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ABSTRACT

A credit score is an estimation of the likelihood that a borrower will show some undesirable behaviors in the
future and supports decision making in credit risk modelling. Nevertheless, the majority of studies were usually
based on a snapshot of financial-related data at a specific time point in the past, excluded the trend in business
performance over years, and ignored up-to-date business/social activity information that might suggest an early
warning of changing in credit worthiness. In addition, advances in data mining for social media and machine
learning in application for text mining can be applied for the identification of key features for credit scoring
models in term of timeliness, to improve the trade-off between cost and accuracy. Hence, the research that
utilises both time series data and textual data can help not only to address the shortage of data types and
sources, but also to introduce a new approach in credit scoring.

My research tackle these crucial issues with (i) examining more recent and time-series based financial data with a
trendy approach adapted from epidemiology and (ii) the development of new ensemble learning approaches that
combine tradition statistical models and machine learning models in credit risk modelling capable of handling
corporate rich-featured data, including both numeric and textual data.

First, this study employs a large longitudinal data for the UK SMEs to examine their time-to-liquidation using
survival analysis, a well-known technique from clinical research. Despite of severely lacking financial data, this
study shows the significant effects of SME’s demographic characteristics and also further stresses on improvement
both in causal interpretation and in model discrimination power when utilising the extended hazard models
using the time-varying nature of SMEs financial variables. Another crucial finding in the implication of using
some traditional statistic models is the bias in decision-making, where we show that excluding the gender feature
eventually reduce the acceptance rates of the better credit worthiness class in both traditional statistical and
machine learning-based models. Which questions on the current inconsistencies of existing regulations for the
automated decision-making tools.

With two recent, imbalanced corporate credit datasets, this study then sheds more light on the comparison
of corporate credit risk models with different balancing strategies and performance measurements. This study
shows that the AUC is not a sufficient measure for the imbalanced dataset as the classifiers tend to overfitted
toward the majority class with extremely low value of precision and recall, and second, sampling methods
provide significant improvement toward the correctness of classifiers in problems that minority class play an
important role as in credit risk management. As any single model has its drawbacks and advantages in a
specific domain, combining several models might result in improvement in classification accuracy. In the light
of reducing the risk of overfitting as well as underfitting, my research combine models using three approaches
to build meta-algorithm including bagging, boosting, and stacking. This study shows that homogeneous and
simple heterogeneous ensemble classifiers show better performance compared with the traditional individual
classifiers. These findings based on two recent loan portfolios of Vietnamese and US corporate data provide
more insights to the practice of corporate credit risk modelling.

Finally, to the utilisation of textual data in credit risk modelling, this study employs topic model on textual
data to (i) explore the aspects that defines creditworthiness, (ii) learn the distributed representation of textual
data, and (iii) combine it with traditional industry standard to improve the credit risk prediction. I uncover 30
topics embedded in the financial reports which reflect important business aspects and the evolution of words
in many topics are in line with crucial economics events. More importantly, the topical features alone provide
comparable performance with industrial standard using z-score. And by concatenating the topical features and z-
score features, the classifier demonstrates the state-of-the-art performance in corporate bankruptcy prediction.
In addition, I proposed novel models that learn from both numeric and textual data from financial reports
to examine the predictability of models built from dictionary-based count vectorisation of financial report
and dictionary-based sentiment classifier using a financial dictionary. The approach provides comparable and
consistent predictive results, yet with more simple and intuitive features compared with the deep learning model.

Keywords: bankruptcy prediction · ensemble model · textual analysis · topic modelling · sentiment analysis
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Chapter 1

Introduction

1.1 Credit Scoring and Credit Risk Modelling

A credit score is an estimation of the likelihood that a borrower will show some undesirable
behaviors in the future and supports decision making in credit retail sector. In credit risk
assessment, Tsai and Hung (2014), Wu et al. (2014) and a review of Chen et al. (2016) have
indicated that most previous studies examined static models from historical financial statements
and/or finance related data/surveys which are limited due to the fact that these data are far
behind the recent financial crisis. Nevertheless, these studies were usually based on a snapshot
of financial-related data at a specific time point in the past, excluded the trend in business
performance over years, and ignored up-to-date business/social activity information that might
suggest an early warning of changing in credit rating of a loan application. They also pointed
out that more recent data especially time series and alternative sources of data are of the urgent
consideration in modeling credit risk. In addition, advances in data mining for social media and
machine learning in application for text mining can be applied for identification key features for
credit scoring models in term of timeliness, to improve the trade-off between cost and accuracy.
Hence, the research that utilizes both time series data and social media data can help not only
address the shortage of data types and sources, but also introduce a new approach in credit
scoring.

1.2 Modelling Approaches

In credit worthiness modeling, Huang et al. (2004) categorised those in to two main types of
models: traditional statistical models and artificial intelligence (AI) models:
- For statistical models, Altman et al. (1977) examined the predictability of seven-variable dis-
criminant analysis and showed the improvement towards his previous model with five variables.
Wiginton (1980) showed that logistic regression (LR) surpassed multiple discriminant analysis.
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These statistical models, in general, were succinct and were easy to explain. However, the
agreement on which variables to use has not been reached yet and the multivariate normality
assumption on variables might be violated in financial dataset (Chen et al., 2016).

- As for AI models, the pioneer work of Jo et al. (1997) pointed out that artificial neuron network
(ANN) outperformed statistical models. Wu et al. (2014) reaffirmed the performance of support
vector machine (SVM) that it is comparable with back-propagation neuron network (BPN) and
genetic programming (GP). The study of Tsai and Chen (2010) for four approaches to combine
statistical models and machine learning technique indicated that the combined model of LR
and ANN gave the best result. Zhao et al. (2015) showed that they could improve multilayer
perceptron (MLP) by using their Average Random Choosing method in imbalanced dataset
(IDS). In general, AI models are state of the art and can improve the predictive accuracy,
however, there application in real world is questionable since it lacks the ease of interpretation,
explanation and understanding from the industrial users viewpoint (Sun et al., 2014).

To overcome these drawbacks and exploit the information gain by combining different models,
hybrid or ensemble techniques are currently widely used. Huang et al. (2015) showed that
the proposed algorithm outperforms popular models including LR, ANN and SVM. Also, in
a review of Sun et al. (2014), an early warning system will be crucial for enterprise practice.
From the current trend in data-driven decision aids and the richness of online-mediated forms
of credit granting and credit-related knowledge, especially those have high potential to affect
business activity, they are being produced at a quick growing rate (Fig. 1) through social media
including: news, articles, Facebook, Tweeter, LinkedIn, and so forth. And they exist mostly in
text form a high dimensional data. Hence apply data mining techniques particularly natural
language processing (NLP) on these data in order to improve the discrimination power of both
statistical and leaning models will be the future tendency to add more on the accuracy and
timeliness of creditworthiness assessment.

Figure 1.1: Growth in social media as main source of news between 2015 and 2016 (Reuters
Institute)

2



1.3 Challenges

There are problems of current practices in credit scoring modeling in both data and methodol-
ogy, to be specific:

1. Time series dataset and Imbalanced dataset (IDS) treatment:
More time series-based data is needed to confirm the applicable of model performance
over time and it should include not only just quantitative variables but also the quali-
tative ones. Text data from both financial reporting explanation and social media will
also be mined, with sentiment analysis, these results as of financial aspect/sentiment
will contribute in overall scorecard of a loan application. On the other hand, the IDS
characteristic is a real phenomenon, exists in every dataset relating to loan portfolios
of banks since most loan applications naturally are good and those bad ones are rare.
Hence, the proportion of major class toward minor class could be over 9:1 and this will
distort the models prediction capability (Chen et al., 2016). In this research, sampling
techniques and optimization on learning algorithm using cost sensitivity leaning (CSL)
will be applied to examine the performance of different classifiers on skewed dataset.

2. Combination of models using hybrid and ensemble techniques: Combining different mod-
els results is of current interest since it can benefit from individual classifiers strength.
Koh et al. (2015) concluded that in addition with increasing the classification perfor-
mance, combined models could also reduce the subjectivity and increase objectivity in
risk assessment. Xiao et al. (2016) coped with IDS using a dynamic classifier and dynamic
ensemble selection of features resulted in better performance compare to ensemble static
classifiers. On the conclusions of Lessmann et al. (2015) and Ala’raj and Abbod (2016),
ensemble models on which classifiers learnt from different data sources are of the future
direction. This research will examine the ensemble form of classifiers based on accounting
data with those learnt from social media data.

3. Application of deep learning for financial textual data: Mai et al. (2019) is the first
to utilise the deep learning model to learn the textual representation for the task of
bankruptcy classification, and they showed potential improvement towards traditional
statistical models. However, there are many works to be done including (i) examining
the word level predictive power, (ii) identifying the gap between dictionary-based analysis
with deep learning based representation learning.

4. In examining the business performance, experts usually rely on the keys financial elements
in financial statements. However, there is a crucial problem in this practice - window
dressing (Nemoto et al., 2018; Gandhi et al., 2019) which is the manipulation of financial
statements.
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1.4 Research Questions and Contributions

My research tackle these crucial issues with the development of new ensemble learning ap-
proaches that combine tradition statistical models and machine learning models in credit risk
modelling capable of handling corporate rich-featured data, including both numeric and textual
data.

My PhD Dissertation aims to address three main questions:

1. How traditional statistical and machine learning models perform in bankruptcy
classification with complex and skewed dataset?

First, this study employs a large longitudinal data for the UK SMEs to examine their
time-to-liquidation using survival analysis, a well-known technique from clinical research.
Despite severely lacking financial data, this study shows the significant effects of SME’s
demographic characteristics including location, number of shareholders, trading addresses,
directors, contacts, subsidiaries, auditors/accountants, bad debtors, and unsecured cred-
itors. This study also further stresses on improvement both in causal interpretation and
in model discrimination power when utilising the extended hazard models using the time-
varying nature of SMEs financial variables. Another crucial finding in the implication of
using some traditional statistic models is the bias in decision-making, where I show that
excluding the gender feature eventually reduce the acceptance rates of the better credit
worthiness class in many both traditional statistical and machine learning-based model.
Which questions on the current inconsistencies of existing regulations for the automated
decision-making tools

Credit risk modelling especially for corporate segment experiences the high level of im-
balanced dataset, this phenomenon can affect model performance as the accuracy is only
reflecting the underlying class distribution. With two recent, imbalanced corporate credit
datasets, I shed more light on the comparison of corporate credit risk models with differ-
ent balancing strategies and performance measurements. Specifically, the performance of
twelve classifiers belong to linear-based, kernel-based, tree-based, homogeneous ensemble-
based, and heterogeneous ensemble-based classes are examined under three sampling
strategies with five performance measurements. I show that the AUC is not a suffi-
cient measure for the imbalanced dataset as the classifiers tend to overfitted toward the
majority class with extremely low value of precision and recall, and second, sampling
methods provide significant improvement toward the correctness of classifiers in problems
that minority class play an important role as in credit risk management.

2. In term of hybrid/ensemble forms of classification method, what forms lead
to the improvement in term of classification performance?

As any single model has its drawbacks and advantages in a specific domain, combining
several models might result in improvement in classification accuracy. In the light of
reducing the risk of overfitting as well as underfitting, My research combine models using
three approaches to build meta-algorithm including bagging, boosting, and stacking.
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This study employs six homogeneous ensemble classifiers including Bagged Logistic Re-
gression, Random Forest (Bagged Tree), Bagged SVM, Bagged MLP, Boosted LR, and
Boosted Decision Tree and two heterogeneous classifiers which are Simple Average En-
semble and Hill-climbing Selection Ensemble. The results show that homogeneous and
simple heterogeneous ensemble classifiers show better performance compared with the
traditional individual classifiers. These findings based on two recent loan portfolios of
Vietnamese and US corporate data provide insights for the practice of corporate credit
risk modelling.

3. How should knowledge discovery in databases be applied to corporate textual
dataset? What are the most significant factors that affect their creditworthi-
ness?

Along with accounting data, corporate business is also very sensitivity with the infor-
mation in textual data, hence, finding the sentiment with which topics their managers
are talking about in financial reports is definitely a crucial task leads to improvement
of models predictability. Together, these aspect/sentiment components could be used
to examine in which business aspects a specific corporate are doing good or bad. This
information then later plays as a comparison/complement role for other machine learning
models built on accounting data, which ultimately result in a better models predictability.

In order to address these questions, I proposed novel models that learn from both numeric
and textual data from financial reports to:

• Examine the predictability of models built from (i) dictionary-based count vectorisa-
tion of financial report and (ii) dictionary-based sentiment classifier using a financial
dictionary. The textual features are significant, and they improve the predictive
power of the classification model.

My approach provides comparable and consistent predictive results, yet with more
simple and intuitive features, compared with the deep learning model (Mai et al.,
2019). The largest improvement comes from the SMEs segment with the gain in AUC
ranging from 8.4% to 11.5% followed by recall ranging from 3.3% to 9.7%. Besides, by
using one-year-head prediction, I provide a practical investigation on improvement
of the predictive power using the textual features where the combined features could
significantly increase the AUC from 1.1% to 7.6% in the three corporate segments.

• Employ topic model on textual data to (i) explore the aspects that defines creditwor-
thiness, (ii) learn the distributed representation of textual data, and (iii) combine it
with traditional industry standard to improve the credit risk prediction.

I uncover 30 topics embedded in the financial reports which reflect important busi-
ness aspects such as energy, partnership, research and development, loan and interest
rate, and so forth. In addition, the evolution of words in many topics are in line
with crucial economics events such as the financial crisis, the big reduction in coal
production in 2015, or the cycles of competition of electronic devices producers.
More importantly, the topical features alone provide comparable performance with
industrial standard using z-score. And by concatenating the topical features and
z-score features, model demonstrates the state-of-the-art performance in corporate
bankruptcy prediction.
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1.5 Dissertation Organisation

This dissertation begins with the introduction to traditional statistical models in Chapter 2
where current industrial standards are discussed along with adaptations of survival analysis, a
well-known technique from epidemiology to credit risk modelling. Chapter 3 discusses potential
bias resulting from the inconsistencies of the current law and automated decision-making tools
in credit scoring. Chapter 4 investigates in a great detail the comparison of performance of
several machine learning models with logistic regression under three main balancing strategies.
Chapter 5 and 6 experiment with the textual data and emphasise on how this new sources
of data could improve both understanding of the nature of risk, and classifier predictability.
Specifically, Chapter 5 explores the topics in financial filings, discusses on how their evolution
are in line with crucial economics events. Chapter 6 focuses on the sentiment on word level based
on a domain-specific wordlist, in this chapter I propose a financial dictionary-based sentiment
classifier to construct new sentiment-based features for bankruptcy prediction task. Chapter 7
concludes the dissertation and discuss my current limitations and further research directions.
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Chapter 2

Statistical Models

2.1 Discriminant Analysis

Discriminant analysis is a set of methods to distinguish groups in data and to assign new obser-
vations into one of the existing groups. Linear discriminant analysis and multiple discriminant
analysis refer to methods when number of groups is two and more than two, respectively.

In credit quality assessment, the objective of multiple discriminant analysis is to distinguish
default from non-default firms1 as accurately as possible by a function of several independent
creditworthiness factors (financial ratios, indicators from financial statements). We classify a
firm into one of several groups base on their individual characteristics.

In multiple discriminant analysis, a weighted linear combination of factors is formed in order
to classify default or non-default customers as much discriminatory power as possible on the
basis of the discriminant score D:

D = a0 + a1K1 + ...+ anKn, (2.1)

where n is the number of financial ratios, Ki is the specific ratio value, and ai is the ratio’s
coefficient.

2.2 z-score Model and Its Extensions

With multiple discriminant analysis models, the selection of ratios is the most important and
credit experts mostly use their experience and their risk appetite in their choice. The most

1In the simplest case, we regard a firm is either default or non-default. In practice, we can allocate firms to
several groups based on their discriminant score.
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popular and well-known factors are z-score of Altman (1968), specifically:

D = a0 + a1Z1 + a2Z2 + a3Z3 + a4Z4 + a5Z5, (2.2)

with:
Z1: Working Capital/Total Assets
Z2: Retained Earning/Total Assets
Z3: Earning Before Interest and Taxes/Total Assets
Z4: Market Value Equity/Book value of total Debts
Z5: Sales/Total Assets

Discriminant analysis is the first tool to be used in developing credit rating models Altman
(1968); Harrell (2001). Nonetheless, the implementation of multiple discriminant analysis has
been criticised because of its normal distribution assumptions on those financial ratios. In
addition, multiple discriminant analysis is limited in its assumption that the data should have
homogeneous variance-covariance matrices (Harrell, 2001). These are strong statistical assump-
tions that are rarely met in practice let alone the sample size and outlier restrictions. There
are many extensions for multiple discriminant analysis and z-score factors, and the most no-
table is those for small and medium enterprises (SMEs) in Altman and Sabato (2007) where
the authors propose the alternative financial ratios to apply for SMEs credit assessment using
logistic regression:

Table 2.1: Altman’s SMEs factors

Z1 Cash Flow from Operating Activities / Current Liabilities
Z2 Short Term Debt / Equity Book Value
Z3 Cash / Total Assets
Z4 EBIT / Interest Expenses
Z5 Account Receivable / Liabilities

2.3 Logistic Regression

Regression models show the relationship of a dependent variable with other independent vari-
ables. In practical credit assessment procedures, certain creditworthiness factors (independent
variables) will help classification model to decide whether a loan could be classified as default
or not (dependent binary variable). Using regression models also enable us to calculate mem-
bership probabilities and thereby to determine default probabilities directly from the model
function.

We present in this chapter logistic regression. Denotes Φ is the cumulative standard normal
distribution function, and

∑
represents a linear combination of the financial factors:
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∑
:= b0 + b1K1 + ...+ bnKn, (2.3)

where:
n: the number of financial factors
Ki: the specific value of creditworthiness criteria i
bi: factor’s coefficient within the rating function (for i = 1, ..., n)

In binary classification using logistic model or logit, the default probability p of a given loan is
calculated as follow:

pLogit =
1

1 + exp[−(
∑

)]
. (2.4)

Logistic regression has a number of strong points compare with multiple discriminant analy-
sis. It not only does not require normal distribution in input variables which enable logistic
regression to undertake qualitative creditworthiness factors directly but also its result can be
interpreted as the probability of group membership (Harrell, 2001). And, logistic regression
provides more robust and accurate results than those generated by multiple discriminant anal-
ysis if its assumptions are hold and there is a large number of observations in training data.
Logit model is easy to implement and links to other crucial elements of Basel II and III2 such
as probability of default (PD), loss given default (LGD) and expected loss (EL).

There are other traditional statistical models such as näıve bayes, decision tree, support vector
machine, or even genetic algorithm could be use in credit risk assessment, however, this is out
of scope of this thesis, reader could refer to the book of Thomas et al. (2017) for more detail.
We especially mention logistic regression because (i) it is a well-known industrial standard, (ii)
logit model is embarrassingly simple and explainable, and (iii) it could present state of the
art performance in many performance metrics compare with advanced statistical and machine
learning models as shown in below chapters. Next, I present new approach to credit risk using
the survival analysis - a popular method in epidemiology which is specially designed for censored
data.

2.4 Survival Analysis in Credit Risk

As there are increasingly attention being paid on the application of lifetime analysis on credit
risk modellings as stated in BASEL accords and IFRS 9 documentations3, the time until an
event (often regarded as default, in liquidation, or dissolved) happens is of the objective of the
survival analysis.

Survival analysis is a branch of statistics for analysing the expected duration of time until one
or more events happen. Survival analysis attempts to answer questions such as:

2Basel Committee on Banking Supervision - Revisions to the Standardised Approach for credit risk
3Macro Econometric IFRS9 and Stress Test models using Survival Analysis, Ribeiro, 2016
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• What is the proportion of a population which will survive past a certain time?

• Of those that survive, at what rate will they default/failure?

• Can multiple causes of default/failure be taken into account?

• How do particular circumstances or characteristics increase or decrease the probability of
survival?

Why not Linear Regression?

• First, survival times are typically positive numbers; ordinary linear regression may not be
the best choice unless these times are first transformed in a way that could remove this
restriction.

• Second, and more importantly, ordinary linear regression cannot effectively handle the
censoring of observations.

2.4.1 Censoring

Observations are called censored when the information about their survival time is incomplete,
for example, a corporate purchased a loan and paid back during study time, hence, their default
time is not observable (corporate E in Figure 2.1). The most commonly encountered form is
right censoring.

Figure 2.1: Censoring in credit data.
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2.4.2 Modelling time to event

The basic of this section is mostly adapted from Cox (1972), Allison (1982), Banasik et al.
(1999), and Harrell (2015). Suppose we have a sample of n independent corporate (i = 1, .., n)
and we start monitor each corporate i from time t = 0 up to time ti. At ti corporate i either be
censored or an event occurs (liquidation in this research). Censoring here means the corporate
can not be monitored after time ti because it is lost to follow-up for reasons like our study
stop, being dormant, owners retire, and so forth. Introducing δi, the dummy variable for this
censoring, i.e δi = 1 if corporate i is censored or 0 otherwise. And for each corporate i, we have
a vector of independent variables or predictors Xi.

Denote:

• S(t): survival function (non-increasing) which is the probability that the time of liqui-
dation T is later than some specified time t: S(t) = p(T > t)

• F (t) = p(T ≤ t) = 1 − S(t): lifetime distribution function (the cumulative distribution
function for T )

• f(t) = F ′(t): event density - the rate of liquidations per unit time (the probability density
function of T evaluated at t)

• λ(t): hazard function, the probability that the event will occur in a small interval
around t, given that the event has not occurred before time t,

λ(t) =
lim
∆→0

p(t ≤ T < t+ ∆|T ≥ t)

∆
=
f(t)

S(t)
, (2.5)

the hazard function can also be expressed as the negative of the slope of log of S(t)4:

λ(t) = −∂log(S(t)

∂t
. (2.6)

• Λ(t): cumulative hazard function, the area under λ(t). We have

Λ(t) =

∫ t

0

λ(v)dv = −logS(t). (2.7)

A useful property of the cumulative hazard function is (Harrell, 2015)

E[Λ(min(T, z))] = 1− S(z) = F (z). (2.8)∑n
1 Λ(min(Ti, z) estimates the expected number of events happen before time z among

n subjects.

4this enable easier determination of the phases of increased risk than looking for sudden drops in S(t)
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There are several methods could be used to model the time to event T , which could be divided
to three main branches:

1. Nonparametric models such as Kaplan-Meier estimator or Altschuler-Nelson estimator
which useful for descriptive analysis of survival time.

2. Parametric models using exponential distribution, Weibull distribution and so forth as
a functional form of S(t), to model data in more detail to

• easily compute selected quantiles of the survival distribution, and

• estimate (usually by extrapolation) the expected failure time.

3. Semiparametric models such as Cox proportional hazard model (CPH, Cox (1972))
which makes a parametric assumption for the effect of the predictors on the hazard
function (the regressors are linearly related to log hazard), but no assumption to the
nature of the hazard function λ(t). As the form of the true hazard function is unknown
or complex, the Cox model has definite advantages, especially when we are more interested
in the effects of the predictors than in the shape of λ(t).

Cox Proportional Hazard (PH)

Cox represents the hazard function as a function of both time and covariates using a propor-
tional hazards model (Cox, 1972),

λ(t|X) = λ0(t)exp(βX). (2.9)

where λ0(t), the baseline hazard, is a function of time which could imply the distribution of T :

• λ0(t) = λ: exponential distribution.

• λ0(t) = λ0 + λ1log t: Weibull distribution.

• λ0(t) = λ0 + λ1t: Gompertz distribution.

Let the set of firms at risk of liquidation before failure time ti be the risk set at time ti, denoted
as Ri - the set of firms had not been bankrupt or censored by time ti, we have Ri = {j, Yj ≥ ti}
where Yi is the failure/censoring time of firm j.

Cox used partial likelihood to estimated β:

L(β) =
∏

Yiuncensored

exp(Xiβ)∑
Yj≥Yi exp(Xjβ)

. (2.10)

4Cox argued that when the proportional hazard model holds, information about λ(t) is not useful in esti-
mating the parameters of primary interest, β.
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Two popular methods to approximate the true likelihood in case of ties (multiple event at the
same time ti) are Breslow and Efron (Harrell, 2015).

Survival Analysis with time-varying covariates

The hazard function in Eq. 2.9 could be extended to account for time-varying covariates whose
value change with time:

λ(t|X(t)) = λ0(t)exp(βX(t)). (2.11)

This is particularly true for internal predictor including financial elements as in business data.
The value of Total Assets, for example, change every financial year. The same likelihood
function 2.10 is used to estimate the extended Cox PH to account for time-varying estimate.
The difference is the values of X now changes at each risk set.

2.4.3 Performance measurements

To measure the predictability of an survival model, as in regression modeling, we could use
R2. Other measurements such as Kendalls τ and Somers’ Dxy rank correlation or C-index.
C-index is a generalization of the area under the ROC curve. C-index could be applied for a
continuous response variable which can be censored such as time-to-liquidation as in this study.
The C-index is the percentage of all pairs of SMEs whose survival time can be ordered in a
way that the SME with the higher predicted survival is the one who survived longer. Formally,
with si and Ti are the survival predicted and time to liquidation of SMEi, we have:

C-index = P (sj > sk|Tj > Tk). (2.12)

Dxy = 2C-index− 1. (2.13)

2.4.4 Experiment with UK SMEs

SMEs5 in UK do not necessarily have to report their detail financial statements6, their filings to
the Company House could be a briefed statements in which the very general financial elements
such as profit and loss accounts are reported7. This explains for lacking of financial data for
SMEs to examine their lifetime, hence, the alternative data are usually employed as complement
sources. To provide updated results on the determinants of SMEs time-to-liquidations, and to
examine to what extend, the time-varying covariates could help predicting SMEs lifetime, this

5Reader could refer to Andreeva et al. (2016) for the definition of SMEs in the UK and the liquidation state
of the companies.

6https://www.gov.uk/government/publications/life-of-a-company-annual-requirements/life-of-a-company-
part-1-accounts

7following Sections 475 and 477 of the companies act 2006.
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work examines the survival of more than 67,000 SMEs in the UK with follow-up time from 2004
to 2016. I then compare the baseline hazard model and its extended model with time-varying
predictors on predicting time-to-liquidation. The features of input sample including of company
fixed demographics and time-varying financial elements. This work especially stresses on the
effect of number of directors on the SMEs survival.

The “Company status” indicator is presented on Table 2.2, where the majority of the SMEs
are active:

Table 2.2: Company process

Process Status Count

0 Active (dormant), petition to wind-up 1
1 Active, meeting of creditors 6
2 Active, app. of liquidator 7
3 Inactive (no precision) 9

4 Active, petition to wind-up 12
5 Active, with vol. arrangement 27
6 Active, in administration 67
7 Active (dormant), in default 101
8 Active (receivership) 271
9 Active, in default 288
10 In liquidation 2484
11 Active (dormant) 10174
12 Dissolved 25481
13 Active 62207

Excluding the inactive company with no precision reasons, we regard a company as default
if it is in the liquidation processes 0-10 according to the UK government guideline8. The
dissolved category includes those that do not necessarily experience default or liquidation, they
might stop operating because the owner retires, dies, or other reasons. We could consider this
category as another level instead of only two level Liquidation/Active in further work. With
the requirements of SMEs above, the number of SMEs from FAME9 that does not satisfy and is
excluded is 5,617, among them, 299 SMEs are liquidated. Moreover, by setting an observation
period of 12 years follow-up, we also exclude SMEs without exact date of incorporation, and
we end up with the following number of default and active SMEs:

Table 2.3: Company status

Code Status Count Percentage

1 In Liquidation 1,598 2.38%
0 Active 65,661 97.62%

The final longitudinal data consists of 800,076 SME-period observations with six fixed and six
time-varying covariates. Table 2.4 shows the binning of fixed, categorical covariates, and type
of the time-varying covariates as follows:

8https://www.gov.uk/liquidate-your-company
9FAME, Bureau van Dijk, licensed per subscription of Business School, The University of Edinburgh
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Table 2.4: SMEs survival predictors

Fixed covariate Categories and Binning

1 #Directors [≤ 3, > 3] (Group 1, Group 2)
2 Region 12 area postcodes in the UK
3 #Shareholders [0, 1, 2, >2]
4 #Contacts [0, 1, 2, > 2]
5 #Trading addresses [0, 1, > 1]
6 #Subsidiaries [0, 1]
7 #Auditor/Accountants [0, 1]
9 #Bad debtors [0, 1]
9 #Unsecured creditors [0, 1]
10 SIC* [C, F, O]**

Time-varying covariate*** Type
1 Total Assets (TA) Numeric
2 Current Assets (CA) Numeric
3 Net Tangible Assets (NT) Numeric
4 Current Liabilities (CL) Numeric
5 Shareholder Funds (SHF) Numeric
6 Liquidity Ratio (LR) Numeric

*SIC: Standard Industry Code
**C: Construction; F: Food&Postal Activities; O: Others
***TA and NT are subsequently removed from modeling process because of collinearity.

2.4.5 Experimental results

Denote Group 1 and 2 as SMEs with number of directors not larger than 3 and larger than
3, respectively. If we use Weibull distribution to model the survival time, with maximum
likelihood method, we have

p(T ≥ t) = exp[−exp( log(t)−Xβ
0.5596

)] where Xβ̂ = 4.652− 0.1792[Group 2], (2.14)

the effect of going from Group 1 to Group 2 is to decrease log failure time by 0.18 for using
this parametric estimation, giving a Group 2:1 liquidation time ratio of 0.84.

The conventional Cox PH model is first fitted to this data with baseline value for all contin-
uous predictors (measured after the first financial year). I used 3-knot restricted cubic spline
(rcs) transformation to account for the non-linear effects of these predictors on hazard ratio10,
specifically, with X as a continuous covariate defined in Table 2.4, its rcs transformation is as
follows:

rcs(X) = β0 + β1X + β2X2, (2.15)

where:

X2 = (X − t1)3
+ − (X − t2)3

+(t3 − t1)/(t3 − t2) + (X − t3)3
+(t2 − t1)/(t3 − t2),

and t1 = 0.1, t2 = 0.5, t3 = 0.9 quantiles of X.

10The plain conventional Cox PH model is also fitted without non-linear modification for continuous predic-
tors, however, likelihood ratio test and the test for significant of different in deviance strongly prefer the model
with non-linear effects of continuous predictors including SHF, LR, CL, and CA.

15



Figure 2.2: Altschuler-Nelson-Fleming-Harrington nonparametric survival estimate along with
various parametric estimates. Group 1 and 2 are SMEs with number of directors not larger
than 3 and larger than 3, respectively.

The base levels of region and SEC are West.Midlands and SIC of Foods&Postal activities. Those
for Number.of.shareholders, Number.of.contacts, Number.of.trading.addresses are 0. Table 2.5
present the summary of fitted Cox PH model, with 95% confident interval for hazard ratio.
Some regions have significant higher hazard compare with West.Midlands including North.East,
Northern.Ireland, and Scotland. Having more trading addresses or contacts showing the better
hazard compare with no trading address or contact. SMEs with subsidiaries or bad.debtor(s) or
operate in industries other than food and postal activities have better chance to survive. It is
reasonable that SMEs with unsecured creditors will have much lower survival rate. Regarding
the continuous predictors, excluding CL, the other financial predictors including SHF, LR, and
CA all show significant non-linear effects on hazard ratio.

One of the most important assumption for Cox PH is the proportional hazard, which assumes
that the effect on hazard ratio does not change overtime. Figure 2.3 below presents the Schoen-
feld residual plot for potential violation of predictors, which shows that the region (missing value
category), number of shareholders and number of contacts effects might not satisfy the PH as-
sumption. The bootstrap bias-corrected estimates (Harrell, 2015) of Dxy and R2 are presented
as following Table:

A Dxy of 0.8853 translates to C-index of 0.94 which means that this model could correctly
ranks survival of 9 out of 10 cases. Despite showing good discrimination power in C-index, this
model is limited as it has some predictors violates the PH assumption and it does not make
use of time-varying predictors. Next, I present the extended Cox PH model which utilises the
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Table 2.5: Summary - Conventional Cox PH: “mtt” and “mto” represent more than two and
more than one. “’” denotes the corresponding X2 of the predictor as defined in Eq. 2.15

β Hazard Ratio 2.5% 97.5% SE z p-value
Directors=Group 2 0.0264 1.0267 0.9265 1.1377 0.0524 0.5030 0.6149
region East.England -0.0189 0.9813 0.5257 1.8317 0.3184 -0.0594 0.9527
region East.Midlands 0.0491 1.0503 0.7823 1.4100 0.1503 0.3264 0.7441
region East.of.England -0.1284 0.8795 0.6435 1.2021 0.1594 -0.8054 0.4206
region Greater.London 0.1215 1.1292 0.9005 1.4160 0.1155 1.0524 0.2926
region NA -0.1336 0.8749 0.6888 1.1114 0.1220 -1.0948 0.2736
region North.East 0.3250 1.3840 1.0352 1.8505 0.1482 2.1931 0.0283
region North.West 0.2420 1.2738 0.9989 1.6244 0.1240 1.9510 0.0511
region Northern.Ireland 0.5181 1.6788 1.2496 2.2553 0.1506 3.4393 0.0006
region Scotland 0.3964 1.4865 1.0841 2.0382 0.1611 2.4613 0.0138
region South.East 0.0138 1.0138 0.7832 1.3124 0.1317 0.1044 0.9168
region South.West -0.0961 0.9084 0.6695 1.2325 0.1557 -0.6173 0.5370
region Wales 0.2211 1.2474 0.8713 1.7860 0.1831 1.2075 0.2273
Number.of.shareholders mtt -3.9018 0.0202 0.0167 0.0244 0.0960 -40.6317 0.0000
Number.of.shareholders two -4.0659 0.0171 0.0149 0.0198 0.0728 -55.8631 0.0000
Number.of.shareholders one -4.3716 0.0126 0.0109 0.0146 0.0732 -59.7072 0.0000
Number.of.contacts mtt -2.5282 0.0798 0.0566 0.1125 0.1754 -14.4158 0.0000
Number.of.contacts two -2.0042 0.1348 0.1112 0.1634 0.0982 -20.4054 0.0000
Number.of.contacts one -0.9372 0.3917 0.3368 0.4556 0.0771 -12.1574 0.0000
Number.of.trading.addresses mto -0.0408 0.9600 0.8081 1.1405 0.0879 -0.4643 0.6424
Number.of.trading.addresses one -0.1171 0.8895 0.7881 1.0040 0.0617 -1.8957 0.0580
Subsidiaries -1.3302 0.2644 0.1788 0.3911 0.1997 -6.6596 0.0000
Auditors.Accountants 0.1045 1.1102 1.0007 1.2317 0.0530 1.9732 0.0485
Bad.debtors -0.4150 0.6603 0.5200 0.8385 0.1219 -3.4045 0.0007
Unsecured.creditors 1.1258 3.0827 2.5790 3.6847 0.0910 12.3690 0.0000
SIC C 0.0725 1.0752 0.8237 1.4034 0.1359 0.5332 0.5939
SIC O -0.4570 0.6332 0.4990 0.8035 0.1215 -3.7608 0.0002
SHF -0.0001 0.9999 0.9998 1.0000 0.0001 -1.5827 0.1135
SHF’ 0.0007 1.0007 1.0001 1.0013 0.0003 2.1566 0.0310
LR -0.2716 0.7622 0.6999 0.8299 0.0435 -6.2495 0.0000
LR’ 0.3227 1.3809 1.2310 1.5489 0.0586 5.5063 0.0000
CL 0.0017 1.0017 0.9999 1.0035 0.0009 1.8090 0.0704
CL’ -0.0031 0.9969 0.9937 1.0002 0.0017 -1.8446 0.0651
CA 0.0039 1.0039 1.0022 1.0056 0.0009 4.5269 0.0000
CA’ -0.0106 0.9895 0.9849 0.9941 0.0024 -4.4546 0.0000

Table 2.6: Bootstrap validation - Conventional Cox PH

Index Original Training Test Optimism Corrected n
Sample Sample Sample Index

Dxy 0.8877 0.8867 0.8844 0.0023 0.8853 100
R2 0.2579 0.2549 0.2550 −0.0001 0.2580 100
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Figure 2.3: Schoenfeld residual plot

time-varying characteristics of financial elements available from SMEs filings to the Company
House.

Table 2.7 presents in the same manner the estimated coefficients for several predictor as in Table
2.5 but with financial predictors including SHF, LR, CL, and CA being time-varying. The effect
of having more than three directors is now significant and reduce the hazard rate compare with
SMEs having less than three directors. SMEs that do not have region, or operate in North
East or North West or Scotland have higher rate of liquidation than those from West Midlands.
The effects of number of trading addresses, number of contacts, number of shareholders, or
having subsidiaries, auditor/accountant, bad debtors, unsecured creditor are similar with that
from the conventional Cox PH model. Noticeably, while the effect of CA remains (increase the
hazard rate) and of CL turns significant, the effect of LR now increase the hazard of SMEs.

The bootstrap-corrected index for Dxy and R2 are presented in Table 2.8 demonstrates that
using updated-value for financial predictors could help improve the discrimination index to 5.5
and 2.9 basic points for Dxy and R2, respectively.

Figures 2.4 and 2.5 below present the summary of effects of 14 predictors with categories for
each categorical predictors of the conventional Cox PH and extended Cox PH, respectively. The
summary of extended Cox PH not only show better causal interpretation with more significant
effects of categorical predictors, and number of directors as this study hypothesise, but also the
continuous-financial predictors, when correctly modeled, could improve the model fitness and
discrimination power as shown in Table 2.8.
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Table 2.7: Summary - Extended Cox PH: “mtt” and “mto” represent more than two and more
than one. “’” denotes the corresponding X2 of the predictor as defined in Eq. 2.15. Financial
predictors are time-varying.

β Hazard Ratio 2.5% 97.5% SE z p-value
Directors=Group 2 -0.1105 0.8954 0.8081 0.9922 0.0524 -2.1103 0.0348
region East.England -0.1124 0.8937 0.4786 1.6687 0.3186 -0.3528 0.7242
region East.Midlands 0.0291 1.0295 0.7676 1.3806 0.1497 0.1940 0.8461
region East.of.England -0.0853 0.9182 0.6720 1.2546 0.1593 -0.5357 0.5921
region Greater.London -0.0078 0.9922 0.7914 1.2440 0.1154 -0.0675 0.9462
region NA 0.6569 1.9289 1.5189 2.4495 0.1219 5.3882 0.0000
region North.East 0.3024 1.3530 1.0123 1.8084 0.1480 2.0427 0.0411
region North.West 0.2544 1.2897 1.0122 1.6433 0.1236 2.0584 0.0396
region Northern.Ireland 0.1482 1.1598 0.8679 1.5498 0.1479 1.0021 0.3163
region Scotland 0.5772 1.7811 1.2993 2.4415 0.1609 3.5869 0.0003
region South.East 0.1531 1.1655 0.8999 1.5095 0.1320 1.1604 0.2459
region South.West 0.1806 1.1979 0.8833 1.6246 0.1555 1.1615 0.2455
region Wales 0.3244 1.3832 0.9660 1.9806 0.1832 1.7713 0.0765
Number.of.shareholders mtt -2.7473 0.0641 0.0528 0.0778 0.0990 -27.7388 0.0000
Number.of.shareholders two -2.7117 0.0664 0.0571 0.0772 0.0769 -35.2536 0.0000
Number.of.shareholders one -3.0847 0.0457 0.0394 0.0530 0.0756 -40.8120 0.0000
Number.of.contacts mtt -2.3027 0.1000 0.0706 0.1415 0.1772 -12.9931 0.0000
Number.of.contacts two -1.5464 0.2130 0.1753 0.2589 0.0996 -15.5302 0.0000
Number.of.contacts one -0.7079 0.4927 0.4237 0.5729 0.0770 -9.1955 0.0000
Number.of.trading.addresses mto -0.0911 0.9130 0.7678 1.0855 0.0883 -1.0308 0.3026
Number.of.trading.addresses one -0.2080 0.8122 0.7189 0.9175 0.0622 -3.3429 0.0008
Subsidiaries=1 -1.5388 0.2146 0.1450 0.3177 0.2002 -7.6880 0.0000
Auditors.Accountants=1 0.1166 1.1237 1.0121 1.2475 0.0533 2.1859 0.0288
Bad.debtors=1 -0.4450 0.6408 0.5047 0.8136 0.1218 -3.6526 0.0003
Unsecured.creditors=1 1.3925 4.0249 3.3512 4.8342 0.0935 14.8980 0.0000
SIC C -0.1160 0.8904 0.6829 1.1610 0.1354 -0.8571 0.3914
SIC O -0.5294 0.5890 0.4644 0.7469 0.1212 -4.3672 0.0000
SHF 0.0001 1.0001 1.0000 1.0001 0.0000 1.3413 0.1798
SHF’ -0.0011 0.9989 0.9983 0.9996 0.0003 -3.3607 0.0008
LR 1.5018 4.4896 4.0407 4.9883 0.0538 27.9396 0.0000
LR’ -2.6167 0.0730 0.0602 0.0886 0.0985 -26.5530 0.0000
CL 0.0295 1.0299 1.0272 1.0327 0.0014 21.4168 0.0000
CL’ -0.0551 0.9464 0.9417 0.9512 0.0026 -21.3802 0.0000
CA 0.0177 1.0178 1.0164 1.0193 0.0007 24.5641 0.0000
CA’ -0.0551 0.9464 0.9422 0.9505 0.0022 -24.5746 0.0000

Table 2.8: Bootstrap validation - Extended Cox PH

Index Original Training Test Optimism Corrected n
Sample Sample Sample Index

Dxy 0.9460 0.9492 0.9455 0.0037 0.9423 100
R2 0.3132 0.3195 0.3121 0.0074 0.3058 100
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Figure 2.4: Hazard ratios and confidence bars for effects of predictors - Conventional Cox PH
model

Figure 2.5: Hazard ratios and confidence bars for effects of predictors - Extended Cox PH model

2.4.6 Conclusion

This study first shows the significant effects of SME’s demographic characteristics including
location, number of shareholders, trading addresses, directors, contacts, subsidiaries, audi-
tors/accountants, bad debtors, and unsecured creditors. This study also further stresses on
improvement both in causal interpretation and in model discrimination power when utilising
the extended hazard models using the time-varying nature of SMEs financial variables.

Our study is without limitations, first, it focuses on the UK SMEs, which might behave signif-
icantly different with other peers since the Brexit referendum in 2016. Hence, more up-to-date
data are needed to present this difference. In addition, missing values for SMEs data are preva-
lence, a comparative analysis on the effectiveness of imputation methods on the performance
of survival models is also expected.
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Chapter 3

Bias in Automated Decision-making for
Credit Scoring

3.1 Problem Statement

Discrimination (defined as unequal outcome for protected group) happens in several classifi-
cation problems including crime recidivism, social welfare, credit assessment, and so forth. In
the previous work, Andreeva and Matuszyk (2019) has demonstrated how existing regulations
can disadvantage women. In many countries there are special laws that promote the equality
by prohibiting the use of certain characteristics in various decisions, e.g. when selecting job
applicants or when deciding who should be given or not given the credit. The list of prohibited
characteristics vary from country to country, but most often it includes gender or sex. The law
requires that sexes are treated equally, i.e. no distinction is made between men and women.
At the same time there is an expectation that the outcome should also be equal between sexes.
However, Andreeva and Matuszyk (2019) show that in algorithmic decision-making (i.e. when
decisions are based on models trained on real-life data), removal of gender does not lead to
equality of outcome (rejection rates) for men and women. This happens because of other char-
acteristics that remain in the model and that are correlated with gender. Furthermore, for
women the chances of being rejected for credit would be lower if gender is included into the
model, because their historic probability of default is lower.

One of the main approach proposed by machine-learning community towards eliminating such
discrimination is to balance the dataset. This research investigates two approaches at data-
level preparation: balancing towards the target outcome, and balancing towards the group
of interest, and how effective they are in eliminating the discrimination. As sophisticated
and powerful machine learning classifiers (e.g. multilayer perceptron (MLP), extreme gradient
boosting (XGB, Sun et al. (2014)) are complex and hard to explain, this study also performs the
experiments with standard classifiers such as logistic regression. This is of particular interest
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especially in the area that requires transparency in decision-making process1. Specifically,
this research examines the performance of several machine learning classifiers under several
data balancing methods with a two-fold objective. First, it aims to compare the predictive
performance of machine learning classifiers with logistic regression and, second, it examines the
discrimination outcomes for men and women by simulating and comparing the rejection rates.

First, this analysis shows how gender bias and discrimination can arise from real-life data under
many automated decision-making tools. Second, we advocate that the protected characteristics
should be allowed to use in order to correct for the bias in the data, yet with separately estimated
models. Finally, we show that balancing towards the protected class or the target outcome in
the training data does not necessarily produce equal rejection rates for men and women.

3.2 Data and Methods

3.2.1 Dataset overview

The dataset is granted from Andreeva and Matuszyk (2019), which comprises a portfolio of car
loans from a European bank. The summary of train and test sets is given in Table 1. Bad refers
to customers who missed two consecutive monthly payments. The features (and their types)
of this data include Number of children (categorical), Car price (numeric), Down payment
(numeric), Car age (numeric), Loan duration (numeric), Time in employment (numeric), Net
income (numeric), Marital status (categorical), Car engine (categorical), Phone (categorical),
and Occupation (categorical).

On the distribution of classes, as shown in Fig 3.1 and Table 3.1, women constitute approxi-
mately 26% of the samples. While men have more applications, they also have higher bad rate
than women (1.34% compared with 0.34%). In addition, the data is highly imbalanced where
almost all observations belong to the majority class - good loans (98.32%), and the minority
class - bad loans is only 1.68%.

Table 3.1: Target outcome and gender

Train Set Test Set
Good Bad Total Good Bad Total

Count
Female 16828 216 17044 4104 59 4163
Male 45613 851 46464 11507 208 11715
Total 62441 1067 63508 15611 267 15878

Percentage
Female 26.50 0.34 26.84 25.85 0.37 26.22
Male 71.82 1.34 73.16 72.47 1.31 73.78
Total 98.32 1.68 100.00 98.32 1.68 100.00

1The Inquiry on “Algorithms in Decision-Making”, The Alan Turing Institute submission to the House of
Commons’ Science and Technology Committee, 28 Feb. 2017
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Figure 3.1: Default flag and gender

3.2.2 Imbalanced treatment

To handle imbalanced dataset, random oversampling the minority class and undersampling the
majority class are two common sampling methods. Despite literature shows that there are
sophisticated methods of creating additional data for the minority class, including SMOTE
(Chawla et al., 2002) or ROSE (Menardi and Torelli, 2014), however, these methods can not
effectively deal with categorical features and might produce unrealistic samples (e.g. customer
with -1 child).

3.2.3 Classifier

Five classifiers belong to Bayesian-based (Näıve Bayes - NB), linear-based (logistic regression
- LR), tree-based (decision tree - DTC), network-based (multilayer perceptron - MLP), and
homogeneous ensemble-based classes (extreme gradient boosting with tree-based classifier -
XGB) are examined under three sampling strategies with area under the ROC curve (AUC
Goadrich et al. (2006)). The classifiers and their tuning parameters are as follows:

Table 3.2: Classifier hyperparameters

Model Parameter(s) Tuning Range
NB Priors Probability [[0.9, 0.1], [0.8, 0.2], [0.7, 0.3]]
LR Regularization strength: C linspace(0.5, 1.5)
DTC Max depth range (3, 5)

Max feature range (5, 20)
MLP Hidden Layers Sizes [(10,10,10), (10,10), (10,)]

α [0.0001, 0.05]
XGB Learning rate logscale(−4, 1)

Number of estimators range (20, 50)
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To ensure the same imbalanced characteristics for each of training dataset before balancing and
modelling, we utilyse stratified k-fold to have the same proportion of both target outcome and
gender across all folds. Our stratified folds are as follows:

Figure 3.2: Stratified split

Tuning for parameter optimization is repeated within each loop of the cross-validation. And we
further set an outer cross-validation (nested cross-validation) to report the final performance
metrics to compensate for potential random train-test sample separation bias.

As for the preprocessing, we employ multiple imputation (Buuren and Groothuis-Oudshoorn,
2011) for missing numerical values and include additional missing category for categorical val-
ues. Then, for feature transformation, robust scaler and dummy coding are used for numerical
and categorical features, respectively. Finally, to compare several setting of models, We fit four
models for each classifier in this study as follows: Model with GENDER feature (training sam-
ple comprising both men and women, M1); Model without GENDER feature (M2), Model for
male segment only (training sample comprising men only, M3), and Model for female segment
only (training sample comprising women only, M4). We build segmented Models 3 and 4 as
opposed to including interactions, because this approach is preferred in practice to account for
different segments in loan portfolios (Banasik et al., 1999; Bijak and Thomas, 2012; Thomas
et al., 2017). This approach also makes it possible to accept or reject the same proportion of
men and women, thus ensuring the outcome is equal between them.
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3.3 Results

In order to compare how access to credit changes for men and women when Gender is used
(or not used), we calculate proportions of men and women rejected by Models 1 and 2 (with
and without Gender). We experiment with different cutoff levels that would lead to a range
of rejection/acceptance rates from 0.1 to 0.9. Since in families it is usually men who apply for
credit, it is difficult to compare the rejection rates for married men and women. Therefore,
we in this section we restrict out comparison to unmarried customers, which consist of single,
divorced and widowed. The results are reported in the following order. First, we reproduce
the regression results from Andreeva and Matuszyk (2019) in Table III, in order to show the
features used and their effects. They are followed by the performance of classifiers on different
segments of data and balancing methods in Table IV. Finally, the rejection rates are illustrated
in Figure 3.3.

3.3.1 Regression

We first fit a Logistic Regression to examine the effects of variables. All variables are categorized
and dummy coded to several categories as shown in Table 3.3. All variables are categorized
and dummy coded to several categories as shown in Table 3.3. The majority of variables are
highly significant with small standard error (SE), including Gender that indicates that being a
woman has a negative effect on the Probability of default/‘bad’. These results are inline with
the general literature on credit scoring (Crook and Banasik, 2004; Thomas et al., 2017).

3.3.2 Predictive power on segmentation

We proceed to examine the effect of Gender removal on classifiers performance in two balancing
strategies: target and gender balancing. Five classifiers performance on test set under 10-
fold nested cross validations are reported in Table 3.4 below. In terms of predictive power,
multilayer perceptron presents the strongest performance followed by Logistic Regression in
target balancing strategy, whereas in gender balancing, LR shows the best performance across
train/test sets and balancing strategies, and is followed closely by MLP. This provides further
evidence on the comparable performance of Logistic Regression, an industry standard for credit
scoring, with more advanced classifiers. In terms of classifier performance on balanced data,
apart from Naive Bayes , all the sampling methods for target balancing strategy modestly
improve the full model performance on test set. However, MLP shows superior results with
undersampling strategy.

Interestingly, Gender balancing strategy while does not enhance individual classifier under
three sampling methods, it does improve the performance for classifiers built on full and male
segment data compare with Target balancing strategy, this does not apply for female segment
data however. In addition, we observe no significant different in AUC for M1 and M2 in
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Table 3.3: Logistic Regression, reproduced from Andreeva and Matuszyk (2019)

β SE z p-value [0.025 0.975]

Intercept -7.286 0.151 -48.127 0.000 -7.583 -6.990
Children 1 kid 0.219 0.088 2.480 0.013 0.046 0.391
Children 2 kids 0.126 0.118 1.067 0.286 -0.105 0.357
Children 3+ kids 0.280 0.212 1.322 0.186 -0.135 0.696
Children missing -0.663 0.113 -5.887 0.000 -0.883 -0.442
CP Cheap -0.993 0.116 -8.563 0.000 -1.220 -0.765
CP Expensive 1.099 0.100 11.010 0.000 0.904 1.295
CP Mid Price 2 0.438 0.097 4.518 0.000 0.248 0.628
DP 25-35% 0.818 0.110 7.419 0.000 0.602 1.034
DP 50%+ -1.113 0.167 -6.667 0.000 -1.440 -0.786
DP < 25% 1.285 0.098 13.158 0.000 1.093 1.476
CA 2yrs 1.378 0.130 10.622 0.000 1.123 1.632
CA 3-4yrs 1.860 0.106 17.585 0.000 1.653 2.068
CA 4+ 2.505 0.120 20.962 0.000 2.271 2.740
Duration 30-60 0.641 0.103 6.242 0.000 0.440 0.843
Duration 60+ 1.528 0.101 15.138 0.000 1.330 1.725
ToE 1-4 1.202 0.091 13.193 0.000 1.023 1.380
ToE 4-7 0.695 0.099 7.040 0.000 0.501 0.888
ToE < 1 0.713 0.111 6.413 0.000 0.495 0.931
NI High inc -0.490 0.086 -5.736 0.000 -0.658 -0.323
NI Low inc -0.409 0.088 -4.635 0.000 -0.583 -0.236
NI Mid inc1 -0.134 0.094 -1.421 0.155 -0.319 0.051
Marital D 1.983 0.113 17.537 0.000 1.761 2.205
Marital S 1.446 0.078 18.430 0.000 1.292 1.599
Marital W 1.257 0.186 6.741 0.000 0.891 1.622
Engine 1.4-1.6 -0.056 0.134 -0.415 0.678 -0.319 0.208
Engine 1.6+ 0.111 0.109 1.019 0.308 -0.102 0.325
Engine missing 0.616 0.090 6.875 0.000 0.440 0.791
Phone C 0.052 0.095 0.549 0.583 -0.135 0.240
Phone H 0.416 0.075 5.520 0.000 0.268 0.564
Phone N 0.308 0.099 3.107 0.002 0.114 0.503
Occup. Female -0.423 0.166 -2.538 0.011 -0.749 -0.096
Occup. Male -0.292 0.102 -2.857 0.004 -0.493 -0.092
Gender -0.458 0.078 -5.912 0.000 -0.610 -0.306

Model’s fit statistics:

Pseudo R2 AIC BIC Log-Likelihood
0.354 8817.9166 9133.5072 -4375.0

CP is Car Price; DP is Down Payment; CA is Car Age; ToE is Duration (in years) of Employment; NI is Net Income; Marital D
and S and W are Divorced, Single, Widow respectively; Phone C and H and N are Company phone number, house phone number,
no phone number provided respectively; Occup. Female and Male are Professional Occupation as Female and Male, respectively.
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three sampling settings among each balancing strategy. This might indicate that removing
discrimination feature does not affect the model performance (or lender in general) at all, later,
we will illustrate that this initial misconception leads to discrimination in the final stage of loan
application below.

With segmented models for male and female applications (M3 and M4), the M3 or M4 taken
separately are not directly comparable with M1 or M2 since they are estimated on different
samples. To make a comparison possible the predicted values of M3 and M4 are combined
together in the third column of Table 3.4. Across all models and balancing strategies, the
combination of segmented models does not improve and, even in some cases, weaken (under
target balancing strategy) classifier performance as compared with full models (M1, M2). When
measuring the model performance separately on Male and Female segments, on Male segment,
the models estimated on full data perform better than the model estimated in men only. In
contrast, on Female segment, segmented model provides higher AUC compared with models
built on full data. We attribute these results to the imbalanced nature of our data, as we have
much lower number of female applications, this leads to (i) classifiers built on female segment
fit better with female test set, and (ii) gender balancing produces almost identical performance
on segmented data.

3.3.3 Rejection rate for unmarried customers

In what follows, we present several graphs in Figure 3.3 on the rejection rates of unmarried
customers to robustly examine the impact of the removal of Gender in the final stage of credit
application. Due to space limitation, we do not present that for Gender balancing strategy,
although the results are similar with target balancing. The rejection rates are computed by
varying the overall acceptance threshold from 0 (do not accept any applications) to 1 (accept
all applications) and they are presented on the x-axis. The y-axis shows the proportions of men
and women rejected under model M1 and M2, for each threshold. The left, middle, and right
subfigures are the graphs for the corresponding classifier under no sampling, undersampling
and oversampling methods, respectively. In general, the rejection rates for female applicants
for M2 model (without gender) are significantly lower than that of M1 (with gender) for:
logistic regression using all three samplings strategies, na ive bayes and decision tree using no
sampling and oversampling, MLP using undersampling. No significant difference is observed for
XGB. This indicates that (i) gender removal, especially in applying for traditional classifiers
is actually disadvantaging female applications rather than protect them, and (ii) advanced
classifiers including MLP or XGB are less prone to this discrimination, however, they are
limited in their interpretability.

Overall, we document the following findings:

• Multilayer perceptron (MLP) shows the strongest performance across train/test sets and
balancing settings, and is followed closely by logistic regression, although this result is
reversed for the gender balancing strategy.
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Table 3.4: AUC (Bold faces indicate highest values in the respective columns)

———— Full Data ———– ———— Male Segment ———– ————- Female Segment ————
M1 Full M2 Full M3M4 M1 Male M2 Male M3 M1 Female M2 Female M4

PANEL 1: TARGET BALANCING
No Sampling
NB 0.895 0.895 0.838 0.914 0.914 0.863 0.824 0.824 0.902
LR 0.906 0.907 0.896 0.929 0.929 0.858 0.825 0.825 0.936
DTC 0.880 0.891 0.856 0.903 0.913 0.830 0.795 0.813 0.880
MLP 0.905 0.897 0.913 0.922 0.913 0.901 0.842 0.836 0.926
XGB 0.897 0.896 0.886 0.919 0.918 0.893 0.819 0.818 0.845
Undersampling
NB 0.881 0.882 0.820 0.899 0.899 0.863 0.816 0.816 0.901
LR 0.907 0.908 0.895 0.931 0.930 0.858 0.827 0.827 0.932
DTC 0.907 0.884 0.873 0.924 0.905 0.870 0.846 0.810 0.879
MLP 0.930 0.932 0.916 0.943 0.940 0.910 0.879 0.903 0.922
XGB 0.903 0.904 0.870 0.923 0.924 0.875 0.832 0.832 0.896
Oversampling
NB 0.881 0.881 0.842 0.898 0.898 0.872 0.816 0.816 0.902
LR 0.907 0.908 0.896 0.931 0.930 0.859 0.827 0.826 0.934
DTC 0.913 0.869 0.868 0.927 0.888 0.843 0.861 0.804 0.885
MLP 0.916 0.917 0.913 0.934 0.934 0.890 0.849 0.850 0.936
XGB 0.902 0.901 0.898 0.920 0.919 0.870 0.836 0.836 0.922

PANEL 2: GENDER BALANCING
No Sampling
NB 0.898 0.898 0.865 0.907 0.907 0.907 0.862 0.862 0.860
LR 0.921 0.922 0.923 0.934 0.934 0.934 0.876 0.876 0.879
DTC 0.891 0.892 0.890 0.906 0.907 0.905 0.836 0.839 0.803
MLP 0.916 0.923 0.899 0.929 0.936 0.912 0.869 0.874 0.854
XGB 0.909 0.909 0.897 0.926 0.926 0.924 0.848 0.848 0.823
Undersampling
NB 0.897 0.897 0.865 0.907 0.907 0.907 0.861 0.861 0.856
LR 0.922 0.923 0.923 0.935 0.935 0.934 0.877 0.877 0.879
DTC 0.880 0.873 0.888 0.896 0.888 0.907 0.822 0.819 0.800
MLP 0.916 0.916 0.916 0.930 0.928 0.929 0.866 0.868 0.865
XGB 0.903 0.901 0.897 0.920 0.919 0.924 0.843 0.839 0.823
Oversampling
NB 0.897 0.897 0.865 0.907 0.907 0.907 0.863 0.863 0.860
LR 0.923 0.923 0.923 0.936 0.936 0.934 0.877 0.877 0.879
DTC 0.886 0.888 0.886 0.903 0.904 0.905 0.826 0.831 0.798
MLP 0.912 0.916 0.916 0.926 0.930 0.933 0.862 0.865 0.8507
XGB 0.907 0.906 0.897 0.924 0.923 0.924 0.845 0.844 0.823

M1 and M2 are models estimated on full data with Gender removed on M2. M3 and M4 are models estimated on Male
and Female segments, respectively. M1 Male and M2 Male are the M1 and M2 models performance on Male segment. M1 Female
and M2 Female are the M1 and M2 models performance on Female segment. M3M4 is the combination of M3 and M4 models to
make it comparable with M1 and M2 which are estimated using full data.
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(a) Näıve Bayes

(b) Logistic Regression

(c) Decision Tree

(d) MLP

(e) XGB

Figure 3.3: Rejection rate
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• Balancing settings modestly improve full model performance, but not for the models built
on segmented data.

• Balancing towards Gender does not improve performance for models built on full data
neither for ones built on segmented data. However, it produces better performance than
balancing towards the target.

• Both in no sampling and oversampling, DTC, MLP, and XGB do not reduce rejection
rate for females if we retain gender while the results for undersampling are mixed.

• The removal of Gender does not make the reject rates equal for both sexes for three out
of five classifiers (except for Decision Tree and XGB, although there are still some areas
where the small difference remains).

• For the same threshold, removing gender increases the rejection rate for women while
decreases it for men.

3.3.4 Conclusions

Using the data on car loans with imbalanced classes, this study examined the utilisation of
different automated, machine learning-based decision-making tools and balancing strategies on
achieving equal outcomes for men and women.

We considered four model specifications: Model 1 with gender and Model 2 without gender,
and two segmented models, Model 3 and 4, for men and women, respectively. For each specifi-
cation we experimented with five different classifiers (Multilayer Perceptron, Extreme Gradient
Boosting, Decision Tree, Näıve Bayes, Logistic Regression). We also balance the data with two
standard balancing strategies (undersampling and oversampling) towards the target - bad loan
indicator and also towards the protected characteristic of interest gender.

This study shows that the target balancing improves the predictive performance of most clas-
sifiers, and especially undersampling for multilayer perceptron. However, gender balancing has
little effect on predictive accuracy. Neither target nor gender balancing has a pronounced effect
on achieving the equal outcome. Nevertheless, application of Extreme Gradient Boosting based
on decision tree showed the promising results for removing the gap in rejection rates between
men and women, and further research could explore this in more detail.
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Chapter 4

Imbalanced Dataset and Performance
Evaluation in Credit Risk

4.1 Nature of Problem

A crucial problem of current practices in credit risk modelling is the imbalanced dataset (IDS)
where classifiers tend to perform poorly on minority class despite presenting high overall ac-
curacy measures. The IDS exists in many industrial data especially in credit portfolios data
since the majority of corporate borrowers are good. To handle this problem, at algorithm level,
we could use cost sensitive learning, at data level, researchers could perform undersampling or
oversampling either as duplicating the minority class or creating synthetic samples.

In addition, combining many model advantages using ensemble methods is of the current trend
since this can not only increase the classification performance but ensemble models could also
reduce the subjectivity and increase the objectivity in risk assessment. In this line of litera-
ture, Lessmann et al. (2015) showed the advantages of simple ensemble models with individual
classifiers and other ensemble families. Xiao et al. (2016) used a dynamic dynamic ensemble
selection of features to result in better performance compares with the static ensemble selec-
tion. However, many works on corporate credit scoring consist of small number of features as in
Angelini et al. (2008), Tsai and Chen (2010), or small number of samples Huang et al. (2004),
Yu et al. (2008), Wang et al. (2011), and the data is not new and this might not be appropriate
in data-driven practice as in credit scoring.

This chapter presents a comparative study on recent, skewed, and rich-feature corporate datasets
to determine the performance of both individual and ensemble models on predicting the bad
loan applicants. And to further investigate the applicability of imbalanced treatment methods
at the data level, I also perform the comparison using several performance measurements under
three sampling strategies.
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4.2 Sampling Techniques

The credit application data are one of the sources that produce high-degrees of IDS where
almost all observations belong to the majority class - good applications, and the remaining
belong to the minority class - bad applications. Sampling approaches help by balancing the
two classes. The popular methods are random oversampling the minority class, undersampling
the majority class, or synthesizes artificial data in the minority class (He and Garcia, 2009;
Chawla et al., 2002; Menardi and Torelli, 2014).

As creating artificial samples might lead to unrealistic samples, this study focuses on undersam-
pling and oversampling and then relatively compare them under several performance metrics
described below.

4.3 Experimental Setup

A long with logistic regression, an industrial standard, this study employs the best performing
classifier from the work of Baesens et al. (2003) and its extended version of Lessmann et al.
(2015), their works performed a general comparison of recent credit scoring models where
individual, homogeneous ensemble, and heterogeneous ensemble classifiers are examined. The
best individual classifiers are logistic regression (LR), decision tree (DTC), support vector
machine (SVM), and multilayer perceptron (MLP). For the homogeneous ensemble models, we
employ bagged and boosted version of the weak individual classifiers. For the heterogeneous
ensemble classifiers, we employ the simple average ensemble (SAE) and hill-climbing ensemble
selection (HES). Generally, twelve classifiers belonging to linear-based, kernel-based, tree-based,
homogeneous, and heterogeneous ensemble-based classes are examined in this research, Table
4.1 presents more detail about these classifiers.

Table 4.1: Classifier summary

Abbrev. #Models

Individual Classifier
Logistic Regression LR 5
Decision Tree DT 64
Support Vector Machine SVM 16
Multilayer Perceptron MLP 64
Homogeneous Classifier
Bagged Logistic Regression BaLR 5
Bagged Tree RF 64
Bagged SVM BaSVM 16
Bagged MLP BaMLP 64
Boosted LR BoLR 5
Boosted DT BoDT 64
Heterogeneous Classifier
Simple Average Ensemble SAE 1
Hill-climbing Selection Ensemble HSE 149*
Total
12 617

* HSE includes all the estimations of base classifiers before fitting to the validation set for final classifier selection
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Classifier Parameter Value

LR l2 regularization 1e−2, 1e−1, 1.0, 5, 10

DT
max depth 3,...,10

max features 3,...,10

SVM
C 1e−1, 1

γ
10, 5, 2, 1,

1e−1,1e−2,1e−3,1e−4

MLP
#node in hidden layer 1 2,...,8
#node in hidden layer 2 2,...,8

Table 4.2: Hyper-parameters of individual classifiers

4.3.1 Assessment metrics

In financial industry, the loss resulted from bad loans might wipe out all the interest profit
of the entire loan portfolio. Hence, it is crucial that the classifier for credit scoring need to
maintaining minimum error on potential bad loans while not being too conservative on others
(He and Garcia, 2009). Further, by simply predict all observations as majority class, the accu-
racy or categorical error might become misleading in the present of IDS without other proper
measurements. Therefore, more informative metrics including the area under receiver operating
characteristics curves (AUC, independent with class distribution), area under Precision-Recall
curves (AUPRC, pay more attention to characteristics of Precision-Recall curve) (Davis and
Goadrich, 2006), or Recall (focus on misclassification of minority class) are necessary for the
consistently and concisely evaluations of classifier performance in the presence of IDS on cor-
porate credit scoring.

In this study, we employ five metrics to:

• assess the correctness of the model categorical predictions, including:
- Precision:

P = Pr(Y = 1|Ŷ = 1).

- Recall:
R = Pr(Ŷ = 1|Y = 1).

where 1 denotes a default class, 0 denotes a non default class, and Ŷ is the estimate of
the true class label Y .

• assess the discriminatory ability of the classifier:
- Area Under ROC curve (AUC). This metric shows the probability of the classifier rank
a randomly chosen bad loanx+ higher than a randomly chosen normal loan (x−), i.e.:

AUC = p
(
score(x+) > score(x−)

)
.

- Area Under Precision-Recall Curve (AUPRC). How meaningful is a default loan ap-
plication predicted by the classifier given the baseline probabilities of loan assessment
problem:

AUPRC =
∑
n

(Rn −Rn−1)Pn.
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where Pn and Rn are the precision and recall at the nth threshold.

• assess the accuracy of the classifier probability predictions: Brier Score (BS), it can be
computed using the following formula:

BS =
1

N

N∑
t=1

(predictt − ot)2.

where predictt is the predicted probability and ot is the actual label of the observation t,
respectively.

4.3.2 Test of significant in ranking classifiers

To compare the classifiers performance, the Friedman test is usually employed for comparing
the ranks of many classifiers, and after these tests showing significant, a post-hoc test such as
Neymenyi is then performed to compare all classifiers. Finally, when comparing other classifiers
with a control classifier, this study follows Bonferroni correction or Hommel procedure (Garca
et al., 2010) to account for the family-wise error.

To compare performance of different classifiers, we use the traditional Friedman test (Demar,
2006) to test H0 : no difference between the classifier ranks. The test statistic is as follows:

χ2
F =

12D

K(K + 1)

[ K∑
j=1

AR2
j −

K(K + 1)2

4

]
, (4.1)

with:

• D is the number of datasets from IDS treatment,

• K is the number of classifiers,

• ARj =
1

D

D∑
i=1

rji , r
j
i is the rank of classifier j on sampling method i, and

• χ2
F has Chi-square distribution with K − 1 degree of freedom.

We then employ the post-hoc Nemeyi test to perform pair-wise comparison of the individual
classifiers (Garca et al., 2010). Two classifiers performance are significantly different if their
average ranks differ by at least the following critical difference:

CD = qα

√
K(K + 1)

6D
. (4.2)
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Where critical values qα are based on the Studentised range statistic, let Ri and Rj be the
average ranks of classifier i and j, the test statistic is:

Z = (Ri −Rj)
/√K(K + 1)

6D
. (4.3)

Finally, when compare several individual classifiers with the best classifier to control for the
family-wise error this study follows the Bonferroni-Dunn (Demar, 2006) procedure.

4.3.3 Datasets

Two practical datasets are employed in this study. The first is Vietnamese dataset, consists
of 7,316 applications of corporate borrowers of a local bank. From financial statements, I
calculate and divide financial ratios into 7 categories: Cashflow, Day Sale Coverage Ratio
(DSCR), Efficiency, Leverage, Liquidity, Profitability, and Return. Table 4.3 shows a list of
189 financial ratios under each category. Along with the quantitative-financial variables, Table
4.4 presents other nine qualitative variables relating to the status of the creditworthiness from
credit information center (CIC), historical credit profile of the borrower, and their demographic
characteristics.

Table 4.3: Quantitative variables

Category #Financial Ratios

Cashflow 4
DSCR (Day Sale Coverage Ratios) 31
Efficiency 30
Leverage 28
Liquidity 18
Profitability 24
Return 42

Total 177

Table 4.4: Qualitative variables

Name Description

Q1 Duration of oldest bank contract (month)
Q2 Duration of youngest bank contract (month)
Q3 # Inquiries to credit center during last 12 months
Q4 # Inquiries to credit center during last 6 months
Q5 # Inquiries to credit center during last 3 months
Q6 # Years of establishment
Q7 # Banks in contract
Q8 Outstanding debt at all banks
Q9 Geographical area

The other dataset is from the U.S. Small Business Administration (SBA), this provides historical
data from 1987 through 2014. This US SMEs dataset has 899,164 observations with 27 features.
Each observation is a loan that was partially guaranteed by the SBA. The variable MIS Status
indicates if the loan was paid-in-full or defaulted/charged-off. This study randomly chooses 1%
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sample of this dataset (preserving the good:bad ratio) which results in 1,549 default loans and
7,332 paid-in-full loans. Table 4.5 shows the features of this dataset.

Table 4.5: US dataset variables

Name Type Description

NewExist Boolean New or existing Business
FranchiseCode Boolean Franchise Code
LowDoc Boolean LowDoc Loan Program
UrbanRural Categorical Urban, Rural, Undefined
DisbursementGross Numeric Amount Disbursed
BalanceGross Numeric Gross amount outstanding
GrAppv Numeric Gross Amount of Loan
SBA Appv Numeric SBA Approved Loan
Term Numeric Loan term in months
NoEmp Numeric Number of Employees
CreateJob Numeric Number of jobs created
RetainedJob Numeric Number of jobs retained
State Text Borrower State
Bank Text Bank Name
BankState Text Bank State
NAICS Text Industry code
RevLineCr Text Revolving Line of Credit
MIS Status Text Loan Status

Table 4.6: Imbalance degree

#Sample #Default Imbalanced Ratio
VN 7,316 375 5:95
US 8,881 1,549 17:83

The good:bad ratios in Table 4.6 show that while the US data have a low imbalanced ratio,
the Vietnamese dataset is extremely imbalanced with the fraction of bad applications is 4.7%.
Figure 4.1 and Figure 4.2 present the scatter plot of the second component against the first
component for both datasets. While the scatter for VN dataset does not shows any particular
cluster pattern, it does reveal three clusters for US dataset, one of them on the bottom has
significantly less number of bad loans than the others, this could suggest the classification task
for US dataset might be less tricky than that for the VN dataset.

4.4 Results

4.4.1 Classifier ranking

Table 4.7 presents the performance of classifiers for the original datasets. Precision and recall
for the Vietnamese dataset are extremely low than the US dataset which translates to almost
no bad loan applications were detected on the test set, which also means that the problem
of imbalanced class is more severe for the Vietnamese dataset compares with that of the US
dataset. Ensemble classifiers perform poorly both in homogeneous and heterogeneous settings.
First, there is no significant improvement using bagging ensemble in term of recall and precision.
Nevertheless, boosting methods including BoostedLR and BoostedDT show slight improvement
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Figure 4.1: PCA VN dataset: Loan Type 0 and 1 are the Non-Default and Default customers

Figure 4.2: PCA US dataset: Loan Type 0 and 1 are the Non-Default and Default customers
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on Precision and Recall but lower on the other performance metrics compared with their base
classifiers. Second, heterogeneous ensembles, despite presenting modest improvements in AUC,
AUPRC, and BS, they are struggle with extremely low Recall and Precision. This provides
supporting evidence for the low performance of corporate credit scoring models on the present
of high IDS.

Table 4.7: Performance of classifiers on the original dataset

AUC AUPRC BS P R

Panel 1: VN Dataset
LR 0.585 0.070 0.049 0.000 0.000
DT 0.589 0.070 0.053 0.015 0.053
SVM 0.555 0.061 0.049 0.000 0.000
MLP 0.547 0.073 0.049 0.000 0.000
BaLR 0.584 0.071 0.049 0.000 0.000
RF 0.590 0.074 0.049 0.000 0.000
BaSVM 0.495 0.054 0.049 0.000 0.000
BaMLP 0.582 0.075 0.048 0.000 0.000
BoLR 0.572 0.069 0.249 0.117 0.068
BoDT 0.580 0.070 0.135 0.014 0.046
SAE 0.610 0.083 0.053 0.000 0.000
HSE 0.587 0.072 0.049 0.000 0.000

Panel 2: US Dataset
LR 0.834 0.550 0.107 0.419 0.688
DT 0.841 0.566 0.101 0.578 0.654
SVM 0.875 0.688 0.087 0.568 0.769
MLP 0.873 0.661 0.090 0.624 0.702
BaLR 0.813 0.530 0.119 0.051 0.605
RF 0.920 0.765 0.075 0.682 0.793
BaSVM 0.855 0.628 0.111 0.163 0.863
BaMLP 0.851 0.637 0.103 0.367 0.827
BoLR 0.818 0.503 0.210 0.289 0.643
BoDT 0.905 0.703 0.153 0.666 0.714
SAE 0.903 0.725 0.093 0.565 0.834
HSE 0.891 0.706 0.084 0.624 0.754

Bold face and underline indicate the best and worst classifiers.

By contrast, with the imbalanced ratio of 17:83 for the US dataset, ensemble methods do provide
an uplift in performance especially in precision and recall. Heterogeneous ensembles also present
significant improvement in all metrics compared with the base classifiers. However, individual
classifiers have competitive performance, they have higher precision but lower recall compare
with bagging and boosting alternatives, with an exception from Random Forest. Random
Forest presents the best performance in 4 over 5 metrics compare with other classifiers.

Table 4.8 shows the ranking of classifiers in three sampling methods and five performance
measurements.

The non-parametric Friedman test statistics in Table 4.8 reject the null-hypothesis, and there
is significant difference between the classifier ranks for all metrics, I then proceed with the
Nemenyi post hoc test for the pair-wise comparison of all classifiers. Figure 4.3 presents the
critical differences:

The performance of the best classifier, RF, is significantly better than LR family, an industry
standard. SAE is better than BaggedLR and BoostedLR but not significantly better than LR.
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Table 4.8: Classifiers ranks

C AUC AUPRC BS P R AR FR

RF 1.4 1.5 2.4 2.0 3.5 2.2 1
SAE 1.8 2.1 4.4 4.4 2.5 3.0 2
HSE 5.4 5.1 3.9 7.2 6.8 5.7 3
BaMLP 6.0 4.8 6.6 6.6 6.8 6.2 4.5
BoDT 6.4 6.4 7.8 5.5 4.8 6.2 4.5
DT 7.6 9.4 7.1 4.5 6.1 7.0 6
MLP 7.6 6.2 7.2 6.6 8.6 7.3 7
SVM 9.0 8.6 4.0 8.8 7.1 7.5 8.5
BaSVM 9.2 8.0 5.6 9.7 4.9 7.5 8.5
LR 7.1 8.4 7.8 7.2 8.5 7.8 10
BaLR 7.9 8.2 9.6 8.2 9.1 8.6 11
BoLR 8.6 9.2 11.6 7.1 9.4 9.2 12
χ2

12 45.2 48.2 46.5 30.7 33.7
p 4e−6 1e−6 2e−6 1e−3 4e−4

AR and FR stand for Average Rank and Final Rank. We sort the classifier performance for the final rank decreasingly and we use
the average method in case of ties. Average rank is the mean rank of each classifier rank across performance measurements and
sampling methods. p is p-value of the non-parametric Friedman test statistics

Figure 4.3: Critical difference

We then perform p-value adjustment with Bonferroni-Dunn (Demar, 2006) procedure to com-
pare the best classifier with selected classifiers including a heterogeneous ensemble (SAE), a
tree-based (DT), a kernel-based (SVM), a network-based (MLP), and an industry-standard
(LR). Table 4.9 presents the adjusted p-values with Bonferroni-Dunn procedure.

Table 4.9: Comparison of RF with other classifiers

p-values (Bonferroni-Dunn (Demar, 2006) Procedure)

SAE DT SVM MLP LR

0.0538 0.0000 0.0000 0.0000 0.0000

Despite RF shows significant difference in the ranks compared with DT, SVM, MLP, and LR.
However, no significant difference in the ranks of RF and SAE is found.
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4.4.2 Effects of sampling methods

Table 4.10 provides more insights on the performance of sampling methods. There are no
significant differences in AUC and AUPRC by using these three sampling methods. This
provides evidence to the current debate using several metrics to compare different classifiers as
in Hand and Anagnostopoulos (2013).

Table 4.10: Two tail t-stat for performance of sampling compare with no sampling

AUC AUPRC BS P R

VN Dataset
UNDER -0.091 0.491 -9.065 -10.308 -6.736

0.929 0.628 0.000 0.000 0.000
OVER 0.499 0.259 -2.558 -3.734 -4.041

0.623 0.798 0.018 0.001 0.001
SMOTE -0.970 -0.884 -3.535 -7.133 -7.090

0.343 0.386 0.002 0.000 0.000
US Dataset
UNDER 0.731 1.611 -4.008 -1.420 9.477

0.473 0.121 0.001 0.170 0.000
OVER 1.328 1.354 -1.962 -0.310 3.513

0.198 0.189 0.063 0.760 0.002
SMOTE 0.095 0.480 -1.564 -2.005 4.578

0.925 0.636 0.132 0.057 0.000

Underline values indicate H0-no significant difference is rejected. Under each sampling method, we compare the performance with
no sampling setting, the first row presents the two-tail test statistics and the second row provides the accompanied p-values.

For the remaining three metrics, there are mixed results for two datasets, as for the VN dataset,
using sampling methods improves Brier Score, Precision, and Recall. However, it is not the
case for the US dataset when Recall decreases, this could be partially explained by the modest
degree of IDS for the US dataset. This suggests further generalised examination on the effects
of imbalance ratios to classifier performance.

4.5 Conclusions

This study provides recent evidence on the comparison of scoring models for corporate credit
risk modelling on several balancing strategies and performance measurements with two imbal-
anced corporate loan datasets. Specifically, this study examines under three sampling strategies
and five performance metrics the performance of 12 classifiers belong to linear-based, kernel-
based, tree-based, homogeneous ensemble-based, and heterogeneous ensemble-based classes.
The results first shows many classifiers tend to be overfitted toward the majority class through
the extremely low precision and recall. Second, as classifiers perform extremely poor for the
minority class - bad applications, it is advisable to have diverse measurements that center
effectively on (i) probability predictions and (ii) categorical prediction (i.e. on minority class).

On this merit, sampling methods could be employed to enhance categorical prediction and
using simple averaging method for heterogeneous classifiers could improve the performance.
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This suggests further works to focus on examining the performance of sampling methods with
different degree of imbalanced ratio and multi-source learning models.
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Chapter 5

Textual Analysis in Credit Risk

As of June 4th, an extended version of this chapter is accepted to present at ECML-PKDD2020.

5.1 Overview of Textual Data Sources

Using the Electronic Data Gathering, Analysis, and Retrieval (EDGAR) system, the United
States Securities and Exchanges Commission (SEC) requires listed US enterprises to file their
financial reports with the 10-Ks and 10-Qs forms for annual and quarterly reports, respectively.
In these forms, along with the detail financial accounting statements, enterprises need also
to include their Management Discussion & Analysis1 (MD&A), which is a forward-looking
statement. In that section, the top managers or the boards need to explain their company’s
performance, address the compliance & risks, and express their views on the company future
goals and projects.

Together with examining and monitoring the company performance through traditional finan-
cial statements, these textual data provide a rich-feature dataset that could be effectively ex-
ploited for understanding the evolution of embedded aspects in manager sentiment and further
assist on other predictive tasks. In addition, common predictive tasks such as stock return or
firm liquidations experience many limitations if they rely solely in accounting data because of
the corporate window dressing to enhance their credit or financial performance quality (Guan
et al., 2008; Gandhi et al., 2019), let alone the benefit of building supportive systems based on
the alternative data to complement the traditional predicting or scoring systems.

Most current works in the textual analysis in the financial industry were quantifying the textual
data to (i) form the predictors for future company financial performance by explaining the
manager sentiment and stock returns (Nguyen et al., 2015; Lopez Lira, 2019); (ii) understand

1https://www.sec.gov/corpfin/cf-manual/topic-9
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the role of investment analyst report (Huang et al., 2018); or (iii) improve the manager sentiment
tone understanding (Zhou, 2018). However, little works have been paid to understanding what
these predictors actually represent for and how they evolve through economic cycles and crisis.
Our study contributes to the current literature of textual analysis for the financial reports by
first uncovering the latent topics from the MD&A of the filings, and then further examining the
predictive power of those textual topics and investigating how they could improve the traditional
bankruptcy prediction methods. Specifically, by using Latent Dirichlet Allocation (Blei et al.,
2003) and Dynamic Embedding Topic Models (Dieng et al., 2019b), we find the hidden, yet
interpretable topics in the MD&A section and show that they are significant and deliver
comparable predictive performance just only using the MD&A textual data. More importantly,
the topics show effective complement role to the traditional z-score based bankruptcy prediction
model.

By and large, this study objectives are first to explore the hidden topics in the management’s
reflection on corporate business, then examine how the latent topics from textual data evolve,
and qualitatively on how the MD&A contents inline with market movement. By using more
than 20 years of textual data in the 10-K filings of US listed firms collected from EDGAR
from 1997 to 2016, we found that there are potentially 30 topics embedded in the MD&A
and illustrated their evolution overtime. Our study further enhances the industrial accounting-
based bankruptcy prediction model with the MD&A data, we demonstrate the significant of the
topics by a comparative experiment on the prediction of firm bankruptcy taking into account
of several well-known baselines both in financial-accounting and natural language processing
literature.

In what follows, we first present the relevant literature on the topic modelling and the textual
analysis in liquidation modelling in section 2. Section 3 devotes to the process of mining
MD&As, estimating the latent topics, summary of the data, and experimental settings. The
results are presented and discussed in section 4, and we conclude our work in section 5.

5.2 Backgrounds

In uncovering the latent topics embedded in textual data, the pioneer work of Blei et al. (2003)
introduced latent Dirichlet allocation (LDA) which uses the variational Bayesian inference
to infer the latent topics from large corpus. Then, based on an intuitive that the document
collections should reflect evolving content, Blei and Lafferty (2006) proposed the dynamic topic
models (DTM), which is a dynamic version of LDA to examine the evolution of topics overtime,
and showed the superior performance in term of likelihood for the hold-out dataset compare
with the traditional LDA. However, as existing topic models fail to learn interpretable topics
when working with large and heavy-tailed vocabularies, Embedding Topic Models (Dieng et al.,
2019a) (ETM) bridges this gap by utilising the word embeddings (skip-gram, Mikolov et al.
(2013a)). ETM incorporates the embeddings into the inference procedure of the traditional
LDA. Specifically, it combines traditional topic models with word embeddings and models each
word with a categorical distribution whose natural parameter is the inner product between a
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word embedding and an embedding of its assigned topic. ETM discovers interpretable topics
even with large, imbalanced vocabularies that include rare words and stop words.

To effectively model topic evolution in embedding spaces, Dieng et al. (2019b) further intro-
duced Dynamic Embedding Topic Models (DETM) which combines the ETM with DTM by
modelling each word with a categorical distribution parameterised by the inner product between
the word embedding and a per-time-step embedding representation of its assigned topic. The
DETM learns smooth topic trajectories by defining a random walk prior over the embedding
representations of the topics. DETM is fitted using structured amortized variational inference
with a recurrent neural network.

In applications of topic modelling for financial data, one of the most initial work in summarising
the textual financial data is from Bao and Datta (2014), where they employed the modified
LDA to fit the sentence level analysis with the assumption of one topic for each sentence. Their
empirical analysis focused on the risk-disclosure in the filings, and by unsupervised learning,
they found 30 risk types (topics), and among them there are new and significant risk types to
predict the risk perceptions of investors, significantly, they discovered five more important top-
ics compare with a large-scaled supervised learning in the work of Huang and Li (2011). In the
application of topic modelling in stock market analysis, Nguyen et al. (2015) utilised the sen-
timent analysis, specifically, they analysed the financial social media data using a combination
of topic modelling and sentiment classifier in predicting stock price movements, they showed
that their ensemble model achieves better performance in predicting stock price movements
compared with the traditional time series and human sentiment methods.

Recently, Zhou (2018) and Jiang et al. (2019) analysed and examined the relationship between
homogeneous and heterogeneous sources of financial texts and indicated that higher manager
sentiment followed by lower earnings disruption and higher investment growth. To our knowl-
edge, there are two works in examining the liquidation of firms by utilizing the textual data,
which are Gandhi et al. (2019) and Mai et al. (2019). The first one used sentiment words to ex-
amine the financial distress of the US banks, their findings suggested that more negative words
in the reports are related to a higher probability of distressed delisting subsequently, and the
latter employed deep learning model, specifically the convolutional neural network model, to
examine the gain in predictive power using the word embedding techniques. However, neither
the relationships between those sentiment words and the likelihood of liquidation have been
investigated for non-banking sector data nor how the topics in textual reports relate to firm
liquidation. In addition, since deep learning models is a black-box model which is very tricky
to decipher its feature-constructing process as well as its classification output, little works have
been devoted to the performance of classification models trained on more intuitive and inter-
pretable textual features, and relatively compare them with the traditional ones. Hence, to
better model how the latent topics from textual data evolve, and qualitatively analysing on
how the MD&A contents inline with market movement, we employ DETM both as a explorer
for hidden topic in MD&A of the financial filings, and as a feature engineering method for
enhancing the traditional bankruptcy prediction model by leveraging the textual data.
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5.3 Data and Methods

5.3.1 Data

Accounting data

In this study, we collect the accounting data from the Wharton Research Data Services (WRDS2)
for all listed firms in the US from 1997 to 2016, the detail statistics of their financial report
elements are presented in Table A.1 and A.2 of A. We exclude firms in the financial and regu-
lated utilities sectors with SIC from 6000 to 6999 and from 4900 to 4949, respectively. As for
the liquidation flags, a firm is marked as liquidation if it filed for liquidation under Chapter
7 or Chapter 11 bankruptcy filings3. We further divide the data for the small and medium
enterprises (SME), non-SME, and all samples. We regard a corporate to the SME category if
its sale less than or equal to $65 million (Altman and Sabato, 2007) which is in line with the
Basel Capital Accord4.

10-K filings

The raw filings of listed firms in the US could be retrieved from EDGAR5. After removing
Tables, Figures, attached PDFs, and other redundant elements, we extract the MD&A section
in each filing. We cover 10-K and 10-KSB (SB is for small business) filings in this study as
other types of filing either notice a delay in document filings (10-K405) or a transition of the
accounting period (10-KT and 10-K405T). We present the descriptive statistics of MD&A data
extracted from SEC filings in Table 5.1.

At the final stage, we merge the financial data and SEC filings by matching the CIK and the
fiscal year-end of financial reports. The final data consist of 51,128 firm-year observations, of
which 213 firms are liquidation (approximately 0.42%). Using the SME definition in Section 3
above, we have the number of liquidations under each business segment as follows:

5.3.2 Latent Dirichlet Allocation

LDA (Blei et al., 2003) is considered as a generative probabilistic model, it assumes that each
document in the corpus is represented as random mixtures over latent topics. Each topic is
characterized by a distribution over terms in a vocabulary. The generative process is shown in
Algorithm 1 where the meaning of each variable is described in Table 5.3.

2Licensed per subscription of Business School, The University of Edinburgh
3https://www.sec.gov/reportspubs/investor-publications/investorpubsbankrupthtm.html
4Basel Committee on Banking Supervision, June 2004.
5Electronic Data Gathering, Analysis, and Retrieval system - https://www.sec.gov/edgar/aboutedgar.htm
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Table 5.1: MD&As extracted from the filings

Year #MD&As #NF #unc #omitted #Sent. mean median #tokens

1997 8711 422 7 561 740208 85 64 47328
1998 8931 454 4 563 862791 96.6 73 51372
1999 8934 391 2 611 1044325 116.9 89 54665
2000 9508 458 8 580 1065612 112.1 79 57295
2001 9447 424 1 510 1131682 119.8 83 59454
2002 10179 434 2 806 1488084 146.2 89 64979
2003 11878 419 6 1236 2107816 177.5 117 74079
2004 12124 390 4 1496 2274859 187.6 115 76837
2005 12475 635 2 2016 2501571 200.5 120 81210
2006 12251 678 5 1863 2472559 201.8 135 81163
2007 12087 485 5 1840 2526728 209 145 83147
2008 11432 443 6 1470 2519519 220.4 156 83350
2009 9919 366 4 769 2525077 254.6 189 79620
2010 9165 190 3 676 2405854 262.5 199 78967
2011 8840 162 2 659 2290261 259.1 193 78147
2012 8393 175 1 693 2214756 263.9 195 75322
2013 8105 186 1 677 2183919 269.5 203 74772
2014 8084 184 1 751 2193408 271.3 202 76434
2015 7985 182 1 912 2181273 273.2 204 76066
2016 7589 158 2 1081 2077774 273.8 201 74669
2017 7248 184 1 1113 1931412 266.5 192 71713
Total 203,285 7,420 68 20,833 40,739,488

#MD&As is the total number of MD&As; #NF is the number of filings that do not have MD&A; #unc is the number of uncommon
MD&As that we are unable to trace the sections they begin or end with; #omitted is the number of filings that have the MD&A
section omitted; #Sent. is the total number of sentences of all MD&As; mean and median are the mean and median of number of
sentence in MD&As; #tokens is the total number of unique words in all MD&As.

Table 5.2: Number of liquidations in two corporate segments

non-SME SME All

1997 12 5 17
1998 11 9 20
1999 5 5 10
2000 8 4 12
2001 19 4 23
2002 21 14 35
2003 22 16 38
2004 13 13 26
2005 16 12 28
2006 7 10 17
2007 6 7 13
2008 7 5 12
2009 16 8 24
2010 2 3 5
2011 1 3 4
2012 5 3 8
2013 3 3 6
2014 3 0 3
2015 3 3 6
2016 1 5 6
Total 181 132 313
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Terms Description

M # documents in the corpus (constant scalar)
K # topics (constant scalar)
V # terms in vocabulary (constant scalar)
Nd length of the document d
α hyper-parameter for topic proportions

(vector in RK space or a scalar if symmetric)
β hyper-parameter for term proportion

(vector in RV or a scalar if symmetric)
θ topic mixture proportion for document m.

One proportion for each topic in the document
φ term mixture proportion for topic k.

One proportion for each term in the vocabulary
wd,n the term indicator for nth word in document d
zd,n topic assignment of nth word in the document d

Table 5.3: Notations and Terminologies for LDA Model

Algorithm 1 Generative Process of LDA

1: for each topic k ∈ [1,K] do
2: sample mixture proportion φ ∼ Dir(β)
3: end for
4: for each document m ∈ [1,M ] do
5: Sample mixture proportion φ ∼ Dir(α)
6: Sample document length Nm ∼ Poiss(.)
7: for each word n ∈ [1, Nm] do
8: Sample topic index zm,n ∼Mult()
9: Sample a term for word wm,n ∼Mult(φzm,n)

10: end for
11: end for
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The main objectives of LDA model is to infer (1) the term distribution p(t|z = k) = ~φk for

each topic k; and (2) the topic distribution p(z|doc = d) = ~θd for each document d. That
is, we are interested in determining the joint distribution of the topic mixtures Θ, the set of
topic assignment Z, the terms in corpus W, and the topic Φ, given the parameters α and β
determined by:

P (Z,Θ,Φ,W|α, β) =
K∏
i=1

P (φk|β)
M∏
d=1

P (θd|α)

Nd∏
n=1

P (zd,t)P (wd,n|φzd,n)

Equivalently, we need to compute the posterior

P (Z,Θ,Φ|W, α, β) =
P (Z,Θ,Φ,W|α, β)

P (W|α, β)
(5.1)

This distribution is intractable because of the calculation in denominator over all Z, Θ, and
Φ. Therefore, practitioners turn to approximate inference approaches. Two common possible
methods are variational inference (VI) and Markov chain Monte Carlo sampling (MCMC) (e.g.
Collapsed Gibb Sampling) (Hoffman et al., 2010). MCMC asymptotically approaches to the
true posterior distribution. However, it is computationally expensive. In contrast to MCMC,
VI tends to be faster and easier to scale to large data (Blei et al., 2017).

5.3.3 Evolution of topics in textual data

Blei and Lafferty (2006) introduced the dynamic topic model (DTM) which analyses the evo-
lution of topics in large document collections over time. The method is to use state space
models on the natural parameters of the multinomial distributions that represent the topics.
The author also derived the variational approximation algorithm based on Kalman filters or
non-parametric wavelet regression to estimate the posterior distribution over the latent topics.
Essentially, DTM is an extension to LDA to adapt with sequential documents. LDA assumes
that the word order within a document and the document order within the corpus are processed
as in the same priority. In DTM, words are still assumed to be exchangeable, but the document
order holds a vital role. Particularly, the documents are divided into groups by time slice (e.g.
quarters, half-years, years) and DTM assumed that the documents in each group come from
a set of latent topics that evolved from the ones in the previous time slice. In this paper, we
employ the online variational inference (Hoffman et al., 2010) for the textual data of bigram
tokens in our data to examine the optimal number of topics, we then use the dynamic embed-
ding topic model to capture the evolution of financial topics over time. In the next section, we
briefly review the main idea of dynamic topic model in embedding spaces.
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5.3.4 Topic modelling in embedding spaces

Existing topic models fail to learn interpretable topics when working with large and heavy-
tailed vocabularies. Embedding Topic Models (Dieng et al., 2019a) (ETM) bridge this gap by
utilising the word embeddings (CBOW, Mikolov et al. (2013a)):

wdn ∼ softmax(ρ>αdn). (5.2)

The embedding matrix ρ is a L × V matrix whose columns contain the embedding represen-
tations of the vocabulary, ρv ∈ RL. The vector αdn is the context embedding. The context
embedding is the sum of the context embedding vectors (αv for each word v) of the words
surrounding wdn.

And to effectively model the dynamic of topics in embedding spaces taken into consideration of
the imbalanced word distribution and topic evolution, Dieng et al. (2019b) introduced Dynamic
Embedding Topic Models (DETM) which inherits the strengths of the ETM and DTM by
modelling each word as a categorical distribution parameterised by the inner product of the
word embedding and a per-time-slice topic embedding.

Denote α
(t)
k as topic embedding (Dieng et al., 2019a) of the kth topic at time slice t. In DETM,

the probability of a word belongs to a topic is given by the (normalized) exponentiated inner
product between the word and the topic’s embedding at the corresponding time slice,

p(wdn = v|zdn = k, α
(td)
k ) ∝ exp{ρ>v α

(td)
k }. (5.3)

The topic embeddings evolve under Gaussian noise with variance γ2,

p(α
(t)
k |α

(t−1)
k ) = N (α

(t−1)
k , γ2I). (5.4)

The prior over θd depends on a latent variable ηtd , where td is the time slice of document d:

p(θd|ηtd) = LN (ηtd , a
2I) (5.5)

where p(ηt|ηt−1) = N (ηt−1, δ
2I) and LN denotes a log-normal distribution. And the generative

process of DETM is as follows:
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Algorithm 2 Generative process of DETM

1: Draw initial topic embedding α
(0)
k ∼ N (0, I)

2: Draw initial topic proportion mean η0 ∼ N (0, I)
3: for time step t = 1, . . . , T do

4: Draw topic embeddings α
(t)
k ∼ N (α

(t−1)
k , γ2I) for k = 1, . . . ,K

5: Draw topic proportion means ηt ∼ N (ηt−1, δ
2I)

6: end for
7: for each document d ∈ D do
8: Draw topic proportions θd ∼ LN (ηtd , a

2I).
9: for each word n in the document do

10: Draw topic assignment zdn ∼ Cat(θd).

11: Draw word wdn ∼ Cat(softmax(ρ>α
(td)
zdn )).

12: end for
13: end for

The inference procedure in DETM is also made possible by optimising the Kullback-Leibler
divergence of the approximation to the true posterior distribution p(θ, η, α|D), in addition, the
authors speed up algorithm via amortisation inference, an black box VI with the distribution
over the topic proportions q(θd|ηtd ,wd) parameterised by a neural networks (either recurrent
neural network or long short-term memory). In this paper, we employ DETM to create
the hidden-topic vector representation of the textual data and use them as input features
for predicting corporate bankruptcy.

5.3.5 Number of topics assessments

Identifying the optimal number of topic is of the most important task in topic modelling. We
compute the perplexity of a held-out test set to evaluate the model with different setting of
number of topics (Blei et al., 2003). The perplexity is monotonically decreasing in the likelihood
of the test data, and it is algebraically equivalent to the inverse of the geometric mean per-word
likelihood. A lower perplexity score indicates better generalisation performance. The perplexity
of test set Dtest of M documents is defined as follows (Blei et al., 2003; Řeh̊uřek and Sojka,
2010):

perplexity(Dtest) = 2

{
−

∑M
d=1 log[p(wd)]∑M

d=1
Nd

}
(5.6)

Since we cannot directly compute log[p(wd)], we compute the lowerbound of perplexity (Hoff-
man et al., 2010):

perplexity(ntest, λ, α) ≤ 2{−bound} (5.7)

where

bound =

∑
i(Eq[logp(ntesti , θi, zi|α, β)]− Eq[logq(θi, zi)])∑

i,w n
test
iw

(5.8)
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and ntesti denotes the vector of word count of ith document in a test set of M documents. The
per-word perplexity in Eq. 5.8 is obtained by computing the probability of each word in the
second half of a test document, conditioned on the first half.

5.3.6 Bankruptcy prediction feature sets

One of our experiment in this study is to examine to which extend, the hidden topics in MD&A,
once inferred, could help on leveraging the real-world practice in bankruptcy prediction. Thus,
along with our topic distributed representations, we compare the distributed representation of
MD&A with the industrial standard feature set in predicting corporate bankruptcy which is z-
score, we further relatively compare it with other baselines including (i) dictionary-based count
vectorisation based on a financial dictionary, and (ii) traditional word embedding. Particularly,
we construct the following feature sets:

• S1: Altman z-score with 5 factors (Altman, 1968) for the general corporate and 5 factors
for the SMEs (Altman et al., 2010) bankruptcy prediction

• S2: Dictionary-based count (relative to length of MD&A) vectorisation of the sentiment
wordlists in Loughran and McDonald, 2011 (Loughran and Mcdonald, 2011)

• S3: Distributed representation of MD&A using doc2vec (Le and Mikolov, 2014)

• S4: Topic representation for the MD&A using LDA model

• S5: Topic representation for the MD&A using DETM model

Specifically, the feature sets in S1 and S2 are as follows:

Table 5.4: Altman’s 5-factor

Notation Formula

Panel I z-score 5-factor (Altman et al., 1977)
Z1 Working Capital / Total Assets
Z2 Retained Earnings / Total Assets
Z3 EBIT / Total Assets
Z4 Market Value of Equity / Total Liabilities
Z5 Sales / Total Assets

Panel II SME 5-factor (Altman et al., 2010)
A1 Cash Flow from Operating Activities / Current Liabilities
A2 Short Term Debt / Equity Book Value
A3 Cash / Total Assets
A4 EBIT / Interest Expenses
A5 Account Receivable / Liabilities
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Table 5.5: Loughran and Mcdonald (2011) wordlists

Wordlist Sample words

Positive enthusiastically, assures, improve, empower, complimented
Negative investigating, complaining, confusion, severe, exculpations
Uncertainty risking, anticipated, hidden, unobservable, imprecision
Litigious prosecute, referenda, presumptively, licensable, sequestrator
Modal Strong highest, strongly, will, unequivocally, lowest

5.3.7 Experimental setup

We filter words with document frequency above 70%, as well as standard stop words from a
list. Additionally, we remove low-frequency words that appear in less than 10 documents. To
determine the number of topics, first we run 10 epochs of the traditional LDA model with online
learning (Hoffman et al., 2010) for all MD&As, the number of topics ranging from 10 to 100,
and we compute the perplexity on a hold-out dataset to determine the optimal number of topics.
We then run the LDA and DETM using full dataset of 21 years from 1997 to 2017 to examine
the topics and their evolution. Finally, we set the predictive scenario as out-of-sample and
out-of-time prediction commonly used in credit risk. Specifically, a moving temporal window
of 10 years of data is used to train the logistic regression with l2 regularisation, and the next
year as the test data. For example, the data from 1997 to 2006 will be used to train and then
predict the bankruptcy in 2007 data. After that, the training and testing window will shift
ahead one year and we repeat the whole process. The final performance is reported for each
year and averaged for all years as shown below.

For the DETM, we follow Dieng et al. (2019b) to set the following components:

Table 5.6: DETM settings

Component Setting

Word2Vec (Mikolov et al., 2013b) Skip-gram, 300 dimensions
Batch size 200
Activation ReLU
Number of hidden layers 2 (800 nodes for each layer)
Drop-out 0.1
Epochs 100

At the final stage, we employ logistic regression with l2 regularisation and inverse strength λ
ranging from 0.001 to 0.01 (the smaller the λ the stronger the penalty to less influential features).
Despite being simple, logistic regression is an industrial standard in bankruptcy prediction and
is proved to give comparable performance with other advanced classifiers (Lessmann et al.,
2015; Altman et al., 2017), and more importantly it is straightforward to explain its predictors.
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5.4 Experimental Results and Discussions

5.4.1 Number of topics

As stated in Section 3, we find the optimal number of topics based on the bound of the perplexity
of the second half of the test set conditioned on its first half. Figure 5.1 presents the bounds for
different settings of number of topics ranging from 5 to 100, each LDA model (Hoffman et al.,
2010) is trained using asymmetric α learned from corpus, 10 epochs, and maximum number of
iterations through the corpus when inferring the topic distribution of a corpus is 100.

Figure 5.1: Bound of perplexity on the test set

There is a sharp dip in k = 30 which shows that the perplexity is deteriorating, and it is
encouraging that the possible number of topics could be 30. Based on this number of topics,
we estimate the full topic models for topic exploration task and moving-window based topic
models for bankruptcy prediction task.

5.4.2 Topics in MD&A and their evolution

MD&A, as discussed in Section 1, is of important source of corporate information which
reflects not only its past and current financial strength but emphasises the significant of the
new products, services, collaboration projects, strategic partners, potential M&A deals, etc.
However, our study, to the best of our knowledge is the first to utilise this large-scale dataset to
provide an meaningful representation overtime of hidden topics using unsupervised methods.
We present some significant topics inferred through both LDA and DETM models using
wordcloud, the size of each word is plotted based on the word probability in a topic as follows:

The wordclouds in Fig. 5.2 shows some related, interesting words to name topics such as
partnerships, research&development, energy price, investment loss, sale&store, tax&currency
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Figure 5.2: Topics discovered by LDA

rate. This shows that our approach using topic modelling is effective to uncover the hidden
topics in the management discussion and analysis of the corporate filings. For the full list of
topic wordclouds, please refer to Fig. A.1, A.2, and A.2 of Appendix A.

One of the essential follow-up concerns that might attract the policy makers and macroe-
conomists is how these topics evolve through the market cycles. We provide further explanation
to this question by using DETM which can leveraging the word embedding with smooth transi-
tion of topics overtime. This is made possible by plotting the tensor β = softmax(ρ>α) of words
in a topic over all time slice of our data. The following Figure presents the evolution of words
in their associated topic. Specifically, in investment loss topic, words associated with financial

Figure 5.3: Evolution of topics
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crisis such as ‘recession’, ‘turmoil’, ‘tightening’, and ‘unemployment’ show strong movement
correlation and peak at the crisis period accordingly; the word ‘collaboration’ is progressing in
topic product development where as ‘patent’ and ‘license’ share their top weights; along with
the decreasing of ‘coal’ following the sharp decline in coal production in 20156, the weights of
renewable sources such as ‘wind’ or ‘solar’ are increasing in energy topic; and the consumer
product topic reveals the competition of several main electronic device producers over the last
two decades, partially reflecting their up and down as well as their current positions in the US
market.

We then proceed to examine to which extend the topic distributed representation of the MD&A
section in 10-K filings could help on bankruptcy prediction task in the section below.

5.4.3 Predictive performance

In this prediction task, we compare the topic representation of MD&A using both LDA and
DETM with three baselines: z-score from Altman (Altman et al., 2017), dictionary-based
count of sentiment words based on the dictionary of Loughran and McDonald (Loughran and
Mcdonald, 2011), and doc2vec (Le and Mikolov, 2014). We use three performance metrics which
are area under the ROC curve (AUC), area under the precision-recall curve (AUPRC), and
Brier score (BS). The first metric is commonly employed in assessing predictive performance,
however, in the classification task with extremely imbalanced data, this might not present the
general view on classifier performance because of the high prevalence of the majority class,
and AUPRC is recommended by several research in credit risk modelling (Davis and Goadrich,
2006; Crone and Finlay, 2012; Garca et al., 2019). Particularly,

AP =
∑
n

(Rn −Rn−1)Pn

where Pn and Rn are the precision and recall at the nth threshold. With naive random predic-
tions, the AP is just the percentage of positive classes. The third metric is a distance between
the predicted probability and true label, and is regarded as a cost function, the lower the score
is the better the prediction.

We present the performance of the five feature sets from 2007 to 2016 in Fig. 5.4a to Fig. 5.4c.
Each point in the graphs is the mean value of 5-fold grid-search for best λ, then the overall
performance for the entire period is reported in the parentheses of associated labels. While the
Brier score shows no significant difference as expected because of our extremely imbalanced
data, the AUC and AUPRC reveal some noticeable results.

First, for both AUC and AUPRC, despite trained on the same text corpus, the topic mod-
elling approaches present superior performance compared with dict-based count vectorisation

6“U.S. coal production dropped by more than 10% in 2015 to 897 million short
tons, the lowest production level since 1986”, US Energy Information Administration,
https://www.eia.gov/todayinenergy/detail.php?id=28732, Retrieved 3rd July, 2020
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(a) AUC (b) AUPRC (c) BS

Figure 5.4: Performance of classifier

or distributed representation using skip-gram, one possible explanation for this is these two
approaches do not have the topical structure for the input text data, hence the lower predictive
performance. Second, in terms of AUC, the topic representations (LDA and DETM) provide
comparable performance with z-score although they do not use any numerical, demographic, or
financial accounting data (83% compared with 84%). In AUPRC, the DETM model produces
the features as good as z-score in predicting bankruptcy (0.097 and 0.103).

The seemingly reverse performance trend of LDA topical feature set and z-score suggests that
their combination could benefit the classifier. We then examine the improvement in utilising the
topical features along with traditional accounting features by a simple concatenation of both
feature sets. The predictive power of combined feature set is compared with z-score features
using the same performance measures in the following Table 5.7 and 5.8:

Table 5.7: Comparison of z-score and combined feature set using LDA

z-score

AUC AUPRC BS

2007 0.8217 0.0110 0.0028
2008 0.7946 0.0525 0.0072
2009 0.8179 0.0023 0.0005
2010 0.9268 0.0459 0.0013
2011 0.7850 0.0756 0.0025
2012 0.8271 0.0036 0.0009
2013 0.7039 0.0203 0.0013
2014 0.8299 0.0098 0.0027
2015 0.9887 0.3044 0.0029
2016 0.9756 0.5098 0.0010

Mean 0.8471 0.1035 0.0023

LDA + z-score

AUC AUPRC BS

2007 0.8231 0.0250 0.1501
2008 0.8744 0.0936 0.1644
2009 0.8412 0.0027 0.1666
2010 0.9710 0.1298 0.1363
2011 0.8165 0.0947 0.1315
2012 0.9242 0.0145 0.1544
2013 0.8075 0.0061 0.1510
2014 0.8609 0.0283 0.1544
2015 0.9599 0.1429 0.1630
2016 0.9717 0.1088 0.1464

Mean 0.8850 0.0646 0.1518

Despite a small average increment in AUC of 1.55% for using DETM, we observe better
enhancement in AUC of 3.89% by using LDA to build MD&A representation, however, there
are declines in BS for LDA and in AUPRC for both combinations. The proposed combinations
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Table 5.8: Comparison of z-score and combined feature set using DETM

z-score

AUC AUPRC BS

2007 0.8217 0.0110 0.0028
2008 0.7946 0.0525 0.0072
2009 0.8179 0.0023 0.0005
2010 0.9268 0.0459 0.0013
2011 0.7850 0.0756 0.0025
2012 0.8271 0.0036 0.0009
2013 0.7039 0.0203 0.0013
2014 0.8299 0.0098 0.0027
2015 0.9887 0.3044 0.0029
2016 0.9756 0.5098 0.0010

Mean 0.8471 0.1035 0.0023

DETM + z-score

AUC AUPRC BS

2007 0.8765 0.0274 0.0028
2008 0.8651 0.0785 0.0071
2009 0.7241 0.0016 0.0005
2010 0.9715 0.1485 0.0013
2011 0.7835 0.0650 0.0025
2012 0.9483 0.0459 0.0008
2013 0.7033 0.0047 0.0013
2014 0.8322 0.0102 0.0027
2015 0.9586 0.2456 0.0028
2016 0.9730 0.0382 0.0010

Mean 0.8636 0.0666 0.0023

are actually worse than the traditional z-score in 2015 and 2016 performance wise when z-score
achieved almost perfect AUC of 99% and 98%, respectively.

One of limitations here is that, despite our corpus is all 10-K filings from EDGAR system,
the coverage of our corpus is just merely 20 years, which apparently does not include many
important economics cycles hence hardly makes the evolution of topics distinguishable when
we query the similarity of MD&As in our corpus. We believe sub-sequence research in this
avenue will bring more interesting results as more data gathered.

5.5 Conclusions

Understanding management discussion and analysis will help the investors and policy markers
to response better to corporate business changes and future prospects. And by utilising the
topic modelling approaches on more than 198k filings with 38M words, we found 30 topics em-
bedded in the MD&A which reflect important business aspects such as ‘energy’, ‘partnership’,
‘research and development’, ‘loan and interest rate’, and so forth. In addition, the evolution
of words in topics are inline with crucial economics events such as the financial crisis, the big
reduction in coal production in 2015, or the competition of electronic devices producers. Cru-
cially, when the problem of window dressing to make the credit quality better become popular
not only in financial sector but also in other sectors (Guan et al., 2008; Gandhi et al., 2019),
there are increasing needs for employing alternative data to complement with traditional scor-
ing methods, especially the data that reliably represent the forward-looking or future prospect
of the businesses. We made this possible in out-of-time and out-of-sample prediction scenario
by first examining the predictivity of textual feature built from MD&A, and we showed that
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they provide comparable performance with industrial standard using z-score. Second, by sim-
ply concatenating the textual features and z-score features, we could improve the bankruptcy
prediction methods.

There are potential extensions based on our current limitations, first is to employ more textual
data to reflect better the economic cycles, then, to employ balancing treatments such as over-
sampling and undersampling to tackle the severe imbalance classes. Other research could devote
to investigate better combination of textual features with traditional features or to examine
different training coverage to optimise the prediction performance.
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Chapter 6

Sentiment Analysis of Textual Data

As of July 3rd 2020, an extended version of this chapter is accepted for publication at Journal
of Operational Research Society.

6.1 Introduction

This study contributes to the current literature of understanding tone in the financial filings.
This chapter presents a textual analysis for the default prediction by proposing new features
from word-level textual data of the filings, and then demonstrates the competitive predictive
power of those textual features. Specifically, we search for sentiment words in a sentence of
MD&A, radiate to sentence level based on a dictionary-based financial sentiment classifier
and averaging the overall sentiment of an MD&A. This study then compare the predictive
performance of traditional models built on accounting data with the ones trained on textual
data. The results not only present the significance and the comparable predictive power of
textual features but also demonstrate that the combined model built on both types of data
could significantly improve both model fitness and model predictivity power. The experiments
are carried under three data segments, with three treatments for the imbalanced dataset (IDS),
and with six predictive power metrics measured using both stratified k-fold cross validation
and one-year-ahead prediction. In what follows, we first present the relevant literature on the
default classification models and the textual analysis in credit risk modelling in section 6.2.
Section 6.3 devotes to the process of mining MD&As, forming textual features, and comparing
frameworks. The data and experiment results are presented in section 6.4 and 6.5, and we
conclude this work in section 6.6.
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6.2 Related Works

Regarding the employed features for the classifiers, Altman (1968) z-scores are well-known
features in building corporate default prediction models. Further extension are also made for
the small and medium enterprises (SMEs) such as in Andreeva et al. (2004); Altman and
Sabato (2007); Altman et al. (2010) by using other financial and macroeconomics features, or
Andreeva et al. (2016) by using the generalised extreme value models. Accordingly, different
financial institutes might use different feature set for their credit risk models, depend on their
risk apatite. At the current stage, the traditional models are pretty mature and most of them
are built on numerical and historical data, and there are in need of works on forming new
features, especially those based on text data with their sentiments, to assess credit risk. Hence,
it is desirable to have a comparison for the predictive power of other alternative features built
from textual analysis with the traditional features.

At the same time, there are several works on quantifying the textual data of the filings into
meaningful predictors for predicting future company financial performance (Healy et al., 1999;
Lawrence, 2013), or stock returns (Kraus and Feuerriegel, 2017; Zhou, 2018). In the pioneering
work of Loughran and Mcdonald (2011), they built a dictionary with six wordlists that offers
more accurate tone for financial text compare with the traditional Harvard Dictionary. Based
on this dictionary, Engelberg et al. (2012) showed that public news provides valuable trading
chances for competent information processing short sellers; Bonsall et al. (2017) created a new
financial reporting readability measure and showed that firms with improved readability of their
filings have better ratings, lower bond rating disagreement, and lower cost of debt.

More recently, Zhou (2018); Jiang et al. (2019) analyzed and examined the relationship between
homogeneous and heterogeneous sources of financial texts and indicated that higher manager
sentiment followed by lower earnings disruption and higher investment growth. To our knowl-
edge, the are two closest works in predicting the default companies utilizing the textual data,
which are Gandhi et al. (2018) and Mai et al. (2019). The first one used sentiment words to
examine the financial distress of the US banks, their findings suggested that more negative
words in the reports are related to a higher probability of distressed delisting subsequently, and
the latter employed deep learning model, specifically the convolutional neural network model,
to examine the gain in predictive power using the word embedding techniques. However, the
relationships between those sentiment words and the likelihood of default have not been inves-
tigated for non-banking sector data, and further augmented with the classification performance
for out-of-time and out-of-sample data. In addition, since deep learning models, in general, is
a black-box model which is very difficult to interpret its feature-constructing process as well
as its classification output, little works have been devoted to the performance of classification
models built on the simple, yet intuitive textual features, and relatively compare them with
the traditional ones.

By and large, this study uses textual data in the 10-K filings of US listed firms collected from
EDGAR from 1997 to 2017 to examine how could textual data help to predict the default-
/liquidation firms. We separate our analysis to different segments of the corporate data to
investigate the relationships of the textual features with the corporate probability of default
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and we further examine their predictivity powers on both cross validation and one-year-ahead
prediction.

6.3 Experimental Settings

As logistic regression is the most well-known model for credit scoring modelling thanks to its
simplicity and interpretability (Lin et al., 2012), we employ the logistic regression for estimation
and prediction of the baseline, text, and combined model. And as z-score (Altman, 1968) is
the most commonly used model for bankruptcy prediction on both normal corporate and small
businesses (Altman and Sabato, 2007; Altman et al., 2010), we use the Altman factors for
constructing the baseline models. We then detail, for the text and combined model, how
we form the textual features with counting mechanism and dictionary-based classifier using
a financial sentiment dictionary. And we also present six performance metrics we employ for
comparing the baseline models with the combined models. All of the experiment results are
presented for the small and medium enterprises (SME), non-SME, and all samples. We regard a
corporate to the SME category if its sale less than or equal to $65 million (Altman and Sabato,
2007) which is in line with the Basel Capital Accord1.

6.3.1 Financial ratios

I follow Altman (1968) and Altman et al. (2010) to calculate the z-score factors and the other
five factors designed specifically for the small businesses, respectively. Detail formulas of these
factors could be found on Table 5.4 of Chapter 5.

6.3.2 Financial wordlist

Loughran and Mcdonald (2011) showed that some words which are negative in Harvard IV
dictionary2 are actually neutral or even positive in the financial context, such as cancer, depre-
ciation, liability, and so forth. To mitigate the proxy for industry or other unintended effects
in using the general sentiment dictionary, they proposed six wordlists (LM): positive; negative;
uncertainty; litigious; strong modal; and weak modal words3. It should be noted that at the
time we assess these wordlists, the uncertainty wordlist includes all words in the weak modal
wordlist. The randomly 5 words for each wordlist are as follows: (similar with Table 5.5 of
Chapter 5)

Using this wordlist, Loughran and Mcdonald (2011) found that firms using more positive,
negative, or modal strong words (i.e. stronger language) are more likely to reveal a material

1Basel Committee on Banking Supervision, June 2004.
2Available at http://www.wjh.harvard.edu/ inquirer/homecat.htm, accessed September 25th, 2019
3Available at http://www.nd.edu/mcdonald/Word Lists.html, accessed September 25th, 2019
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Table 6.1: The Loughran and Mcdonald (2011) wordlists

Wordlist Sample words

Positive enthusiastically, assures, improve, empower, complimented
Negative investigating, complaining, confusion, severe, exculpations
Uncertainty risking, anticipated, hidden, unobservable, imprecision
Litigious prosecute, referenda, presumptively, licensable, sequestrator
Modal strong highest, strongly, will, unequivocally, lowest
Modal weak occasionally, perhaps, somewhat, suggest, nearly

weakness in their internal controls. These wordlists are also showed to have relations with the
subsequent market reactions such as trading volume, unexpected earnings, and stock return
volatility (Elshandidy et al., 2018). Motivated on these wordlists, we present in section 6.3.4 how
we form the textual features using counting sentiment words and counting sentiment sentences
with dictionary-based classifier.

6.3.3 Dictionary-based sentiment classifier

The main role of a sentiment classifier is to determine the polarity of a document as positive,
negative, or neutral. And the document in this research is a sentence of the MDA. More fine-
grained categories could be use such as strongly positive, weak negative, and more sophisticated
sentiment classifiers could be employed such as deep learning models including recurrent neu-
ral networks, long short-term bi-directional neural networks, or convolutional neural network
(Peji Bach et al., 2019). However, they require a large amount of annotated data to work
effectively, which is costly to obtain especially in the financial domain. Hence, having the sen-
timent wordlists for the financial domain, we resource to dictionary-based sentiment classifier
to examine how the textual features built on it could help on predicting corporate default.

Dictionary-based (or rule-based) sentiment classifier uses several rules to calculate the sentiment
score using sentiment words from a lexicon or wordlist. Each word in a sentence will be assigned
a sentiment score based on its corresponding sentiment wordlist. When a negation word or
constrastive conjunction word appears preceding that word within a pre-defined distance, e.g
three words, its polarity is flipped or switched. Then, using majority voting, a sentiment class
is determined for each sentence. Specifically, positive words are assigned +1 sentiment scores,
while negative and uncertainty words are assigned -1 scores, the sentence sentiment will be
calculated based on the aggregate score adjusted for a set of rules. In this study, we employ
three simple rules inspired by Hutto and Gilbert (2014), based on Loughran and Mcdonald
(2011) financial wordlists, as follows:

1. assess the negative and positive lexicons in a sentence, and determine the sentence polarity
by majority voting,

2. consider the shifting of sentiment with contrastive conjunctions such as ‘however’, ‘but’,
‘despite’, ‘neither’ and so forth, and

3. examine the tri-gram preceding the lexical feature for modifying the valence of a word.
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Formally, lets dict lex = {key : value} be a dictionary of lexical features with key is a nega-
tive or positive word in the LM wordlist and value is -1 or 1 for negative or positive words,
respectively; dict da = {key : value} denotes a dictionary of degree adverbs where key is a
uncertainty or strong-modal word in the LM wordlist and value is -0.5 or 0.5 for uncertainty or
strong-modal words, respectively; list cc denotes a list of contrastive conjunction words. The
dictionary-based financial sentiment analysis algorithm 3 is as follows:

Algorithm 3 Dictionary-based financial sentiment analysis
Input: s = {w1, w2, .., wm}, a financial sentence of m words.
Parameter: n, n-gram preceding a lexical feature.
Output: score, a weighted composite sentiment score.

1: initiate sentiment list sentiment← [ ]
2: for each word wm ∈ s do
3: initiate valence of wm, val(wm)← 0
4: if wm ∈ dict lex then
5: val(wm)← dict lex[wm]
6: end if
7: for i ∈ [1, n] do
8: if wm−i ∈ dict da then
9: modify val(wm)

10: end if
11: end for
12: add val(wm) to sentiment list.
13: end for
14: if a word wm ∈ list cc then
15: update sentiment list
16: end if
17: normalise the total score as composite score from sentiment list.
18: return score

We validate the performance of this dictionary-based financial sentiment classifier with thresh-
old set at 0.05 by the gold standard of 2264 annotated financial phrasebanks4 from Malo et al.
(2014). Setting a threshold at 0.05 means that a sentence that has score ≥ 0.05 is classified
as positive, score ≤ −0.05 is classified as negative, and −0.05 < score < 0.05 is classified as
neutral. Table 6.2 presents the performance summary:

Table 6.2: Performance of dictionary-based financial classifier

Accuracy 0.7380

Negative Sent. Positive Sent. Neutral Sent. Total

precision 0.5779 0.7913 0.7289
recall 0.8161 0.7952 0.5546
f1-score 0.6759 0.7930 0.6284
support 303 570 1391 2264

Performances are averaged from 10 random splits of the financial phrasebanks.

4English news on all listed companies in OMX Helsinki
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The performance is comparable with linearized phrase-structure sentiment classifier proposed
by Malo et al. (2014) and better than other non-financial dictionary based classifiers, and
support vector machine classifier presented in that same research. Despite showing high recall
for negative sentences, our classifier is somewhat conservative because it presents a low precision
of 58% which translates to almost 42 sentences predicted negative are not truly negative out
of 100 negative-predicted sentences from our classifier. Table 6.3 reveals some errors among
wrongly predicted classes for 18% true negative sentences:

Table 6.3: Error in negative sentence prediction

ID Negative Sentence Predict

29 Profitability (EBIT%) was 13.6 % , compared to 14.3% in Q2 2009. 1
31 Shares in Royal and Sun Alliance continued to slide back from a 12-month high of 172p last month... 1
38 Return on investment ROI was 4.1% compared to 43.8% in the first half of 2008 0
45 Diluted earnings per share ( EPS ) stood at EUR 0.25 versus EUR 0.42 0
69 Marimekko Oyj posted a net profit of 7.99m EUR for 2006, compared to 8.4m EUR for 2005 1
75 Operating profit was EUR 1.6 mn in 2005 compared to EUR 5.9 mn in 2004. 0

141 Uponor OYJ cut its full-year sales growth forecast to 6 pct from 10 pct , blaming tough conditions... 1
277 In the building and home improvement trade, sales decreased by 22.5% to EUR 201.4 mn 1

The majority of errors originate from (i) the inability to detect changes in numbers and time
expressions in the sentence as in sentences 29, 38, 69, and 75, (ii) unable to detect context
as in sentences 45 and 141, and (iii) mismatched lexicon items as in sentences 31 and 277.
This suggests further developments to fix the shortcomings of the current models, a possible
approach might focus on the contextual analysis and is beyond the scope of this current study.

6.3.4 Textual features

We then form the following textual features:

1. In the entire filing: Percentage of negative, positive, uncertainty, litigious, modal
strong, and modal weak words, namely: pneg, ppos, punc, plit, pmods, and pmodw. An
sentiment feature (senti) is also computed by taking the difference between ppos and
pneg.

2. In the MDA section: Count of negative, positive, uncertainty, litigious, modal strong,
and modal weak words, namely NEG, POS, UNC, LIT, M1, and M3.

3. In the MDA section: Percentage of negative, positive, and neutral sentences namely
PCNEG, PCPOS, and PCNEU using our dictionary-based classifier defined above.

These textual features will be used as row labels as illustrated in following Table 6.4 that could
be automatically generated by our textual analysis framework:
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Table 6.4: Textual features

CIK Filing ID pneg ppos ... PCNEG PCPOS ...

151629 6 0.011 0.025 ... 16 23 ...
708788 17 0.002 0.067 ... 54 71 ...

CIK - Central Index Key is the corporate ID given by SEC.

6.3.5 Predictive measurement

Regarding the model performance for predicting default/liquidation firms, along with the well
know area under the ROC curve (AUC), it is advisable to have measurements that capture
different aspects of the classifiers, especially with the present of IDS. Together with recall
and precision, Davis and Goadrich (2006) proposed to use Area Under Precision-recall Curve
(AUPRC) when we perform classification with an IDS and want to concentrate on the positive
examples, the default corporates. Specifically, sensitivity is directly influenced by class imbal-
ance, whereas True Positive Rate only depends on positives. In addition, some practitioners
might pay more attention to recall value as in the total number of predicted bad corporate
loan applications, how many of them are actually bad as bad loans could easily wipe out all
the profit of entire loan portfolio. We also include the Brier score to assess the accuracy of the
scorecards probability predictions.

6.4 Data

6.4.1 Financial data

In this study, we also collect the accounting data from the Wharton Research Data Services
(WRDS) for all listed firms in the US from 1997 to 2017, similar as in Chapter 5 but with
updated company info up to 2017 financial year. Based on these elements, we impute for the
missing observations using multiple imputation using chain equations - MICE (Buuren and
Groothuis-Oudshoorn, 2011) and calculate the 5-factor z-score (Z1 to Z5) as Altman (1968)
and 5-factor as Altman et al. (2010) (A1 to A5) to proxy for the financial accounting features
for the non-SME and SME samples, respectively. We also exclude firms in the financial and
regulated utilities sectors with SIC from 6000 to 6999 and from 4900 to 4949, respectively. As
for the default flags, a firm is marked as default if it filed for liquidation under Chapter 7 or
Chapter 11 bankruptcy filings5 in the 8-K form.

6.4.2 10-K filing

This study also use the same textual data presented in Table 5.1 of Chapter 5.

5https://www.sec.gov/reportspubs/investor-publications/investorpubsbankrupthtm.html
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The number of defaults under each SIC category is as follows:

Table 6.5: SIC categories

Range Division Category Count Number of defaults

0100-0999 Agriculture, Forestry and Fishing SIC 0 404 2
1000-1499 Mining SIC 1 5032 23
1500-1799 Construction SIC 2 1091 3
2000-3999 Manufacturing SIC 3 39627 107
4000-4999 Transportation, Communications SIC 4 4798 41

At the final stage, we merge the financial data and SEC filings by matching the CIK and the
fiscal year-end of financial reports. The final data consist of 51,128 firm-year observations, of
which 176 firms are default (approximately 0.34%). Using the SME definition in Section 3
above, we have the number of defaults under each business segment as follows:

Table 6.6: Number of defaults in two data segments

Default Business Type Count Percentage(%)

False non-SME 28980 99.612
SME 21972 99.714

True non-SME 113 0.388
SME 63 0.286

And the number of defaults for each year is illustrated in Figure 6.1 where we plot three trend
lines for the SME, non-SME, and all samples. By matching with the SEC filings data, we
do not have any default observations in 2010 for the entire sample, in 2010 and 2013 for the
non-SME samples, and in 2010, 2011, and 2016 for the SME sample.

6.4.3 Missing data and correlation

As for the missing data (c.f Appendix), for the financial elements from financial statements,
ipodate has the highest percentage of missing values of more than 50%. The total market value
mkvalt has 11% missing values and the remaining elements have less than 10% missing data.
For Altman’s factors, we find A4 for SMEs has approximately 16.5% missing data while for
the remaining 9 factors, missing data consist of around 1%. These observations show that the
missing data problem is not severe in our case, we proceed with the multiple imputation using
chain equations (Buuren and Groothuis-Oudshoorn, 2011) to impute for the missing values.

In terms of the correlation of both Altman’s and textual factors, we present the pair-wise
correlation plots in Appendix B.1 while the Altman’s factors showing low correlation, we notice
the significant correlation coefficients between the three groups of textual features which built
on the MDA section. In the seven features belong to the counting of sentiment words for the
entire filing, the percentage of negative words (PCNEG) highly and negatively correlates with
senti. All the counting for sentiment words and sentiment sentences are highly correlated in the
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Figure 6.1: Number of defaults for each segment

remaining three groups of features dedicated to the MDA section only. One possible explanation
for this is, since they are all intrinsic variables which are basically different manifestations of
the same underlying, immeasurable latent variable of the filing sentiment, we would expect
a high correlation between them. To account for multicollinearity, we conservatively choose
the following textual features to enter to our final models: features relating to the percentage
of LM wordlists in the entire filings, consist of ppos, plit, pmods, pmodw, punc, senti, we
exclude pneg and pmodw because they strongly correlate with senti and punc; difference of
percentage of positive and negative words in MDA relative to the total number of words of
the filing (SENTI MDA); percentage of negative and percentage of positive sentences in MDA
(PCNEG and PCPOS ). We notate the textual features measured based on the entire filing
using normal characters while for the ones measured based on the MDA section only we use
the capital letters for ease of differentiation.

6.5 Empirical Analysis

In this section, we present the comparison of the regularised logistic regression models fitted
for (i) the financial features only, (ii) the textual features only, and (iii) the combine features
in Table 6.7 and Table 6.8. The performance measured in terms of the predictive power are
presented in Table 6.9 where we show the performance of the traditional financial factors and the
combined models using six performance metrics under both 10-fold stratified cross validation
and one-year-ahead prediction.
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6.5.1 Regression

The regression results in Table 6.7 and 6.8 below show the regression results for SME vs non-
SME samples and SME vs all samples, respectively. Each table presents three models fitted
using the logistic regression with regularisation, we control for the number of employees (EMP),
size measured in terms of logarithm of the squared total assets (LNATSQ), return on assets
(ROA), return on equity (ROE), and industry (SIC), and taking 1-year lag in the regression
models. The lasso hyperparameter of regularisation strength is defined by cross-validation on
finding the highest R2 and the lasso regularisation path plots for SME, non-SME, and all
samples are presented in Figure B.3, B.4, and B.5 of Appendix B.2, respectively. Altman
is the model fitted using the financial features computed as Altman (1968) for the non-SME
samples and as Altman et al. (2010) for the SME samples; Text is the model fitted using the
textual features which are described in subsection 6.3.4; and the final model, Combined, is
fitted using both Altman’s factors and textual features.

Regarding the significance of financial features, our results are in line with the current literature
of corporate default/liquidation modelling (Altman et al., 2010). Besides, the textual features
are significant and modestly improve the model fitness. As for the SME sample, the percentage
of uncertainty words and senti are both significant and negative, the higher the percentage of
uncertainty words, and the higher the difference between the number of positive and negative
words, the less likely the firm being defaulted. Focusing on the MDA section only, we find
that the more positive sentences in a MDA a firm have, the lower the probability of it being
defaulted. The signs and significance are consistent for both textual and combined models.
For the non-SME sample, the higher the percentage of negative sentences relative to the total
number of sentences in the MDA, the lower the default probability. As senti is the difference
between the percentage of positive and negative words, this shows that, relative to the total
number of words in the filing, a firm having more positive words than negative words has a
lower probability of default.

In terms of the combined model, for the entire samples, all the financial and textual features
remain significant with the same signs. Interestingly, the percentage of the number of negative
sentences (PCNEG) relative to the total sentences in the MDA is significant and positive, which
suggests that the higher the negative sentences in the MDA, the higher the likelihood of the
firm being defaulted. And the higher the number of positive sentences in the MDA, the less
likely the firm being defaulted. Our findings for senti provide significant evidence to Gandhi
et al. (2018), where the authors used the sentiment measures from banks annual reports to
show that the percentage of negative words in the annual report has a positive relationship
with the likelihood of distress delisting subsequently for the US banks. We further find that
the percentage of uncertainty words, the percentage of positive sentences in the MDA are
negatively related to the likelihood of the firm being defaulted which might suggest that the
more awareness about the uncertainty factors a firm has, the less likely the firm being default.

All in all, we demonstrate that the textual data on the financial reports help not only forming the
new and significant textual features on explaining default for the SME and non-SME segment
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Table 6.7: Regression models

SME non-SME

Altman Text Combined Altman Text Combined

Intercept -3.703*** -3.122** -2.411 -3.133** -3.465*** -2.285
(1.034) (1.359) (1.467) (1.527) (1.334) (1.403)

A1 1.410* 1.280*
(0.729) (0.754)

A2 -0.927 -0.894
(0.616) (0.605)

A3 -1.187** -0.695
(0.477) (0.486)

A4 -0.558 -0.605
(0.505) (0.524)

A5 -0.122 -0.175
(0.581) (0.597)

Z1 -3.810*** -3.407***
(0.564) (0.572)

Z2 -0.183 -0.003
(0.561) (0.563)

Z3 -1.353** -1.226*
(0.644) (0.642)

Z4 -0.345 -0.567
(0.362) (0.369)

Z5 0.664 0.537
(0.426) (0.435)

PCNEG 0.658 0.623 0.935** 0.827*
(0.552) (0.554) (0.435) (0.440)

PCPOS -1.209** -1.158** -0.408 -0.283
(0.532) (0.535) (0.423) (0.431)

plit -0.637 -0.471 -0.024 0.179
(0.603) (0.610) (0.544) (0.554)

pmods 0.315 0.341 0.556 0.473
(0.502) (0.506) (0.375) (0.380)

ppos -0.307 -0.308 -0.052 0.192
(0.643) (0.644) (0.439) (0.448)

punc -2.412*** -2.271*** -2.502*** -2.059***
(0.634) (0.640) (0.569) (0.580)

senti -2.152*** -2.006*** -0.584 -0.612
(0.663) (0.662) (0.495) (0.506)

SENTI MDA -0.408 -0.418 0.048 0.111
(0.589) (0.585) (0.488) (0.492)

EMP -0.437 -0.605 -0.559 0.775 0.571 0.263
(0.575) (0.560) (0.575) (0.608) (0.564) (0.643)

LNATSQ 1.381** 1.818*** 1.860*** 1.785*** 2.078*** 2.187***
(0.611) (0.676) (0.674) (0.669) (0.585) (0.705)

ROA -2.080** -1.233** -1.593* -8.056*** -8.713*** -7.351***
(0.845) (0.596) (0.845) (1.024) (0.845) (1.053)

ROE -0.484 0.376 -0.510 0.770*** 1.220*** 0.686***
(0.590) (0.434) (0.589) (0.264) (0.248) (0.266)

SIC 1 -0.998 -0.661 -0.628 -0.705 -0.697 -1.252
(0.877) (1.040) (1.054) (1.518) (1.102) (1.140)

SIC 2 0.195 0.281 0.448 -2.217 -2.376* -2.922*
(1.091) (1.226) (1.223) (1.863) (1.436) (1.497)

SIC 3 -0.976 -0.442 -0.310 -0.461 -1.246 -1.265
(0.823) (1.002) (1.020) (1.480) (1.056) (1.087)

SIC 4 0.148 0.519 0.546 -0.670 -1.002 -1.532
(0.861) (1.030) (1.044) (1.492) (1.072) (1.103)

N 22035 22035 22035 29093 29093 29093
AIC 857.4562 824.7012 826.5098 1092.4631 1118.9101 1073.2403
BIC 969.4616 960.7078 1002.5183 1208.3587 1259.6404 1255.3619
LLR 34.3774 73.1323 81.3238 415.5929 395.1459 450.8157
R-squared 0.0398 0.0847 0.0941 0.2808 0.2670 0.3046

N is the number of observations and LLR is the log-rank test statistics. ***, **, and * indicate 99%, 95% and 90% significant
levels, respectively. EMP is the number of employees (thousand). LNATSQ is the natural logarithm of total assets squared. ROA
and ROE are the return on assets and return on equity. SIC i is the ith SIC category with SIC 0 as the reference level.
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Table 6.8: Regression models (cont.)

SME All sample

Altman Text Combined Altman Text Combined

Intercept -3.703*** -3.122** -2.411 -3.004*** -3.577*** -2.125**
(1.034) (1.359) (1.467) (0.827) (0.945) (1.030)

A1 1.410* 1.280* 0.907 1.123
(0.729) (0.754) (0.707) (0.714)

A2 -0.927 -0.894 0.131 0.182
(0.616) (0.605) (0.344) (0.342)

A3 -1.187** -0.695 -1.680*** -1.531***
(0.477) (0.486) (0.342) (0.348)

A4 -0.558 -0.605 -2.451*** -2.429***
(0.505) (0.524) (0.661) (0.681)

A5 -0.122 -0.175 -1.080** -1.247**
(0.581) (0.597) (0.486) (0.504)

Z1 -1.003** -0.486
(0.439) (0.438)

Z2 -0.261 0.025
(0.535) (0.540)

Z3 -0.932 -0.928
(0.722) (0.718)

Z4 -0.650** -0.776***
(0.293) (0.300)

Z5 1.148*** 0.880***
(0.329) (0.339)

PCNEG 0.658 0.623 1.061*** 0.920***
(0.552) (0.554) (0.332) (0.336)

PCPOS -1.209** -1.158** -0.752** -0.765**
(0.532) (0.535) (0.329) (0.331)

plit -0.637 -0.471 -0.263 -0.120
(0.603) (0.610) (0.393) (0.400)

pmods 0.315 0.341 0.452 0.525*
(0.502) (0.506) (0.314) (0.318)

ppos -0.307 -0.308 -0.287 0.071
(0.643) (0.644) (0.362) (0.368)

punc -2.412*** -2.271*** -2.689*** -2.440***
(0.634) (0.640) (0.411) (0.418)

senti -2.152*** -2.006*** -1.238*** -1.327***
(0.663) (0.662) (0.396) (0.401)

SENTI MDA -0.408 -0.418 -0.186 -0.226
(0.589) (0.585) (0.372) (0.373)

EMP -0.437 -0.605 -0.559 0.081 -0.181 -0.302
(0.575) (0.560) (0.575) (0.492) (0.499) (0.520)

LNATSQ 1.381** 1.818*** 1.860*** 3.835*** 3.983*** 3.914***
(0.611) (0.676) (0.674) (0.555) (0.545) (0.599)

ROA -2.080** -1.233** -1.593* -5.101*** -5.562*** -4.461***
(0.845) (0.596) (0.845) (0.987) (0.523) (0.979)

ROE -0.484 0.376 -0.510 0.296 0.682*** 0.326
(0.590) (0.434) (0.589) (0.340) (0.226) (0.342)

SIC 1 -0.998 -0.661 -0.628 -0.982 -0.735 -0.818
(0.877) (1.040) (1.054) (0.742) (0.767) (0.777)

SIC 2 0.195 0.281 0.448 -0.963 -1.412 -1.216
(1.091) (1.226) (1.223) (0.923) (0.946) (0.946)

SIC 3 -0.976 -0.442 -0.310 -0.752 -0.923 -0.720
(0.823) (1.002) (1.020) (0.708) (0.743) (0.748)

SIC 4 0.148 0.519 0.546 -0.424 -0.448 -0.488
(0.861) (1.030) (1.044) (0.725) (0.756) (0.764)

N 22035 22035 22035 51128 51128 51128
AIC 857.4562 824.7012 826.5098 2008.0285 1990.2131 1930.4706
BIC 969.4616 960.7078 1002.5183 2176.0281 2140.5285 2169.2069
LLR 34.3774 73.1323 81.3238 377.7695 391.5849 471.3273
R-squared 0.0398 0.0847 0.0941 0.1609 0.1668 0.2008

N is the number of observations and LLR is the log-rank test statistics. ***, **, and * indicate 99%, 95% and 90% significant
levels, respectively. EMP is the number of employees (thousand). LNATSQ is the natural logarithm of total assets squared. ROA
and ROE are return on assets and return on equity. SIC i is the ith SIC category with SIC 0 as the reference level.
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but also complement effectively with the traditional financial-based features. In what follows,
we examine the predictive powers of the combined model compared with the traditional ones.

6.5.2 Predictive power comparison

The performance of the combined models trained on the textual features is compared with the
models trained on the Altman’s factors under no sampling, undersampling and oversampling
strategies. We report the 10-fold stratified cross-validation using gridsearch for the regular-
isation parameter of the logistic regression classifier and separate the comparison for three
segments: SME, non-SME, and all samples. In addition, trained on a IDS, classifiers tend
to perform extremely poor on minority class despite producing high accuracy measures (Chen
et al., 2016). Hence, to reveal different aspects of a credit scoring model, it is desirable to
employ undersampling and oversampling at the initial stage of modelling process. In order to
complement with the cross-validation comparison in terms of (i) the practical modelling sce-
nario and (ii) compliance with Basel III practice for the default model validation purpose6, and
(iii) replicate the nature of scorecard modelling, we also present the one-year-ahead prediction
performance using a rolling window of five year data.

Out-of-sample cross-validation prediction performance

First, the performance of three models using six metrics described in subsection 3.5 are illus-
trated in Figure 6.2, 6.3, and 6.4 as below:

6The IRB Use Test: Background and Implementation, Basel Committee on Banking Supervision,
https://www.bis.org/publ/bcbs nl9.pdf, accessed September 25th, 2019
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Figure 6.2: Box plots of performance metrics, SME segment

The presentations of six performance metrics in Figure 6.2 to Figure 6.4 are similar in a way
that the top subfigures are for the original data, the middle subfigures are for the undersampling
data, and the bottom subfigures are for the oversampling data. The box plots of six performance
metrics for the SME, non-SME, and all samples are presented in Figure 6.2, 6.3, and Figure 6.4,
respectively. And the average performance across 10-fold for 6 metrics is plotted in Table 6.9
below. First, it is apparent that the mean of AUCs for the combined model are all higher than
that for the Altman model for the three segments and all three balancing strategies. We observe
the very poor performance (especially in recall, Precision, and F1 score accordingly) of both
models on the original data, where we do not employ any balancing strategy on the training set.

For the SME sample, under no balancing setting, despite there is no significant difference in
recall, Precision, F1, AUPRC, and BS scores, there is an improvement in terms of the AUC.
As for the undersampling and oversampling settings, first we notice higher recall compare with
the no-sampling setting, and in these two sampling settings, there are improvements in terms
of the AUC, recall, and Brier score when using the combined model.
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Figure 6.3: Box plots of performance metrics, non-SME segment

For all samples, there are improvements in the AUC, F1, AUPRC, and Brier score by using the
textual features.
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Figure 6.4: Box plots of performance metrics, all samples

We then proceed to summarise the performance of both models, test for the significant differ-
ence, and present the results in Table 6.9 as below. First, the textual features improve AUC
in all sampling settings for both datasets. Excluding AUPRC for the oversampling, there are
increments in all metrics for both undersampling and oversampling of the three segments. Our
AUC for all samples using the combined text and accounting features for the original sample
is 0.854 which is comparable with that of Mai et al. (2019) of 0.856 where they utilised the
three data sources including the text, accounting, and market data for predicting the corporate
default. This finding provides further evidence to the debate on to which extent we should
employ deep learning techniques taking into consideration its costly computational power and
poorly explainable nature.
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Table 6.9: Predictive power comparison

Altman Combine

N U O N U O

Panel I: SME

AUC 0.6278 0.6075 0.6397 0.7295*** 0.7227*** 0.7238***
F1 0.3744 0.4085 0.4080*** 0.4280***
R 0.0000 0.5792 0.5822 0.0000 0.6762*** 0.6152*
P 0.0000 0.0044 0.0055 0.0000 0.0059*** 0.0066***
AUPRC 0.0149 0.0173 0.0138 0.0172 0.0214*** 0.0117***
BS -0.0029 -0.2394 -0.2151 -0.0028*** -0.2159*** -0.1821***

Panel II: non-SME

AUC 0.9108 0.9046 0.9086 0.9206*** 0.9115*** 0.9128***
F1 0.4598 0.4684 0.4668*** 0.4780***
R 0.0000 0.8272 0.8356 0.0000 0.8314 0.8382***
P 0.0000 0.0193 0.0197 0.0000 0.0195*** 0.0216***
AUPRC 0.1286 0.1153 0.1184 0.1405*** 0.1231*** 0.1180***
BS -0.0037 -0.1466 -0.1212 -0.0037 -0.1383*** -0.1110***

Panel III: All sample

AUC 0.8253 0.8123 0.8271 0.8545*** 0.8457*** 0.8542***
F1 0.4244 0.4277 0.4381*** 0.4506***
R 0.0000 0.7750 0.7475 0.0000 0.7761 0.7887***
P 0.0000 0.0105 0.0106 0.0000 0.0113*** 0.0130***
AUPRC 0.0640 0.0397 0.0375 0.0754*** 0.0529*** 0.0550***
BS -0.0034 -0.1885 -0.1700 -0.0034 -0.1721*** -0.1467***

N is no sampling, U is undersampling, and O is oversampling strategy. If both recall and Precision are zero, the F1 score is
ill-defined and hence is reported as ‘ ’. ***, **, and * indicate the corresponding repeated measure t-test is significant at 99%,
95%, and 90% level, respectively.

In Table 6.10, we summarise the performance gains when comparing the Altman model with
the combined model, for all metrics under three sampling strategies: Despite having lower recall
under oversampling setting for the SME sample, in general, the textual features improve the
classification performance. The largest improvement is in the AUC for the SME segment (8.4%-
11.5%) followed by recall (3.3%-9.7%) and F1-score (2.0%-3.4%). The increment in terms of
the Brier Score is ranging from 0 to 3.3% for all three segments.

One-year ahead prediction

We present the one-year ahead rolling window predictions using four consecutive years to train
the prediction models and predict the 5th-year defaults in the test data. Specifically, we train
the models in the 1997 to 2000 data and predict the defaults in 2001 data, the modelling win-
dow is then shifted one year, e.g using 1998 to 2001 data to train the model and predict the
defaults in 2002 data, and so forth. In general, the presentation of predictive power is similar to
the previous cross-validation settings in the way we summarise the performance of Altman and
combined model for three different segments of data under six performance metrics; test for
the significant difference; and aggregate the performance gains. For these detail comparisons,
please refer to Table 6.11 in Appendix B.3.
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Table 6.10: Performance gain (%)

No sampling Undersampling Oversampling

Panel I: SME sample
AUC 10.2 11.5 8.4
F1 3.4 2.0
R 9.7 3.3
P 0.1 0.1
AUPRC 0.2 0.4 -0.2
BS 2.3 3.3

Panel II: non-SME sample
AUC 1.0 0.7 0.4
F1 0.7 1.0
R 0.4 0.3
P 0.2
AUPRC 1.2 0.8
BS 0.8 1.0

Panel III: All sample
AUC 2.9 3.3 2.7
F1 1.4 2.3
R 0.1 4.1
P 0.1 0.2
AUPRC 1.1 1.3 1.8
BS 1.6 2.3

Figure 6.5 illustrates the comparison of classification performance between the Altman and
combined models. The performance is measured in terms of AUC for the out-of-time test sets
from 2001 to 2017. The lines represent the mean of AUC values in the test sets and their shaded
areas are the bands of one standard deviation from the mean. First, Figure 6.5a presents the
improvement in AUC by using the combined model from 2001 to 2012 for the SME segment,
however, the improvements almost vanish from 2013 onward as both models perform poorly.
This mainly affected by lacking the default data in the corresponding training windows because
our SME sample does not have any default observation in 2010 and 2011, and we have only
at most two default observations each year from 2012 to 2017. On the other hand, for the
non-SME sample in Figure 6.5b, the AUC varying from around 0.6 to 0.9 on both models,
and the combined model clearly performs better than the Altman model from 2007 onwards.
Finally, for the experiment of all sample in Figure 6.5c, we observe the clear improvements in
AUC from 2003 to 2012. The aggregate results are further tested in Table 6.11, which shows
that the combined features help to improve the classification performance.

Our result for the AUC metric is comparable with that from Mai et al. (2019), albeit a modest
higher value (0.847 compare with 0.842). However, we would like to emphasise that the AUC
is not the alone decisive factor in the credit risk modelling nor we want to show the dominance
performance of different ways in constructing the predictors for corporate default. Our results
demonstrate that we could effectively construct the simple, significant, and intuitive features
for predicting the corporate default and bridge the performance gap between the deep learning
and dictionary-based approaches.
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(a) SME (b) non-SME (c) All sample

Figure 6.5: One-year-ahead prediction performance (AUC)

Table 6.11: Predictive power comparison, one-year-ahead prediction

Altman Combine

N U O N U O

Panel I: SME
AUC 0.5458 0.5474 0.5924*** 0.6216*** 0.6102*** 0.6281***
F1 0.3423 0.4207 0.3589*** 0.4398***
R 0.0000 0.5049 0.3717 0.0000 0.5990*** 0.3599
P 0.0000 0.0031 0.0037 0.0000 0.0038*** 0.0043**
AUPRC 0.0101 0.0081 0.0071 0.0187*** 0.0123*** 0.0136***
BS -0.0028 -0.2572 -0.1810 -0.0028 -0.2527*** -0.1461***

Panel II: non-SME
AUC 0.9045 0.8819 0.9047 0.9176*** 0.8933** 0.9086***
F1 0.4556 0.4841 0.4583*** 0.4986***
R 0.0000 0.7858 0.7450 0.0000 0.8310*** 0.7857**
P 0.0000 0.0157 0.0229 0.0000 0.0168*** 0.0312***
AUPRC 0.0965 0.0832 0.1183 0.1517*** 0.1359*** 0.1387***
BS -0.0042 -0.1676 -0.0954 -0.0042 -0.1606*** -0.0809***

Panel III: All sample
AUC 0.8343 0.7960 0.8357 0.8611*** 0.8352*** 0.8468***
F1 0.4261 0.4481 0.4373*** 0.4608***
R 0.0000 0.7323 0.7252 0.0000 0.7868*** 0.7063**
P 0.0000 0.0086 0.0107 0.0000 0.0099*** 0.0121***
AUPRC 0.0552 0.0302 0.0529 0.0685*** 0.0390*** 0.0559**
BS -0.0033 -0.1973 -0.1442 -0.0033 -0.1830*** -0.1242***

N is no sampling, U is undersampling, and O is oversampling strategy. If both recall and precision are zero, the F1 score is ill-defined
and hence is reported as ‘ ’. ***, **, and * indicate the corresponding repeated measure t-test is significant at 99%, 95%, and 90%
level, respectively.
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6.6 Conclusions

The textual data are gathering much attention in the financial risk analysis thanks to its
complement with other sources of data in explaining the manager sentiment and stock returns
(Lopez Lira, 2019), uncovering the role of investment analyst report (Huang et al., 2018),
or improving manager sentiment tone understanding (Zhou, 2018). This study further shows
that they improve the traditional models built on the accounting data in predicting corporate
default/liquidation. By using more than 50 thousand observations of listed firms in the US
market from 1997 to 2017, and with simple counting for sentiment words both in the entire
filing and in the MDA section of the filing, we demonstrate the high predictivity power of
textual features in building the forecasting models. Despite the severe problem of IDS in
default/liquidation prediction for all three data segments including SME, non-SME, and all
samples, the textual features are significant and they improve the predictive power of the
classification model. Our approach provides comparable and consistent predictive results, yet
with more simple and intuitive features, compared with the deep learning model in Mai et al.
(2019).

We found that the positive sentences in the MDA, the uncertainty words in the entire filings
have the positive relationship with the probability of default. In addition, and the more positive
words relative to negative words in the entire filing, the lower the probability of default. On the
other hand, the higher the negative sentences in the MDA a firm has, the higher the firm being
defaulted. The robustness of our findings is further strengthened by the prediction gains among
six performance metrics for all three data segments using out-of-sample test sets. Interestingly,
the largest improvement comes from the SME segment with the gain in AUC ranging from
8.4% to 11.5% followed by recall ranging from 3.3% to 9.7%. Besides, by using one-year-head
prediction, we provide a practical investigation on improvement of the predictive power using
the textual features where the combined features could significantly increase the AUC from
1.1% to 7.6% in the three corporate segments.

This study is without its limitation, first, we just examine the US listed firms, which have the
benefit of the availability of both textual and financial data. Second, assigning -1 and +1 score
for positive and negative words are somewhat harsh, since words might have different degrees
of negative or positive, and the dictionary-based sentiment classifier needs to be evaluated in an
annotated data, which is, in financial domain, very difficult and costly to obtain. Nevertheless,
we believe that, this research could set a starting point on forming the intuitive and explainable
textual features that could be utilised on the constructing of the credit risk models, further
works could examine to what degree we should assign negative, positive, or neutral to a word
or the entire sentence and radiate to the entire MDA or filing.
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Chapter 7

Summary and Future Works

This study concentrated on the complement approach to the current well-developed literature in
building credit risk models and emphasise on leveraging textual data to improve the financial-
accounting data. Chapter 2 and 3 devote to the new survival analysis and how traditional
models in credit risk pose the potential problems in bias in decision making in credit scoring
in the mist of inconsistencies of laws and the development of automatic decision-making tools.
Chapter 4 explores practical implications of of ensemble learning models. Chapter 5 and 6
focus on mining the textual data to improve the current practices in using traditional financial-
accounting data.

This dissertation presents some contributions to the knowledge science, specifically in applying
textual analysis to enhance the practice of credit risk modelling in financial industry. This is
the first to employ dictionary-based and topic modelling on the distributed representation of
financial filings for the task of corporate bankruptcy prediction. This dissertation presents a
novel model that explore the topics in financial reports and then learn from multi-sources data
to provide state-of-the-art classification performance.

This study has improved my understanding of predictive modelling, specifically for this financial
textual representation, in the pragmatic and interpretable ways to solve predictive problems
in credit risk modelling. As modern research leverage on multi-source and multi-model data
analytics to get significant actionable insights, further research could be focusing on mining
reliable sources of data to enhance the current combination of financial statements textual and
numeric data. In this avenue, deep learning models will play a crucial role to leverage the
distributed representation of textual financial data making use of transfer learning from other
general knowledge. However, achieving improvement in predictive power while maintaining the
model interpretability is still of a great challenge.
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Glossary

bankruptcy a legally declared or recognized condition of insolvency of a person or organiza-
tion.

default or insolvency, the failure to meet the legal obligations (or conditions) of a loan.

filing the SEC filing is a financial statement or other formal documents such as 10K, 10Q
submitted to the U.S. Securities and Exchange Commission (SEC).

liquidation a company in liquidation generally is insolvent, i.e. unable to to pay its debts
as they fall due. However, if a company files for Members Voluntary Liquidation, its
director(s) make a declaration of solvency, confirming that the company is solvent and
able to pay all of its debts in full.

z-score the Altman z-score is the output of a credit worthiness test that assess a listed com-
pany’s likelihood of bankruptcy.
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Acronyms

AUC Area Under the ROC Curve.

DETM Dynamic Embedding Topic Model.

LDA Latent Dirichlet Allocation.

LM Loughran and Mcdonald (2011) Financial Wordlists.

MD&A Management Discussion and Analysis.

MLP Multi-layer Perceptron.

SVM Support Vector Machine.
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Appendix A

Chapter 5

A.1 Descriptive Statistics of Financial Elements and De-

mographic Features

Table A.1: Financial Elements and Demographic Features

Name Description

at Total assets
act Total current assets
intan Total intangible assets
invt Total assets
ch Cash
dvt Total dividends
lct Total current liabilities
lt Total liabilities
wcap Working capital
revt Total revenue
re Retained earning
ebit Earning before interest and taxes
mkvalt Total market value
sale Sale
seq Shareholder equity
ni Net income
dltt Total long-term debts
dm Debt mortgages & other secured
emp Total employees
gdwl Goodwill
addzip Zip code
sic Standard industrial code
ggroup Global industrial classification (GIC) group
gind GIC industries
gsubin GIC sub-industries
idbflag International, Domestic, Both Indicator
incorp Date of incorporation
spcsrc S&P Quality Ranking - Current
au Auditor
auop Auditor opinion
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Table A.2: Descriptive Statistics for Accounting and Demographic Features

PANEL 1: Financial Statements Elements

at act intan invt ch dvt lct lt wcap revt

count 86196 84797 81638 85708 85565 84619 84837 86196 84731 85921
mean 4118.302 1217.743 858.391 284.317 272.502 89.814 928.688 2491.773 279.546 2934.885
std 19224.416 5655.499 5462.940 1347.345 1292.234 592.195 4827.252 12177.598 1799.280 14150.218
min 0.001 -0.168 -0.423 0.000 -0.134 -325.377 0.000 0.001 -43132.545 -1964.999
25% 26.927 14.269 0.000 0.381 1.805 0.000 5.922 9.265 1.703 13.857
50% 186.378 82.971 3.870 10.634 13.877 0.000 33.375 72.032 28.528 138.835
75% 1246.340 414.989 116.742 92.331 82.579 3.874 213.332 687.642 155.221 969.236
max 507560.425 192486.646 225278.000 48586.913 53528.000 67643.805 192819.656 460442.000 56120.000 470171.000

re ebit mkvalt sale seq ni dltt dm emp gdwl

count 84042 85793 61887 85807 86195 85805 86141 80436 78807 80728
mean 821.767 333.038 3064.844 2937.978 1554.264 176.908 921.058 150.610 8.641 498.611
std 7845.878 1800.682 15901.855 14159.247 8001.189 1527.857 4476.683 1075.271 30.442 3138.554
min -143336.328 -25913.000 0.000 -1964.999 -86154.000 -98696.000 -0.023 0.000 0.000 -0.423
25% -58.985 -3.571 27.282 13.832 8.472 -8.340 0.000 0.000 0.088 0.000
50% -1.867 4.762 173.450 138.825 74.588 0.715 8.898 0.180 0.619 0.000
75% 122.538 84.664 989.844 969.980 463.727 37.491 287.779 19.804 4.000 55.402
max 398278.000 71230.000 790050.098 470171.000 284434.000 104821.000 207174.000 59127.799 863.824 146583.307

PANEL 2: Demographic Features

addzip city state county sic ggroup gind gsector gsubind idbflag incorp spcsrc au auop

count 86196 86196 86196 86196 86196 86196 86196 86196 86196 86196 86196 86196 86196 86196
unique 4601 2178 62 37 266 25 67 12 148 2 55 10 25 7
top nan Houston nan nan 2836 3520.0 352010.0 35.0 35201010.0 D DE nan 9.0 1.0
freq 1376 3302 13037 86026 5422 11224 6770 17232 6770 72957 45452 37054 17463 57263

A.2 Topic Wordclouds
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Figure A.1: Topic wordcloud
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Figure A.2: Topic wordcloud (cont.)
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Figure A.3: Topic wordcloud (cont.)
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A.3 Performance of Textual Feature Sets
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Table A.3: Performance of five textual feature sets

Year AUC AUPRC BS

Panel 1: z-score features

2007 0.8217 0.0110 0.0028
2008 0.7946 0.0525 0.0072
2009 0.8179 0.0023 0.0005
2010 0.9268 0.0459 0.0013
2011 0.7850 0.0756 0.0025
2012 0.8271 0.0036 0.0009
2013 0.7039 0.0203 0.0013
2014 0.8299 0.0098 0.0027
2015 0.9887 0.3044 0.0029
2016 0.9756 0.5098 0.0010
Mean 0.8471 0.1035 0.0023

Panel 2: dictionary-based features

2007 0.8116 0.0124 0.0034
2008 0.7980 0.0268 0.0068
2009 0.8408 0.0027 0.0004
2010 0.9712 0.1027 0.0013
2011 0.5321 0.0066 0.0022
2012 0.6200 0.0016 0.0008
2013 0.8384 0.0075 0.0013
2014 0.7992 0.0143 0.0025
2015 0.9712 0.1395 0.0027
2016 0.8771 0.0058 0.0010
Mean 0.8059 0.0320 0.0022

Panel 3: doc2vec features

2007 0.7643 0.0190 0.0028
2008 0.8434 0.1267 0.0070
2009 0.9878 0.0345 0.0006
2010 0.9306 0.0199 0.0014
2011 0.7318 0.1723 0.0024
2012 0.6445 0.0022 0.0009
2013 0.7123 0.0098 0.0013
2014 0.7922 0.0193 0.0027
2015 0.9153 0.0303 0.0029
2016 0.8433 0.0054 0.0010
Mean 0.8165 0.0439 0.0023

Panel 4: 30-topic features (LDA)

2007 0.8150 0.0123 0.0028
2008 0.7689 0.0335 0.0072
2009 0.8547 0.0030 0.0005
2010 0.9348 0.0421 0.0013
2011 0.7928 0.0682 0.0025
2012 0.7208 0.0022 0.0009
2013 0.7243 0.0139 0.0013
2014 0.8149 0.0097 0.0027
2015 0.9826 0.1425 0.0029
2016 0.9396 0.0134 0.0010
Mean 0.8348 0.0341 0.0023

Panel 5: 30-topic features (DETM)

2007 0.7267 0.0125 0.0028
2008 0.7437 0.0335 0.0072
2009 0.7550 0.0018 0.0005
2010 0.9261 0.0549 0.0013
2011 0.8195 0.1932 0.0025
2012 0.6947 0.0020 0.0009
2013 0.6963 0.0355 0.0013
2014 0.8191 0.0089 0.0027
2015 0.9824 0.1533 0.0029
2016 0.9510 0.5049 0.0010
Mean 0.8115 0.1000 0.0023
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Appendix B

Chapter 6

B.1 Descriptive Statistics and Pair-wise Correlation Plots

Table B.1: Missing Values of Financial elements, Altman Z-core 5-factor, and Altman et al.
(2010) SME 5-factor, All Sample

Count Proportion

ipodate 25620 0.5037
mkvalt 5871 0.1154
xint 3290 0.0647
gdwl 2713 0.0533
dm 2363 0.0465
intan 2305 0.0453
emp 1338 0.0263
wcap 809 0.0159
act 805 0.0158
cstk 782 0.0154
re 777 0.0153
lct 758 0.0149
rect 367 0.0072
invt 308 0.0061
ch 281 0.0055
dp 165 0.0032
ebit 151 0.0030
ni 149 0.0029
sale 149 0.0029
np 114 0.0022
dvt 110 0.0022
revt 74 0.0015
dltt 32 0.0006
dlc 21 0.0004
Z1 809 0.0159
Z2 777 0.0153
Z3 151 0.0030
Z4 782 0.0154
Z5 149 0.0029
A1 199 0.0039
A2 28 0.0006
A3 281 0.0055
A4 8395 0.1650
A5 367 0.0072
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Figure B.1: The correlation of Altman’s factors
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Figure B.2: The correlation of textual features
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B.2 Lasso Paths of Regression Coefficients

Figure B.3: SME sample

Figure B.4: non-SME sample
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Figure B.5: All sample

B.3 One-year-ahead prediction performance

Figure B.6: The box plots of performance metrics, SME sample
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Figure B.7: The box plots of performance metrics, non-SME samples

Figure B.8: The box plots of the performance metrics, all samples
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Table B.2: The performance gain of one-year-ahead prediction (%)

No sampling Undersampling Oversampling

Panel I: SME sample
AUC 7.6 6.3 3.6
F1 0.0 1.7 1.9
R 0.0 9.4 -1.2
P 0.0 0.1 0.1
AUPRC 0.9 0.4 0.7
BS 0.0 0.5 3.5

Panel II: non-SME sample
AUC 1.3 1.1 0.4
F1 0.0 0.3 1.4
R 0.0 4.5 4.1
P 0.0 0.1 0.8
AUPRC 5.5 5.3 2.0
BS 0.0 0.7 1.4

Panel III: All sample
AUC 2.7 3.9 1.1
F1 0.0 1.1 1.3
R 0.0 5.4 -1.9
P 0.0 0.1 0.1
AUPRC 1.3 0.9 0.3
BS 0.0 1.4 2.0
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