designed.
As one example, execution with abstract interpretation give more correct
result and it costs lower than execution using stub. As another example,
testing with abstract interpretation can detect bugs in concrete programs.

In the latter experiment, we show that it is impossible that we relevant
abstracted data. As an example, we cannot design abstracted data of
amount of inventory well in the development of Inventory Management
System.

We may not define calculations on abstract data domains, which is not
well-defined. Hence, it may be impossible to execute the system with
the domain. To solve this problem, we propose the mechanism, which
developer decide the calculation in runtime. This mechanism make the
system executable.

5 Conclusion

In this research, we built a support environment for the evolutionary
prototyping technique. The environment consists of the interpreter for
abstract interpretation and GUI applications, which are the evolution re-
lation editor and the visualizer for execution with abstract interpretation.
We conducted two experimental developments on the environment. And
we improved the environment to define calculations on abstract data do-
mains in runtime.

In conclusion, we obtain following results:

e Execution with abstract interpretation is effective, if we design ab-
stracted data well.

e Execution with abstract interpretation is possible, even if we cannot
design abstracted data well because of properties of target applica-
tions.



