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Abstract Speech and visual information are the most dominant modalities for a human to perceive

emotion. A method of recognizing human emotion from these modalities is proposed by utilizing feature

selection and long short-term memory (LSTM) neural networks. A feature selection method based on

support vector regression is used to select the relevant features among thousands of features extended from

speech and video features via bag-of-X-words. The LSTM neural networks then are trained using a number

of selected features and also separately optimized for every emotion dimension. Instead of utterance-level

emotion recognition, time-frame-based processing is performed to enable continuous emotion recognition

using a database labeled for each time frame. Experimental results reveal that a system with feature

selection is more effective for predicting emotion dimensions for a single language than the baseline system

without feature selection. The performance is measured in terms of the concordance correlation coefficient

obtained by averaging the valence, arousal, and liking dimensions.
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1. Introduction

Automatic emotion recognition (AER) systems
are expected to become an important technology for
human–computer interaction as computers become
required to be able to communicate with humans
naturally [1]. This technology can be embedded in
many computer applications as well as in robots to
make them sensitive to the user’s emotional state [2].
The methodology for AER includes the extraction of
emotion-relevant features and classification. Humans
detect the emotional state using different modalities
such as speech, image, and text. Therefore, a superior
emotion recognition system should imitate the human
perception of the emotional state by using different
types of information from speech, image, and text.

Several features from different modalities should be
extracted and combined as an input to the proposed
system to accomplish this task. Among many modal-
ities, audio and visual modalities are the most impor-
tant cues for humans for perceiving emotions. Mehra-
bian argued that feelings and attitudes from speech

communication comprise 38% of vocal/audio informa-
tion and 55% of visual expression [3]. Combining both
audio and visual information will enhance the perfor-
mance of recognizing and communicating emotion.

Several studies have indeed shown evidence for cer-
tain universal attributes for speech [4, 5], music [6, 7],
and both [8], not only among individuals of the same
culture, but also across cultures. Dang et al., for in-
stance, performed an experiment in which humans
had to distinguish between three and six emotions
[9]. Their conclusion was that listeners could perceive
emotion from speech sound without linguistic infor-
mation with an accuracy of about 60% in a three-
emotion evaluation and an accuracy of about 50% in
a six-emotion evaluation.

On the other hand, facial expressions are widely
considered as a universal language of emotion [10–12].
The obtained evidence from audio and visual modali-
ties shows that human perception is universal, which
means that humans can detect the emotional state re-
gardless of language from multiple modalities. The
purpose of this study is to examine whether a mul-
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timodal AER system employing different modali-
ties with feature selection and deep neural networks
(DNNs) can be used for detecting the emotional state.
Emotions also change rapidly as shown by facial and
speech features. Hence, continuous short-term emo-
tion detection is more realistic than long-term emotion
recognition.

The term of “continuous”, as used in this paper’s
title, besides having a meaning in the temporal do-
main also has a meaning in emotion theory. Two
approaches are commonly used to consider emotions:
categorical and dimensional perspectives. Although
the first is common in everyday life, the latter is ar-
gued to share a more common pattern among human
emotions. Since Darwin argued that biological cat-
egories, including emotional categories of a species,
do not have an essence because of their high variabil-
ity, Russel and Mehrabian [13] argued that emotional
states of people caused by environmental influences
could be modeled in the continuous space of plea-
sure, arousal, and dominance (PAD) model. Instead
of dominance, in this paper we use the liking dimen-
sion as provided by the dataset [14]. All three emo-
tional attributes are in a continuous space, as well as in
continuous time labels. Nevertheless, the term “con-
tinuous” in this paper’s title represents the temporal
domain rather than dimensional spaces.

Although most papers used features from mul-
timodal audiovisual data directly or bag-of-words
(BoW) [14–16], we propose to implement feature se-
lection from bag-of-X-words, where X is either audio
or video. Feature selection can reduce the computa-
tional load of a future system as it reduces the num-
ber of features from thousands to a few. By know-
ing the number of relevant features, it will be easy to
achieve real-time emotion recognition by using these
few features. To identify the effectiveness of the fea-
ture selection method, we compare the systems with
and without feature selection along with LSTM net-
works. Beside optimizing feature selection for each
dimension, we evaluate different numbers of selected
features to determine which number gives the highest
performance.

2. Dataset

A German dataset is used to implement and val-
idate the proposed audiovisual emotion recognition
system. This database collects spontaneous and nat-
uralistic interactions consisting of audio and video
modalities. All recordings are based on “Sentiment
Analysis in the Wild” (SEWA) dataset which con-
sist of remotely recorded human–human interactions.
Although the conversation involves two people, only
the behaviors of one person are recorded in every
recording, as used in Audio/Visual Emotion Challenge
(AVEC) 2018. The database contains 130 recordings,

which are divided into three different partitions: train-
ing, development, and test partitions, as shown in Ta-
ble 1. This dataset is annotated in three dimensions,
namely, arousal, valence, and liking. Gold standard
annotations (instead of “true values”, since the la-
bels are annotated by humans) were given only for
the training and development partitions in continu-
ous degrees and continuous times of arousal, valence,
and liking. These labels are given using a hop size of
100 ms, i.e., ten labels per second for each emotion
dimension. The training and development data only
include recordings from German subjects. However,
for the test partition, the German recording does not
include any labels for emotion dimensions. The la-
bels for test partition was not provided by organizer
of the challenge [14]. The obtained predictions of the
test partition were sent to the organizer to obtain the
concordance correlation coefficient (CCC) scores re-
ported in this paper. The durations of the recordings
in the dataset range from 46 seconds to 3 minutes; the
average duration of the recordings is 2.4 minutes.

Table 1 Number of subjects and duration (min-
utes:seconds) for each partition of recordings

Partitions Subjects Labels Duration
Training 34 � 93:12

Development 14 � 37:46
Test 16 - 46:38
Total 64 48 264:36

Although the dataset provides can potentially
be used for cross-cultural implementation, we focus
on mono-language implementation, i.e., German lan-
guage implementation, to test our proposed method
of feature selection implementation with LSTM net-
works.

3. Proposed Method

3.1 Baseline features

We use two types of features: audio and visual
(video) features. The audio features are mel-frequency
cepstral coefficients (MFCCs) and GeMAPS features.
For the MFCCs, the first 13 coefficients (0–12), deltas,
and deltas-deltas coefficients are extracted; thus, 39
low-level descriptors (LLD) features are used. All au-
dio features are extracted with a window size of 25
ms and a hop size of 10 ms, i.e., 100 audio frames per
second. The visual features are 17 facial action units
(FAUs) and a confidence feature extracted with Open-
Face [17], these features are confidence; facial action
units (FAUs) with action intensities of AUs 1, 2, 4, 5,
6, 7, 9, 10, 12, 14, 15, 17, 20, 23, 25, 26, and 45, which
are extracted with hop size of 20 ms, i.e., 50 frames per
second. Both audio and visual features are included
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Table 2 Number of audio and video features on base-
line feature
Model LLDs Bag of words
Audio 23 GeMAPS features 100

39 MFCCs 100
Visual 1 Confidence and 17 FAUs 100

in the dataset [14] without any modification. Table 2
shows the number of features used in this research.

While the given baseline features provided LLDs
extracted based on time frames, it is necessary to ag-
gregate these features to match the given labels ex-
tracted per 0.1 seconds. Therefore, the traditional
several functional statistics usually extracted from the
low-level features on a fixed time (e.g., 0.1 seconds).
Instead of using audio and visual features directly,
BoW is used as state-of-the-art post-processing for
feature extraction. BoW is a document classification
technique used commonly in natural language process-
ing.

For text processing, BoW classifies the number of
occurrences of a word in a given text document. For
audio and visual features, as used in [15, 18], BoW
makes a codebook and generates a new feature based
on this codebook. First, traditional low-level descrip-
tors such as MFCCs are extracted. Then, using a
codebook, LLD vectors are quantized a from single
frame across all utterances [18]. The same approach
applies for GeMAPS feature set, which extracts 23 fea-
tures by using openSMILE’s eGeMAPSv01a.conf file.
From both MFCCs and GeMAPS features, we gener-
ated 100 new numerical features based on the highest
bins of histograms of bag-of-acoustic-word (BoAW)
using openXBOW toolkit [18].

For visual features, we extracted 18 facial features
and generated the same 100 numerical bag-of-visual-
words (BoVW) features. These new features are local
image features extracted from images and their gen-
eral distribution modeled by a histogram [18].

3.2 Feature selection

As described in the previous section, many features
were extracted from audio and video, i.e., 100 features
from each modality. However, it is not clear which fea-
tures are the most important for emotion recognition.
The baseline system uses all extracted features from
each group, i.e., the baseline system measures the im-
pact of the entire group of features on the prediction
accuracy, not the impact of each feature individually.
Therefore, a feature selection method is required for
this purpose. A feature selection method based on a
support vector machine, which has been shown to be
useful in linear and non-linear classification [19], was
proposed to choose n features (expressed as column
vector) from 100 features. To measure the impact of
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Fig. 1 Use of SVR to select n best features

each extracted feature individually, each feature was
used to predict each emotion dimension using support
vector regression (SVR).

For the baseline data, features are extracted, as
explained in the previous section. Moreover, the gold
standard labels for the emotion dimensions of arousal,
valence, and liking were evaluated in a listening test
using human subjects [14]. To select the set of best
features related to emotion dimensions, SVR is used
to model the relationship between feature i (Fi) and
emotion dimension values (ED). This feature selec-
tion was performed by training the SVR model using
the training partition and evaluating the trained sys-
tem using the development partition. To measure the
weight of each feature, the concordance correlation co-
efficient (CCC or ρc) between the prediction values of
emotion dimensions and the gold-standard values was
used. ρc is a measure of how well the prediction val-
ues of emotion dimensions (Y) compare with a “gold-
standard” measurement (X). These gold-standard val-
ues is the truth labels provided in the dataset. CCC
formulation is given by

CCC =
2ρσxσy

σ2
x + σ2

y + (µx − µy)2
(1)

where ρ is the Pearson correlation coefficient (PCC)
between the time series prediction and the gold-
standard, σ2

x and σ2
y are the variance of each time

series, µx and µy are the mean values. Therefore, a
prediction that is well correlated with the gold stan-
dard but shifted in value is penalized proportionally
to the deviation. This means that CCC score com-
bines PCC score with the squared difference between
the mean of the two compared time series.

Figure 1 shows our SVR method used to select the
n best features. From our experimental results, it is
known that each feature has a different contribution
to different emotion dimensions. We used the average
CCC score to obtain n features for all emotion dimen-
sions, where n was manually determined to 6, 10, 15,
and 20.

It is difficult to know how many features should be
combined to attain the highest prediction accuracy for
each emotion dimension. Traditionally, a researcher
chooses a threshold value and combines all features
that have an impact greater than this specific value.
However, the values of CCC are sometimes very small,
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which makes it difficult to determine a good threshold.
Therefore, we propose a cumulative impact of features
algorithm to find the optimal set of acoustic features
as described by Algorithm 1. To find the optimal set of
features for one emotion dimension, the inputs are the
extracted features for the specific groups in decreas-
ing order of the absolute value of CCC. This optimal
feature set has 16, 13, and 10 dimensions for arousal,
valence, and liking, respectively.

Figure 1 and Algorithm 1 are two integrated com-
ponents, where in Fig. 1 the impact of each feature is
determined, i.e., the contribution of each feature (F i)
for estimating each emotion dimension in terms of the
CCC. However, Algorithm 1 is used to calculate the
impact and contribution of combining n features us-
ing the average CCC score for all emotion dimensions.
Finally, Algorithm 1 is used to determine the optimal
(feature) set.

Algorithm 1 Cumulative impact of features algo-
rithm to find the optimal set of features for emotion
dimension EDi

1: Input gold standard values for emotion dimension
EDi for development partition.

2: Input features sorted by abs(CCC):
f1, f2, f3, ..., fn

3: Input impact CCC1 of f1
4: Optimal Set = {f1}, CCC Optimal = CCC1

5: for fj in f1, f2, f3, ..., fn do
6: CCCj = CCC(Predict ([Optimal Set, fj ]))
7: if CCCj > CCC Optimal then
8: CCC Optimal = CCCj

Optimal Set = [Optimal Set, fj ]
9: end if

10: end for
11: return Optimal Set, CCC Optimal

3.3 LSTM networks

We use LSTM networks as the classifier of this
emotion recognition system. The LSTM networks
used in this research consist of two layers (as sug-
gested in [20]): the first layer contains 128 units, and
the second layer contains 64 units. The use of larger
units/nodes is expected to improve the performance
since the model will learn better than in a small net-
work. We use a batch size of 34 with a 0.001 learning
rate. We use unidirectional LSTM since bidirectional
LSTM does not contribute significantly in this case.
On the other hand, the use of dropout increases the
performance. We use a dropout parameter of 0.2. Af-
ter some experiments, we found that we can limit the
maximum number of iterations to 50. These experi-
ments are also used to determine the values of other
parameters in LSTM networks.

The use of LSTM networks comes from the idea
that humans have the persistence to keep memory long
in a short-term period. Humans do not start their
thinking from scratch every second. As we read this
paper, we understand each word on the basis of our
understanding of previous words. We do not throw ev-
erything away and start thinking from scratch again.
Our thoughts have persistence [21].

Using LSTM as described in [22], we implement
an audiovisual AER system by using feature extrac-
tion from bag-of-X-words. The selected input features
are then trained using German utterances according
to their values of arousal, valence, and liking to pre-
dict these parameters. We compare the baseline sys-
tem [14] with 100 BoW features from each audio and
visual feature with proposed feature selection method
with different numbers of features. We implement the
LSTM using the Keras toolkit [23] version 2.3.0 with
TensorFlow version 1.14 backend.

For the cost function, we used a custom loss func-
tion, namely “CCC loss” instead of the default Keras
loss function (MSE). The CCC loss function is defined
as

CCC loss = 1− CCC (2)

The networks are trained to minimize this CCC loss
function and maximize the performance in terms of
the CCC scores of valence, arousal, and liking. The
choice of the loss function is a critical aspect in deep-
learning-based pattern recognition since the evalua-
tion of the learning process of the model is based
on this metric. Since CCC is used as the evaluation
metric, using the CCC loss for the cost function is
a straightforward way to achieve a higher CCC score
than that using other cost functions.

Figure 2 shows the proposed AER system. As the
inputs are audio and visual features that are extracted
from audio and video data. BoW extracts 100 features
from the previous step within the label-defined time
frame, then n features are selected using SVR and
fed into LSTM networks. Multitask learning is used
to minimize CCC loss from each emotion dimension,
as defined in Eg. 2, by summing three losses. The
outputs are the predictions of arousal, valence, and
liking in continuous times.

4. Results and Discussion

We investigated whether reducing the number of
features by a suitable method and processing could
improve the performance of a continuous audiovisual
emotion recognition system trained using one lan-
guage. Although the original dataset consists of mul-
tiple languages, since the label of emotion dimensions
is given only for the German language, the proposed
system was trained using only the German language.
The baseline system uses all features without inves-
tigating the impact of the features used, regardless
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Fig. 2 Proposed continuous audiovisual emotion recognition system

whether they are related to the predicted emotion di-
mension or not. However, in this paper, the most
important acoustic features for the German languages
were selected, as explained in the previous section.

To measure the effect of the number of features
on the prediction accuracy, the proposed AER sys-
tem is trained and evaluated using different numbers
of features. The results of each emotion dimension
using the top 6, 10, 15, and 20 selected features are
compared with the optimal set and the baseline fea-
tures. An optimal set is a number of features tuned
for the best CCC score of each emotion dimension, as
described by Algorithm 1. The CCC defined in Eq. 1
is used as a metric for evaluating the accuracy of each
emotion dimension. However, the performance of the
three dimensions was evaluated for each system using
CCC. It is still difficult to evaluate the performance of
the entire system because the AER system has three
outputs. This difficulty is due to the first output (i.e.,
valence CCC score) is higher than the second output
(i.e., arousal CCC score) and third output (i.e., liking
CCC score) from the same inputs features. Therefore,
it is difficult to determine which system is the best.
The average CCC scores for the three emotion dimen-
sions then is used as a measure for the performance
of the entire system; this measure is defined by the
following equation:

CCCavg =
Σ CCCi

n
(3)

where n is the number of emotion dimensions, i.e.,
three (valence, arousal, and liking).

To evaluate the proposed method, the AER system
was trained using the training partition and evaluated
using the development partition (see Table 1). Table 3
presents the results of evaluation for the development
partition using the multi-model of audio (eGeMAPS)
and video (FAU) features. From this table, the opti-
mal set gives the best results for arousal and valence.
For liking, which is the most difficult emotion dimen-
sion to predict, the highest CCC score is obtained by
selecting 15 features, meaning that the most features
related to liking are from the 15 selected features.
Moreover, the average CCC of the optimal set for the
three emotion dimensions outperforms other numbers

Table 3 Evaluation results using mono-language case
by using the development partition form German lan-
guage using selected numbers of features from audio-
visual modalities (Aro: Arousal, Val: Valence, Lik:
Liking, AVG: Average; Baseline consist of 100 fea-
tures)

Features Set Aro Val Lik AVG
Baseline [14] 0.552 0.563 0.238 0.451
Selected 6 0.641 0.636 0.278 0.518
Selected 10 0.660 0.620 0.298 0.526
Selected 15 0.622 0.623 0.314 0.520
Selected 20 0.616 0.596 0.299 0.504
Optimal Set 0.678 0.654 0.304 0.545

of selected features. The feature selection method in
this study was optimized using the development par-
tition of the German language. Evaluation results on
the test partition of the German language are shown in
Fig. 3. We find that the best performance is achieved
using 10 features. The average CCC was increased
from 0.382 to 0.416 using this test data. Note that the
average CCC score is only used to determine the over-
all performance among the three emotion attributes as
proposed in [14].

Figure 3 shows our best result compared with the
baseline. Since the optimal set is difficult to imple-
ment in real application, as it has different numbers of
features giving the best performance for different emo-
tion dimensions (16, 13, and 10 for arousal, valence,
and liking, respectively), we selected 10 features on
the basis of CCC score (which gave the second high-
est performance after the optimal set). Except for
arousal, the CCC score from 10 selected features is
higher than the baseline score. It can be inferred that
the 10 selected features have a high correlation with
valence and liking. For arousal, some of the 90 fea-
tures (100 BoW features − 10 selected features) may
have a higher correlation than the 10 selected features,
although in the development set the 10 selected fea-
tures have the highest CCC score after the optimal
set.

Finally, we evaluate the model of LSTM networks
used as a classifier of the emotion dimensions as a
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Fig. 3 Comparison between prediction of emotion
dimensions for mono language using baseline system
and that using proposed system (optimal set) in terms
of CCC of test set

function of the number of iterations. Figure 4 shows
the loss and accuracy of the LSTM network, shown in
Fig. 2. The loss function used in this model is the
CCC loss, as defined in Eq. 2. It is shown that loss
function decreases with the increasing number of it-
erations; it should be close to zero ideally. This can
be explained as CCC ideally tend to 1, and the ac-
cumulative CCC score for arousal, valence, and liking
is 3 (total losses). Hence, the value of each emotion
dimension loss (1−CCC) should tend to zero. In the
practical implementation, the CCC loss that is mini-
mized is the total CCC losses from arousal, valence,
and liking, which is shown in the left panel of Fig.
4. In the right panel, lines showing the accuracy of
valence, arousal, liking, and average CCC are shown.
Although the loss functions decreased up to 200 it-
erations, the accuracies only improved slightly after
50 iterations except for liking. Liking, the dimension
that obtained the lowest performance, continued to
improve after 50 iterations. This issue (where losses
are still going down while the accuracies are stagnant)
should be incorporated into future training strategies.
The average CCC shows a promising metric as it re-
flects the performance of all dimensions. This met-
ric should be used as the standard metric in multi-
dimensional emotion recognition.

5. Conclusions

A feature selection method was proposed to select
relevant features for each emotion dimension from
BoW of audio and visual features. The proposed
method using SVR was effective for selecting the
audiovisual features for each emotion dimension.
This technique reduces the number of features from
a hundred to a few. Unidirectional LSTM networks
using two layers consisting of 64 and 128 units were
proposed for estimating the emotion dimensions
(arousal, valence, liking). Experimental results show
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Fig. 4 Training loss and development accuracy (in
terms of CCC scores) of LSTM network as a function
of the number of iterations (in the case of 10 selected
features)

that the proposed method with feature selection
can be used to improve the continuous emotion
recognition performance from that of a baseline
system with a large number of features, as well as
reduce its feature dimensions. The evaluation using
CCC suggested that the optimum number of features
is 10. While this number is chosen manually, future
research might investigate the more effective ways
to choose the number of most important features
automatically. Additionally, since the training loss
did not converge in this research, an investigation to
evaluate when CCC loss converges in the classifier
part is also worthwhile.
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[19] J. Neumann, C. Schnörr and G. Steidl: Combined SVM-

based feature selection and classification, Machine Learn-

ing, Vol. 61, Nos. 1-3, pp. 129–150, 2005.

[20] A. Karpathy: The unreasonable effectiveness of recurrent

neural networks, Andrej Karpathy blog, Vol. 21, p. 23,

2015.

[21] C. Olah: Understanding lstm networks – Colah’s blog,

http://colah.github.io/posts/2015-08-understanding-

lstms/, 2015.

[22] S. Hochreiter and J. J. Urgen Schmidhuber: Long short-

term memory, Neural Computation, Vol. 9, No. 8, pp.

1735–1780, 1997.

[23] F. Chollet et al.: Keras, https://keras.io, 2015.

Reda Elsaid Mohamed Elsayed
Elbarougy received his B.Sc., and
M.Sc., degrees from Mansoura Uni-
versity, Egypt, in May 1997, and
February 2006, respectively. Both
were in computer science. He was
with the Faculty of Science, Man-
soura University from 1999 to 2009.
In July 2009, he joined the Japan
Advanced Institute of Science and
Technology (JAIST), Japan, as a
Ph.D. student. From September
2014 to August 2019, he was with

Mathematics Department, Faculty of Science, Damietta Univer-
sity as an Assistant Professor. In 2017, he was a post-doctoral
researcher funded by JSPS to conduct research in JAIST from
June 2017 to April 2019. Currently, he is an Assistant Profes-
sor in Department of Computer Science, Faculty of Computer
and Information Sciences, Damietta University, New Damietta,
Egypt, from August 2019 till now. His current research in-
terests include machine learning, artificial intelligence, natural
language processing, speech analysis, speech emotion recogni-
tion, and synthesis.

Bagus Tris Atmaja received de-
grees in bachelor and master of en-
gineering physics from the Sepu-
luh Nopember Institute of Technol-
ogy in 2009 and 2012, respectively,
where he is now employed as a re-
searcher in acoustics. Currently, he
is also a Ph.D. student at Japan
Advanced Institute of Technology,
Nomi, Japan, focusing on speech
emotion recognition. His main re-
search interest is speech process-
ing including speech enhancement,

source separation, and speech (emotion) recognition.

Masato Akagi received his B.E.
from Nagoya Institute of Technol-
ogy in 1979, and his M.E. and Ph.D.
degrees from the Tokyo Institute of
Technology in 1981 and 1984. He
joined the Electrical Communica-
tion Laboratories of Nippon Tele-
graph and Telephone Corporation
(NTT) in 1984. From 1986 to 1990,
he worked at the ATR Auditory and
Visual Perception Research Labora-
tories. Since 1992 he has been on
the faculty of the School of Infor-

mation Science of JAIST and is now a full professor. His re-
search interests include speech perception, modeling of speech
perception mechanisms in humans, and the signal processing of
speech.

(Received November 14, 2019; revised April 30, 2020)

Journal of Signal Processing, Vol. 24, No. 6, November 2020 235




