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Abstract 2 

The transient uniaxial elongational viscosity for binary blends composed of 3 

polypropylene (PP) and low-density polyethylene (LDPE) was evaluated. A strain 4 

hardening behavior is detected for the blends, although LDPE is a dispersed phase. This 5 

behavior is attributed to LDPE dispersion deformation; the LDPE forms rigid fibers 6 

because of strain hardening. Rheological properties are calculated numerically by the 7 

Phan–Thien Tanner model by assuming a symmetric geometry with a periodic structure. 8 

Based on the simulation, we propose an appropriate LDPE to modify the processability 9 

of PP, at which the strain hardening in the elongational viscosity is required. 10 

 11 

Keywords: polypropylene / low-density polyethylene / elongational viscosity / 12 

numerical simulation / viscoelasticity 13 

14 
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1. Introduction 15 

 Polymer blending is one of the most important technologies that supports the 16 

modern plastics industry and can improve product performance, such as mechanical and 17 

thermal properties. Rheological property modification is another target of polymer 18 

blending to enhance the processability at various processing operations. The ability to 19 

increase the melt elasticity of a linear polymer is in strong demand in the industry. 20 

Several methods have been proposed to provide strain hardening in elongational 21 

viscosity, which is an important elastic property [1-10]. Among them, the simple 22 

addition of commercially available low-density polyethylene (LDPE) to isotactic 23 

polypropylene (PP) should be noted for potential industrial application [10]. In a 24 

previous study in which PP/LDPE blends were used, LDPE showed a slightly lower 25 

shear viscosity than PP, and it was suggested that the deformed LDPE droplets that were 26 

dispersed in the molten PP become rigid because of LDPE strain hardening during 27 

uniaxial elongational flow. Consequently, the blend behaved like a composite with rigid 28 

fibers, and led to a rapid increase in the elongational viscosity owing to the excess stress 29 

generation of a matrix between the fibrous dispersions [11-13]. Therefore, the viscosity 30 

ratio of the components, i.e., PP and LDPE, should have an important effect on the 31 

elongational viscosity of the blend systems, although such an effect has not been 32 
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revealed yet. One of the main purposes of this work is to clarify the effect of viscosity 33 

ratio on the strain hardening behavior in the transient elongational viscosity for 34 

PP/LDPE blends. We also study the growth curves of elongational viscosity for 35 

PP/LDPE blends by numerical simulation based on the mechanism mentioned above. 36 

Because measurement data of elongational viscosity often contain experimental error, 37 

predicted results by the numerical simulation should be considered seriously. In terms of 38 

PP processability, we proposed an appropriate LDPE as a processing modifier based on 39 

the simulation. 40 

 To date, considerable theoretical work has been conducted on two-phase flow 41 

that consists of a matrix and dispersions in polymer blends. Most studies have focused 42 

on droplet deformation owing to hydrodynamic force, and droplet breakup and/or 43 

coalescence with a consideration of the viscosity ratio, interfacial tension, capillary 44 

number, and flow pattern [14-21]. The simulation results provided information on 45 

material design and appropriate processing conditions to prepare polymer blends with 46 

fine dispersed droplets. In recent years, these research activities have progressed 47 

understanding, such as the simulation of mechanical behaviors of individually dispersed 48 

droplets in a three-dimensional space [22] and an analysis of complicated 49 

three-dimensional droplet deformation [23]. However, numerical studies on the 50 
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relationship between the structure of multiphase fluids and melt viscoelasticity has not 51 

been carried out extensively. In terms of elongational viscosity, several studies were 52 

reported for a suspension system with rigid particles dispersed in a viscous fluid [24-26]. 53 

In these studies, flow simulations were performed for a suspension with a number of 54 

randomly dispersed rigid particles, and the simulations agreed well with the 55 

experimental data for planar elongational flow. If we consider the calculation cost and 56 

practical use, however, the calculation of a microstructural unit with one or two particles 57 

based on an assumption of the periodic existence of particles is preferred to predict the 58 

viscoelastic properties of a whole system. When rigid particles are arranged periodically 59 

under uniaxial elongational flow, however, they approach each other in the transversal 60 

direction to the flow, which leads to an unrealistic calculated result. Therefore, it is 61 

necessary to set rigid particles that are arranged randomly in the matrix. When particles 62 

are not rigid, they show a large deformation; in contrast, such an unrealistic structure 63 

will not occur even under a large deformation. Consequently, an approximation of the 64 

initial periodic structure will be kept until the final stage of deformation, which suggests 65 

that viscoelastic properties of a system that contains flexible particles can be predicted 66 

by a periodic local model. 67 

 Here, we carried out experiments using immiscible PP/LDPE blends with 68 
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various viscosity ratios, in which LDPE particles were dispersed in the PP matrix. The 69 

experimental results obtained were compared with numerical simulations, which were 70 

performed by assuming a symmetric geometry with a periodic structure. The 71 

Lagrangian finite-element method with moving boundaries was used for isothermal 72 

creeping-flow simulation. The viscoelastic characteristics of the samples were described 73 

by the Phan–Thien Tanner (PTT) model with multiple relaxation modes. The 74 

contribution of interfacial tension was ignored because it is insignificant compared with 75 

the remarkable strain hardening of LDPE. 76 

 77 

2. Experimental Procedure 78 

2.1 Materials 79 

A propylene homopolymer (PP; Primepolymer, Tokyo, Japan) and three types 80 

of low-density polyethylene (LDPE) with different shear viscosities were used. The PP 81 

melt-mass flow rate was 3.0 g/10 min at 230 °C for 2.16 kg and those of the LDPE were 82 

3.7 for LDPE-L, 1.6 for LDPE-M, and 0.3 g/10 min for LDPE-H at 190 °C for 2.16 kg. 83 

LDPE-L and LDPE-M were produced by an autoclave reactor, whereas LDPE-H was 84 

produced by a tubular reactor. One of the LDPE samples, LDPE-M, and PP were used 85 

in our previous study [10]. 86 



Otsuki et al., 7 
 

 The PP/LDPE blend samples (PP:LDPE = 70:30, weight ratio) were prepared 87 

by an internal batch mixer (Labo-Plastmill 10M100, Toyo Seiki Seisaku-sho, Tokyo, 88 

Japan), and by rotating the blades at 30 rpm at 190 °C for 3 min, in the presence of 89 

5,000 ppm of thermal stabilizers, such as tris(2,4-di-tert-butylphenyl)phosphate 90 

(Irgafos168, Ciba, Bazel, Switzerland) and pentaerythritol 91 

tetrakis(3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate) (Irganox1010, Ciba). The 92 

blended samples were compressed into flat sheets at 190 °C for 5 min by using a 93 

compression-molding machine, and quenched in the cooling unit. 94 

 95 

2.2 Measurements 96 

 A cone-and-plate rheometer (AR2000ex, TA Instruments, New Castle, DW) 97 

was used to evaluate the frequency dependence of the shear storage modulus G’ and 98 

loss modulus G” at 190 °C. The cone angle was 4° and its diameter was 25 mm. The 99 

growth curves of the transient uniaxial elongational viscosity were measured by the 100 

rotational rheometer equipped with a universal testing platform (SER2-G, Xpansion 101 

Instruments, Tallmadge, OH) at 190 °C. Rectangular 10-mm-wide, 15-mm-long, and 102 

0.8-mm-thick samples were used for the measurements. 103 

 104 
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3. Numerical Simulation 105 

3.1 Governing equations 106 

 By considering the flow of a highly viscous fluid, ignoring the effects of inertia 107 

and gravity, and assuming that the fluid is isothermal and incompressible, the equation 108 

of motion and the equation of continuity were given by equations (1) and (2), 109 

respectively. 110 

 p−∇ +∇⋅ =τ 0        (1) 111 

 ∇⋅ =v 0                 (2) 112 

where p is the isotropic pressure, τ is the stress tensor, and v is the velocity vector. 113 

 As the viscoelastic constitutive equation, the PTT model with a multiple 114 

relaxation mode [27] represented by equations (3), (4), and (5) was used, in which the 115 

stress-coefficient function Yi(τi) was expressed by the exponential form; 116 

  ( ) 02
2 2i i i
ξ ξλ η  + + − =    

τ τ τ τ D
△ ▽

Ｙ １i i i i     (3) 117 

  ( ) ( )exp tri
iG

ζ 
=  

 
τ τＹ i i             (4) 118 

   
n

i=
= ∑τ τ

1
i                                (5) 119 

where D is the deformation velocity tensor. τi, λi, η0i,, and Gi are the stress tensor, 120 

relaxation time, zero shear viscosity, and relaxation modulus of the mode i, respectively. 121 
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The superscript △ and ▽ represent the lower- and upper-convected time derivatives, 122 

respectively, and ζ and ξ are the non-linear parameters used in the PTT model. 123 

 124 

3.2 Numerical procedure 125 

 We reported previously flow analysis during the stretching of foam with a 126 

moving boundary based on the Galerkin finite-element method [28]. In this study, the 127 

program was expanded to incorporate the dispersed phase as a viscoelastic fluid for the 128 

flow analysis. A Lagrange mesh was used, in which the positions of the nodes follow 129 

the mass point with the flow in the matrix and dispersed phases. The method to 130 

calculate the flow field at time step n + 1 based on that at time step n was as follows. If 131 

we assume that the coordinate value of a certain node is X and the velocity vector is v, 132 

the coordinate value of the node at step n + 1 was determined by the central difference 133 

method given by equation (6). 134 

 1
1 2

n n
n n t∆+
+

+
= +

v vX X        (6) 135 

where subscripts n and n + 1 indicate the values at the n and n + 1 steps, respectively, 136 

and Δt is the time between consecutive steps. 137 

 To calculate the velocity field, a mesh that was composed of each node of n + 1 138 

steps was used to calculate equation (7) by the Galerkin FEM; 139 
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 2 2r new r oldp η η−∇ + ∇⋅ = −∇ ⋅ + ∇ ⋅D τ D       (7) 140 

where the reference viscosity ηr was a calculation parameter that can be set arbitrarily. 141 

ηr was determined by the stress and velocity of the field [29]. The subscripts old and 142 

new represent the known and unknown values, respectively. In the iterative calculation, 143 

τ and D on the right of equation (7) substituted the values obtained in the previous 144 

calculation, and the procedure to calculate new values of unknown variables on the left 145 

side was repeated. In this analysis, a decoupled method was used, in which stress and 146 

velocity were solved separately and substituted alternately. Square elements with nine 147 

velocity nodes and four pressure nodes were used. To calculate the viscoelastic stress, a 148 

short time step was set according to the relaxation time, and the constitutive equation 149 

was integrated by the Runge–Kutta method with the stress of n steps as an initial value, 150 

and the stress value at the n + 1 step was obtained. 151 

 At this multiphase flow analysis, we assumed no slippage at the interface. 152 

Therefore, the velocity is continuous at the interface, although other physical quantities, 153 

such as the velocity gradient, stress, and pressure, are discontinuous. For this reason, 154 

double nodes were arranged at the interface, in which different values of the physical 155 

quantities were used [30]. For the velocity analysis, however, the same nodes were 156 

shared for the matrix and dispersed phases to maintain the surface-force continuity. As 157 
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described above, the prediction and correction of the velocity, the coordinates of the 158 

nodal point, and the stress were repeated until the calculated value converged, and then 159 

the process shifted to the next step (time). 160 

 161 

3.3 Analytical model 162 

 By assuming a simplified initial structure shown in Figure 1, the 163 

two-dimensional flow analysis was performed under uniaxial elongational flow of 164 

two-phase materials. A local part was cut because of the periodicity and symmetry. Then 165 

the unit cell in Figure 1 was analyzed. By assuming a fine-grained hexagonal lattice of 166 

the dispersed phase as the initial morphology, a vertical rectangular model was set. 167 

 168 

 169 

Figure 1. Simplified two-dimensional model of two-phase elongational flow. 170 

 171 
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 Figure 1 represents the model with 30% of the dispersed phase. In the model 172 

with 15% dispersed phase, the radius is reduced further in accordance with the volume 173 

fraction. This model allows dimensionless analysis; i.e., the absolute value of the 174 

domain size does not affect the analysis result because the surface tension is not 175 

considered. Here, a velocity boundary condition with a fixed amount was set in the x 176 

direction only at the right side of the analysis region, and the velocities in the direction 177 

perpendicular to the boundary plane along the x and y axes were set to zero. Because the 178 

x direction velocity at the right side of the analysis area was set, the Hencky strain rate 179 

Hε  of the field was a constant. As a result, the boundary moved with an exponential 180 

function. A two-dimensional flow analysis was performed by assuming that the physical 181 

quantities were constants in the depth direction z, and a compression strain rate of Hε / 182 

2 was set uniformly in the z direction. Therefore, the field deformation became uniaxial 183 

elongation. At the boundary of the upper side of the analysis area, the velocity in the y 184 

direction was set to be unknown but the values were the same in this plane. Because 185 

incompressibility was assumed, the velocity was calculated (the elongational strain rate 186 

in the y direction was − Hε / 2). For the FEM model, as shown in the figure on the right 187 

(Figure 1), a mesh with 975 nodes and 216 elements was constructed. As for the time 188 

step in unsteady analysis, the time until the Hencky strain reached six was divided into 189 
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3000 steps for each elongational strain rate. A calculation of the elongational viscosity 190 

was obtained by dividing the average value of the normal stress difference in the y 191 

direction by the elongational strain rate. The inhomogeneity in the x direction was 192 

considered and the elongational viscosity was calculated by dividing the average value 193 

of the normal stress differences across the whole analysis region by the elongational 194 

strain rate. As a test analysis of the FEM simulation, the elongational viscosity was 195 

calculated by setting the same viscoelastic characteristics for the matrix and dispersed 196 

phases, and this viscosity was compared with the elongational viscosity of the single 197 

material that was calculated directly from the constitutive equation. We confirmed that 198 

both methods gave the same results, which shows that the simulation method is reliable.  199 

 200 

4. Results and Discussion 201 

4.1 Rheological properties of pure polymers 202 

 Figure 2 shows the oscillatory shear moduli, such as the storage modulus G’ 203 

and loss modulus G”, as a function of angular frequency ω for the pure samples at 190 204 

°C. As shown in the figure, the oscillatory moduli of LDPE-H are higher than those of 205 

PP, whereas LDPE-L has lower moduli. The loss moduli of LDPE-M are slightly lower 206 

than those of PP. The relaxation spectra that were used for the simulation are estimated 207 
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from the experimental data, as shown by the solid (G’) and dotted (G”) lines. 208 

 209 
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 210 

Figure 2. Experimental (symbols) and calculated (lines) results of the frequency 211 

dependence of shear storage modulus G’ (closed symbols and solid lines) and loss 212 

modulus G’’ (open symbols and dotted lines) for PP (circles), LDPE-L (triangles), 213 

LDPE-M (diamonds), and LDPE-H (squares) at 190 °C. The vertical axes were shifted. 214 

 215 

 Transient elongational viscosities for PP, LDPE-L, and LDPE-H are shown in 216 

Figure 3. The data for LDPE-M were shown elsewhere [10]. The strain hardening 217 

behavior is detected as a steep slope for LDPE-L, and is similar to LDPE-M. In contrast, 218 
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LDPE-H shows weak strain hardening, i.e., a gentle slope, which is presumed to be 219 

attributed to the difference in the branch structure. Because LDPE-H is produced in a 220 

tubular reactor, the long-chain branch structure is not well-developed compared with the 221 

other LDPE samples that were produced by an autoclave reactor [31-33]. The 222 

elongational viscosities of LDPE-L are lower than those of the pure PP at the beginning 223 

of the elongational flow (short time/strain region) and increase rapidly with time/strain. 224 

Finally, they exceed the values of the pure PP owing to the strain hardening. For 225 

LDPE-H, the elongational viscosities are higher than those of the pure PP from the 226 

beginning of the stretching. 227 

 228 

229 

Figure 3. Transient elongational viscosity with time at various Hencky strain rates at 230 

190 °C for (a) PP, (b) LDPE-L, and (c) LDPE-H. The experimental data are shown as 231 

circles and the solid lines represent the calculated values. 232 

 233 
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 The calculated values using the Runge–Kutta method that are derived directly 234 

from the PTT constitutive equation are also shown in Figure 3 by the solid lines. It is 235 

found that the experimental data can be predicted successfully. The non-linear 236 

viscoelastic parameters used in the simulations, such as ξ and ζ, are summarized in 237 

Table 1 with the relaxation spectra calculated from linear viscoelasticity. 238 

 239 

Table 1 Relaxation spectra and PTT model parameters. 240 

λ (s) 
G (Pa) 

PP LDPE-L LDPE-M LDPE-H 
0.001 90000 100000 80000 90000 
0.01 62000 38000 40000 53000 
0.1 26000 8600 14000 26000 
1 4800 1800 3600 11500 
10 520 150 400 3200 
100 20 10 8 600 
1000 - - - 80 

PTT Model Parameters 
ξ 0.12 0.15 0.15 0.15 
ζ 0.5 0.005 0.005 0.08 

 241 

4.2 Uniaxial elongational viscosity of blends 242 

As reported previously [10], PP/LDPE-M (70/30) and (85/15) showed a 243 

marked strain hardening behavior with an intense fashion of PP/LDPE-M (70/30). The 244 

calculated transient elongational viscosities ηE
+ are compared with the experimental 245 

data in Figure 4 with other blends that contain low-viscosity LDPE-L and high-viscosity 246 
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LDPE-H. The contributions of PP and LDPE to the elongational viscosity, calculated 247 

from the stress distribution generated in the two materials, are also indicated in the 248 

figure. First, both blend samples, i.e., PP/LDPE-L (70/30) and PP/LDPE-H (70/30), 249 

show a clear strain hardening behavior, which is similar to the PP/LDPE-M blends. 250 

Second, it was confirmed that the calculation predicts the results. 251 

 252 

253 
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Figure 4. Transient elongational viscosity ηE
+ with time at various Hencky strain rates 254 

at 190 °C for (a) PP/LDPE-M (85/15), (b) PP/LDPE-M (70/30), (c) PP/LDPE-L (70/30), 255 

and (d) PP/LDPE-H (70/30). The solid lines represent the numerical results. The 256 

contributions of the stress generated in PP (dotted lines) and LDPE (dashed lines) are 257 

also indicated. 258 

 259 

 When uniaxial elongational flow is applied to a blend having sea-island 260 

structure with soft dispersion, the spherical dispersed droplets are elongated to the flow 261 

direction and turns into prolonged shape. Then, the interaction between dispersed 262 

droplets must be taken into consideration eventually. If this situation is strictly and 263 

numerically analyzed using a single domain, the two-dimensional axisymmetric 264 

problem occurs, and therefore, a three-dimensional analysis is required. In the present 265 

study, however, this phenomenon is approximated by describing in a 2D rectangular 266 

coordinate system having sheet-like or ribbon-like dispersed (2D) droplets. Although 267 

the error caused by this approximation will be evaluated in near future as compared with 268 

the exact 3D model, it is expected that similar results are obtained by both models for 269 

the deformation mode and the growth of stress balance around the dispersed droplets. In 270 

fact, it was confirmed that the calculation of the approximated model successfully 271 
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predicts the experimental data of the uniaxial elongational viscosities as shown in 272 

Figure 4, suggesting that this model is practically effective. 273 

Here, the transient elongational viscosity of the blend material is estimated by a 274 

simple mixing rule and compared with the calculation result of the FEM analysis. 275 

Assuming the affine deformation of the dispersed phase, the transient viscosity of the 276 

mixture can be estimated by the following simple equation; 277 

( ) ( ) ( ), , ,E H c cE H d dE Ht t tη ε φ η ε φ η ε+ + += +      (8) 278 

where ηE＋, ηcE＋, and ηdE＋ are the elongational viscosities of the mixture, continuous 279 

phase, and dispersed phase, and φc and φd are the volume fractions of the continuous and 280 

dispersed phases, respectively. 281 

 The elongational viscosity of the mixture was estimated by equation (8) using 282 

the calculated elongational viscosities of the single materials. As shown in Figure 5, it 283 

was found that similar results to the FEM calculation were obtained for PP/LDPE-M, 284 

suggesting that the simple mixing rule is effective when the constituent materials show 285 

similar viscosities. However, differences appear for the other blends. When the 286 

dispersed phase has lower viscosity, i.e., PP/LDPE-L, the strain hardening occurs earlier 287 

for the FEM simulation. For the blend system, the internal strain of the dispersed 288 

droplets develops more quickly than the external strain, as will be mentioned later with 289 
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the discussion on structure change. In the case that the dispersed phase has higher 290 

viscosity, i.e., PP/LDPE-H, in contrast, the deformation of the dispersed droplets does 291 

not catch up with the external strain. Consequently, the strain hardening occurs at a 292 

longer time (larger strain) than the result by the simple mixing rule. Furthermore, the 293 

viscosity levels in the strain hardening region are considerably lower than those by the 294 

simple mixing rule. This is attributed to the low aspect ratio of dispersed LDPE-H. 295 

Batchelor [11] and Mewis and Metzner [12] clarified that the enhancement of 296 

elongational viscosity by fiber addition is pronounced with an increase in fiber aspect 297 

ratio. 298 

 299 
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 300 

Figure 5. Comparison of elongational viscosities predicted by the finite element method 301 

(solid lines) and by the simple mixing rule (dashed lines). 302 

 303 

 The contribution of the continuous phase to the elongational viscosity for the 304 

blends increases in the final stage in each system as shown in Figure 4. This indicates 305 

that there is indeed an effect of non-affine deformation of the continuous phase, i.e. 306 

higher elongation strain rate and/or higher normal stress difference in some area. Figure 307 

4 also indicates that the contribution of the dispersed phase increases rapidly in the large 308 
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deformation area, suggesting that the dispersed phase eventually shows pseudo affine 309 

deformation. 310 

 To clarify the difference in the strain hardening for the blend samples 311 

quantitatively, the calculated values of the blends with 30% LDPE are shown in Figure 312 

6 with those of the pure components, i.e., PP and LDPE. As compared with the 313 

PP/LDPE-H, both PP/LDPE-M and PP/LDPE-L show strain hardening in the long time 314 

(large strain) region; i.e., the strain hardening is delayed. This is reasonable because a 315 

large strain is required for LDPE-L and LDPE-M to show a higher elongational 316 

viscosity than PP, although the difference in onset of strain hardening between 317 

PP/LDPE-M and PP/LDPE-L is minimal, and will be discussed later. In contrast, strain 318 

hardening occurs in the short time region for the blend with LDPE-H. This is owing to 319 

the prompt stress growth of LDPE-H. Even though strain hardening of the dispersed 320 

droplets in PP/LDPE-H is delayed from that of LDPE-H alone, the strain hardening still 321 

occurs in the shorter time region as compared with the other blends. 322 

 323 
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 324 

Figure 6. Calculated elongational viscosity of PP, LDPE, and the blend with 30% LDPE. 325 

(Left) Hε = 0.8 s-1 and (right) Hε = 0.1 s-1. 326 

 327 

4.3 Development of morphology and stress distribution 328 

As commented previously, the shape of the dispersed phase has a strong impact 329 

on the rheological behavior under elongational flow. Therefore, the structure 330 

development of the blends containing 30% of LDPE is calculated. Figure 7 shows the 331 

structures during stretching at Hencky strains Hε  of 1.2 and 2.4. 332 

 333 
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 334 

Figure 7. Numerical results of structure development under uniaxial elongational flow 335 

for blends with 30% LDPE. 336 

 337 

In the figure, longitudinal lines at the initial state are inserted periodically to 338 

comprehend the deformation easily. Furthermore, the structures are magnified to see the 339 

lines clearly at Hencky strains of 1.2 and 2.4. For the homogeneous material, in which 340 

continuous and dispersed phases are the same substance, both phases deform in the 341 

same way. Therefore, the lines remain straight with an increase in the distance as the 342 

deformation progresses. When the dispersed phase shows a different viscoelasticity 343 

from the continuous phase, the lines become distorted. For PP/LDPE-L, the dispersions 344 

deform more rapidly than the external deformation in the early stage of elongation, 345 

which leads to prolonged droplets promptly. Such a structure development of blends 346 
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with a sea-island morphology has been reported previously by advanced research 347 

groups [15,19,34]. Similarly, the LDPE-M dispersions, which show a slightly lower 348 

viscosity than the continuous PP in the short time region, deform more than the external 349 

strain, although their deformation is smaller than that of the LDPE-L. Because LDPE-L 350 

shows a larger deformation in the blend, the onset strain to show strain hardening is not 351 

so different from that for PP/LDPE-M (Figure 6). In contrast, the LDPE-H deformation 352 

is delayed because of their higher viscosity than the continuous PP. Because the 353 

deformation of the dispersed phase cannot catch up with the continuous one for 354 

PP/LDPE-H, the LDPE-H droplets do not overlap each other even under a large 355 

deformation, and thus nonuniformity appears in the width direction. In this analysis 356 

model, periodic configuration is assumed, and the dispersed droplets are arranged 357 

straight vertically. Since the dispersed phase is not so hard for PP/LDPE-H, the 358 

elongational viscosity could be predicted by averaging the stress in the width direction. 359 

However, if the viscosity of a dispersed phase is too high to be undeformable during 360 

elongational flow; i.e., dispersed particles behave as rigid body like inorganic fillers, 361 

this analytical model will not be applicable. 362 

Figure 8 shows the ratio of Hencky strain rate of a dispersion Hdε  to the 363 

external strain rate Hε , i.e., /Hd Hε ε  , as a function of the external strain for the blends 364 
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with 30% LDPE. The strain rate of a dispersion is determined by (dR1/dt) / R1, where R1 365 

is the major radius of the dispersion.  366 

 367 

 368 

Figure 8. Ratio of the Hencky strain rate of the dispersion to the external strain rate, 369 

/Hd Hε ε  , as a function of the external strain Hε  for PP/LDPE (70/30) at 0.8Hε =  s-1.  370 

 371 

Figure 8 shows that the effect of the LDPE species appears in the early stage of 372 

the elongational flow. Furthermore, the direction of the deviation, i.e., upper (larger than 373 

unity) or lower (smaller than unity), is determined by the viscosity ratio of PP to LDPE. 374 

It is interesting to note that the ratio of the blend with LDPE-M is larger than unity 375 

initially, and smaller than unity beyond a strain of 1.1; i.e., the dispersions act as long 376 

rigid fibers.  377 

It is also found that the ratios of the strain rates, i.e., /Hd Hε ε  , gradually 378 
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approaches one for all blends, although the values at the initial stage are determined by 379 

the viscosity ratio of PP to LDPE. This result indicates that all systems are approaching 380 

affine deformation under the large deformation, which is prominent especially for the 381 

blend systems with LDPE-L and LDPE-M. Therefore, the values predicted by the 382 

simple mixing rule were closed to those of the FEM analysis as shown in Figure 5. 383 

Figure 9 shows the distributions of shear stress τxy at the boundary surface of a 384 

dispersion and tensile stress τxx - τyy at the center of a dispersion in the x direction during 385 

stretching at 0.8Hε =  s-1 for PP/LDPE-M (70/30). The shear stress shows the 386 

maximum at the end of the elliptical dispersion, and decreases toward the center, which 387 

balances the tensile stress that is generated in the dispersion. With an increase in the 388 

aspect ratio of the dispersion, the shear stress, especially near the end parts of the 389 

dispersion, is enhanced significantly. Moreover, the elongational stress in the dispersion 390 

is high as revealed by the previous researches [35,36]. As a result, the apparent 391 

elongational viscosity for the whole system is enhanced. Such a stress distribution was 392 

also confirmed in the elastic deformation analysis for a composite material with long 393 

cylindrical fibers [37,38]. In the present system, however, a large elongational stress is 394 

detected for the whole of the LDPE dispersion, which is different from the stress 395 

distribution in the cylindrical fiber composite. This phenomenon occurs because the 396 
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cross-sectional area of the dispersion decreases toward the end, which leads to a high 397 

elongational stress near the end [39]. 398 

 399 

 400 

Figure 9 Distributions of tensile stress at the center of the dispersed phase and shear 401 

stress at the surface of the dispersed phase at Hε =1.8 and 2.4 during elongation flow at 402 

Hε = 0.8 s-1 for PP/LDPE-M (70/30). 403 

 404 

It is found that the elongation stress acting on the dispersed phase is 405 

considerably higher than the shear stress at the surface of the dispersion. When the 406 

aspect ratio increases, the interfacial area of the dispersed droplets increases greatly 407 

with the decrease in the vertical cross-sectional area. As a result, dispersed droplets with 408 

high viscosity can be deformed affinely. Figure 9 also shows that the shear stress is low 409 
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near the center of the dispersed droplet. A similar situation was detected also for a 410 

composite system with long fibers, suggesting that the center area is affinely deformed. 411 

Although the strain hardening occurs in the dispersion under a large strain, the 412 

dispersion shows pseudo affine deformation following the external strain rate. Thus, 413 

high elongational stress is developed in the dispersed phase, which directly contributes 414 

to the increase in the elongational viscosity of the blend. This situation is magnified 415 

with increase in the volume fraction of the dispersed phase. 416 

 417 

The simulation result indicates that the elongational viscosity of the PP/LDPE 418 

blend systems can be controlled by the ratio of the elongational viscosities between PP 419 

and LDPE and the strain hardening behavior of LDPE. When the LDPE shows a lower 420 

viscosity, it turns into a fibrous shape promptly. Then, a steep increase in elongational 421 

viscosity, i.e., pronounced strain hardening, is provided for the blend after stretching to 422 

some degree; i.e., the strain hardening is delayed. When the strain hardening is required 423 

in the early stage of flow, e.g., reduction of neck-in level at T-die extrusion, LDPE that 424 

has a slightly higher shear viscosity with a marked strain hardening in the elongational 425 

viscosity is recommended. In the case of foaming, LDPE with a low shear viscosity 426 

would be recommended to show a large expansion ratio because the strain hardening 427 
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occurs at a large strain. 428 

 429 

5. Conclusions  430 

 The effect of LDPE addition on the rheological properties of PP under uniaxial 431 

elongational flow is investigated. The LDPE addition is found to provide strain 432 

hardening in the transient elongational viscosity for PP although LDPE is the dispersed 433 

phase. Moreover, the experimental results were predicted by the numerical simulation 434 

by using the PTT model with multiple relaxation modes by assuming the symmetric 435 

geometry with a periodic structure. The transient elongational viscosity for pure LDPE 436 

determines the critical strain to show strain hardening and the magnitude of strain 437 

hardening for the blends. When the shear viscosity of LDPE is lower than that of PP, the 438 

strain hardening appears later with a steep slope, where LDPE dispersions have a high 439 

aspect ratio. In contrast, the blend with LDPE with a higher viscosity shows strain 440 

hardening in the early stage of the flow. These results obtained in this study will be 441 

useful to select an appropriate LDPE as a processing modifier for PP in real processing 442 

operations. 443 
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References 445 



Otsuki et al., 31 
 

1. Yamaguchi, M.; Miyata, H. Polym. J. 2000, 32, 164-170. 446 

2. Sugimoto, M.; Masubuchi, T.; Takimoto, J.; Koyama, K. Macromolecules 2001, 34, 447 

6056-6063. 448 

3. Kurose, T.; Takahashi, T.; Sugimoto, M.; Taniguchi, T.; Koyama, K. Nihon Reoroji 449 

Gakkaishi, 2005, 33, 173-182. 450 

4. Yamaguchi, M.; Wakabayashi, T. Adv. Polym. Technol. 2006, 25, 236-241. 451 

5. Mieda, N.; Yamaguchi, M. J. Non-Newtonian Fluid Mech. 2011, 166, 231-240. 452 

6. Yokohara, T.; Nobukawa, S.; Yamaguchi, M. J. Rheology 2011, 55, 1205-1218. 453 

7. Yamaguchi, M.; Yokohara, T.; Ali, M. A. B. Nihon Reoroji Gakkaishi, 2013, 41, 454 

129-135. 455 

8. Siriprumpoonthum, M.; Nobukawa, S.; Satoh, Y.; Sasaki, H.; Yamaguchi, M. J. 456 

Rheology 2014, 58, 449-466. 457 

9. Seemork, J.; Sako, T.; Ali, M. A. B.; Yamaguchi, M. J. Rheology 2017, 61, 1-11. 458 

10. Fujii, Y.; Nishikawa, R.; Phulkerd, P.; Yamaguchi, M. J. Rheology 2019, 63, 11-18. 459 

11. Batchelor, G. K. J. Fluid Mech. 1971, 46, 813-829 (1971). 460 

12. Mewis, J.; Metzner, A. B. J. Fluid Mech. 1974, 62, 593-600. 461 

13. Laun, H. M. Colloid Polym. Sci. 1984, 262, 257-269. 462 

14. Toose, E. M.; van Damme, R. M. J.; van den Ende, H. T. M.; Geurts, B. J.; Kuerten, 463 

J. M. G. J. Non-Newtonian Fluid Mech. 1995, 60, 129–154. 464 



Otsuki et al., 32 
 

15. Delaby, I. Ernst, B.; Froelich, D.; Muller, R. Polym. Eng. Sci. 1996, 36, 1627-1635. 465 

16. Ramaswamy, S.; Leal, L. G. J. Non-Newtonian Fluid Mech. 1999, 85, 127–163. 466 

17. Ramaswamy, S.; Leal, L.G. J. Non-Newtonian Fluid Mech. 1999, 88, 149–172. 467 

18. Hooper, R. W.; de Almeida, V. F.; Macosko, C. W.; Derby, J. J. J. Non-Newtonian 468 

Fluid Mech. 2001, 98, 141–168. 469 

19. Cristini, V.; Hooper, R. W.; Macosko, C. W.; Simeone, M.; Guido, S. Ind. Eng. 470 

Chem. Res. 2002, 41, 6305-6311 471 

20. Mukherjee, S.; Sarkar, K. J. Non-Newtonian Fluid Mech. 2009, 160, 104–112. 472 

21. Cardinaels, R.; Afkhami, S.; Renardy, Y.; Moldenaers, P. J. Non-Newtonian Fluid 473 

Mech. 2011, 166, 52–62. 474 

22. Skartilien, R.; Sollum, E.; Akselsen, A. Meakin, P. Rheol. Acta 2002, 51, 649-673. 475 

23. Isbassarov, D.; Rosti, M. E.; Ardekani, M. N.; Sarabian, M.; Hormozi, L. B.; 476 

Tammisola, O. Int. J. Numerical Methods Fluids 2018, 88, 521-543. 477 

24. Hwang, W. R.; Hulsen, M. J. Non-Newtonian Fluid Mech. 2006, 136, 167-178. 478 

25. D'Avino, G.; Maffettone, P. L.; Hulsen, M. A.; Peters, G. W. M. J. Comp. Phys. 479 

2007, 226, 688-711. 480 

26. Ahamdi, M.; Harlen, O. G. J. Comp. Phys. 2008, 227, 7543-7560. 481 

27. Phan-Thien, N.; Tanner, R. I. J. Non-Newtonian Fluid Mech. 1977, 2, 353-365. 482 



Otsuki et al., 33 
 

28. Otsuki, Y.; Umeda, T.; Tsunori, R.; Shinohara, M. Nihon Reoroji Gakkaishi 2005, 33, 483 

9-16. 484 

29. Otsuki, Y.; Kajiwara, T.; Funatsu, K. Polym. Eng. Sci. 1999, 39, 1969-1981. 485 

30. Matsunaga, K.; Kajiwara, T.; Funatsu, K. Polym. Eng. Sci. 1998, 38, 1099-1111. 486 

31. Tackx, P.; Tacx, J. C. J. F. Polymer 1998, 39, 3109-3113. 487 

32. Yamaguchi, M.; Takahashi, M. Polymer 2002, 42, 8663-8670. 488 

33. Mieda, N.; Yamaguchi, M. Adv. Polym. Technol. 2007, 26, 173-181. 489 

34. Levitt, L.; Macosko, C. W.; Pearson, S. D. Polym. Eng. Sci. 1996, 36, 1647-1655. 490 

35. Goddard, J. D. J. Non-Newtonian Fluid Mech. 1976, 2, 1-17. 491 

36. Pipes, R. B.; Hearle, J. W. S.; Beaussart, A. J.; Sastry, A. M.; Okine R. K. Compos. 492 

Mater. 1991, 25, 1204-1217. 493 

37. Carrara, A. S.; Mcgarry, F. J. J. Comp. Mat. 1968, 2, 222-243. 494 

38. Harris, B., Engineering Composite Materials, 2nd ed. 1999, Maney Publishing, 495 

Leeds. 496 

39. Goh, K. L.; Mathias, K. J.; Aspden, R. M.; Hukins, D. W. H. J. Mater. Sci. 2000, 35, 497 

2493-2497. 498 

 499 


