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Abstract 

The coming era of the Internet of Everything provides huge development 

opportunities for the field of human-robot interaction. Speech is the most natural and 

convenient way for communication between humans and robots. Emotion information 

from speech can effectively help robots understand the speaker’s intentions in natural 

human-robot interaction. Therefore, speech emotion recognition (SER) is one of the 

hotspots in current research, which can play an essential role in all human-robot 

interaction scenarios such as education, medical care, service, etc. 

Identifying emotions from speech requires to extract discriminative and robust 

features that can effectively represent the emotion of speech. However, the traditional 

acoustic features have problems with weak emotional discrimination and poor noise 

robustness. The human auditory system can easily perceive the emotional states of 

speech even in a noisy environment, so this study is to explore auditory representations 

of computational auditory models and deep learning methods to improve the 

performance of categorical and dimensional emotion recognition.  

Due to the complexity of the human auditory system, the process of speech signal 

processing is not completely clear, nor which the auditory model can better simulate 

the human auditory system. Recent psychoacoustic experiments show that temporal 

modulation cues play an important role in speech perception and contain multi-

dimensional spectral-temporal information. Therefore, this study proposes a 3D 

convolutional neural network (3D CNN) architecture for categorical emotion 

recognition. In this architecture, 3D CNN is used to extract the discriminative auditory 

representations from temporal modulation cues by joint spectral-temporal feature 

learning. The experimental results show that the joint spectral-temporal auditory 

representations can be extracted using 3D CNN from temporal modulation cues. The 

results demonstrate that the performance of emotion recognition based on joint spectral-

temporal representation can exceed the recognition accuracy compared to that of the 

state-of-the-art methods. 

The high-level auditory representation sequence extracted from 3D CNN is 

segmented into non-overlapping subsequences, and then LSTM is used to capture the 

segment-level temporal dependence of subsequences in the previous study. These 

discontinuous segment-level features cannot fully reflect the dynamic changes of 

emotions. In addition, existing studies on the attention model only focus on the salient 

regions of emotion but ignore the continuity of cognition. Inspired by cognitive 

behavior, this study proposes an attention-based sliding recurrent neural network 

(ASRNN) to effectively model auditory representation sequence by mimicking the 
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auditory attention to capture salient emotion regions. In the ASRNN model, a high-

level feature representation is obtained continuously through a sliding window, and then 

a temporal attention model is used to capture salient regions of emotion representation. 

Moreover, a subjective evaluation experiment is designed to analyze the correlation 

between the temporal attention model and human auditory attention. The results of the 

experiments showed that this model could effectively obtain emotional information by 

capturing salient emotion regions using the ASRNN model. The subjective evaluation 

shows that the temporal attention model is basically consistent with human auditory 

attention in recognizing emotions. 

In categorical emotion recognition, the 3D convolution is used to extract high-level 

auditory representation from temporal modulation cues. However, the high-

dimensional data space through auditory and modulation filtering is not suitable for 

dimension emotion recognition. Neuroscience research shows that the cortical encoding 

of natural sounds entails the formation of multiple representations with different 

spectral and temporal resolution. Inspired by neuroscience, this study proposes a novel 

auditory feature, namely multi-resolution modulation-filtered cochleagram (MMCG), 

to capture temporal and contextual modulation cues. Considering that each modulation-

filtered cochleagram in MMCG contains different temporal and contextual modulation 

cues, a parallel LSTM network structure is designed to model multi-temporal 

dependencies of MMCG and track the temporal dynamics of speech signal sequence 

for dimensional emotion recognition. Experimental results show that the MMCG 

feature can significantly improve the performance of emotion recognition compared 

with all evaluated features. The results also show that the parallel LSTM can track the 

temporal dynamics of emotion from each modulation-filtered cochleagram at different 

scales. 

In conclusion, this dissertation investigates different auditory features and some deep 

learning models for categorical or dimensional emotion recognition according to 

different features. This study proposes 3D CNN architecture to learn joint spectral-

temporal auditory representation from the temporal modulation cues and ASRNN 

model to capture the salient regions of emotion continuously. Experiment results proved 

that the proposed methods could effectively extract distinguishable spectral-temporal 

representations and capture the salient regions from the representation sequence. In 

addition, this study also proposes the MMCG feature to capture the temporal and 

contextual modulation cues in different resolutions, and develops a parallel LSTM to 

capture the temporal dynamics of the MMCG features for dimensional emotion 

recognition. Experiment results further prove that the proposed methods could 

effectively capture the temporal dynamics of emotion. The results show that the 
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proposed deep learning models based on human auditory characteristics have achieved 

good performance in speech emotion recognition. 

 

Keyword: speech emotion recognition, human auditory characteristics, multi-

resolution modulation-filtered cochleagram, 3D convolution, attention-based sliding 

recurrent neural network 
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Chapter 1   

Introduction 

 Motivation 

In 1985, one of the founding fathers of artificial intelligence (AI), Marvin Minsky, 

thought that machines should be given the ability to identify, understand, and express 

human emotion. He said that the question is not whether intelligent machines can have 

any emotions, but whether machines can be intelligent without any emotions [1]. Since 

then, the researchers in the AI field have been interested in the exploration that endows 

an intelligent machine or robot with emotional ability. The word robot in this dissertation 

refers to both physical robots and virtual software agents. A real intelligent robot should 

have not only intelligence quotient (IQ) but also emotional quotient (EQ). This kind of 

robot needs to have the ability of perception, recognition, understanding, and expression 

of emotion, so as to realize human-robot interaction (HRI). In the era of artificial 

intelligence of things (AIOT), there are some new changes in HRI: first, the interaction 

scenario has gradually changed from offline intelligent service to online intelligent 

service, and a large number of service robots have been launched to meet different needs, 

resulting in the explosive growth of online interaction; second, the interaction mode has 

gradually shifted to simple, convenient and natural interaction mode. 

Speech is the most convenient and natural way for communication between humans 

and robots. The key point of effective communication is to make robots understand 

speakers’ true intentions. Speech contains not only linguistic information but also para-

linguistic and non-linguistic information. Only using linguistic information is by no 

means sufficient enough for an understanding of intentions. The vocal emotion 

information as a kind of non-linguistic information can significantly help robots to 

understand speakers’ true intentions. Therefore, speech emotion recognition (SER) plays 

an important role in robots understanding a speaker’s intentions. It has a wide range of 

application prospects, including e-learning environments [2], intelligent game [3], 

humanoid service robots [4], car accidents [5], lie detection [6], robot-assisted therapy 

[7], empathetic social chatbot [8,9] and so on.  

In SER, one of the core research issues is how to extract the emotion-salient and noise-

robust features from speech signals. Most of the current studies mainly focus on 

traditional hand-tuned acoustic features such as prosodic features, voice quality features, 
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and spectral features to find the salient features relevant to emotional speech [10]. 

Nevertheless, finding the distinguished spectral and prosodic feature set for SER is still a 

challenge due to the cultural differences, various expression types, context, ambient noise, 

etc. Moreover, when the traditional acoustic features are used for emotion recognition, 

the recognition performance decreases rapidly with the decrease of signal-to-noise ratio 

(SNR). Therefore, considering how to extract noise-robust features is an important part 

of SER systems. As the human auditory system is powerful in processing time-frequency 

signals and extracting noise-robust features, research has focused on auditory-based 

speech signal processing for emotion recognition by mimicking the stages of the human 

auditory system.  

In the auditory system, sound signals are firstly analyzed by the cochlea and then are 

transmitted to the auditory cortex for perceiving the emotional states via the auditory 

pathway. The cochlea, which is the main part of the peripheral auditory system, 

decomposes sound signals into multi-channel acoustic frequency components along the 

length of the basilar membrane. Inner hair cells (IHC) detect the motion of the basilar 

membrane and transduce it into neural signals. Temporal amplitude envelope information 

is obtained from each transduced signal and travels further to the inferior colliculus (IC) 

at the midbrain through the auditory nerve and cochlear nucleus. Physiological studies 

have revealed that the processing of temporal amplitude modulation is performed in the 

IC for high-resolution temporal information by tuning to certain modulation frequencies 

[11]. Møller first observed that the mammalian auditory system has a specialized 

sensitivity to amplitude modulation of narrowband acoustic signals [12]. Suga showed 

that amplitude modulation information is maintained for different acoustic frequency 

channels [13]. Additionally, Chi et al. have extended the findings above to include 

combined spectral and temporal modulations [14]. Finally, the primary auditory cortex is 

responsible for the perception of sound from temporal modulation cues using the spectral-

temporal receptive field of the neuron [15].  

Different computational auditory models are proposed to mimic the different stages of 

signal processing in the auditory system. The auditory filterbank is used to simulate the 

time-frequency signal decomposition of the cochlear basilar membrane. The temporal-

envelope extraction from the acoustic-frequency components is used to effectively 

simulate the mechanic-to-neural signal transduction in the IHC. The modulation 

filterbank (MFB) is introduced to generate high-resolution temporal-modulation cues 

provided by the temporal envelope and its modulation-frequency components. Recent 

psychoacoustic experiments showed that temporal modulation is important for speech 

perception and understanding [11,16–18]. Dau et al. [11] proposed an auditory perception 
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model to simulate signal processing of the peripheral auditory system. In the perceptual 

model, temporal modulation cues are obtained using auditory filtering of the speech 

signal and modulation filtering of temporal amplitude envelope in a cascade manner. 

These cues contain rich spectral-temporal information to perceive variations of loudness, 

timbre and pitch of speech [17], which has been widely used in sound texture perception 

[19], speaker individuality perception [20], speech recognition [21,22], acoustic event 

recognition [23], and emotion recognition [24–26]. 

Some studies extracted modulation spectral features (MSFs) from temporal modulation 

cues by calculating the spectral skewness, kurtosis, and other statistical features. Those 

studies showed that the MSFs contribute to the perception of vocal emotion[24,25]. Wu 

et al. [25] showed that the MSFs perform better than the traditional acoustic features such 

as the Mel frequency cepstral coefficient (MFCC) and perceptual linear predictive (PLP) 

coefficient for SER. Zhu et al. [20] further confirmed that the MSFs contribute to the 

perception of vocal emotion. To reduce the computation of spectral features, however, 

MSFs are only calculated in each modulation channel and produce time-averaged spectral 

features, whereas these features lose the temporal dynamic information of speech signals. 

In fact, the speech signal is processed by auditory filtering to generate two-dimensional 

(2D) spectral-temporal representations and then processed by modulation filtering to 

generate three-dimensional (3D) spectral-temporal representations. These time-domain 

signal processing models produce more rich data than the original one-dimensional (1D) 

speech signal. Therefore, these auditory or modulation filtered time-domain signals are 

more suitable for high-level feature extraction and emotion recognition using machine 

learning methods, especially using deep learning methods.  

Conventional approaches for SER usually extract low-level descriptors (LLDs) from 

speech and then recognize human emotional states using the machine learning methods 

such as hidden Markov model (HMM), Gaussian mixture model (GMM) [27], support 

vector machine (SVM) [28], and artificial neural network (ANN). However, it is still 

challenging to find the salient feature set from LLDs to recognize distinct emotions 

because of the aforementioned challenging factors. As deep learning has become the best 

way to find the distinguished feature, many studies focus on SER using deep neural 

network (DNN) from acoustic features. Convolutional neural network (CNN) [29] and 

recurrent neural network (RNN) [30], which are the two important DNN models, are 

widely used to recognize the emotion in speech. CNN can extract high-level local feature 

representations using the receptive field of the neuron, and have been used for acoustic 

modeling and feature extraction in SER systems. RNN, including long short-term 

memory (LSTM) [31], is designed to handle long-range temporal dependencies in the 
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speech signal sequence. Convolutional and recurrent neural network (CRNN) is a mixed 

architecture formed by combining the feature learning ability of CNN with the sequence 

modeling ability of RNN.  
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The goal of this study is to explore auditory representations of computational auditory 

models and deep learning methods to improve the performance of emotion recognition. 

There are mainly two kinds of methods for emotion recognition based on the different 

emotion description, categorical and dimensional emotion recognition. Categorical 

emotion describes an emotional state as discrete labels such as “happy,” “angry,” etc. 

Compared with categorical emotions, dimensional emotion can describe more mixed 

emotions and captures the gradual emotion transitions in spontaneous or natural speech 

[32]. There are advantages and disadvantages in categorical and dimensional emotion 

descriptions. To investigate the effectiveness of human auditory characteristics on 

emotion recognition, this study investigates both description methods. Figure 1.1 

illustrates the general framework of speech emotion recognition. Auditory representations 

of the speech signal are first extracted from the auditory perceptual model. Then, 

sequence modeling of auditory representation is used to effectively capture temporal 

information. Finally, classification or regression models are used to identify categorical 

or dimensional emotions.  

 Challenges 

The human auditory system can easily perceive the emotional states of speech even in 

a noisy environment, so this study is to verify whether it is possible to improve the 

performance of emotion recognition based on the auditory-based features using deep 

learning methods. However, due to the complexity of the human auditory system, the 

mechanism of auditory signal processing is not completely clear. We still do not know 

what kind of auditory representations of speech should be more distinguishable for 

Figure 1.1: The general framework of speech emotion recognition 
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different emotions. Moreover, we also do not know how to model the auditory 

representation sequence to simulate the auditory system for emotion recognition 

effectively. While emotion recognition based on the auditory representation of speech is 

an area that has increased its presence in the speech community, there are still important 

challenges that need to be addressed to achieve natural communication between humans 

and robots.  

(1) Extraction for the distinguishable auditory representation of speech  

In the computational auditory model, the speech signal is processed by auditory 

filtering and modulation filtering to generate temporal modulation cues. These cues 

contain four-dimensional spectral-temporal representations, including acoustic frequency, 

modulation frequency, amplitude, and temporal information. Little, however, is known 

about exactly what distinguishable auditory representations of speech are most important 

to identify the emotional states. The current methods extract MSF from temporal 

modulation cues by calculating the static features of each modulation channel. Although 

MSF can achieve better recognition performance than acoustic features, this static feature 

can not reflect the real emotional state in speech due to the loss of temporal cues. Previous 

research found that the auditory system responds to joint spectral-temporal patterns in the 

speech signal rather than temporal-only or spectral-only patterns [33]. Therefore, how to 

extract the distinguishable auditory representations from temporal modulation cues is a 

challenging task.  

 (2) Auditory representation sequence modeling for categorical emotion recognition 

In the extraction of auditory representation, we propose 3D convolution to learn joint 

spectral-temporal representations from temporal modulation cues, and use LSTM to 

capture the temporal dependence of speech sequence. The speech sequence is segmented 

into non-overlapping subsequences. This feature cannot reflect the change of emotion, 

and it does not consider how to extract salient emotion regions. Generally, the regions 

with salient emotions in an utterance are very short, and most of the rest may be non-

emotional or silent. Some studies addressed the silence regions using voice activity 

detection (VAD) [34] or by null label alignment [35], and then use an attention model to 

capture salient emotion regions. However, the existing attention models only focus on the 

salient regions of emotion but ignore the continuity of cognition. In the auditory system, 

selective auditory attention captures salient emotion regions by continuous scanning and 

encoding of the speech signals [36]. Therefore, how to effectively model the auditory 

representation sequence by mimicking the auditory attention to capture salient emotion 

regions is also an important issue of SER. 

(3) Auditory representation extraction and sequence modeling for dimension emotion 
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recognition 

In the categorical emotion recognition method, the speech signal is mapped to the high-

dimensional data space through auditory and modulation filtering, and then the joint 

spectral-temporal feature is extracted from this representation by 3D convolution. High-

dimensional data increases the complexity of the emotion recognition model, especially 

for the lack of large-scale speech emotion database, which may make the training model 

poor generalization. In dimension emotion recognition, the speech signal is usually a long 

time series, and the annotated dimensional value is very short. Therefore, the 3D 

convolution used in categorical emotion recognition is not suitable for dimension emotion 

recognition. In addition, emotional information in speech usually changes dynamically 

with time. The dynamic information of emotion in speech sequence is very important for 

emotion recognition, especially for dimensional emotion recognition, because the target 

dimensional values are continuous and have a short-time gap between two adjacent 

predictions [37]. However, the acoustic features, especially for the suprasegmental 

features, are not good at capturing the temporal dynamic for dimensional emotion 

recognition. The human auditory system can easily track the temporal dynamics of 

emotion by perceiving the intensity and fundamental frequency of speech. Therefore, how 

to effectively extract auditory representations and model auditory representation 

sequence to track the temporal dynamics of emotion for dimensional emotion recognition 

is also an important issue of SER. 

 Proposed approach 

The dissertation presents novel SER methods to address the challenges mentioned in 

Section 1.2. This section summarizes the proposed solutions. 

(1) A three-dimensional convolutional neural network architecture is proposed to 

obtain discriminative spectral-temporal auditory representations from the temporal 

modulation cues 

This study attempts to extract auditory representation from human auditory models to 

improve the recognition performance of emotion. However, due to the complexity of the 

human auditory system, the mechanism of auditory signal processing is not completely 

clear. We still do not know which auditory model can better simulate the human auditory 

system. Therefore, this study first investigates the cochlear auditory filterbank, then 

introduce modulation filterbank to generate temporal modulation cues. Multi-

dimensional spectral-temporal auditory representations can be obtained from temporal 

modulation cues, which contain acoustic frequency components, modulation frequency 

components, and temporal information. This study then proposes a 3D convolutional 
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neural network architecture to extract the discriminative spectral-temporal auditory 

representations from the temporal modulation cues. 

(2) An attention-based sliding recurrent neural network is proposed to continuously 

obtain segment-level features and capture the salient regions of emotion representation 

As selective auditory attention in the auditory system can capture salient emotion 

regions by continuous scanning and encoding of the speech signals. We investigate the 

relation of the auditory features and human attention mechanism and propose an 

attention-based sliding recurrent neural network (ASRNN) model to seize the salient 

emotion regions from joint spectral-temporal representation. Among them, a sliding 

window is used to continuously obtain segment-level features, so that the features 

between segments are partially overlapped, and each segment contains context-related 

features. Then, a temporal attention model is used to capture the salient regions of emotion 

representation in each utterance. In this method, ASRNN effectively models auditory 

representation sequence by mimicking the auditory attention to capture salient emotion 

regions for categorical emotion recognition.  

 (3) A multi-resolution modulation-filtered cochleagram feature is proposed to capture 

the temporal and contextual modulation cues for dimensional emotion recognition 

Since emotion in speech often changes with the time, the temporal dynamics are very 

important factors in emotion recognition. Temporal modulation cues obtained directly 

from the time-domain model of auditory perception can reflect its temporal dynamics 

compare to acoustic features usually processed in the frequency domain. A recent 

neuroscientific study suggests that the cortex derives multi-resolution representations 

through the temporal modulation analysis. Therefore, this study proposes a novel auditory 

feature to extract high-level auditory representation from temporal modulation cues, and 

designs a parallel LSTM network architecture to track the temporal dynamics of auditory 

representation sequence. The proposed novel feature, multi-resolution modulation-

filtered cochleagram (MMCG), is constructed by combining four modulation-filtered 

cochleagrams at different resolutions to capture temporal and contextual information. 

Each kind of modulation-filtered cochleagrams is extracted from temporal modulation 

cues of the amplitude envelope. Considering that each modulation-filtered cochleagram 

in MMCG contains different temporal and contextual modulation cues, a parallel LSTM 

is designed to model multi-temporal dependencies of MMCG and track the temporal 

dynamics of auditory representation sequence. 

 Contributions 

This study explores different methods of feature extraction based on human auditory 
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characteristics and combines the current popular deep learning methods to identify 

categorical and dimensional emotional representation. This dissertation presents the 

following contributions to the area of SER.  

Temporal modulation cues play an important role in speech perception and contain 

multi-dimensional spectral-temporal information. Therefore, this study proposes a 3D 

CNN architecture to extract the discriminative auditory representations from temporal 

modulation cues for categorical emotion recognition. This deep model obtains both the 

local features and periodicity information of emotional speech by a joint spectral-

temporal feature learning. It is confirmed that temporal modulation cues contain joint 

spectral-temporal representations and high-level discriminative auditory representation 

could be extracted from temporal modulation cues by joint spectral-temporal feature 

learning of 3D convolution.  

Capturing salient emotion regions using the attention model is a perspective way for 

emotion recognition. Some recent studies proposed attention models to adjust weights of 

LLD-based features. Unlike these studies, this study proposes an ASRNN to continuously 

scan the temporal sequence and focus on the emotional region. In ASRNN, the continuous 

segment-level internal representations are extracted by a sliding window, and then a 

temporal attention model is focused on the salient emotion regions for utterance-level 

emotional states. Moreover, the results of the listening tests indicate that there is a strong 

correlation between human auditory attention and the attention model. Therefore, the 

ASRNN architecture can effectively capture the salient emotional regions, which is 

similar to the human selective auditory attention. 

Inspired by the multi-resolution modulation signal processing of the auditory system, 

the MMCG feature is further proposed to capture the temporal and contextual modulation 

cues. This feature is constructed by combining four modulation-filtered cochleagrams at 

different resolutions to capture various spectral and temporal features. It is confirmed that 

the MMCG feature could effectively capture the temporal and contextual cues at different 

resolutions for dimensional emotion recognition. The results also show that the parallel 

LSTM can track the temporal dynamics of emotion from each modulation-filtered 

cochleagram at different scales. 

 Dissertation organization 

The rest of this dissertation is organized as follows. Figure1.2 shows the organization 

of this dissertation. 

Chapter 2 reviews the related knowledge of SER, including the representation of 

emotion, emotion database used in this study, traditional acoustic feature, auditory feature, 
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and deep learning methods. The typical evaluation metrics of classification and regression 

models are also introduced.  

Chapter 3 analyzes the existing problems of SER features and extracts discriminative 

auditory features for categorical emotion recognition. First, a multi-channel parallel 

CRNN is proposed for two-stage emotion recognition based on Gammatone auditory 

filterbank. Then, a 3D CRNN is proposed for end-to-end emotion recognition based on 

temporal modulation cues. Finally, the experimental results of the two methods are 

analyzed and compared.       

Chapter 4 proposes an ASRNN to focus on the salient emotion regions by extracting 

segment-level features in a sliding window manner and utterance-level features with a 

temporal attention model. Then, a subjective evaluation is conducted to investigate the 

correlation between the temporal attention model and human auditory attention in 

perceiving emotional speech. 

Chapter 5 proposes a novel MMCG feature to capture the temporal and contextual 

modulation cues and designs a parallel LSTM network architecture to extract more 

temporal dynamics from modulation-filtered cochleagram for dimension emotion 

recognition. Finally, the performance of dimension emotion recognition is analyzed and 

compared with all evaluated features.  

Chapter 6 concludes the proposed methods for speech emotion recognition, and 

discusses the future works in the end. 
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Introduction

Chapter 2

Related works

Chapter 6

Conclusion and future work

Chapter 3

Auditory-based categorical emotion 

recognition

Chapter 4

Attention-based categorical emotion 
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Chapter 5
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cochleagram feature for dimensional 

emotion recognition

 

Figure 1.2: Organization of this dissertation 
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Chapter 2   

Related works 

 Representation of emotion  

Speech emotion recognition (SER) aims to identify the emotional states of human 

beings from speech automatically. The process of SER is to extract emotion features from 

the speech signal, then train an emotion recognition model and identify the emotional 

states using a specific emotion description method. Emotion plays an essential role in the 

understanding of the speaker’s intention. However, compared with other psychological 

phenomena such as cognitive, there is no universally agreed theoretical definition because 

of the subjectivity of emotion recognition.  

At present, there are many description models about emotion definition, which are 

mainly divided into two kinds of emotion description: categorical emotion description 

and dimensional emotion description. During the 1970s, psychologist Paul Ekman 

identified six basic or prototypical emotions that he suggested were universally 

experienced in all human cultures. The emotions he identified were happiness, anger, 

sadness, surprise, fear, and disgust [38]. In addition to identifying categorical emotion 

types, people use dimensional emotion to describe more abundant emotion types. 

Dimension emotional description uses the continuous numerical value to describe an 

emotional state, so it is also called continuous emotional description. It regards the 

emotional state as a point in multi-dimensional emotional space, and each dimension 

corresponds to different psychological attributes of emotion, such as arousal, valence, 

expectation, dominance, liking, etc. The dimensional emotion is more close to the 

analysis of continuous and complex emotion information naturally expressed by human 

beings in daily communication activities. Valence and arousal (V-A) are the universal 

primitives in emotion dimensional space [39], as shown in Fig. 2.1. Valence is related to 

subjective appraisal and experience with positive or negative emotions. Arousal is 

associated with an intensity level, unusually low or high degree of arousal. Through 

different valence and arousal, we can distinguish different emotions. For example, neutral 

remains in the middle of the V-A space. Happy and angry both have a high activation 

level. However, happy has a positive valence value, and angry has a negative valence 

value. Sad has a negative valence and low arousal. 
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However, both categorical and dimensional emotion description methods have their 

limitations. Because emotions are complex and subjective, fewer discrete categories may 

not reflect the subtle differences and complexity of emotional states. The dimensional 

emotion space can reflect more subtle and fuzzy emotions without boundary, and it does 

not need to define a large number of emotion states classification in advance. However, 

the dimensional evaluation value may lose significance due to the lack of consistent 

evaluation criteria. In order to investigate the effectiveness of human auditory 

characteristics on emotion recognition, this study utilizes both categorical and 

dimensional emotion descriptions. 

 Emotional speech corpus 

This dissertation utilizes both categorical and dimensional emotion corpus to train, 

develop, and test the proposed SER frameworks.  

2.2.1 Categorical emotion corpus 

In this dissertation, three categorical emotion databases are used in total, including 

CISIA database [40], the Interactive Emotional Dyadic Motion Capture (IEMOCAP) 

database [41], and the MSP-IMPROV database [42].  

1) CISIA database: A acted Mandarin emotional speech database made by the Chinese 

Academy of Sciences. CISIA database comprises a total of 9600 recordings from four 

actors (2 females and 2 males). This database was recorded in laboratory environments 

with fixed lexical content and acted emotions. Recordings for every speaker were made 

Figure 2.1: The 2D valence-arousal emotion space, with the approximate positions 

of some categorical descriptors shown in the plane 
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300 same sentences and 100 different sentences. Each speaker utters 400 sentences with 

six emotions, which are happy, fear, angry, sad, surprise, and neutral emotion. CISIA 

database is used for two-stage categorical emotion recognition.  

2) IEMOCAP database: This database is a well-known dataset for speech emotion 

recognition comprising of scripted and improvised multimodal interactions of dyadic 

sessions. It consists of around 12 hours of speech from 10 human subjects and is labeled 

by three annotators for emotions such as happy, sad, angry, excited, and neutral, along 

with dimensional labels such as valence and arousal. All recordings have the structure of 

a dialogue between a man and a woman either scripted or improvised on the given topic. 

This study includes excitement utterances with happiness ones and takes 5,531 utterances 

(1636 happy, 1084 sad, 1103 angry, 1708 neutral) for all sessions. The mean length of all 

the turns is 4.55 s (max.: 34.14 s, min.: 0.58 s), emotional state distribution is shown in Fig 

2.2. IEMOCAP database is used for end-to-end categorical emotion recognition. 

 

3) MSP-IMPROV database: This database is an audio-visual dyadic emotion corpus. It 

consists of six sessions in the same manner (12 unique speakers). Each session includes all 

the speaking turns of the improvisation and the natural interaction based on the 20 target 

sentences in the improvised scene. The emotional expressions of the speakers were elicited 

through carefully designed scenarios that include improvisations and target sentences with 

specific lexical content. The final database contains a total of 7798 utterances (2644 happy, 

885 sad, 792 angry, 3477 neutral). The mean length of all the turns is 4.09 s (max.: 31.09 s, 

min.: 0.41 s), emotional state distribution is shown in Fig 2.3.  

anger, 1103, 
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1636, 29%
sadness, 1084, 

20%
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Figure 2.2: Emotional state distribution in IEMOCAP 
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 In this study, the IEMOCAP and MSP-IMPROV databases are used in the experiment 

of attention-based categorical emotion recognition. Both databases are composed of 

multimodal interactions of dyadic sessions and labeled by three annotators for emotions 

such as happy, sad, angry, excited, and neutral, along with dimensional labels such as 

valence and arousal. Only four emotional categories are used in both databases: happy, 

sad, angry, and neutral.  

2.2.2 Dimensional emotion corpus 

Two databases are used in this study, namely, RECOLA [43] and SEWA [44] databases. 

These two databases consist of spontaneous data, and a selected subset of these two 

databases are used as per Audio/Vision Emotion Challenge (AVEC) 2016 [45] and 

AVEC 2017 [46].  

1) RECOLA database: This database is a multi-modal corpus of remote collaborative 

and affective interaction. There are 27 French speakers in the database, which are divided 

into three partitions (9 train, 9 development, and 9 test) by balancing gender, age and 

mother tongue of the subjects. The recordings are annotated time-continuously in terms 

of the emotional dimensions including arousal, valence and dominance. The affective 

behavior of the participants was evaluated by six different annotators and averaged over 

all annotators by considering the inter-annotator agreement to provide a gold standard. 

2) SEWA database: The database is also a multimodal database for remote 

collaboration and emotional interaction. This subset of the database is used in 2017, 2019, 

and 2020 AVEC challenges on emotion recognition. The SEWA database recruited 408 

speakers and divided them into six groups according to different cultural backgrounds 

anger, 792, 

10%

happiness, 

2644, 34%

sadness, 885, 

11%

neutral, 3477, 

45%

Figure 2.3: Emotional state distribution in MSP-IMPROV 
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(UK, Germany, Hungary, Greece, Serbia and China). There are also significant 

differences in age and gender in each group, with at least three pairs in each age group 

being able to speak in their mother tongue. This study uses the 2017 AVEC database. 

This database contains 64 German subjects and is divided into three partitions (34 train, 

14 development, and 16 test). The recordings are annotated time-continuously in terms 

of the emotional dimensions, including arousal, valence and liking. To validate efficacy 

of the proposed approach for dimensional emotion recognition, a subset of SEWA 

database is also used. 

In this study, we use gold-standard labels and investigate arousal and valence prediction 

for both databases. Similar to the studies [26,47], we use the same training set and 

development set to train and validate the recurrent model with different acoustic-based 

features and auditory-based features. Specifically, 18 recordings in the RECOLA 

database and 48 recordings in the SEWA database are adopted.  

Although both databases were obtained from dyadic conversations, differences 

between RECOLA and SEWA are as follows: 

1) Each recording includes only the audio from the target speaker in RECOLA, whereas 

each recording includes the mix of the target speaker and interlocutor in SEWA. 

2) The duration of each recording is lasting for 5 minutes in RECOLA, while it is 

variable from 47 seconds to 3 minutes in SEWA. 

3) The sampling rate of the emotion annotation is 25Hz in RECOLA while it is 10Hz 

in SEWA. It means that the values of each primitive emotion are continuously labeled on 

40-ms consecutive frames in RECOLA and 100-ms consecutive frames in SEWA. 

 Acoustic feature extraction  

In deep learning-based speech emotion recognition, acoustic feature extraction usually 

consists of two steps. Firstly, LLDs are extracted from speech, and then the statistical 

function of LLDs calculated on a block of continuous frames are used to get High-level 

statistics functions (HSFs). In this study, acoustic features are used as baseline features 

for performance comparison with auditory-based features. 

2.3.1 Low-level descriptors 

LLDs refers to some traditional hand-tuned acoustic features, which are generally 

calculated on a frame of speech, and are used to represent the features of a frame of speech. 

The hand-tuned acoustic features most widely used are prosodic features, voice quality 

features and spectral features.  

Voice quality feature: refer specifically to the properties of speech affected by the 
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stuff inside your larynx. These features usually include formant frequency and bandwidth, 

jitter, shimmer and glottal parameter. 

Prosody feature: refers to the change of pitch intensity and speaking rate in speech 

besides the voice quality feature, also known as a suprasegmental feature, including 

duration, fundamental frequency (F0), energy and other features. The F0 refers to the 

vibration frequency of the pitch, which determines the pitch of the voice and can reflect 

the emotional state to a large extent. For example, when the pitch is high, it may 

correspond to the emotional state of happiness or anger; when the pitch is low, it may 

correspond to the emotional state of sadness. Pitch is often used to express the perception 

of F0 in subjective psychology. The reciprocal of its F0 is called a fundamental period, 

which is also a common acoustic feature.    

Spectral feature: signal properties in the frequency domain, thus providing useful 

additions to voice quality and prosody features, including linear predictor coefficient 

(LPC) and Mel-frequency cepstrum coefficient (MFCC). MFCC is the most commonly 

used spectral feature. It is a feature based on the Mel scale, which is closer to the response 

of the auditory system than the linear interval frequency band. MFCC extraction method 

is: firstly, the speech signal is blocked into short-term overlapping frames, then each 

speech frame 𝑠(𝑡)  is multiplied by an analysis window 𝑤(𝑡)  and the short-term 

Fourier transform (STFT) is computed and subsequently compute the filter banks. As the 

filterbank coefficients calculated in the previous step are highly correlated, discrete cosine 

transform (DCT) is calculated to decorrelate the filter bank coefficients and yield a 

compressed representation of the filter banks. Finally, only the first 12 DCT coefficients 

are reserved. 

Table 2.1 lists the ComParE acoustic feature set with 65 low-level descriptors. 

2.3.2 High-level statistics functions 

Although the frame-level features can be used directly for machine learning, a more 

common approach in SER is to compute features at segment-level or utterance-level, by 

applying a number of descriptive functions (typically statistical) to the contours of frame-

level features, and often to their derivatives as well to extract local dynamic cues. 

HSFs are obtained by calculating the statistic functions on LLDs, such as mean, 

maximum, etc. At present, the researches usually use local or global feature statistical 

functions to get segment-level or utterance-level HSFs, which can extract the same 

dimension features from different speech segments. The Munich open Speech and Music 

Interpretation by Large Space Extraction (openSMILE) as a prevailing emotion 

recognition toolkit is employed in this dissertation to extract LLDs and HSFs [48]. 
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4 energy related LLD group 

Sum of auditory spectrum prosodic 

Sum of RASTA-filtered auditory spectrum prosodic 

RMS Energy, Zero-Crossing Rate prosodic 

55 spectral LLD group 

RASTA-filt. aud. spect. bds. 1–26 (0-8 kHz) spectral 

MFCC 1–14 cepstral cepstral 

Spectral energy 250–650 Hz, 1 k–4 kHz spectral 

Spectral Roll-Off Pt. 0.25, 0.5, 0.75, 0.9 spectral 

Spectral Flux, Centroid, Entropy, Slope spectral 

Psychoacoustic Sharpness, Harmonicity spectral 

6 voicing related LLD group 

F0 (SHS & Viterbi smoothing) prosodic 

Prob. of voicing voice quality 

log. HNR, Jitter (local & DDP), Shimmer (local) voice quality 

 

The following describes the main HSFs used in this study:             

IS09_emotion [49]: Emotion feature set of the INTERSPEECH 2009 Emotion 

Challenge. For 16 LLDs and their first-order delta features, 12 statistical functions are 

applied to obtain 384-dimensional features, including statistics of short-time energy, 

MFCC, short-time zero-crossing rate, time domain and frequency domain information.             

IS10_paraling [50]: Emotion feature set of the INTERSPEECH 2010 Emotion 

Challenge. It includes 1582 dimensional features, 34 LLDs and their delta features use 

1428 dimensional features generated by 21 functions, and 19 functions use 4 pitch based 

LLDs and their delta features.             

IS13_ComParE [51]: Emotion feature set of the INTERSPEECH Emotion Challenge 

since 2013. It includes 6373-dimensional features, including 4 energy features, 55 

spectrum features, 6 acoustic features and delta features. 130 LLDs are obtained.    

Emobase: This feature set includes the following LLDs, intensity, loudness, 12 MFCC, 

pitch (F0), probability of voice, F0 envelope, 8 LSF (line spectral frequencies), zero-

crossing rate, and then calculate statistical features (arithmetic mean, linear fitting, delta 

features, standard deviation, etc.) for these features.             

Emobase2010 [50]: According to the use of documents of openSMILE, this feature set 

is basically the same as IS10_paraling. The only difference is that the “maxpos” and 

Table 2.1: The 65 low-level descriptors provided in the ComParE acoustic feature set 
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“minpos” features are standardized in the INTERSPEECH 2010 paralinguistic challenge 

set. This configuration is standardized as segment length.   

Extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS) [52]: The 

statistical functionals include mean, standard deviation, percentiles, and slope of F0 and 

loudness contours and only mean and standard deviation for the other LLDs (MFCC, 

spectral descriptors, etc.). In addition to that, some rhythm-related features are computed, 

namely, rate of loudness peaks, the mean length and the standard deviation of 

continuously voiced and unvoiced regions, and the number of continuous voiced regions 

per second.           

HSFs features based on utterance-level statistics have the advantages of low dimension 

and become the mainstream feature extraction method, but its disadvantage is that after 

calculating statistical function, some local information reflecting the dynamic changes of 

emotion will be lost. With the development of deep learning and high-performance 

computing technology, more and more researches consider the use of segment level HSFs. 

LLDs and HSFs are common emotion recognition methods. In addition, some researches 

directly use short-time Fourier transform (STFT) bins [53], Mel filterbank [54,55] or 

spectrogram [56] for emotion recognition. Only MFCC imitates human’s auditory 

physiological features to a certain extent. It first maps the linear spectrum to Mel 

nonlinear spectrum based on auditory perception and then converts it to cepstrum. 

However, due to the use of triangular filterbanks for frequency-domain filtering, the 

energy leakage between adjacent frequency bands is very serious, which is not conducive 

Figure 2.4: Human auditory system 
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to the extraction of formants and other characteristics, and its frequency band division is 

based on the uniform distribution of the central frequency Mel scale, which is not fully 

in line with the concept of the critical bandwidth in the auditory characteristics. 

 Auditory model  

2.4.1 Human auditory system 

In the auditory system, the mechanical stimulus is transformed into nerve impulses, 

and these impulses are transferred to the auditory cortex of the brain along the auditory 

nerve. The transformation enables the brain to extract spoken words and nonverbal 

elements such as emotions. According to the processing of speech and audio signals, the 

auditory system can be roughly divided into the peripheral auditory system and central 

auditory system. The peripheral auditory system consists of the outer ear, the middle ear 

and the inner ear, as shown in Fig 2.4.  

The outer ear is composed of the pinna and external auditory canal. Its main function 

is to collect sound, amplify it and judge the direction of a sound source.  

The middle ear is mainly composed of the tympanic membrane and three auditory 

ossicles (malleus, incus and stapes). Its primary physiological function is to amplify the 

gain of input speech and transfer it efficiently into the cochlea from the external auditory 

canal.  

The inner ear is mainly composed of vestibule and cochlea. Its primary physiological 

function is the sound sensing function of the cochlea. The cochlea is shaped like a snail’s 

shell, which is composed of three ducts that run in parallel: scala tympani, scala media, 

scala vestibuli. The organ of Corti located in the scala media is the main component of 

the cochlea, which is responsible for transforming the mechanical vibration transmitted 

to cochlea into the nerve impulse of the auditory nerve fiber. The vibration of the basilar 

membrane of the cochlea stimulates the hair cells located above it, and causes the afferent 

nerve fibers at the bottom of the hair cells to produce action potentials, which leads to the 

release of chemical transmitters at the nerve endings, and the nerve impulses to the central 

auditory system. 

The central auditory system consists of the cochlear nucleus, superior olivary complex, 

inferior colliculus, medial geniculate body and auditory cortex. The afferent nerve signals 

arrive at the auditory cortex along with the central auditory system and generate auditory 

perception and cognition in the auditory cortex. 
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2.4.2 Computational auditory modeling 

In the light of the human auditory system, many computational auditory models have 

been developed which describe the signal processing occurs in the ears. Recently, 

computational auditory models are being used in feature extraction for SER tasks. 

Different auditory models are used to simulate different stages of auditory signal 

processing.  

1) Auditory filterbank 

The auditory filter simulates the time-frequency signal decomposition of the cochlear 

basilar membrane. The auditory filterbank is used to simulate the time-frequency signal 

decomposition of the cochlear basilar membrane. Two kinds of cochlear models are 

commonly used as a simulation of the cochlea in the processing of speech and audio. One 

is Lyon’s cochlear model, and the other is the auditory filterbank model based on 

equivalent rectangular bandwidth (𝐸𝑅𝐵𝑁 ) [57]. Auditory filterbank is approximate to 

simulate the frequency separation of sounds within the cochlea from the basilar 

membrane. Auditory filterbank model well the basilar membrane motion (BMM) of the 

auditory system.  

 

Figure 2.5: Frequency response of Gammatone filter 



 

20 

 

 

Gammatone [58] or Gammachirp [59] filterbanks are the commonly used auditory 

filterbank. The impulse response of a Gammatone filter is the product of a Gamma 

distribution and a sinusoidal tone. The bandwidth of each filter is described by an 𝐸𝑅𝐵𝑁, 

which is a psychoacoustic measure of the width of the auditory filter at each point along 

the cochlea. Fig. 2.5 illustrates the frequency responses of the Gammatone filterbank.  

Compared to Gammatone filter, Gammachirp filter is an asymmetric and Nonlinear filter 

which is similar to auditory filter shapes. The frequency responses of the Gammatone 

filters, as seen in Fig. 2.6, are asymmetric and exhibit a sharp drop-off on the high 

frequency side of the center frequency compared to Gammatone filter. This corresponds 

well to auditory filter shapes derived from masking data.  

Both Gammatone and Gammachirp filter is used to simulate the basilar membrane, 

each of which has its own advantages and disadvantages. The calculation efficiency of 

Gammatone is higher than that of Gammachirp, but Gammachirp is better than 

Gammatone in simulating the asymmetric and level-dependent auditory filterbank. 

Experiments show that they have little influence on the performance of emotion 

recognition. In this study, Gammatone filter is used in two-stage emotion recognition and 

dimension emotion recognition, while the Gammachirp filter is used in end-to-end mode. 

2) Temporal Envelope Extraction 

On basilar membrane, the frequency selectivity of position changes logarithmically. 

The IHCs are embedded in the floor of the basilar membrane and will be excited when 

the basilar membrane moves upwards. IHCs detect the movement of the basilar 

membrane and transduce it into neural signals. Each mechanical-to-neural signal 

transduction contains a temporal envelope, which is very important for speech perception. 

Figure 2.6: Frequency response of Gammachirp filterbank  
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The temporal amplitude envelope simulates the signal transduction of the IHCs. The 

temporal envelope from each band is usually extracted through either half-wave or full-

wave rectification and low-pass filter. Recently, the Hilbert transform was used as another 

way to extract a temporal envelope. The half-wave or full-wave rectification produces 

distorted frequency components in the modulation domain, whereas the Hilbert transform 

provides a clear separation between the signal’s temporal envelope and fine structure [60]. 

Hence, the Hilbert transform is used for temporal envelope extraction in this study.  

3) Modulation Filterbank 

There are both physiological and psychology evidence suggested the existence of 

modulation filterbank in the auditory system. From a physiological point of view, the 

processing of amplitude modulation frequencies is performed in the higher processing 

stages of the auditory system [31]. This temporal periodicity code is assumed to be 

translated into a frequency selective rate-based representation between the cochlear 

nucleus (CN) and the inferior colliculus (IC). Furthermore, in the IC, a periodotopic 

arrangement of neurons is suggested that are tuned to certain modulation frequencies. 

These neurons were found to be arranged almost orthogonally to the tonotopic 

arrangement of neurons that are tuned to certain acoustic frequencies. Physiological 

studies have shown that temporal modulation is the processing of high-resolution 

temporal information by tuning the IC to a specific modulation frequency [11]. Recent 

psychoacoustic experiments show that temporal modulation is very important in speech 

perception and understanding. A modulation filterbank is introduced to analyze the 

envelope fluctuations of the stimuli in each peripheral auditory filter. Temporal 

modulation cues of high frequency-domain resolution can be obtained by the modulation 

filter.  

 Deep learning  

CNNs and RNNs are two important deep learning algorithms, which are used to 

recognize the emotion in this study. CNNs are used to extract high-level local feature 

representations and RNNs are used to handle long-range temporal dependencies in time 

series. 

2.5.1 Convolutional neural network 

The CNN is designed especially for visual recognition tasks and consists of many pairs 

of alternating convolutional and subsampling layers [30]. Inspired by neuroscience, Yann 

LeCun et al. proposed CNN architecture called LeNet-5 for the task of recognizing 

handwritten character recognition in the 1990s [10]. CNN architecture is mainly 
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composed of an input layer, convolutional layer, pooling layer, fully connected layer and 

output layer. The convolutional layer and the pooling layer are connected in an alternating 

manner, that is, a convolutional layer is connected to a pooling layer, and then a 

convolutional layer is connected, and so on. Figure 2.7 shows the basic structure of CNN 

network. The CNN network introduces three core ideas of the local receptive field, weight 

sharing, and spatial or temporal downsampling, so that CNN can better reflect the local 

features of the image and maintain the invariance of the displacement, scale or 

deformation of the features to a certain degree. 

(1) Local receptive fields 

The role of the receptive field is to allow the convolutional layer to extract local 

features of the image and maintain the spatial continuity of the image [61]. Similar to the 

local perception mechanism of the cat visual cortex, the neurons in adjacent layers use a 

local connection mode to extract basic visual features (such as directional edges, 

endpoints, corners, etc.) and then combine the basic features at higher layers to form 

global features. 

(2) Shared Weights 

The weight parameters of each neuron in the hidden layer of the same feature in the 

local connection can be shared with other neurons, which greatly reduces the training 

parameters. Neurons with receptive fields located in different areas of the image have the 

same weight. Compared with the traditional fully connected neural network, the 

convolutional network greatly reduces the number of network parameters through weight 

sharing, thus making it feasible to train large-scale networks. 

(3) Spatial or temporal sub-sampling 

Downsampling is also called pooling, and its principle is the scale invariance of 

features. The pooling function reduces the scale of output features and increases the 

receptive field of subsequent convolutional layers, which helps to extract high-level 

features while reducing the computational complexity of the network. It uses a fixed-size 

pooling window and a certain stride to slide on the feature and calculates the maximum 

or average value of the feature in the window according to the different pooling functions. 

Figure 2.7: Schematic diagram of the basic structure of the CNN network 
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According to the calculation method of pooling function, there are Max Pooling and 

Average Pooling. 

The function of the activation function in the convolutional neural network is to 

increase the nonlinearity of the neural network. The commonly used activation functions 

are: 

(1) Sigmoid function 

Also called S-shaped function, it is strictly monotonically increasing and differentiable. 

The function expression is as follows: 

𝑦 = 𝑓(𝑥) =
1

1 + 𝑒−𝑥
 

The value range of the Sigmoid function is (0,1), and the function value changes faster 

where the independent variable is close to 0. The Sigmoid function is the most commonly 

used activation function in neural networks. 

(2) Hyperbolic tangent function (tanh) 

𝑦 = 𝑓(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 

This function can be derived from the sigmoid function. The range of the tanh function 

is [-1, 1], and the relationship is: 

𝑡𝑎𝑛ℎ 𝑥 = 2𝑠𝑖𝑔𝑚𝑜𝑖𝑑(2𝑥) − 1 

(3) Rectified linear unit (ReLU)  

This function is considered to have a certain biological principle, and is often better 

than other activation functions in practice, and is the most widely used in DNN. The 

function expression is as follows: 

𝑦 = 𝑚𝑎𝑥(0, 𝑥) 

There are three main changes in ReLU than the Sigmoid function: 1) unilateral 

suppression, 2) wide excitement boundary, and 3) sparse activation.  

In order to prevent overfitting during training, dropout optimization methods are 

usually used. Secondly, the convolution operation can be performed in different 

dimensions. For example, 1D convolution is mostly used for feature extraction of 1D 

speech or other signal sequences, and 2D convolution is mostly used for computer vision 

and speech spectrograms. Moreover, 3D convolution is mostly used for feature extraction 

of 3D structure. In short, CNN has been widely used in image vision, speech recognition, 

(2.4) 

(2.3) 

(2.2) 

(2.1) 
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signal processing and other fields, and achieved excellent results. 

2.5.2 Recurrent neural network 

RNN is a type of neural network where the output from the previous step are fed as 

input to the current step, and is powerful in modeling the sequential data [31]. Unlike 

CNN, the RNN introduces the concept of memory to process arbitrary sequences of inputs. 

Shown in Fig 2.8 is the recurrent neural network structure. On the left, it contains a self-

loop connection. Among them, 𝑥 is the input sequence, ℎ is the hidden vector sequence, 

𝑜 is the output vector sequence. 𝑊, 𝑈 and 𝑉 are the weights matrices of the hidden 

layer input layer and output layer, respectively. On the right, it shows the structure 

obtained by unfolding it in time. ℎ𝑡 represents the memory of the sample at time t, ℎ𝑡 =

𝑓(𝑊 ∗ ℎ𝑡−1 + 𝑈 ∗ 𝑥𝑡−1) . ℎ𝑡−1  and ℎ𝑡+1  represent the memories of 𝑡 − 1  and 𝑡 + 1 

time steps, respectively. 

 

During the reverse propagation, the RNN will encounter the problem of gradient 

disappearance. The most popular way to train an RNN is by backpropagation through 

time. However, the problem of the vanishing gradients often causes the parameters to 

capture short-term dependencies while the information from earlier time steps decays, 

and the RNN becomes worse at modeling long-term dependencies. The emotional context 

is very important in SER, so we don’t want to lose that information. LSTM is a kind of 

recurrent neural network specially designed to solve the long-term dependence problem 

of general RNN [30]. 

2.5.3 Long short-term memory network 

LSTM architecture is the state-of-art model for sequence analysis since it can exploit 

long-term dependencies in the sequences by using memory cells to store information. 

Given an input feature sequence x = {𝑥1, … , 𝑥𝑇}, LSTM computes the hidden vector 

sequence h = {ℎ1, … , ℎ𝑇}, and output vector sequence y = {𝑦1, … , 𝑦𝑇} by iterating the 

Unfold 

ℎ 

ℎ𝑡 ℎ𝑡+1 ℎ𝑡−1 

Figure 2.8: Recurrent neural network structure 
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following equations from t=1 to T: 

(ℎ𝑡, 𝑐𝑡) = H(𝑥𝑡, ℎ𝑡−1, 𝑐𝑡−1), 

𝑦𝑡 = 𝑤𝑦 ∗ ℎ𝑡 + 𝑏𝑦, 

Where the H term is the LSTM layer function, c is the cell activation vector with the 

same size as the hidden vector h. The w terms denote weight matrices and the b terms 

denote the bias vectors. 

 Figure 2.9 shows the gate structure in the LSTM. It includes forget gate, input gate 

and output gate. These three gate structures effectively avoid the phenomenon of gradient 

disappearance. Among them, 𝐶  represents the cell state, 𝜎  represents the Sigmoid 

function. A horizontal line at the top of the figure is the memory flow, representing the 

memory information of the current time step as the input of the next time step. The 

horizontal line runs through the top of this figure. A horizontal line at the bottom of the 

figure is the data flow, representing the input data at the current time step and the hidden 

layer data at the previous time step.  

 

BLSTM increases the flow of information in reverse time on the basis of LSTM, so it 

can use “future” information, which is usually better than the one-way model in effect. 

The basic idea of BLSTM is to combine two LSTMs in opposite directions, and these two 

hidden layers are connected to an output layer. 

𝐶𝑡−1 𝐶𝑡 

ℎ𝑡−1 ℎ𝑡 

ℎ𝑡 

𝑥𝑡 

input gate forget  
gate 

output gate 

𝑓𝑡 𝑖𝑡 
𝐶ሚ𝑡 

𝑜𝑡 

Figure 2.9: The forget gate, input gate and output gate in Long Short-Term Memory 

Network  

(2.6) 

(2.5) 
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 Evaluation metrics  

2.6.1 Classification model evaluation metrics 

The classification method based on deep learning usually adopts a softmax function 

label to be converted into one-hot vector. The softmax function is usually added to the 

last layer of various neural networks. The category corresponding to its maximum output 

value is used as the identification classification of the sample. The softmax function 

normalizes the 𝑘-dimensional vector in the node to another 𝑘-dimensional vector, so 

that the range of each element in the vector is [0,1], and the sum of all elements is equal 

to 1. The definition of the Softmax function is: 

Softmax(𝑧𝑖) =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝑘
𝑗=1

 

Where 𝑧𝑖 represents the ith element in the original vector.  

Accuracy is the most common and basic evaluation standard in classification models. 

For the average recognition accuracy of all categories, weighted accuracy (WA) and 

unweighted accuracy (UA) can be used to evaluate separately. WA is the ratio between 

the accuracy prediction of each category and the total number of each category, and finally, 

get the average value of the accuracy of each category. UA is the ratio between the number 

of correctly predicted samples in all categories of the test set and the total number of 

predicted samples input to the classifier. UA is an ideal evaluation index for data with an 

uneven distribution of sample categories. 

2.6.2 Regression model evaluation metrics 

At present, there are many evaluation methods for regression models, including Mean 

Absolute Error (MAE), Mean Square Error (MSE), Pearson’s Correlation Coefficient 

(PCC) and Consistency Correlation (concordance correlation coefficient, CCC), etc. The 

CCC is used as a differentiable objective function that unites both PCC and MSE and can 

be thought of as a PCC that enforces the correct scale and offset of the outputs [62]. Hence, 

the CCC between the prediction values of emotion dimensions and the gold standard 

values is used to determining the weight of each feature. CCC is also the official 

evaluation index recommended by the AVEC Challenge in recent years. CCC (ρc) is a 

measure of how well the prediction values of emotion dimensions (Y) compares to a "gold 

standard" measurement (X).  

(2.7) 
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𝜌𝑐 =
2𝜌𝜎𝑥𝜎𝑦

𝜎𝑥
2 + 𝜎𝑦

2 + (𝜇𝑥 − 𝜇𝑦)2
 , 

where ρ  is the Pearson correlation coefficient (PCC) between the two time series 

prediction and gold-standard, σx
2 and σy

2 is the variance of each time series, μx and 

μy are the mean value of each. ρ is the PCC coefficient between the two variables, and 

its calculation formula is as follows:  

𝜌 =

1
𝑛

∑ (𝑥𝑖 − 𝜇𝑥)(𝑦𝑖 − 𝜇𝑦)𝑛
𝑖

𝜎𝑥𝜎𝑦
 . 

Therefore, the prediction that is well correlated with the gold standard but shifted in 

value is penalized in proportion to the deviation. This means that the CCC measure 

combines the PCC with the square difference between the mean of the two compared time 

series. To measure the weight of each feature, the CCC measure between the prediction 

values of emotion dimensions and the gold stranded values is used. The value range of 

CCC is [-1, +1], where +1 indicates that the two sequences are completely positively 

correlated, -1 is completely negatively correlated, and 0 is completely uncorrelated.  

(2.8) 

 

(2.9) 
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Chapter 3   

Auditory-based categorical emotion 

recognition 

 Introduction  

Due to the importance of the auditory system in speech perception, research has 

focused on designing emotion recognition systems by mimicking the human auditory 

system. In the auditory system, the sound signal is first decomposed by the cochlea, then 

extracted and compressed by the IHC, the afferent nerve and the central auditory system. 

Finally, the emotional information of speech is perceived by the auditory cortex. 

According to the physiological and psychological characteristics of the human auditory 

system, researchers designed computational auditory models to simulate the various 

stages of the auditory system, including computational models of cochlear mechanics, 

IHC, auditory nerve and brainstem signal processing. Different models can be combined 

to extract various auditory features. The cochlea is the main part of the auditory peripheral, 

which decomposes the acoustic signal along the length of the basilar membrane into 

multi-channel acoustic frequency components. Using an auditory filter to simulate the 

perception process of the cochlea has important applications in understanding the 

auditory mechanism, speech perception and recognition. Gammatone filter is a kind of 

commonly used auditory filter simulating cochlea.  

SER based on computational auditory models using deep learning methods is a new 

way to identify the emotional state. Based on CNN and RNN, this study explores the 

neural network models of feature extraction and time series modeling. Since CNN keeps 

the spectral-temporal translation invariance for speech signal processing, it is often used 

to extract high-level features for SER. Mao et al. [56] achieved good performance of SER 

by trying to learn salient feature maps from the spectrogram of speech using an 

autoencoder followed by CNN. Lim et al. [53] used deep CNN to extract salient features 

by transforming the speech signal to 2D representations using a short-time Fourier 

transform (STFT). Keren et al. [54] and Neumann et al. [55] presented CNN in 

combination with LSTM to improve the recognition rate based on log Mel filter-banks. 

SER can be treated as a classification problem based on speech sequences. Some studies 

deal with it as a sequence classification problem employing RNN or LSTM model. 
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Chernykh et al. [63] used deep recurrent neural networks to train on a sequence of 

acoustic features calculated over small speech intervals. Lee et al. [35] extract a high-

level representation of emotional states with regard to its temporal dynamics. 

Considering that the length of an utterance input to CNN should be the same, it is 

usually divided into fixed-length segments. Han et al. [64] firstly extracted the segment-

level emotion state distributions utilizing the features (F0 and MFCC) based on the DNN 

model and used an extreme learning machine (ELM) to identify utterance-level emotions. 

In this chapter, we propose a two-stage emotion recognition method based on Gammatone 

auditory filterbank using multichannel parallel convolutional recurrent neural networks 

(MPCRNN). The segmented raw waveform is input to MPCRNN after time-frequency 

decomposition of Gammatone filterbank to obtain the segment-level emotion probability 

distribution. Then the utterance-level statistic features are calculated from a segment-

level probability distribution and then fed into SVM classifier to predict the emotional 

states of utterances. 

In the two-stage method, the amplitude-frequency response curve of the Gammatone 

filter is symmetrical about the center frequency and independent about sound levels, which 

cannot reflect the level-dependent asymmetry of the auditory filter. To solve this problem, 

Irino proposed a Gammachirp filter to better simulate the basilar membrane filter [59]. 

Physiological acoustics research shows that the modulation and filtering of the time-domain 

envelope signal generated by the auditory filter plays an important role in speech perception 

and understanding. Modulation filtering can obtain high-resolution time modulation cues, 

which include multi-dimensional information such as acoustic frequency, modulation 

frequency, amplitude and time [25]. This kind of time modulation cue can be represented 

by the 3D space of speech signal. Recently some studies proposed 3D convolution models 

to better capture the spectral-temporal relationship of the feature representations for 

emotion recognition. Chen et al. [65] proposed attention-based CRNN from a 3D feature 

representation by computing the log Mel-spectrogram with deltas and delta-deltas for 

emotion recognition. Kim et al. proposed deep 3D CNN for spectral-temporal feature 

learning by dividing the speech signal into several sub-segments and these sub-segments 

contain 2D feature maps with 256 points log-spectrogram for every 20 ms [66]. In this 

study, the temporal modulation cues from the auditory front-ends contain 3D spectral-

temporal representation. The back-ends of the SER system are responsible for extracting 

high-level features from the 3D representation. CNN has superior feature extraction 

power inspired from biological neural networks and can extract high-level local feature 

representations using the spectral-temporal receptive field of the neuron. Therefore, we 

propose an emotion recognition method in an end-to-end manner using three-dimensional 
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convolutional recurrent neural networks (3D CRNN) based on temporal modulation cues. 

Temporal modulation cues contain four-dimensional spectral-temporal integration 

representations directly as the input of 3D CRNN. The convolutional layer is used to extract 

high-level multiscale spectral-temporal representations, and the recurrent layer is used to 

extract long-term dependency for emotion recognition.  

The rest of the chapter is organized as follows. In Section 3.2, a two-stage discrete 

emotion recognition method based on Gammatone filterbank is proposed, This section 

includes the design of MPCRNN architecture based on auditory filterbank, segment-level 

and utterance-level feature extraction, as well as the analysis of experimental results, and 

finally analyzes the shortcomings of this method; In Section 3.3, an end-to-end discrete 

emotion method based on the auditory model is proposed. This section includes the 

extraction of 3D spectral-temporal features, 3D CRNN, and the experimental results are 

analyzed and discussed; Finally, Section 3.5 summarizes this chapter. 

 Emotion recognition based on auditory filterbank 

In this section, we explicitly emphasize a deep learning algorithm based on auditory 

filterbank to learn discriminative features for SER from the raw waveform. We firstly 

introduce the details of the two-stage MPCRNN model for SER and then present the 

methods for segment-level features and utterance-level emotion.  

3.2.1 Multi-channel parallel convolution recurrent neural 

network 

Figure 3.1 shows the MPCRNN architecture for SER. The first stage is to extract the 

segment-level robust and compact features from raw audio. The speech signal is firstly 

segmented into finite-length chunks. To mimic the function of basilar membrane, 

multichannel auditory features are extracted based on Gammatone auditory filterbank in 

each segment. The multichannel auditory features are subsequently processed to obtain a 

compact representation of the most salient acoustic characteristics for each channel signal 

in parallel. Hence, we employ parallel 1D convolution for each channel in CNN operation, 

and then feed each channel data into LSTM as a sequential task to get the relations of 

Auditory
FilterBank

Utterance-
level feature

extraction
CNN LSTM

Utterance-
level 

classifier
emotion

Segment-level feature extraction

Figure 3.1: MPCRNN architecture for SER 
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each channel. We finally get the emotion probability distribution for each segment using 

the MPCRNN model. 

The second stage is to extract the utterance-level statistical features from the different 

segments that belonged to the same utterance and feed into an SVM classifier to 

determine the emotional state of the whole utterance. 

3.2.2 Segment-level feature extraction 

For extracting the segment-level features, we firstly segment and filter out the raw 

waveform followed Gammatone auditory filterbank, and train subsequently an MPCRNN 

to predict the probability distribution of each emotional state. 

1) Segmentation and filter for the raw waveform 

For segment-level feature extraction, we firstly segment each wav file into 415ms-

duration segments. For comparing the traditional method, we get 40 frames for each 

segment, which includes 25ms windows and 10ms shift. 

The energy of each segment y is the sum of the square about each sampling value yi, 

as shown in Eq. (3.1). Moreover, according to the energy of segments, all segments are 

arranged from lowest to highest. 

energy(y) = ∑ 𝑦𝑖
2

𝑛

𝑖=1

 

There are many segments with low energy, so that we cannot perceive any emotion in 

these segments.  

Therefore, we set a threshold value and filter out the segments whose energies are less 

than the threshold value in accordance with the subjective listening experiments. 

2) Gammatone auditory filterbank 

Gammatone auditory filterbank models well the basilar membrane motion of the 

auditory system. The impulse response of a Gammatone filter is the product of a Gamma 

distribution and a sinusoidal tone. The bandwidth of each filter is described by an 

equivalent rectangular bandwidth (ERB), which is a psychoacoustic measure of the width 

of the auditory filter at each point along the cochlea. 

𝑔t(𝑛, 𝑡) = A𝑡𝑎1−1exp (−2π𝑤𝑓ERB(𝑓n)𝑡) cos(2𝜋𝑓n 𝑡) 

As shown in Eq. (3.2), where A, 𝑤𝑓  and 𝑎1  are parameters, and 

A𝑡𝑎1−1exp (−2π𝑤𝑓ERB(𝑓n)𝑡)  is the amplitude term represented by the Gamma 

distribution, 𝑓n  is the center frequency of the filter, and ERB(𝑓n)  is an equivalent 

rectangular bandwidth in 𝑓n(𝑡). 

(3.1) 

(3.2) 

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);


 

32 

 

In the auditory front-end, the emotional speech signal 𝑠(𝑡) is first filtered by a bank 

of cochlea filters. An output of the n-th channel signal is given by 

 𝑠𝑔(𝑛, 𝑡) = 𝑔𝑡(𝑛, 𝑡) ∗ 𝑠(𝑡), 1 ≤ 𝑛 ≤ 𝑁, 

where 𝑔t(𝑛, 𝑡) is an impulse response of the n-th channel, 𝑡 is the sample number in 

the time domain, 𝑁 is the number of channels in the cochlea filterbank, and ∗ denotes 

the convolution. 

Figure 3.2 shows graphical representations of Gammatone auditory filterbank for 

different emotions, which are coming from the second segment of wangzheangry201.wav 

and wangzhehappy201.wav with the same sentence. As shown from the upper part of the 

figure, we find that the speaking rate is faster and the energy is higher with feelings of 

angry compared to that of happy. Additionally, we find that graphical representations of 

Gammatone auditory filterbank for different emotions are different with 128 channels 

filterbank whose center frequencies equals to 600Hz from the lower part of the figure. In 

other words, different emotions are reacted with different frequency channels in the 

human auditory system. 

3) Emotion state probability distribution of each segment using MPCRNN  

After adopting the Gammatone auditory filterbank from raw audio, we preprocess each 

Gammatone channel with zero mean and unit variance and then feed into MPCRNN. The 

normalization ensures that each channel can catch its own characteristic using the same 

super parameters in MPCRNN. As shown in Fig. 3.3, we employ parallel 1D convolution 

for each channel in CNN operation, and then feed each channel data into LSTM as a 

sequential task.  

     

 
Happy                                 Angry 

Figure 3.2: The graphical representations of Gammatone auditory filterbank for different 

emotions 

(3.3) 
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For the CNN part, we use a two-layer CNN model to extract different features. The S-

Conv layer extracts fine-scale spectral information with a short window from the high 

sampling rate signal, while the L-Conv layer extracts more long-term characteristics of 

the speech with a long window. The max-pooling operation is employed in each layer. 

For the LSTM part, we consider the multichannel convolutional data as a sequence 

datum and feed the data into a two-layer LSTM model. Additionally, a fully connected 

layer is followed by LSTM, which maps the hidden node number (128) into six different 

emotions: happy, fear, angry, sad, surprise, and neutral. The softmax function is then 

employed to get the probability distribution of each emotion for each segment. At last, 

the sequence of the probability distribution over the emotion states is generated from the 

segment-level MPCRNN.  

Given the sequence of the probability distribution over the emotion states generated 

from the segment-level multichannel parallel convolutional networks, we can form the 

emotion recognition problem as a sequence classification problem. 

S-Conv

...

Pooling L-Conv Pooling

S-Conv Pooling L-Conv Pooling

S-Conv Pooling L-Conv Pooling

... ... ... ...

Channel N

Channel 2

Channel 1

LSTM

LSTM

LSTM

LSTM SoftMax

LSTM

LSTM

LSTM

LSTM

  

3.2.3 Utterance-level feature extraction 

The probability of each segment changes across the whole utterance. Different 

emotions dominate different regions in the utterance. The true emotion for this utterance 

is the prominent segment computed from statistics of the segment-level probabilities. 

In the two-stage SER method, our experiments are based on the hypothesis that the 

emotional states of all segments belonged to a certain utterance are the same with the 

emotional state of this utterance in the training phase. Hence, in the training phase, we 

assign the same label to all the segments in one utterance. Furthermore, since not all 

segments in an utterance contain emotional information and it is reasonable to assume 

that the segments with the highest energy contain most prominent emotional information, 

we only pick out segments with the highest energy in an utterance as the training samples. 

The features in the utterance-level classification are computed from statistics of the 

segment-level probabilities—the maximal, minimal and mean of the segment-level 

Figure 3.3: Segment-level features extraction using MPCRNN based on Gammatone 

auditory filterbank from raw waveform 



 

34 

 

probability of the kth emotion over the utterance, respectively. The segment number of 

each utterance is different from the range from one to eleven.  

 As shown in Fig. 3.4, eighteen utterance-level statistical features are computed with 

three statistical features for each emotion state and six different emotions totally. The 

utterance-level statistical features are fed into a classifier for emotion recognition of the 

utterance. MPCRNN provides good segment-level results, which can be easily classified 

with a simple classifier. Therefore, we use an SVM classifier with basic statistical features 

to determine emotions at the utterance-level. In the testing phase, we get the segment-

level probabilities distribution using softmax function, and utterance-level emotions are 

predicted by means of the statistic of the segment-level probabilities. 

 

Utterance-level feature
extraction

Sad Happy Anger Neutral

Mean Max Min Mean Max Min Mean Max Min Mean Max Min

SurpriseFear

Mean Max MinMean Max Min

 

3.2.4 Experiment results and analysis 

1) Experiment setup 

We develop MPCRNN as a fast and optimized algorithm for SER based on Gammatone 

auditory filterbank. We carried out experiments on CISIA emotional speech database. The 

input signal is sampled at 16 kHz and convert into frames using a 25-ms window sliding 

at 10-ms each time. So the total length of a segment is 10 ms × 40 + (25 − 10) ms = 415 

ms. In fact, emotional information is usually encoded in one or more speech segments 

whose length varies on factors such as speakers and emotions. According to some 

studies[67,68], a speech segment longer than 250 ms has been shown to contain sufficient 

emotional information. 

The threshold value of the energy to filter out the segment is 50. We get 15915 

segments as the inputs of MPCRNN from 61938 segments in total. Hence, about 25.7% 

of segments with the highest energy in an utterance are used in the training and the test 

phase finally. 

Figure 3.4: Utterance-level features extraction 
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To get the data from Gammatone auditory filterbank, frequency distributed on 𝐸𝑅𝐵𝑁 

scales is between 60 Hz and 6 kHz, and the central frequency 𝑓0 equals to 600 Hz. 

Meanwhile, we apply the four order Gammatone with N equals to four. 

2) Hyperparameters for MPCRNN  

For training MPCRNN, the S-Conv layer with a 2.5 ms window and 40 kernels in order 

to extract fine-scale spectral information. The L-Conv layer with a 250 ms window and 

40 kernels in order to extract more long-term characteristics of the speech. The pool size 

equals to 2 in the first layer and 10 in the second layer. 

We employ parallel convolutional networks with 32 Gammatone channels, and then 

use two LSTM layers with 128 cells each. For the sequence data with 32 Gammatone 

channels, we use many-to-one methods to extract the sequence features. 

Additionally, for all random weight initializations, we choose L2-regularizer 

initialization. We employ cross-entropy as the objective loss function. We then use Adam 

gradient descent with the learning rate 1e-5. Moreover, we employ ReLU as the activation 

function, which brings the non-linearity into networks. 

To avoid overfitting in training our networks, we employ dropout as a first measure. 

Dropout has been specifically proposed for cases where labeled data is scarce. It works 

by randomly omitting a certain percentage of nodes in the network at the training phase 

while using the full network at the test phase. 

Since deep networks need to be trained on a huge number of training databases to 

achieve satisfactory performance, if the original database contains limited training data, 

it is better to do data augmentation to boost the performance. Data augmentation is 

employed by shifting the original speech audio 300ms and 600ms as a new start point for 

segmentation as a second measure to avoid overfitting. 

3) Experiment results 

We train the model in a speaker-independent manner, i.e., we use utterances from three 

speakers to construct the training databases and use the other speakers for the test. The 

experiments are performed using Nvidia GTX1080 GPU.  

In order to analyze the performance of MPCRNN based on Gammatone auditory 

filterbank, we also obtain firstly probability distribution for emotional recognition using 

CNN and LSTM respectively based on Gammatone auditory filterbank. After that, we 

use an SVM classifier with segment-level statistical features to determine utterance-level 

emotions.  

In addition, we compare our approach with other emotion recognition approach. We 

extract 289 statistics features from 12 MFCC Coefficients for each utterance based on 

IS09_emotion configure file. We employ these features with SMO (Sequential minimal 
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optimization) classifier, which can get better accuracy than other machine learning 

methods in these experiments. 

 There are 2400 utterances for each speaker in the CISIA database, but some utterances 

are filtered out as the low energy. Finally, 1520 utterances are remained as the train and 

test set (Class distribution: angry: 346; fear: 237; happy: 218; neutral: 117; sad: 237; 

surprise: 365). Results obtained for each method are shown in Fig. 3.5.  

 

 

In all of the experiments, our study performs better than other methods, with the 

accuracy equals to 0.494. We found that MPCRNN outperforms LSTM and CNN by 

around 10% relatively. The accuracy of MFCC and SMO classifiers equals 0.32 in a 

speaker-independent manner. The proposed approach gives absolute 17.4% better 

accuracy over the MFCC+SMO approach. Figure 3.6 shows the confusion matrix on 

CASIA. The recognition rate of surprise is higher than other emotions. A lot of confusion 

is concentrated between anger and surprise. We think this is because there is no 

distinguishing between anger and surprise in valence and arousal space. There is some 

confusion between neutral and surprise. This is because the neutral has the least samples 

to extract the salient features.  

Figure 3.5: Experiment results on CISIA database 
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3.2.5 Summary 

In this section, we studied the recognition of emotional speech by utilizing Gammatone 

auditory filterbank to train a deep model that combines multichannel parallel 

convolutional recurrent neural networks. We estimated emotion states for each speech 

segment in an utterance, constructed an utterance level feature from segment-level 

estimations, and then employed an SVM classifier to recognize the emotions for the 

utterance. Our experimental results indicate that this approach substantially boosts the 

performance of emotion recognition from speech signals and it is very promising to use 

neural networks to learn emotional information based on Gammatone auditory filterbank. 

However, part of the corpus cannot involve the two-stage model training, and temporal 

envelope modulation, which plays an important role in speech perception and 

understanding, is not investigated. For these reasons, we should extract the joint spectral-

temporal features from temporal modulation cues to accurately describe emotion. 

 Emotion recognition based on modulation filterbank  

3.3.1 Modulation perception model 

1) Auditory signal processing  

The spectral-temporal representations are extracted using the signal processing steps 

depicted in Fig. 3.7. In the auditory front-end, the emotional speech signal 𝑠(𝑡) is first 

Figure 3.6: Confusion matrix on CISIA database 
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filtered by a bank of Gammachirp auditory filters. The output of the nth channel signal is 

given by 

 𝑠𝑔(𝑛, 𝑡) =  𝑔c(𝑛, 𝑡) ∗ 𝑠(𝑡), 1 ≤ 𝑛 ≤ 𝑁, 

where 𝑔c(𝑛, 𝑡) is the impulse response of the n-th channel, 𝑡 is the sample number in the 

time domain, 𝑁 is the number of channels in the auditory filterbank, and ∗ denotes the 

convolution. 
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The center frequencies of these filters are proportional to their bandwidths, which in turn 

are characterized by the equivalent rectangular bandwidth (ERBN) [57]:  

𝐸𝑅𝐵𝑁(𝑓n) =
𝑓n

𝑄𝑒𝑎𝑟
+ 𝐵𝑚𝑖𝑛, 

where 𝑓n is the center frequency of the nth filter, 𝑄ear is an asymptotic filter quality at 

large frequencies, 𝐵min  is minimum bandwidth at low frequencies. Filter quality is a 

measure of its center frequency divided by the bandwidth. The most widely accepted is 

provided by [69] in which 𝑄ear  and 𝐵min  are 9.26449 and 24.7, respectively. This 

impulse response of Gammachirp filter is the product of the Gamma distribution and 

sinusoidal tone.  

𝑔c(𝑛, 𝑡) = A𝑡𝑎1−1 exp(−2π𝑤𝑓𝐸𝑅𝐵𝑁(𝑓n)𝑡) cos(2𝜋𝑓n 𝑡 + 𝑐1ln(𝑡) + φ), 

where A𝑡𝑎1−1exp (−2π𝑤𝑓𝐸𝑅𝐵𝑁(𝑓n)𝑡) is the amplitude term represented by the Gamma 

distribution, 𝐴, 𝑎1 and 𝑤𝑓 are the amplitude, filter order, and bandwidth of the filter, 

respectively. The 𝑐1ln(𝑡) term is the monotonic frequency modulation term, φ is the 

original phase, and 𝐸𝑅𝐵𝑁(𝑓n) is a bandwidth of the auditory filter in 𝑓n. The chirping 

properties of the Gammachirp filter are largely determined by those of its “passive” 

asymmetric filter at all levels and have been shown to fit those of auditory nerve fibers well 

[59].  

The temporal amplitude envelope is extracted using the Hilbert transform to calculate 

the instantaneous amplitude 𝑠e(𝑛, 𝑡) of the n-th channel signal. The 𝑠e(𝑛, 𝑡) is computed 

Figure 3.7: Signal processing steps to extract spectral-temporal representation 

(3.5) 

(3.6) 

(3.4) 
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from 𝑠𝑔(𝑛, 𝑡) as the magnitude of the complex analytic signal 𝑠�̂�(𝑛, 𝑡) =  𝑠𝑔(𝑛, 𝑡) +

jℋ{𝑠𝑔(𝑛, 𝑡)}, where ℋ{∙} denotes the Hilbert transform. Hence, 

𝑠e(𝑛, 𝑡) = |𝑠�̂�(𝑛, 𝑡)| = √𝑠𝑔
2(𝑛, 𝑡) + ℋ2{𝑠𝑔(𝑛, 𝑡)}. 

Furthermore, the m-th modulation filter in the nth channel signal is used to obtain the 

spectral-temporal modulation signal 𝑠m(𝑛, 𝑚, 𝑡).  

𝑠m(𝑛, 𝑚, 𝑡) =  𝑚f(𝑚, 𝑡) ∗ 𝑠e(𝑛, 𝑡), 1 ≤ 𝑚 ≤ 𝑀, 

where 𝑚f(𝑚, 𝑡) is the impulse response of the modulation filterbank and M is the number 

of channels in the modulation filterbank.  

This type of signal generates a frequency-domain-specific time-domain signal for each 

sub-channel and many sub-channels comprise the 3D spectral-temporal representation. Due 

to the high time-resolution of the spectral-temporal representations, a reduction in the 

number of samples for the time domain has to be carried out. The reduction in the time-

resolution is simply carried out by downsampling spectral-temporal representations with 

an 800-Hz rate. This operation reduces the sequence length by a factor of 20. 

2) Spectral-temporal representations 

A modulation filterbank is used to extract the spectral-temporal modulation 

representations over the joint acoustic-modulation frequency plane. By incorporating the 

cochlear filterbank and the modulation filterbank, a richer 4D spectral-temporal 

representation is formed and used to analyze spectral and temporal relations. Figure 3.8 

shows the modulation representation for the four emotions with a time-averaged pattern, 

where each one shown is the average over all the time frames for an emotion. “AFC” and 

“MFC” denote the acoustic and modulation frequency channels, respectively. 

Such representations show that the energy of human vocal sound is mostly 

concentrated at 10 to 15 acoustic frequency channel for anger and happiness and at 5 to 

12 acoustic frequency channel for neutral emotion and sadness. The energy is mostly 

concentrated at the lower modulation frequency channel with a peak at 4 Hz for neutral 

emotion. The peak shifts to a higher modulation frequency for anger and happiness, 

suggesting a faster speaking rate for these emotions. Happiness, however, shows a more 

abundant energy distribution in higher acoustic channels compared to anger’s energy 

distribution. In contrast to anger and happiness, neutral emotion, and sadness exhibit 

lower modulation frequency more prominently, suggesting lower speaking rates. The 

neutral emotion, however, also exhibits a prominent energy distribution in higher acoustic 

channels between 20 and 25. Sadness exhibits a discriminative energy distribution in the 

lower acoustic frequency channels over all modulation frequency channels. 

(3.7) 

(3.8) 
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This shows that different emotions have discriminative spectral-temporal modulation 

representations, which are suitable to extract high-level spectral-temporal representations 

for convolutional networks. 

3.3.2 Three-dimensional convolution recurrent neural 

network 

1) 3D CRNN model  

Inspired from biological neural networks, shadow or deep artificial neural networks 

were designed to extract features. CNNs can extract high-level multiscale spectral-

temporal representations using different receptive fields. RNNs can handle long-range 

temporal dependencies. For processing audio signals, CNNs/RNNs are used to achieve 

the function of the primary auditory cortex. 

Figure 3.8: Time-averaged modulation representation of sounds 
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We put forward a 3D CRNN model combining a CNN and RNN for emotion 

recognition from speech. Figure 3.9 shows an overview of the proposed methods. First, 

we feed the spectral-temporal representations into the 3D CNN to learn high-level 

multiscale spectral-temporal representations straightforwardly for a sequence of varied 

length. Nevertheless, LSTM/RNN is more suitable to learn temporal information. 

Eventually, fully connected features are generally used as the LSTM input, but keeping 

the spatial correlation information in LSTM processes enables more informative spectral-

temporal representations to be learned. 

 

Figure 3.9: Overview of 3D CRNN model 
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Layer Input size Output size Kernel Stride 

Conv1 32x6x6000 32x6x1200 2x2x20 1x1x5 

Pool1 32x6x1200 16x3x1200 2x2x1 2x2x1 

Conv2 16x3x1200 16x3x600 2x2x20 1x1x2 

Pool2 16x3x600 8x1x300 2x3x2 2x3x2 

RNN1 10x30x160 30x128 - - 

RNN2 30x128 128 - - 

MV 128 3x128 - - 

FC 3x128 4 - - 

 

2) 3D convolutional layer 

3D CRNN architecture is described in Table 3.1. The first convolutional layer (Conv1) 

is used to extract 3D features that are composed of acoustic frequency, modulation 

frequency, and short-time windows. These features are another time sequence, which is 

the input of the second convolutional layer (Conv2) that models spectral-temporal 

representations. The data format of the input and output data is reported as "DxHxW", 

where D, H, and W are the data in the acoustic frequency channels (depth), modulation 

frequency channels (height), and time sequence (width), respectively. Specifically, the 

input size is 32x6x6000. Additionally, the shape of the kernels is [2, 2, 20] in the conv1 

and conv2 layers following the max-pooling operation. Finally, we get the output of pool2 

with the shape of 8x1x300 and then reshape it to 2D shapes. The batch size and 

convolution filter size are equal to 20. Batch normalization is used before each 

convolutional layer. Experiments in this study also demonstrate that there will be a 

substantial speedup in training when using batch normalization. 

3) Recurrent layer 

We also use two recurrent layers to obtain different scale dependencies using the first 

recurrent layer (RNN1) for relatively short-term dependencies and the second recurrent 

layer (RNN2) for utterance-level dependencies. 

Figure 3.10 shows the first and second recurrent layer. For RNN1, the input of the layer 

is 300x160, representing the time sequence length and feature size, respectively. The time 

sequence is divided into 30 windows, and each window includes 10 time frames. The 

time sequence is fed frame by frame into the first recurrent layer. Then, the hidden states 

of the recurrent layer along the different frames of the window are used to compute the 

extracted features[54].  

Table 3.1: 3D CRNN architecture 
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The output of this layer for each window is the cell state vector of the last time frame 

in each window. For each window, each layer extracts 128 features. Finally, we create a 

new sequence with a length of 30x128 to put into RNN2. For RNN2, the whole sequence 

is fed into the LSTM model, and max-pooling is used to generate 128 feature sequences. 

After applying max-pooling, the resulting sequence contains temporal features of the 

sequence and can be fed into the fully connected (FC) layer for classifying. 

 

 

4) Multi-view features 

For RNN1, 30 time windows are obtained, and each time window includes 10 time 

frames. Moreover, we utilize multi-view (MV) features to obtain more information. In 

this study, we just use unidirectional LSTM because of the varied length for each 

utterance in the database. For obtaining more dependency information, we shift the time 

sequence twice, and each shift is equal to 3 and 6, respectively. Finally, we feed this 

shifted time sequence into RNN2 as a new sequence. 

 

Figure 3.10: First (left) and second (right) recurrent layers 
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3.3.3 Experiment setup 

1) Setup for modulation spectral features 

For our experiments, we used the interactive emotional dyadic motion capture 

(IEMOCAP) database. Since the input length for a CNN has to be equal for all samples, 

we set the maximal length to 7.5 s (mean duration plus standard deviation). Longer turns 

were cut at 7.5 s, and shorter ones were padded with zeros. 

We first applied a pre-emphasis filter to the signal to amplify the high frequencies to 

compensate for the energy loss in the outer-middle ear and then used normalization to 

remove the difference of the speakers by mapping the values of signals to mean 0 and the 

standard derivation to 1.  

Furthermore, we introduced the compressive Gammachirp filterbank to accommodate 

the compressive characteristics. To get the data from the Gammachirp filterbank, the 

frequency distributed on the 𝐸𝑅𝐵𝑁  scales was between 100 Hz and 8 kHz. The 

modulation filterbank was also used to control the envelopes of octave bands from 2 to 

64 Hz, consisting of one low-pass filter and five band-pass filters. The detailed setup is 

shown in Table 3.2. 

2) Hyperparameters for 3D CRNN  

For all random weight initializations, we chose L2 regularization. The parameters were 

learned in an end-to-end manner, meaning that all parameters of the model were 

optimized simultaneously using the Adam optimization method with a learning rate of 

1e-4 to minimize the chances of having a cross-entropy objective. Moreover, we used a 

ReLU as the activation function, which brought the non-linearity into the networks. To 

Figure 3.11: Caption of the figure Comparison of recognition accuracy of different 

models on IEMOCAP database 
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avoid overfitting when training our networks, we used a dropout rate of 0.5 after the 

second recurrent layer. 

Name Value 

Sampling frequency 16000 Hz 

Modulation filterbank sampling frequency  800 Hz 

Gammachirp channels 32 

Modulation sub-channel 6 

Sound pressure level 60 dB 

 

3.3.4 Experiment results and analysis 

1) Comparison Experiments  

There were three comparison experiments named 3D CNN, 3D CLSTM, and 3D 

CRNN-sv. All these models had the same layers from conv1 to pool2 with the shape of 

300x160.    

3D CNN: Adding two extra 2D convolutional layers and pooling layer (with 2x2 kernel 

and 2x2 stride) onto the top of pool2, and then was followed by a fully connected layer.  

3D CLSTM: Similar to the 3D CRNN model except without the RNN1 and MV layer. 

For RNN2, the whole sequence with the shape of 300x160 was fed into the LSTM model, 

and max-pooling was used to generate 128 feature sequences.  

3D CRNN-sv: This was a single-view way for the 3D CRNN model. Similar to the 3D 

CRNN model except without the MV layer. The output size of FC was 128.  

2) Experiments results 

To train the models in a speaker-independent manner, we used leave-one-session-out 

cross-validation. We used utterances from eight speakers to construct the training 

databases and used the other two speakers for the test. 

We used two measures to evaluate the performance: WA and UA. WA is the 

classification accuracy of the entire test data set, and UA is the average of the 

classification accuracy for each emotion. The results obtained for each method are shown 

in Fig. 5. They show that the 3D CRNN with multi-view results in better recognition 

accuracy with 61.98% and 60.93% in WA and UA measures. This shows that more 

multiscale information was obtained from the multi-view model. The results also show 

that the 3D CNN had poorer accuracy than that of the other models because of the absence 

Table 3.2: Setup for modulation spectral features 
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of a recurrent layer. This also demonstrates the importance of the sequential dependencies 

information for emotion recognition from speech. 

Table 3 shows that the proposed method outperformed the other methods. Han et al. 

[64] firstly extracted the segment-level emotion state distributions utilizing the features 

(F0 and MFCC) based on the DNN model and used an ELM to identify utterance-level 

emotions. Chernykh et al. [63] proposed a CTC approach based on RNN to recognize the 

utterance-level emotions utilizing MFCC and spectrum properties like flux and roll-off 

features. The method of Ghosh et al. [70] learns utterance specific representations by a 

combination of stacked autoencoders and bidirectional LSTM trained on 128 bin FFT 

spectrograms. Overall, the proposed approaches significantly outperform the previous 

best accuracy result with 5.88% (from 56.1% to 61.98%) and 6.93% (from 54% to 

60.93%) absolute accuracy improvement in WA and UA measures, respectively. 

Method Features Models WA UA 

Han et al.[64] MFCC and F0 DNN-ELM 54.3% 48.2% 

Ghosh et al. [70]   FFT spectrograms BLSTM-autoencoder 48.1% 49.09% 

Chernykh et al. [63] MFCC and spectrum  RNN with CTC 54% 54% 

Neumann et al. [71] 13 MFCCs Attentive CNN 56.1% - 

Our work Auditory features 3D CRNN 61.98% 60.93% 

 General discussion 

In the two-stage method, we set an energy threshold and filter out the segments whose 

energy is less than the threshold. Eventually, about 25.7% of segments are obtained to 

train the model. We also try to reduce the threshold to increase the training data but found 

that these low-energy segments have little effect on emotion recognition. After using the 

energy-based filtering method, some utterances have 11 segments, but some utterances 

are completely filtered out because of the low energy. Each speaker in the CISIA database 

has 2400 utterances. At last, only about 60% of these utterances can recognize emotion 

when they are used for testing. This shows that the two-stage method based on energy has 

obvious defects. In the end-to-end emotion recognition experiment, each utterance is 

processed by a soft segmentation method, all the data will not be filtered out, and then 

use the max-pooling method to automatically grasp the significant parts of the speech.             

Secondly, the two-stage method only considers the use of the auditory filter, and does 

not consider the spectral-temporal modulation cues, which are more important for speech 

Table 3.3: Comparison of the proposed method and other methods on IEMOCAP database 
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perception. In the end-to-end mode, a modulation filterbank is introduced to generate 

high-resolution spectral-temporal modulation cues provided by the time domain envelope 

and its modulation frequency components. These cues contain multi-dimensional 

information. Therefore, an end-to-end 3D CRNN is designed to extract the high-level 

emotion feature sequence from the spectral-temporal representation and construct the 

temporal-dependence of the sequence. The chapter studied auditory-inspired end-to-end 

recognition of emotional speech using a 3D CRNN model based on temporal modulation 

cues. Convolutional networks can reconstruct multiscale spectral-temporal 

representations, and recurrent networks can obtain the long-term dependencies for 

emotion recognition. The experimental results demonstrate that our method is an effective 

way to design an emotion recognition system by mimicking the human auditory system. 

 Summary 

In this chapter, we first investigated the two-stage emotion recognition from 

multichannel acoustic frequency components of Gammatone filterbank. Since part of the 

corpus do not involve the two-stage model training, and temporal envelope modulation 

is not considered, we proposed the end-to-end emotion recognition using a 3D CRNN 

model based on temporal modulation cues. Convolutional networks are used to learn the 

joint spectral-temporal representations from temporal modulation cues, and recurrent 

networks are used to obtain long-term dependencies for emotion recognition. The 

experimental results demonstrate that proposed methods are effective to identify the 

emotional states by mimicking the human auditory system. 

However, to reduce the training cost, the speech sequence is segmented into non-

overlapping subsequences through soft segmentation in the end-to-end method. These 

discontinuous segment-level features cannot fully reflect the dynamic changes of 

emotions. Therefore, how to effectively simulate the auditory system to capture salient 

emotion regions is also an important issue of SER. Additionally, the modulation 

frequency components in the end-to-end method only include the local information about 

variations of intensity and duration. The periodicity information is also effective for 

emotion recognition, so whether this information can be extracted from temporal 

modulation cues. 
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Chapter 4   

Attention-based categorical emotion 

recognition with auditory front-ends 

 Introduction  

Recent CNNs show powerful abilities of feature learning and have been used for 

acoustic modeling and feature extraction for SER. Inspired by auditory signal processing 

in chapter 2, we proposed an end-to-end SER system using 3D CNNs to learn a joint 

spectral-temporal feature from temporal modulation cues containing acoustic frequency 

components, modulation frequency components, and temporal features. The modulation 

frequency components consist of six filters spaced on a logarithm scale from 2 to 64 Hz. 

Such modulation frequency components include the local information about variations of 

intensity and duration. However, it did not take into account obtaining the periodicity 

information about F0 from the modulation frequency band. The frequency band between 

about 50 and 500Hz is related to the periodicity information about F0, which has been 

shown to be important for speech perception [72]. To obtain both the local features and 

periodicity information, in this study, we improve the 3D convolution model by 

increasing the modulation filters and reducing the convolutional kernel size. 

To capture the variations of local features and periodicity information from the feature 

sequence, we need to extract utterance-level features for classifying emotional speeches 

through time series modeling. Long short-term memory recurrent neural networks 

(LSTM-RNNs) have powerful abilities of time series modeling to handle temporal 

dynamic information. LSTM can effectively capture the long-range time dependencies 

for sequence classification. However, it cannot avoid the slow training speed caused by 

backpropagation-through-time (BPTT) in long sequences. To reduce the training cost, in 

the end-to-end method of chapter 3, the time sequence is divided into non-overlapping 

subsequences in the extraction of segment-level features. These discontinuous segment-

level features cannot fully reflect the dynamic changes of real emotions. From a cognitive 

point of view, people can obtain important information by scanning the temporal 

sequence continuously and transmit it for higher-level processing. In addition, people 

have superior abilities in paying attention to the emotional regions, meanwhile ignoring 

the emotionless regions. Most of the studies did not take into account the human 
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mechanism how to focus on the emotional segments while ignoring the emotionless 

segments. An utterance consists of a number of voiced and unvoiced segments. The 

voiced segments can express emotion more than the unvoiced ones. It is unknown what 

kind of auditory features attract humans to pay more attention to the salient regions of 

emotion representation. Therefore, we investigate the relation of the auditory features and 

human attention mechanism and propose a sliding recurrent method to realize the 

attention mechanism. In the temporal attention method, the continuous segment-level 

internal representations are extracted by a sliding window, and are used to capture the 

salient regions of emotion representation.  

To fully utilize the human auditory mechanism and attention mechanism, in this 

chapter, we begin with the investigation of temporal modulation cues from auditory front-

ends and then find out a method to capture the salient regions of emotion representation. 

Based on the achievements, we propose a joint deep learning model that combines 3D 

convolutions and attention-based sliding recurrent neural networks (ASRNNs) as the 

back-ends of the SER system. To show the benefit of the proposed model, we evaluate it 

on the IEMOCAP [41] and MSP-IMPROV [42] databases by comparing various models 

with the proposed model. Our results show that the proposed model can achieve better 

results compared with the traditional model on both databases. We also conduct a 

subjective evaluation to investigate the relevance between the attention patterns of the 

temporal attention model and human attention in perceiving emotional speech. 

The rest of the study is organized as follows. In Section 4.2, we introduce the auditory 

front-ends to produce temporal modulation cues. Section 4.3 details the 3D convolutions 

to learn a joint spectral-temporal feature representation from those cues and ASRNNs to 

focus on the salient regions of emotion representation. In Section 4.4, we also investigate 

the impacts of experiments on different situations. We discuss the implications of this 

study in Section 4.5. Finally, we draw conclusions in Section 4.6. 

 Joint spectral-temporal representations  

4.2.1 Overview of the emotion recognition method 

An overview of the proposed SER method is illustrated in Fig. 4.1. The auditory front-

ends of this system are used to functionally simulate the signal processing in the auditory 

system, as depicted in the left part of Fig. 4.1.  
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The auditory front-ends are composed of three parts: auditory filterbank, temporal 

envelope extraction and modulation filterbank. The auditory filterbank is responsible for 

decomposing speech signals into acoustic frequency components as a function of the 

acoustic frequency analyzer in the cochlea. In this study, we use the Gammachirp 

filterbank [59] as the auditory filterbank because this filter is adequate for reproducing 

psychophysically estimated human auditory filters over a wide range of center 

frequencies and levels [73,74]. Furthermore, temporal envelope extraction from the 

acoustic frequency components is used to effectively simulate the mechanical-to-neural 

signal transduction in the IHCs. Modern psychophysical models of temporal modulation 

processing suggest that the temporal envelope is processed by joint spectral-temporal 

modulations [11]. The spectral-temporal modulation contains the 3D modulated spectrum 

with dynamic peaks, which relates directly to speech perception [33]. Hence, the 

modulation filterbank is introduced to generate 3D joint spectral-temporal representations 

from the temporal envelope.  

The back-ends of this system are depicted in the right part of Fig. 1. 3D convolutions 

are firstly used to extract joint frame-level features, including not only variations 

information of intensity and duration but also the periodicity information. Further, 

ASRNNs are used to focus on the salient emotion regions by extracting segment-level 

features in a sliding window manner and utterance-level features with a temporal attention 

model. 

4.2.2 Modulation-spectral representations 

In this study, the acoustic F0 and the modulation frequency will not overlap, because 

the modulation filter acts on the envelope signal of each subband from Gammachirp 

instead of the original voice signal. The modulation frequency band between about 50 

and 500Hz is related to the periodicity information about F0. The periodicity information 

Figure 4.1: Speech emotion recognition with auditory front-ends 
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has been shown to be important for speech perception. To obtain both the local features 

and periodicity information, in this study, we improve the 3D convolution model by 

increasing the modulation filters and reducing the convolutional kernel size. 

The modulation frequency components consist of six filters spaced on a logarithm scale 

from 2 to 64 Hz. Such modulation frequency components include the local information 

about variations of intensity and duration. However, it did not take into account of 

obtaining the periodicity information about F0 from the modulation frequency band. The 

modulation frequency band between about 50 and 500Hz is related to the periodicity 

information about F0, which has been shown to be important for speech perception [72]. 

To obtain both the local features and periodicity information, in this study, we improve 

the 3D convolution model by increasing the modulation filters and reducing the 

convolutional kernel size. 

Figure 4.2 shows the different emotion examples of the modulation spectral 

representation with 32 acoustic channels and nine modulation channels from the 

IEMOCAP database. Each utterance comes from the same speaker, named 

Ses01F_impro04_F000 (Neutral emotion), Ses01F_impro05_F009 (Angry), 

Ses01F_impro03_F001 (Happiness), and Ses01F_impro02_F005 (Sadness), respectively. 

The y-axis and x-axis of these representations are acoustic and modulation channels, 

respectively. Both channels are spaced on a logarithm-scale frequency. Modulated signals 

with standard deviation are projected into the modulation and acoustic frequency space. 

Panels (a) to (d) in Fig. 4.2 shows the modulation spectral representations of anger, 

happiness, neutral emotion and sadness, respectively. As slow modulation frequency, 

particularly below 16 Hz (modulation channel equals to 4), can extract local information 

about variations of intensity, duration, attack, decay, and segmental cues of speech [16]. 

From these panels, we can find that the different emotion has different low-frequency 

modulation information, suggesting they could for speech perception be discriminated from 

each other. In chapter 3, we used six modulation filters to extract low-frequency information 

(below 64 Hz) for emotion recognition. 

Although fast modulation frequency is less important than slow modulation frequency, 

it still contains the periodicity information to reflect emotional changes. Figure 4.2 also 

shows that the periodicity information is retained between the seventh and ninth 

modulation channels. In addition, for the same fast modulation frequency, it shows that 

the acoustic frequency of anger and happiness is higher than that of sadness and neutral 

emotion. For this reason, we use nine modulation filters with an upper limit of modulation 

frequency (512 Hz) instead of six filters to obtain periodicity information for emotion 

recognition. 
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4.2.3 Three-dimensional convolution 

The architecture of 3D CNNs is described in Table 4.1. The first convolutional layer 

(Conv1) is used to extract 3D features that are composed of acoustic frequency, 

modulation frequency, and time sequences. These features are fed into the next two 

convolutional layers (Conv2 and Conv3) to model high-level feature representations for 

time series. The data format of the input and output data is designed as "DxHxW," where 

D, H, and W are the data in the acoustic channels (depth), modulation channels (height), 

and time sequence (width), respectively. In this study, the input size is set as 32x9x6000 

and the size of the kernels is 2x2x4. To reduce computational complexity, the stride for 

Conv1 is set to 1x1x2, and that for the other convolutional layers is set to 1x1x1. Each 

convolutional layer includes batch normalization and ReLU operations. Batch 

normalization is used to accelerate the training of deep networks [75]. The first pooling 

layer (Pool1) before conv2 has a kernel size of 2x2x1 and stride of 2x2x1 with the max-

pooling operation. The second pooling layer (Pool2) has a kernel size of 2x2x2 and a 

stride of 2x2x2. This means that spectral-temporal pooling is executed on Pool2. The third 

pooling layer (Pool3) has a kernel size of 2x1x2 and stride 2x1x2. This means that the 

acoustic frequency channel and temporal pooling is executed while the modulation 

frequency channel remains on Pool3. The max-pooling operations in each pooling layer 

Figure 4.2: Different emotion examples of the modulation spectral representation with 32 

acoustic channels and nine modulation channels from the IEMOCAP database 
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is used to extract robust features against background noise, especially for the waveform 

signals. These three pooling layers reduce the output size of the time sequence by a factor 

of 20 on the temporal length. This means that the 3D convolution only learns the frame-

level features in 22.5ms for each point. The feature maps of the three convolution layers 

are 20, 32, and 64, respectively. Finally, we obtain the output of Pool3 with the shape of 

750x4x2x64 after transposing the axis of the tensor then reshape it to 2D shapes of 

750x512. 

 

Layer Input size Output size Kernel Stride 

Conv1 32x9x6000 32x9x3000 2x2x4 1x1x2 

Pool1 32x9x3000 16x4x3000 2x2x1 2x2x1 

Conv2 16x4x3000 16x4x3000 2x2x4 1x1x1 

Pool2 16x4x3000 8x2x1500 2x2x2 2x2x2 

Conv3 8x2x1500 8x2x1500 2x2x4 1x1x1 

Pool3 8x2x1500 4x2x750 2x1x2 2x1x2 

Reshape 4x2x750 750x512   

 

 Attention-based sliding recurrent neural network  

Part of the attention system of the brain is involved in the control of thoughts, emotions, 

and behavior. In the auditory system, selective auditory attention tracks the temporal 

dynamics of emotion by continuous scanning and encoding of the speech signals [36]. 

Inspired by the selective auditory attention in the auditory system, we propose an ASRNN 

model to seize the emotional parts from temporal dynamics information in speech. Among 

them, a sliding window is used to extract the continuous segment-level emotional features 

containing temporal dynamics information. Then, a temporal attention model is used to 

capture the important information related to emotion in each utterance.  

1) Sliding recurrent neural networks  

The sliding recurrent neural networks (SRNN) are used to continuously extract the 

intermediate segment-level representations for the short-term sequence depicted in Fig. 4.3. 

The input of the SRNNs is TxD, where T represents the total length of the time sequence 

and 𝐷  represents the feature vector size. 𝑥𝑘  is the input to the LSTM block of 𝑘𝑡ℎ 

sliding input sequence with 𝑍 time frames. 

  

Table 4.1: 3D convolutional neural networks architecture 
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Attention model

SRNN

...

...BLSTM BLSTM BLSTMBLSTM

αL-1
αLα2

α1 αk

...

Concat

LSTM

Feed 
forward

ReLu

Softmax

ℎ1 ℎ𝑘  ℎ2 ℎ𝐿  ℎ𝐿−1 

𝑥1 𝑥2 𝑥𝑘  𝑥𝐿  𝑥𝐿−1 

 

𝑥𝑘 = {𝑥(𝑘,1), … , 𝑥(𝑘,𝑍)}, 𝑥(𝑘,𝑡) ∈ ℝ𝐷 , 1 ≤ 𝑡 ≤ 𝑍 

Each 𝑥𝑘 is fed frame-by-frame into the LSTM units. The formulation of LSTM with 

peephole connections can be described by the following equations: 

𝑖(𝑘,𝑡) = 𝜎(𝑊𝑖𝑥𝑥(𝑘,𝑡) + 𝑊𝑖ℎℎ(𝑘,𝑡−1) + 𝑊𝑖𝑐𝑐(𝑘,𝑡−1) + 𝑏𝑖) 

𝑓(𝑘,𝑡) = 𝜎(𝑊𝑓𝑥𝑥(𝑘,𝑡) + 𝑊𝑓ℎℎ(𝑘,𝑡−1) + 𝑊𝑓𝑐𝑐(𝑘,𝑡−1) + 𝑏𝑓) 

𝑐(𝑘,𝑡)̃ = 𝑡𝑎𝑛ℎ(𝑊𝑐𝑥𝑥(𝑘,𝑡) + 𝑊𝑐ℎℎ(𝑘,𝑡−1) + 𝑏𝑐) 

𝑐(𝑘,𝑡) = 𝑓(𝑘,𝑡)⨀𝑐(𝑘,𝑡−1) + 𝑖(𝑘,𝑡)⨀𝑐(𝑘,𝑡)̃ 

𝑜(𝑘,𝑡) = 𝜎(𝑊𝑜𝑥𝑥(𝑘,𝑡) + 𝑊𝑜ℎℎ(𝑘,𝑡−1) + 𝑊𝑜𝑐𝑐(𝑘,𝑡) + 𝑏𝑜) 

ℎ(𝑘,𝑡) = 𝑜(𝑘,𝑡)⨀𝑡𝑎𝑛ℎ(𝑐(𝑘,𝑡)), 

where 𝑖(𝑘,𝑡), 𝑓(𝑘,𝑡), 𝑜(𝑘,𝑡), 𝑐(𝑘,𝑡), and ℎ(𝑘,𝑡) are the input gate, forget gate, output gate, 

cell state, and output of the LSTM block, respectively, at the current time step t. The weight 

matrices 𝑊𝑖∗, 𝑊𝑓∗, and 𝑊𝑜∗ transform 𝑥𝑘 and hidden state ℎ(𝑘,𝑡−1), respectively, to cell 

update 𝑐(𝑘,𝑡)̃ and three gates 𝑖(𝑘,𝑡), 𝑓(𝑘,𝑡), and 𝑜(𝑘,𝑡). Finally, 𝑏𝑖, 𝑏𝑓, 𝑏𝑜 are the additive 

biases of the input gate, forget gate, and output gate, respectively. The set of activation 

functions consists of the logistic sigmoid function σ(⋅), element-wise multiplication ⨀, 

and hyperbolic tangent function tanh(⋅).  

(4.1) 

Figure 4.3: Attention-based sliding recurrent networks 
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(4.4) 
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Specifically, we use a bidirectional LSTM (BLSTM) network in this study, where the 

sequence of received signals is once fed in the forward direction into one LSTM cell, and 

once fed in backward into another LSTM cell. The forward LSTM reads the time sequence 

in its original order and generates a hidden state 𝑓ℎ(𝑘,𝑡) = {𝑓ℎ(𝑘,1), … , 𝑓ℎ(𝑘,𝑍)} at each 

time step. Similarly, the backward LSTM reads the time sequence in its reverse order and 

generates a sequence of hidden states 𝑏ℎ(𝑘,𝑡) = {𝑏ℎ(𝑘,𝑍), … , 𝑏ℎ(𝑘,1)}. The last state of the 

forward and backward LSTM cells carry information of the entire source sequence. We 

concatenate the last state of the forward and backward LSTM cells to produce the ℎ𝑘 of 

𝑘 sequence. 

ℎ𝑘 = [𝑓ℎ(𝑘,𝑍), 𝑏ℎ(𝑘,1)] 

Each hidden state ℎ𝑘  contains information of each sliding window sequence. The 

hidden states of the recurrent layer along the different frames of the window are used to 

compute the extracted features. The output of this layer for each sliding window is the cell 

state vector of the last time frame in each sliding window. After processing in each sliding 

window, we shift 𝑆  time frames to compute the next sliding window with the valid 

padding. The number of sliding window 𝐿 is calculated as  

L = ⎾(T − Z)/S⏋. 

The BLSTM has 512 hidden units for both directions in each sliding window. Finally, 

we create a new sequence with the shape of 𝐿 x1024 to put into the attention model. The 

same parameters of the LSTM cell are used in each sliding sequence, and then a new context 

sequence ℎ is produced.  

ℎ = {ℎ1, … , ℎ𝐿}, ℎ𝑘 ∈ ℝ2𝐷 , 1 ≤ 𝑘 ≤ 𝐿 

2) Temporal attention model 

Because there are many speech frames that are unrelated to the expressed emotion, such 

as silence, the attention mechanism is mainly used to focus only on the significant 

emotional part of the speech signal. Recently, some studies proposed attention models to 

adjust weights for each of the speech frames depending on their importance based on LLDs 

using an RNN. The silence regions can be addressed using voice activity detection (VAD) 

[34] or by null label alignment [35]. Wang et al. [34] proposed an attention model of 

learning utterance-level representations to improve classification after using a VAD to filter 

out silence frames and mini-batch training in each utterance. Lee et al. [35] extracted high-

level representation of emotional states with regard to its temporal dynamics using the 

BLSTM approach, in which they assume that different frames should have different labels 

and the label sequence should be alternating between the utterance-level label and a newly 

(4.8) 

(4.9) 

(4.10) 
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introduced NULL state. Neumann et al. [71] proposed an attentive convolutional neural 

network (ACNN) to test the emotional discrimination of different feature sets. In addition, 

a self-attention based deep model [76,77] demonstrated the effectiveness of improving the 

performances for SER. Unlike these studies, we apply a temporal attention model to the 

sliding window sequence instead of applying one based on LLDs. 

...

SoftMax

... ...

sinit

r(sinit ,      )ℎ𝑘  

α1 α2 αk αL-1 αL

ℎ1 ℎ2 ℎ𝑘  ℎ𝐿−1 ℎ𝐿   

Sequence ℎ is fed into feedforward neural networks then concatenated with 𝑠𝑖𝑛𝑖𝑡, as 

depicted in Fig.4. Subsequently, a ReLU is used to produce non-linear transformations 

 ℛ(sinit, ℎ𝑘).  

ℛ(𝑠𝑖𝑛𝑖𝑡, ℎ𝑘) = 𝑈𝑘𝑅𝑒𝐿𝑈(𝑠𝑖𝑛𝑖𝑡 + 𝑊𝑘ℎ𝑘 + 𝑏𝑘), 

where 𝑊𝑘, 𝑈𝑘 are the trainable parameter matrices, 𝑏𝑘 is the bias vector, and sinit is the 

initial hidden state of the sliding recurrent sequence. We use the non-linear function of the 

ReLU due to its good convergence performance. For each ℎ𝑘, the 𝛼𝑘 can be computed as 

follows: 

𝛼𝑘 =
𝑒𝑥𝑝(ℛ(𝑠𝑖𝑛𝑖𝑡,ℎ𝑘))

∑ 𝑒𝑥𝑝(ℛ(𝑠𝑖𝑛𝑖𝑡,ℎ𝑙))𝐿
𝑙=1

 

We then obtain the attention weights 𝛼𝑘 of each sliding sequence from the attention 

model. The output of the attention layer, 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_𝑠𝑢𝑚, is the weighted sum of ℎ. 

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_𝑠𝑢𝑚 = ∑ 𝛼𝑘ℎ𝑘
𝐿
𝑘=1 . 

The weighted sum of sequence ℎ is fed into a unidirectional LSTM cell to obtain a 

hidden vector ℎ𝑠. The features concatenated by ℎ and ℎ𝑠 are fed into feedforward neural 

networks. Subsequently, we use a ReLU as the activation function, which brings the non-

(4.11) 

(4.12) 

(4.13) 

Figure 4.4: Attention weights 
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linearity into the networks. Finally, we use the softmax to produce the emotion state 

distribution. To avoid overfitting when training our networks, we use a dropout rate of 0.5 

before feed-forward layers during training. 

 

 

 

 

 

 

 

 

 Experiment results and analysis  

We conduct speaker-independent experiments using the IEMOCAP and MSP-IMPROV 

datasets. The class distribution is unbalanced in both databases, especially for MSP-

IMPROV database, the number of utterances belonging to happy/neutral class more than 

three times that of angry/sad. UA is a better measurement if the class distribution is not 

balanced. Hence, we use UA as the performance metric of the proposed framework to avoid 

being biased to the larger classes. 

4.4.1 Results of baseline features 

Firstly, we investigate the conventional emotion recognition system with static features 

that are computed using fixed statistical functions to the hand-crafted LLDs. We extract 

MFCC, emobase2010, IS09_paraling [49], and IS13_ComParE [51] features use 

openSMILE toolkit. All features are first normalized by specific z-normalization. Secondly, 

to investigate the effectiveness of static modulation features on emotion recognition, we 

also extract the MSFs by calculating the spectral centroid, spread, skewness, and kurtosis 

from the modulation spectral representation. For each feature set, we train a linear SVM 

model to recognize the speech emotion using LibSVM [78] and Weka toolkits [79]. All 

results are presented by leave-one-session-out cross-validation. Table 4.2 shows the 

accuracy comparison of static features on IEMOCAP and MSP-IMPROV databases. The 

best result is 54.9 percent for IEMOCAP using the original static features with 1,582 

dimensions whereas the best result is 43.2 percent for MSP-IMPROV using the static 

Table 4.2: Accuracy comparison of static features on IEMOCAP and MSP-IMPROV 

databases (%) 

 

Static features 
UA 

IEMOCAP MSP-IMPROV 

IS09  53.4  41.2 

emobase2010 54.9  40.9 

IS13 ComParE 54.5  40.6 

MFCC 51.5  40.5 

MSF 52.5  43.2 
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modulation features with 160 dimensions. The results also show that MFCC features 

achieve the worst results, which may be due to the minimum number of MFCC features 

(only 39 dimensions features). Similar to the results from [25], the MSFs perform better 

than MFCC for emotion recognition on both databases. Emotion information from speech 

changes dynamically over time, but the static features do not contain temporal dynamics 

information which plays a key role in the emotion recognition process. 

4.4.2 Experiment setup  

In the front-end signal processing, we first resample the speech signal with a sampling 

frequency of 16000 Hz and apply a pre-emphasis filter to compensate for the effect of a 

sound source. We subsequently use normalization to remove the difference of the speakers 

by mapping the signal values to mean 0 and the standard derivation to 1 in each utterance. 

The sound-pressure level is set to 60 dB, which approximates to a normal voice. 

Furthermore, we introduce the compressive Gammachirp filterbank with 32 filters to 

provide the compressive characteristics. The frequency of Gammachirp filterbank 

distributed on the 𝐸𝑅𝐵𝑁 scales is between 0.1 and 8 kHz. The modulation filterbank is 

also used to control the envelopes of octave bands from 2 to 512 Hz, consisting of nine 

filters (one low-pass filter and eight band-pass filters). The low-pass filter is a 2nd order 

Butterworth infinite impulse response (IIR) filter with a cut-off frequency of 2 Hz. The cut-

off frequencies of the band-pass filters are equally spaced on a logarithm scale from 2 to 

512 Hz. 

In the back-ends of the SER system, a joint deep learning model combined 3D 

convolution and ASRNN is used. To train the model with a speaker-independent property, 

we use leave-one-session-out cross-validation. In each experiment, four sessions are used 

for training the deep model and one session is divided into two sub-sessions depending on 

the gender in both databases. For all random weight initializations, we choose L2 

regularization. The parameters are learned in an end-to-end manner, meaning that all 

parameters of the model are optimized simultaneously using the Adam optimization 

method with a learning rate of 1e-4 to minimize cross-entropy loss. The batch size is 10, 

and the maximum epoch is 30 with early-stopping. The process stops if the UA does not 

improve for 8 consecutive epochs. 

4.4.3 Effect of different window and shift  

SRNNs are used to obtain continuous internal representations while maintaining good 

computational efficiency. The continuous internal representations can be extracted using a 

sliding window. At the same time, computational efficiency can be improved by segmenting 
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a feature sequence into multi sub-sequence. However, choosing different lengths of window 

and shift will affect the recognition accuracy and computational efficiency of the emotional 

recognition system.  

To reach higher recognition accuracy and computational efficiency, we investigate the 

effect of the sliding window and shift lengths using IEMOCAP database. First, the entire 

feature sequence is divided into multi-subsequences in a sliding manner. The length of each 

subsequence is much shorter than the original sequence, and the model can be trained 

rapidly using BPTT. Then, we run the proposed system five times and obtain the average 

accuracy in the case of the different sliding window and shift lengths. We consider the 

different sliding window lengths of 10, 20, 30, 40, 50, and 100, which mean the duration of 

the sequence from 200 to 2000 ms. We also consider the shift lengths of 5, 10, and 20, 

which means that it will produce 150, 75, and 38 sliding subsequences in the same padding 

manner for the duration of the convolutional sequence with 750x512. When the sliding 

window length is 100 with a shift length of 10, the training time of the ASRNN architecture 

is close to that of the entire sequence fed into the recurrent networks. Hence, we do not 

consider a longer sliding window that will take a longer time to train the model. One session 

in the database is chosen for testing and others for training. We find that the computational 

efficiency will be improved with the shortening of window length and the lengthening of 

shift. But in this case, the recognition accuracy will decrease due to the inability to extract 

more emotional features. In addition, because only the feature of the last time frame in each 

sliding window is retained, when the window length is too long, not only the computational 

efficiency will be reduced, but also the recognition accuracy will be reduced. The results 

obtained for each method are shown in Fig. 4.5. Recognition accuracy is closer when the 

shift length is 5 or 10, but it became worse when the shift length is 20. This figure also 

shows that the ASRNN architecture resulted in better accuracy when the sliding window 

length is 20 or 40. Therefore, we only consider sliding window lengths of 20 and 40 and 

shift lengths of 5 and 10. 

 

Figure 4.5: The impact of sliding window and shift length on recognition accuracy 
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Table 4.3 shows the recognition results using different lengths and shift of the sliding 

window with the ASRNNs architecture for both databases. One can see that the ASRNNs 

architecture with the sliding window length of 20 and shift length of 10 performed better 

than the others, whose recognition accuracy is 62.6% for IEMOCAP and 55.7% for MSP-

IMPROV. The results are much better than those obtained using the traditional parameters 

shown in Table 4.2. According to the results, the window length of 20 frames (about 400ms) 

is suitable for expressing segment-level emotions, while the shift length of 10 is better for 

classification than that with the shift length of 5. Comparing with the best results of 

traditional recognition system in Table 4.2, the proposed system achieved +7.7 and +12.5% 

absolute accuracy improvements on IEMOCAP and MSP-IMPROV, respectively. These 

results indicate that the proposed system with temporal dynamics information is better to 

recognize emotional states than the conventional system with static features. 

Sliding 

window length 

Shift 

length 

UA 

IEMOCAP MSP-IMPROV 

20 5 62.3 54.9 

20 10 62.6 55.7 

40 5 61.0 54.2 

40 10 62.1 55.3 

 

Tables 4.4 and 4.5 show the confusion matrix of the best results for the IEMOCAP and 

MSP-IMPROV databases, respectively. In general, the class distributions of the confusion 

matrix for the different sessions are basically similar. One can see that happiness is easily 

confused with neutral emotion and vice versa. Anger is more easily misclassified as 

happiness than happiness being misclassified as anger. Unlike the study [55], the proposed 

system reduces the confusion between anger and happiness categories to a major extent, 

especially in MSP-IMPROV. Sadness is easily confused with neutral emotion in IEMOCAP, 

while it is easily confused with happiness in MSP-IMPROV. The confusion in the proposed 

method mainly happens between the neutral one and the others. This implies that emotion 

recognition based on auditory front-ends is basically consistent with people's recognition 

of emotion. In terms of the databases, the overall performance on IEMOCAP is better than 

MSP-IMPROV. The reason for this seems to be that the MSP-IMPROV database is highly 

imbalanced. 

 

Table 4.3: Accuracy comparison with different sliding-windows and shift lengths in 

ASRNN architecture on IEMOCAP and MSP-IMPROV databases (%) 
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4.4.4 Results of modulation channel, sliding widow and 

attention model  

In order to evaluate the effects of modulation channel number, sliding window and 

attention model on the SER system, we design a number of comparative experiments in 

different situations.  

First, we evaluate the effects of the nine modulation filterbank in obtaining local features 

and periodicity information by comparing it to the one with six modulation filters (ASRNN-

6MFB). ASRNN-6MFB is set as the same layers as the ASRNN, but different inputs shape 

of 32x6x6000 result in different kernels and stride. Compare to ASRNN, the difference is 

that the kernel and stride are 2x1x2 instead of 2x2x2 in Pool2. In addition, the convolutional 

maps are 40 instead of 64 to keep similar features in each frame. Finally, the output shape 

is 4x3x750 in pool3. Then this layer is reshaped to 2D shapes of 750x480. 

Second, an attention-based recurrent neural network (ARNN) is designed to evaluate 

whether the sliding window can obtain more temporal dynamics information or not. ARNN 

is a special case of an ASRNN. That is, when the sliding window length of an ASRNN is 

  Output 

 Emotion Neutral Happiness Anger Sadness 

Input 

Neutral 58.5  17.0  8.0  16.5  

Happiness 20.6  55.6  12.7  11.1  

Anger 12.9  18.1  64.4  4.6  

Sadness 15.6  9.4  3.0  72.0  

Table 4.4: Confusion matrix (%) of ASRNN with an average accuracy of 52.6% 

on the IEMOCAP database 

 

  Output 

 Emotion Neutral Happiness Anger Sadness 

Input 

Neutral 45.0  34.8  8.6  11.6  

Happiness 17.5  67.5  10.3  4.7  

Anger 13.2  25.1  59.7  2.0  

Sadness 22.5  23.3  3.7  50.5  

Table 4.5: Confusion matrix (%) of ASRNN with an average accuracy of 55.7% 

on the MSP-IMPROV database 
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equal to the length of the entire convolution sequence and the shift length is equal to 0, it 

becomes an ARNN. Hence, the attention model is used on the entire time sequence. 

 

RNN architecture 
UA 

IEMOCAP MSP-IMPROV 

SRNN-Max-pooling 61.5  54.2 

SRNN-Mean-pooling 61.7  53.9 

ARNN 61.3  55.2 

ASRNN-6MFB 61.7  54.8 

ASRNN 62.6  55.7 

 

Third, SRNNs with max and mean pooling are designed to evaluate whether the attention 

model can seize the emotional regions. An SRNN has the same sliding window and shift 

lengths as the ASRNN. There are two types of pooling used in an SRNN: maximum and 

average, denoted as SRNN-Max-pooling and SRNN-Mean-pooling, respectively. These 

models mentioned above use the same convolutional networks with the input shape of 

32x9x6000.  

Table 4.6 shows the comparison of results on different types of SRNNs with attention 

and non-attention models and one ARNN. Compared with ASRNN-6MFB, the ASRNN 

achieves the same improvements of +0.9% on both databases. This means that the proposed 

system with nine channels may extract more information from speech than ASRNN-6MFB. 

Compared with ARNN, ASRNN achieves +1.3% and +0.5% absolute improvements on the 

IEMOCAP and MSP-IMPROV databases, respectively. This means that the segment-based 

attention model is better than the frame-based attention model. Compared with SRNN-

Max-pooling and SRNN-Mean-pooling, the ASRNN achieves +0.9% and +1.5% absolute 

improvements on the IEMOCAP and MSP-IMPROV databases, respectively. This means 

that the attention model is better than max- and mean-pooling. 

Table 4.6: Accuracy comparison (%) between RNN architectures on IEMOCAP and 

MSP-IMPROV databases 
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 Listening test for temporal attention  

Recently, Kell et al. [80] demonstrated that a deep neural network made human-like error 

patterns. If our attention model reflects the human mechanism, its result should be similar 

to human behaviors when they recognize speech emotion. For this reason, listening testing 

is designed to evaluate the similarity of the behaviors between the proposed attention model 

and humans. Thirty sentences from IEMOCAP database are used for the listening tests. 

Each sentence with a duration between 4.5 to 7.5 s is presented to at least 25 listeners (14 

female and 11 male with ages ranging from 20 to 28) in random orders. Figure 4.6 lists the 

subjective evaluation test interface of the temporal attention behavior of the human auditory 

system, which requires the listener to focus on each utterance and select the two positions 

that can best express the most salient emotion. After selecting two attention positions, 

clicking the submit button will randomly play the next utterance. The listeners are asked to 

concentrate on listening to each utterance and choose the two locations that best show the 

emotions of the utterance.  

 

Figure 4.7 illustrates an example of comparisons between the attention model and human 

temporal attention. The top panel shows the waveform of an emotional sentence, and the 

upper-middle panel shows the spectrogram of the sentence. The lower middle panel shows 

the attention weights (𝛼𝑖 ) that are calculated based on auditory front-ends and deep 

frameworks. The bottom panel shows a histogram that is the point numbers of attention 

position given by subjective judgments, and a dashed line that is the moving-average on 

two neighbor data points. One can see that the curve of the attention weights is similar to 

that of subjective judgment. Pearson's correlation coefficient is used to quantitatively 

Figure 4.6: The subjective evaluation test interface of temporal attention behavior in 

human auditory system 
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measure the similarity between the attention model and human temporal attention. The 

correlation coefficient is 𝑃 = 0.552 (𝜌 < 0.001)  between the attention weights and 

histogram in this particular utterance. If we calculate the correlation between the moving 

average values and the attention weights, the correlation coefficient becomes 𝑃 =

0.715 (𝜌 < 0.001) . This indicates that there is a strong correlation between human 

temporal attention and the attention model. This implies that the proposed attention model 

can reflect human selective attention to a large extent. 

 

 

 General discussion  

Taking into account that the human auditory system has a strong ability to perceive the 

intensity and fundamental frequency of speech, furthermore, it can track the temporal 

dynamics of emotion from the perceived information and focus on the salient emotion 

Figure 4.7: Analysis and comparison of attention model and human selective attention for 

test example. Top panel: raw waveform (Ses01F_impro04_F033.wav from IEMOCAP 

database); upper middle panel: spectrogram; lower middle panel: attention weight (𝜶𝒊) 

over sliding window time sequence; bottom panel: histogram shows attention numbers for 

subjective judgments, and dashed line shows moving-average with 2 data points. 
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regions. Therefore, we propose an SER system by combining the auditory mechanism and 

attention mechanism of the auditory system. 

The auditory front-ends of the SER system are used to produce temporal modulation 

cues, which contain local features and periodicity information of the emotional speech. 

During the process of temporal modulation cues extraction, an additional correlation in 

neighboring channels will be introduced because of the partially overlapped frequency. 

Traditional methods use discrete cosine transform to de-correlate the temporal modulation 

features in the acoustic and modulation frequency domains. Since CNN can successfully 

de-correlate the features in neighboring channels, we directly use 3D CNN to learn a joint 

spectral-temporal feature from temporal modulation cues. Furthermore, temporal dynamic 

information is obtained by continuously scanning the temporal sequence and then is 

transmitted to the higher-level processing center. To focus on the emotional regions while 

ignore the emotionless regions, an attention model is used to extract utterance-level features. 

 

Literature Features Backend 
UA 

IEMOCAP   MSP-IMPROV 

Ref [81] Raw speech CRNN 60.23 52.43 

Ref [55]  Log Mel-filterbank Attentive CNN 59.54 45.76 

Ref [82] Mel-filterbank CNN 61.8 53.8 

Ref [83] LLDs Deep belief network 62.4 - 

Ref [70] FFT bins BLSTM 52.8 - 

Ref [84] LLDs Attention-based BLSTM  60.1 - 

Proposed  

in chapter 3 

Temporal modulation  3D CRNN 60.93 - 

Proposed Temporal modulation ASRNN 62.6 55.7 

 

To show the benefit of the proposed model, we compare our results with the studies [55, 

81,82], the authors used the raw speech as input to parallel convolution layer and showed 

that on both databases as presented in Table 4.7. In [81], the authors used Mel filterbank 

features as the input to CNN and showed that CNN with these features could produce 

competitive results to the popular feature sets. In [55], the authors used Log-Mel filterbank 

features as the input to autoencoder and used attentive CNN for representation learning. In 

[82], the authors used the raw speech as input to parallel convolution layer and showed that 

Table 4.7: Accuracy comparison of the proposed system and other systems on 

IEMOCAP and MSP-IMPROV databases (%)  
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CNN-LSTM could capture multi-temporal dependencies. Compared to these studies, we 

are achieving a better result of 62.6% and 55.7% respectively on both databases using 3D 

convolutions and ASRNNs from temporal modulation cues. This indicates that the auditory 

front-ends can provide spectral-temporal representations, and deep frameworks can 

effectively extract emotional information from such representation for emotion recognition.  

In addition, four representative studies with reported results on IEMOCAP are selected 

as comparisons. In [83], the authors used static features of LLDs for representation learning 

and deep belief network for emotion recognition. In [70], the authors used FFT bins with 

autoencoder for representation learning and used RNN to identify the emotional states. In 

[84], the authors used attention-based BLSTM models on LLDs for emotion recognition. 

Additionally, compared with our previous study in chapter 3, we are able to obtain faster 

training speed with SRNNs, and this system can better identify happiness and anger. This 

may be benefited by the 9-channel modulation filterbanks that contain fundamental 

frequency information, which is important for emotions. In contrast, our study exceeded 

the accuracy compared to the leading studies. 

Other studies used attention models to identify emotions on IEMOCAP databases, but 

the experimental conditions are different. For example, [25,29,30] did not merge happy and 

excited into one class, while [71] just reported weighted accuracy. Unlike these frame-based 

attention models, we use a sliding window-based attention model to focus on the salient 

regions of emotion representation. The results of the experiments showed that this model 

could effectively obtain emotional information. The subjective evaluation shows that the 

attention patterns of the attention model are basically consistent with human behaviors in 

recognizing emotions. 

 Summary  

We proposed an SER method using 3D convolutions and attention-based sliding 

recurrent neural network based on auditory front-ends. As the human auditory system is 

powerful in spectral-temporal signal analysis and processing, and the auditory model, 

which mimics the function of the human auditory system, is used as a front-end to extract 

spectral-temporal features in the SER system. Additionally, compared with modulation 

spectral features, these 3D features contain temporal dynamics characteristics and can avoid 

the modulation correlation problem. 

Considering that local features and periodicity information can better express emotions, 

we used 3D convolutions to extract frame-level features from nine modulation filters. We 

then used recurrent networks to obtain temporal dynamics information in each utterance. 

We also used an attention model to focus on the emotionally salient parts of a speech signal. 
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Therefore, we propose a joint deep learning model that combines 3D convolutions and 

attention-based sliding recurrent neural networks. Our experiments demonstrated that the 

proposed system could obtain spectral-temporal representations and exhibit better 

recognition accuracy compared to that of state-of-the-art SER systems on both databases.  

In summary, an auditory model as a front-end can extract rich spectral-temporal 

information, and the proposed method can effectively extract high-level features for 

emotion recognition. This system is possibly applied to other audio-event perception and 

recognition. For future work, we further plan to investigate the feature extraction from 

temporal modulation cues and emotion recognition model for dimensional speech 

emotional databases.  
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Chapter 5   

Multi-resolution modulation-filtered 

cochleagram features for dimensional 

emotion recognition 

 Introduction  

To recognize the dimensional emotion continuously from speech, the first step is to 

extract sequential acoustic features that can represent discriminative characteristics of 

each short-term segment. The sequential acoustic features from the speech can be 

extracted directly from sequential LLDs, and can also be extracted from the statistical 

features of LLDs calculated on a block of continuous frames. For dimensional emotion 

recognition, temporal dynamic information is very useful because the target dimensional 

values are continuous and have a short time gap between two adjacent predictions [37]. 

For example, it is usually difficult to distinguish between happy and angry, but there are 

obvious differences between them by mapping them into the V-A space. Both emotions 

have high arousal, but their valence is completely different: happiness has positive 

valence, and anger has negative valence. Unlike the arousal, which can usually be 

characterized by the amplitude envelope (energy) of the signal, its valence needs to be 

characterized by temporal dynamics of the amplitude envelope [87]. However, as the 

LLDs-based and functional-based acoustic features are not good at capturing the temporal 

dynamics for this task, especially for the suprasegmental information of emotional speech, 

valence prediction performances are commonly lower. 

Moreover, the MSFs cannot reflect the real emotion in speech well since they are static 

features and do not contain detailed temporal cues. Temporal modulation cues contain 

multi-dimensional modulation spectral representations (MSR) of speech after using 

signal processing of auditory front ends. In Chapter 3 and Chapter 4, we proposed 

different CNNs to extract high-level emotional features from MSR for categorical 

emotion recognition. The MSR is a kind of 3D spectral-temporal representation, which is 

a mapping of speech signals to a high-dimensional data space through auditory and 

modulation filtering. High-dimensional data increases the complexity of the emotion 

recognition model, especially for the lack of large-scale speech emotion database, which 
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may make the training model poor generalization. Avila et al. [26] proposed a feature 

pooling scheme to improve robustness for dimensional emotion recognition using 

combined MSF and MSR. Firstly, a 23-channel Gammatone filterbank was used to carry 

out auditory filtering and extract its amplitude envelope, then discrete Fourier transform 

(DFT) was used to obtain modulation spectrum, and then 8-channel modulation filter was 

used to generate MSR. Feature pooling is achieved by sliding window analysis of the 

fused MSF and MSR features and dimension reduction with Principal Component 

Analysis (PCA). However, this method uses DFT to convert the envelope signal into the 

frequency domain before temporal modulation, thus increasing the computational 

complexity. 

Recent studies in cognitive neuroscience show that the cortical encoding of natural 

sounds entails the formation of multiple representations of sound spectrograms with 

different degrees of spectral and temporal resolution [14]. Chen et al. [88] proposed a 

multi-resolution cochleagram (MRCG) feature for speech separation, which is extracted 

from four cochleagrams of different resolutions to capture both local information and 

spectral-temporal context. Experimental results showed that the multi-resolution feature 

obtains the best results for speech separation among all evaluated features. The cortex 

derives these multi-resolution representations through frequency-specific neural 

processing channels and the combined analysis of the spectral and temporal modulations 

[89]. Inspired by this knowledge, we investigate multi-resolution temporal modulation 

cues extracted from frequency-specific auditory-filtering signals for emotion recognition. 

Then, we propose a novel auditory-based feature called multi-resolution modulation-

filtered cochleagram (MMCG), which encodes modulation spectral representation of 

temporal envelope by the multi-resolution ways. Inspired from the feature extraction of 

MRCG, we also combine four modulation-filtered cochleagrams at different resolutions 

to construct the MMCG features for capturing the local and global temporal modulation 

cues as well as spectral-temporal modulation cues at different scales. 

Next, a regression model should be considered to capture the temporal dynamics of 

emotion from MMCG feature sequences in dimensional emotion recognition. LSTM 

networks are widely used to model time sequences in learning more effective emotional 

representations from speech [37,90]. Comparing to Support Vector Regression (SVR), 

LSTM networks achieve a higher prediction accuracy due to their ability to model long-

term time dependencies [91]. As each kind of modulation-filtered cochleagram contains 

different temporal modulation or contextual information, a parallel LSTM network 

architecture is designed to capture more temporal dynamics from different resolution 

modulation-filtered cochleagram. 
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The remainder of this chapter is organized as follows. Section 5.2 introduces the 

acoustic-based and auditory-based baseline features. Section 5.3 proposes the MMCG 

feature from temporal modulation cues. Section 5.4 presents the time series modeling 

using plain and parallel LSTM network architecture to capture temporal dynamics from 

the multi-resolution feature. Section 5.5 describes our experiment and compare it with 

the state-of-the-art results. Finally, we discuss the dynamic fitting ability of the MMCG 

feature and the effectiveness of each resolution modulation cochleagram feature in 

Section 5.6 and conclude this chapter in Section 5.7. 

 Baseline features 

To evaluate the suitability of the proposed features for emotion recognition, we utilize 

various widely used acoustic features and auditory-based features as baselines. There are 

two methods to extract acoustic features either by the 20–40 ms frame length LLDs 

features with 10 ms shift (LLDs-based strategy), or by the statistical features of LLDs 

calculated on a block of continuous frames (functional-based strategy).  

5.2.1 Acoustic-based feature 

Since the value of each primitive is not labeled on one frame but rather on consecutive 

frames, such as four frames in RECOLA and ten frames in SEWA, we use frame stacking 

to extract the LLD-based features and match the granularity of the annotation in each 

primitive. Frame stacking consists of concatenating a block of continuous frames. For 

example, a context of 3 frames means that frames at times t - 1, t and t + 1 are concatenated 

to create one feature vector at time t. Frame stacking allows a recurrent model to use 

contextual information when learning a prediction function. The functional-based 

features are calculated on the LLDs-based features by using functions such as mean and 

standard deviation.  

In this chapter, we use MFCC and eGeMAPS feature sets as the acoustic features, each 

using the two abovementioned strategies. We also use auditory-based features based on 

different stages of the auditory system, including early-stage MRCG features and late-

stage MSF features. The following is a brief description of these two kinds of feature sets. 

LLDs-based MFCC: This acoustic feature set contains 39 MFCCs (12 MFCCs + 

logarithmic energy, 13 delta and 13 double delta features), with a window size of 25 ms 

and a shift of 10 ms. In RECOLA, we stack four frames to form a 40-ms feature vector 

and obtain a total of 156-dimensional MFCC LLD features. Similarly, we stack 10 frames 

in SEWA to form a 100-ms feature vector and obtain 390-dimensional MFCC LLD 

features. 
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Functional-based MFCC: We then applied statistical functionals (mean and standard 

deviation) to extract 78-dimensional functional-based MFCC features by computing from 

the LLDs over segments of 4 seconds with a shift of 40 ms and 100 ms for both databases 

respectively. The same way is used in [92–94]. 

LLDs-based eGeMAPS: The eGeMAPS contains spectral, cepstral, prosodic and 

voice quality information of the voice record. Such features have been used in the 

RECOLA baseline with other modalities. Similar to extract MFCC features, we extract 

23-dimensional acoustic LLDs acoustic features with the same window and shift. Finally, 

we get 92 and 230 eGeMAPS LLDs features in both databases. 

Functional-based eGeMAPS: We then applied statistical functionals to extract 88-

dimensional functional-based eGeMAPS features by computing from the LLDs over 

segments of 4 seconds with a shift of 40 ms and 100 ms for both databases respectively. 

Altogether, we get 88 statistical features for both databases. 

5.2.2 Auditory-based feature 

Modulation spectral feature (MSF): This feature set contains seven statistical 

features extracted from modulation spectral representations with a 200-ms window and a 

40-ms or 100-ms shift for both databases respectively, including the mean of energy, 

centroid, flatness, spectral spread, spectral skewness, spectral kurtosis, and spectral tilt. 

This feature set is calculated in 32 acoustic channels and 9 modulation channels, 

respectively. Finally, we obtain 63 acoustic-frequency-domain features and 224 

modulation-frequency-domain features, altogether 287 features. 

Multi-resolution cochleagram feature (MRCG): We use the method proposed by 

[88] to extract MRCG features. This feature set contains four cochleagram features 

generated at different levels of resolution. The cochleagram is generated by applying the 

Gammatone filter to audio signals [95]. The high-resolution level encodes local 

information while the remaining three lower resolution levels capture spectral-temporal 

information. Different from the study, we use a Gammatone filterbank of 32 instead of 

64 channels. Finally, 128 MRCG features are extracted from each time-frequency unit. 

 Multi-resolution modulation-filtered cochleagram 

features  

5.3.1 Feature description 

In this section, we propose the MMCG feature to encode temporal modulation cues of 
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a temporal envelope to produce multi-resolution spectral-temporal features. 

1) Temporal modulation cues from auditory front-ends 

In this chapter, a Gammatone filterbank is applied to obtain multiple high-resolution 

sub-band signals in the frequency domain [96][58]. The temporal amplitude envelope 

𝑠e(𝑛, 𝑡) is extracted using Hilbert transform to calculate the instantaneous amplitude of 

the n-th channel signal. Furthermore, the m-th modulation filter in the n-th channel 

envelope signal is used to obtain the spectral-temporal modulation signal 𝑠m(𝑛, 𝑚, 𝑡).  

𝑠m(𝑛, 𝑚, 𝑡) =  𝑚f(𝑚, 𝑡) ∗ 𝑠e(𝑛, 𝑡), 1 ≤ 𝑚 ≤ 𝑀, 

where 𝑚f(𝑚, 𝑡) is an impulse response of the modulation filterbank and M is the channel 

number of modulation filterbanks. In this chapter, M is set to nine, which spans from 2 to 

512 Hz on a logarithm scale. Such modulation frequency components contain rich 

spectral-temporal information to describe the variations of intensity, duration and period 

of speech [72]. 

Then, each sub-band modulation signal is divided into a number of different-duration 

modulation units, where the shift length is the same as the dimensional emotion database. 

It is defined as: 

 𝑠𝑚𝑢(𝑛, 𝑚, 𝑖) =  w(𝑡𝑤) ∙ 𝑠𝑚(𝑛, 𝑚, (𝑖 − 1) ∙ 𝐿𝑒𝑛𝑠 + 𝑡𝑤), 

where w(𝑡𝑤) is a window function, 𝑡𝑤 is the sample number in each time window. The 

Hamming window is chosen in this chapter. 𝑠𝑚𝑢(𝑛, 𝑚, 𝑖) is the sub-band modulation 

unit of n-th acoustic channel and m-th modulation channel at the i-th modulation unit, 

1 ≤ 𝑖 ≤
𝐿𝑒𝑛𝑡

𝐿𝑒𝑛s
,   where 𝐿𝑒𝑛𝑡  is the total length of speech signal 𝑠(𝑡) and 𝐿𝑒𝑛s is a 

window shift. Finally, a total of 𝑛 ∗ 𝑚 channel signals are generated. 𝑠𝑚𝑢(𝑛, 𝑚, 𝑖) is 

expressed as 𝑠𝑚𝑢(𝑐, 𝑖), where 𝑐 equals to 𝑛 ∗ 𝑚. 

The modulation-filtered cochleagram 𝑀𝐶𝐺(𝑐, 𝑖) is calculated by convolving each 

modulation unit:  

𝑀𝐶𝐺(𝑐, 𝑖) = ∑ 𝑠𝑚𝑢(𝑐, 𝑖) ∗ 𝑠𝑚𝑢(𝑐, 𝑖)𝐿−1
𝑖=0 ,                      

where 𝐿 equals to 
𝐿𝑒𝑛𝑡

𝐿𝑒𝑛s
 . 

1) Multi-resolution modulation-filtered cochleagram features 

Each modulation unit in the modulation-filtered cochleagram contains temporal 

modulation cues. Recent psychoacoustic investigations indicate that humans are able to 

detect and discriminate multi-scale modulations that occur in one dimension alone 

(5.1) 

(5.2) 

(5.3) 



 

73 

 

(temporal or spectral) as well as combined spectral-temporal modulations [89]. To obtain 

multi-scale information, we extract multi-resolution temporal modulation cues from 

modulation units. The extraction of the proposed MMCG feature is given in Fig. 5.1. 
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The first modulation-filtered cochleagram (MCG1) generates a high-resolution 

cochleagram feature from the modulation units, and each modulation unit performs 

discrete convolution with itself. As we all know, human auditory nonlinearity expands 

small sounds and compresses large sounds. As auditory frequency selectivity in a log 

frequency scale for amplitude modulation best matches the auditory perception of 

modulation frequency. A log function is used to match the auditory perception in the 

MCG1. The window length of MCG1 is set to 200 ms, and the mathematical expression 

of MCG1 is: 

𝑀𝐶𝐺1(𝑐, 𝑖) = 𝑙𝑜𝑔10(∑ 𝑠𝑚𝑢(𝑐, 𝑖) ∗ 𝑠𝑚𝑢(𝑐, 𝑖))𝐿−1
𝑖=0 ,               

Similarly, the second modulation-filtered cochleagram (MCG2) can be obtained. 

Unlike MCG1, the window length changes to 2000 ms, which is a low-resolution 

cochleagram feature.  

The third modulation-filtered cochleagram (MCG3) is derived by averaging MCG1 

across a square window of 5 frequency channels and 5 time steps centered at a given 

modulation unit. If the window goes beyond the given cochleagram, the outside units take 

Figure 5.1: Extraction of MMCG feature 

(5.4) 

https://link.springer.com/article/10.1186/s13634-019-0618-4#Fig1
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the value of zero (i.e., zero padding). It can be expressed as: 

𝑀𝐶𝐺3(𝑐, 𝑖) = (∑ ∑ 𝑀𝐶𝐺1(𝑐, 𝑖))/(5 ∗ 5)𝑖+2
𝑗=𝑖−2

𝑐+2
n=𝑐−2 ,           

The fourth modulation-filtered cochleagram (MCG4) is calculated in a similar way to 

MCG3, except that a square window of 11 frequency channels and 11 time steps is used.  
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(a) Multi-resolution cochleagram

(b) Multi-resolution modulation-filtered cochleagram in the first modulation channel

(d) Multi-resolution modulation-filtered cochleagram in the ninth modulation channel

(c) Multi-resolution modulation-filtered cochleagram in the fifth modulation channel

 

Figure 5.2: The multi-resolution cochleagram and modulation-filtered cochleagram. (a) 

The multi-resolution cochleagram contains four different scale features (CG1-CG4). (b)-

(d) The 1st, 5th, 9th modulation-channel multi-resolution modulation-filtered 

cochleagram, where containing MCG1-MCG4 for each figure. The x-axis represents the 

number of time step and the y-axis represents the channel number. 

(5.5) 
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It can be shown as: 

    𝑀𝐶𝐺4(𝑐, 𝑖) = (∑ ∑ 𝑀𝐶𝐺1(𝑐, 𝑖))/(11 ∗ 11)𝑖+5
𝑗=𝑖−5

𝑐+5
𝑘=𝑐−5 ,      

MCG1, MCG2, MCG3, and MCG4 are connected to obtain the MMCG feature, which 

has 288 × 4 dimensions for each time step. The MMCG feature is denoted as: 

𝑀𝑀𝐶𝐺(𝑐, 𝑖) = [𝑀𝐶𝐺1(𝑐, 𝑖); 𝑀𝐶𝐺2(𝑐, 𝑖); 𝑀𝐶𝐺3(𝑐, 𝑖); 𝑀𝐶𝐺4(𝑐, 𝑖)].   

5.3.2 Feature analysis 

Figure 5.2 shows an MRCG and three different MMCG with 40-ms window length and 

shift. The MRCG feature contains four different scale cochleagrams (CG1-CG4) as 

shown in Fig. 5.2(a), whereas the MMCG feature contains the 1st, 5th, 9th modulation 

channel as shown in Fig.5.2 (b)-(d), respectively. The MMCG features are obtained by 

the modulation of a temporal envelope on different frequency-specific channels. Each 

modulation channel contains multi-resolution features. One can see that the MMCG 

features have higher time and frequency-domain resolution structure of speech than the 

MRCG. Therefore, it is expected that the MMCG is more capable of capturing the 

temporal dynamics of speech emotion cues. 

 Time series modeling  

In this section, we introduce emotion recognition models for dimensional emotion 

recognition. A plain LSTM network architecture is first used as the baseline method, and 

then a parallel LSTM network architecture is designed to extract spectral and temporal 

features from the MMCG feature. The details of the abovementioned network 

architectures are elaborated in the following part. 

5.4.1 Plain long short-term memory network 

An LSTM architecture is the state-of-art model for sequence analysis since it can 

exploit long-term dependencies in the sequences by using memory cells to store 

information. As the LSTM network is widely used to model time sequences in learning 

more effective emotional representations from speech [97]. Trigeorgis et al. proposed to 

use 1D convolution to directly learn high-level emotion feature representation directly on 

the raw waveform, and then use LSTM to learn its time-dependent features from this 

representation sequence to predict dimensional emotion [98]. Wöllmer et al. presented a 

fully automatic audiovisual recognition approach based on LSTM modeling of word-

level audio and visual features [99]. For dimensional emotion recognition, temporal 

(5.6) 

(5.7) 

https://link.springer.com/article/10.1186/s13634-019-0618-4#Fig2
https://link.springer.com/article/10.1186/s13634-019-0618-4#Fig2
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information is very useful because the target dimensional values are continuous and have 

a short time gap between two adjacent predictions. In this chapter, we use LSTM 

networks as a regression model to predict continuous variations of the dimensional 

variables and explore different types of architectures to capture the temporal dynamics in 

speech.  
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First, a plain LSTM network architecture is used as the benchmark regression model. 

Figure 5.3 depicts the architecture of the plain LSTM network for dimensional emotion 

recognition. The plain LSTM network architecture contains one input layer with 1152-

dimensional MMCG features, two hidden layers, and then following a dense layer, a 

regression layer. In our experiments, the model consists of 128 and 64 nodes for the first 

and second hidden layers. Then the dense layer is used to connect the hidden layer, 

followed by a ReLU activation function. Finally, we use the regression layer to predict 

the value of arousal and valence emotion. To avoid overfitting when training our networks, 

we use a dropout rate of 0.75 before the regression layer during training. 

5.4.2 Parallel long short-term memory network 

MMCG contains different temporal and contextual modulation cues. Each modulation-

filtered cochleagram feature has its own temporal and contextual dependency, which can 

be obtained by different LSTM units. So, in our solution, several LSTM units are used in 

Figure 5.3: A plain LSTM network architecture for dimensional emotion recognition 
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parallel to handle different-resolution temporal modulation cues. Because the plain 

LSTM can't extract the dependency of different scales, we propose a parallel LSTM 

network as a regression model to capture temporal and contextual information for 

dimensional emotion recognition. 

 

Figure 5.4 depicts the architecture of the parallel LSTM network. It consists of an input 

layer, a parallel LSTM layer, the merging LSTM layer, the dense layer, and the regression 

layer. In the input layer, the four 288-dimensional features (MCG1-MCG4) are fed into 

different LSTM units for parallel processing. Every LSTM unit has the same hyper-

parameters, such as neurons number, to handle each feature equally. The LSTM unit deals 

with the segment data step by step and iterates through the loop. The outputs 𝑠𝑖 at the 

time step i of each LSTM unit are collected and combined as the preliminary features 

with a size of 4* h1, where h1 is the number of the hidden neurons of each LSTM unit. 

After that, a merging LSTM layer is added. It is fed with the preliminary features and 

iterates through the order of the outputs from the previous layer. The output ℎ𝑖 of the 

merging LSTM layer is selected as the frame-level emotional feature, which contains the 

time dependency. It is a vector with the size of h2, where h2 represents the number of the 

hidden neurons of the merging LSTM unit. Then the dense layer is used to connect the 

hidden layer, followed by a ReLU activation function. To avoid overfitting when training 

our networks, we use a dropout rate of 0.75 before the regression layer during training. 
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In our experiments, the model consists of 128 and 64 nodes for the first and second hidden 

layers. Finally, the regression layer to the predicted valence and arousal primitives. 

5.4.3 Loss function 

Because CCC combines PCC and MSE, it is more reliable in evaluating performance, 

so CCC is used as an evaluation indicator in dimensional emotion recognition tasks. As 

the CCC loss consistently improves results in the emotion recognition task compared to 

mean squared error loss and mean absolute error loss [45]. We utilize a CCC-based loss 

function (𝐿𝑐) as the objective function of recurrent model. 𝐿𝑐 is defined as:  

 𝐿𝑐 =  
2−𝜌𝑐

𝑎−𝜌𝑐
𝑣

2
,                      

where ρ𝑐
𝑎 and ρ𝑐

𝑣 are the CCC of the arousal and valence, respectively. 

 

 

 

Features Arousal Valence 

LLD-based MFCC .679 .320 

functional-based MFCC .651 .331 

LLD-based eGeMAPS .662 .312 

functional-based eGeMAPS .701 .329 

functional-based MSF .709 .368 

MRCG .734 .351 

 

5.4.4 Multitask learning 

In the V-A space, we first investigate whether there is a correlation between valence 

and arousal. If the two are strongly correlated, multitask learning can be used to train the 

regression model at the same time. Otherwise, the respective models should be trained 

independently. We use PCC to measure the correlations between arousal and valence. The 

PCC coefficient is ρ = 0.518  on the train and development set in RECOLA, while ρ =

0.652  in SEWA. This indicates that there is highly correlated between arousal and 

valence. Therefore, we employ a multi-task learning method to predict the arousal and 

valence simultaneously on two kinds of LSTM networks. The regression models of each 

LSTM network are trained with two outputs and two CCC losses at the same time. 

Table 5.1: Performance comparison (in term of ρc) under different features using 

plain LSTM networks on RECOLA database 

(5.8) 
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 Experiment results and analysis  

In this section, we employ the plain LSTM network architecture to compare 

performances between the baseline features and the proposed MMCG. Then we conduct 

extensive experiments to improve prediction performance using the parallel LSTM 

network architecture. 

5.5.1 Experiment setup 

The RECOLA database is used to find the best emotion recognition model in valence 

and arousal space, and then a subset of the SEWA database is used to validate our 

proposed method. We implement our methods with the TensorFlow deep learning 

framework. We train the regression model throughout all experiments with Adam 

optimizer with a fixed learning rate of 1e-4. Additionally, for all random weight 

initializations, we choose L2-regularizer initialization. For RECOLA, the mini-batch size 

utilized is 10 with a sequence length of 750 frames (30 s) when training, and the model 

is tested on the entire records without segmentation. After we preprocess the raw signal 

to have zero mean and unit variance, we segment it to 30-second sequences and use them 

as input. For SEWA, due to the variable length in this database, we train the deep model 

using zero-padding and test it directly using the original data. The mini-batch size utilized 

is 10 with a sequence length of 880 frames (almost 90 s) when training, and the model is 

tested on the entire records without segmentation. 

5.5.2 Results of baseline features 

In this set of experiments, we aim to investigate the baseline features (MFCC, 

eGeMAPS, MSF and MRCG) for emotion dimension prediction. Among them, the 

acoustic features (MFCC, eGeMAPS) include LLDs-based and functional-based features. 

The LLDs-based features are extracted from openSMILE toolkit [48]. Feature 

normalization is then applied to each feature dimension. First, we apply the plain LSTM 

network to the baseline features to find the dominant feature for predicting each emotion 

dimension. The prediction results using each set of features are reported in Table 5.1. For 

acoustic-based features, the highest CCC is achieved using functional-based eGeMAPS 

features in arousal prediction (𝜌𝑐
𝑎 = 0.701), whereas the highest CCC is achieved using 

LLD-based MFCC in valence prediction (𝜌𝑐
𝑣 = 0.331). In addition, the functional-based 

features outperform the LLD-based features in valence prediction, which is consistent 

with the knowledge that valence is more related to long-term temporal information. For 

auditory-based features, the highest CCC is achieved using MRCG features in arousal 
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prediction (𝜌𝑐
𝑎 = 0.734), whereas the highest CCC is achieved using MSF in valence 

prediction (𝜌𝑐
𝑣  = 0.368). As we can see from the table that auditory-based features 

achieve better performance than acoustic-based features on the dimension prediction. The 

results indicate that auditory-based features perform better than acoustic-based features. 

It is worth mentioning that this is the first report on the MRCG for emotion recognition. 

The MRCG features are designed for speech separation [88] and recently applied for 

voice activity detection [100] and attitude recognition [101]. The experiment results show 

that the MRCG features perform better than the traditional acoustic features. 

Features Window size Dynamic feature  Arousal Valence 

 

 

MRCG 

short Non-delta .734 .351 

short delta .744 .423 

long Non-delta .717 .306 

long delta .749 .322 

 

 

MMCG 

short Non-delta .742 .302 

short delta .766 .413 

long Non-delta .712 .349 

long delta .768 .431 

 

5.5.3 Results of proposed features on RECOLA database 

MMCG can capture both temporal information and spectral-temporal contexts at 

different scales. To investigate the effectiveness of temporal window size and dynamic 

delta features on emotion recognition in MMCG features, we still use the plain LSTM to 

train the emotion prediction model under different window sizes and dynamic features. 

In addition, we use the same strategy for MRCG features and compare the emotion 

recognition performance with that of MMCG features. 

Short-time VS. Long-time features: When predicting dimensional emotion 

primitives continuously, we still do not know what is the best temporal window size for 

capturing the salient features [102]. In this chapter, we investigated two kinds of MMCG 

features: one is the short-time MMCG feature (MMCG_short), and the other is the long-

time MMCG feature (MMCG_long). In the short-time MMCG feature, the window 

Table 5.2: Performance comparison (in term of ρc) of MRCG and MMCG under 

different window size and dynamic feature using plain LSTM networks on RECOLA 

database 
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length of MCG1 is consistent with the dimension label length of the database (the window 

length of the RECOLA database is 40 ms, and the window length of the SEWA database 

is 100 ms), and the window length of MCG2 is 400 ms. In the long-time MMCG feature, 

the window length of MCG1 is 200 ms, and the window length of MCG2 is 2000 ms. The 

window shift of both MMCG features is consistent with the database dimension label 

length. The same parameter settings of MMCG are also used in the MRCG feature. 

Finally, short-time and long-time MRCG features (MRCG_short and MRCG_long) are 

obtained. 

Delta VS. Non-delta features: In speech processing, delta and double-delta features 

are widely used to capture temporal dynamics. For example, MFCC with delta features 

gets better speech recognition results than MFCC alone. In this chapter, we also 

investigate the effectiveness of dynamic features of MMCG in improving the 

performance of the emotion prediction. The dynamic features of ∆MMCG is calculated 

as: 

∆𝑀𝑀𝐶𝐺(𝑛, 𝑚, 𝑖) =
𝑀𝑀𝐶𝐺(𝑛,𝑚,𝑖+1)−𝑀𝑀𝐶𝐺(𝑛,𝑚,𝑖−1)+(𝑀𝑀𝐶𝐺(𝑛,𝑚,𝑖+2)−𝑀𝑀𝐶𝐺(𝑛,𝑚,𝑖−2))

2
.  

Then 1152-dimension delta features are obtained from the formulas. The double-delta 

features are also obtained using a similar formula on ∆MMCG instead of MMCG. Lastly, 

we obtain a total of 3456 features from each frame. The prediction results of MRCG and 

MMCG under different window sizes and dynamic features are reported in Table 5.2. 

 

 Arousal Valence 

Features raw scaling centering raw scaling centering 

MRCG-short .703 .708 .781 .270 .303 .307 

MRCG-long .744 .751 .784 .256 .261 .323 

MRCG-long +MSF .753 .762 .830 .426 .463 .497 

MMCG -short .763 .777 .827 .417 .436 .451 

MMCG -long .778 .813 .824 .474 .494 .519 

MMCG -long +MSF .812 .821 .865 .481 .502 .524 

  

Table 5.3: Performance comparison (in term of ρc) under different features using 

parallel LSTM networks on RECOLA database 

(5.9) 
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Figure 5.5: The short-time and long-time MMCGs and its delta features. (a) and (c) show 

the short-time and long-time MMCGs (only the MMCG of the first modulation channel). 

(b) and (d) show the delta features corresponding to (a) and (b), respectively. 

(b) short-time delta feature 

(a) short-time MRMG of the first 
modulation channel

(c) long-time MRMG of the first 
modulation channel 

(d) long-time delta feature 
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For MRCG features, the best arousal prediction result is obtained under long-time and 

delta feature conditions (𝜌𝑐
𝑎 = 0.749), and the best valence prediction result is obtained 

under short-time and delta feature conditions (𝜌𝑐
𝑣 = 0.423). For MMCG features, the best 

arousal and valence prediction results are obtained under long-time and delta feature 

conditions (𝜌𝑐
𝑎 = 0.768, 𝜌𝑐

𝑣 = 0.431). Overall, this shows that MMCG has better results 

on both arousal and valence predictions than MRCG. However, we find that the 

recognition results of MMCG and MRCG in the long-time and short-time features are 

inconsistent. The short-time features of MRCG have higher CCC than the long-time 

features, but the long-time features have higher CCC than MMCG. This may be due to 

the fact that MMCG contains the temporal modulation clue of the envelope, and long-

time modulation is more effective for emotion recognition than short-time modulation 

information. 

 

Predictor Features Arousal Valence 

Zhang et al. [103] eGeMAPS .783 .495 

Avila et al. [26] MSFs .795 .265 

Proposed MRCG .753 .426 

Proposed MMCG .812 .481 

Brady et al. [104] MFCC .846 .450 

Valstar et al. [45] eGeMAPS .796 .455 

Zhang et al. [103] eGeMAPS .811 .519 

Ouyang et al. [47] eGeMAPS .783 .467 

Povolny et al. [105] eGeMAPS .832 .489 

Le et al. [106]* Log mel-filterbank .855 .518 

Proposed MRCG .830 .497 

Proposed  MMCG .865 .524 

* Only list the results using the regression model and the CCC loss function in this study. 

 

The delta feature gets better results on both the arousal and valence prediction than the 

non-delta feature, which shows that the delta feature reflecting the dynamic change of the 

signal can significantly improve the dimensional emotion recognition. However, the 

degree of CCC improvement is not the same under different conditions. The specific list 

Table 5.4: Performance comparison (in term of ρc) under different features and model on 

RECOLA dataset (upper four rows for performance comparison without delay 

compensation, lower nine rows for performance comparison with delay compensation) 
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is as follows: (i) The delta feature has a more significant improvement in valence 

prediction than arousal prediction. (ii) The delta feature has a more noticeable 

improvement under short-time conditions than under long-time conditions. As shown in 

Fig. 5.5, Fig 5.5(a) and 5.5(b) show the short-time and long-time MMCGs (only the 

MMCG of the first modulation channel). Fig. 5.5(c) and 5(d) show the delta features 

corresponding to Fig. 5.5(a) and 5.5(b), respectively. From the figures, one can see that 

the delta feature of the short-time MMCG contains more information reflecting the 

change of the modulation signal, so it can better reflect this feature is more conducive to 

identifying dimensional emotions than the long-time MMCG feature. 

Overall, the MMCG feature performs significantly better than MRCG. Moreover, the 

MMCG features combining the original and dynamics with a long-time window can 

improve the prediction performance of dimensional emotion.  

Each kind of modulation-filtered cochleagram in the MMCG contains different 

temporal modulation or spectral-temporal modulation information. Therefore, we use 

parallel LSTM to model the temporal dependencies of various resolution features (with 

delta and double-delta feature) from each resolution information. Table 5.3 reports the 

CCCs obtained by MRCG and MMCG using short-time and long-time parallel LSTM 

networks. In addition, the CCC obtained by combining these two features with MSF in 

the dense layer are also reported separately. The long-time MMCG features combined 

with MSF achieved the highest CCCs of 0.812 for arousal and 0.481 for valence, 

respectively. The upper four rows of Table 5.4 show a CCC comparison with the recent 

studies without delay compensation. It shows that the result of our approach is better 

results for arousal prediction, and get a comparable result for valence prediction. It is also 

worth mentioning that compared with the study [26] using the same auditory-based 

features, we got a relative improvement of 8% (0.795 to 0.812) for arousal prediction and 

a 29% improvement (0.265 to 0.481) for valence prediction. 

Annotators often have reaction time delays to emotional cues when labeling 

consecutive emotions on a recording, which can cause a shift between the annotated 

emotion at a certain time step and its actual emotion. To compensate for delays in the 

ratings, some studies apply a chain of post-processing to the predictions obtained on the 

development set [23][45][92][98]. It includes: (i) median filtering (the window size 

ranging from 0.4 s to 20 s), (ii) time-shifting (by shifting the prediction forward in time 

with values ranging from 0.04 s to 10 s), (iii) scaling (using the ratio of standard-deviation 

of gold-standard and prediction as scaling factor) and (iv) centering (by computing the 

bias between gold-standard and prediction). In this chapter, we found that the median 

filtering and time-shifting cannot improve the predicting performance. This might be due 
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to the reason that the MMCG features can represent stable temporal cues and the LSTM 

networks can effectively capture the temporal information. However, the scaling and 

centering are useful to improve the performance. Hence, we only report the post-

processing results using scaling and centering ways. 

Scaling the prediction primitives could help to attenuate some of the remaining noise. 

In this chapter, the scaling method with the standard-deviation ratio is adopted to scale 

the prediction primitives. A scaling output vector 𝑦𝑠𝑎𝑐𝑙𝑖𝑛𝑔 is calculated as: 

𝑦𝑠𝑐𝑎𝑙𝑖𝑛𝑔 =
𝜎𝑙

𝜎𝑝
⊗ 𝑦 ,                                           

where 𝜎𝑝 is the standard deviation of the predictions, 𝜎𝑙 is the standard deviation of the 

golden standard, ⊗ is the element-wise multiplication operation, and y is the prediction 

vector to be scaled. 

The second post-processing method is centering, which is implemented by computing 

the bias between gold-standard and prediction. A centering output vector 𝑦𝑐𝑒𝑛𝑡𝑒𝑟𝑖𝑛𝑔 is 

calculated as: 

 𝑦𝑐𝑒𝑛𝑡𝑒𝑟𝑖𝑛𝑔 =  𝑦 + μ𝑙 − μ𝑝                                        

where 𝜇𝑙 and 𝜇𝑝 are the mean values in the training labels and the prediction vector y, 

respectively. 

Features Arousal Valence 

functional-based eGeMAPS .396 .291 

functional-based MFCC .324 .310 

MRCG-short .338 .353 

MRCG-long .432 .464  

MRCG-long +MSF .507 .492 

MMCG-short .501 .483 

MMCG-long .523 .519 

MMCG-long +MSF .572 .534 

 

 

Table 5.5: Performance comparison (in term of ρc) under different features on SEWA 

dataset (upper two rows for performance comparison using plain LSTM networks, lower 

six rows for performance comparison using parallel LSTM networks) 

(5.10) 

(5.11) 
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The CCC results of MRCG and MMCG with scaling and centering are shown in Table. 

5.3. The highest CCC is achieved by centering the raw MMCG, whose arousal and 

valence were 0.865 and 0.524, respectively. The lower nine rows of Table 5.4 show the 

comparison of evaluation methods CCC with delay compensation. The best performer of 

AVEC 2016, Brady et al. [104] used SVR trained on sparse-coded higher-level 

representations of various types of audio features. Many studies used eGeMAPS features 

to train different regression models to identify dimensional emotions. For example, 

Povolny et al. trained a set of linear regressors on eGeMAPS augmented with deep 

bottleneck features from deep neural network acoustic models [105]. Zhang et al. 

considered the difficulty of different data training models and the importance of 

contextual information for emotion recognition. They proposed Dynamic Difficulty 

Awareness Training combined with LSTM to predict dimensional emotion [103]. Le et 

al. proposed a discrete continuous emotion recognition based on Log Mel-filterbank 

coefficients. First, k-means is used to discretize all continuous labels, and then BLSTM 

is used for multi-task training and then decoded to make the model prediction continuous 

dimensional emotion [106]. Among the evaluation methods with delay compensation, the 

MMCG + parallel LSTM method achieves the best recognition effect on the degree of 

arousal and valence prediction. Secondly, compared with the MRCG feature, the arousal 

prediction is also relatively improved by 20% (from 0.830 to 0.865), and the valence 

prediction is relatively improved by 5% (from 0.497 to 0.524). 

 

 

Predictor Features Arousal Valence 

Zhao et al[107] * log-mel spectrogram .604 .511 

Schmitt et al [93] § eGeMAPS .586 .516 

AVEC2017[46] eGeMAPS .344 .351 

Schmitt et al [94] § eGeMAPS .571 .517 

Han et al [108] Is13_ComParE .356 .396 

Chen et al [109] Is10_Paraling .524 .504 

Chen et al [109] Soundnet .527 .447 

Ouyang et al [47] eGeMAPS .540 .502 

Avila et al [26] MSFs .369 .308 

Proposed MRCG .512 .493 

Proposed MMCG .572 .534 

Table 5.6: Performance comparison (in term of ρc) under different features and 

models on SEWA database 
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* The results are obtained by removing the interlocutor’s speech segment by the official turn 

information. It is 0.479 for arousal and 0.447 for valence when containing both speaker’s and 

interlocutor’s audio signals. 

§ The results are obtained by adding features the official turn information in the interlocutor’s speech 

segment.  

5.5.4 Results of proposed features on SEWA database 

In addition, we use a subset of the SEWA database to validate our proposed method. 

The upper two rows of Table 5.5 show the CCC (without considering feature 

compensation) obtained on the functional-based eGeMAPS and MFCC feature sets using 

the plain LSTM network. The remaining rows show the CCC obtained on the MRCG, 

MMCG, and combined features with MSF using parallel LSTM. The highest CCC 

obtained from the long-time combined MMCG feature is 0.572 for arousal and 0.534 for 

valence, respectively, which is consistent with the results obtained on RECOLA. Table 

5.6 lists the results of state-of-the-art studies. In [107], the results are obtained by 

Figure 5.6: A prediction example of arousal (a) and valence (b) based on MRCG and 

MMCG features obtained for the subject P34 in RECOLA. The yellow and blue curves 

show the predicted and the ground truth for arousal and valence respectively. 

(a) Arousal

(b) Valence
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removing the interlocutor’s speech segment by the official turn information. It is 0.479 

for arousal and 0.447 for valence when containing both speaker’s and interlocutor’s audio 

signals. In [93], the results are obtained by adding features the official turn information 

in the interlocutor’s speech segment. The additional feature is added to the input feature 

sequence, derived from the speaker turn information, which was provided to all 

participants of AVEC 2017. For each timestamp, this feature is either 0 or 1, indicating 

whether the subject is audible or not. However, we used the mix of the target speaker and 

interlocutor to train the model without considering the turn information. It shows that the 

result of our approach is comparable to the studies [93,107] even under different 

experimental conditions, and has a significant improvement in valence prediction. In 

addition, as shown in Table 5.6, the results of arousal and valence prediction based on 

MMCG features are superior to the studies [46,47,93,94] based on eGeMAPS features, 

the study [108] based on IS13_ComParE features [51], and the study [109] based on 

Soundnet [110] and IS10_paraling features[50]. Moreover, compared with the study [26] 

using the same auditory-based features, we got a 33% improvement (0.369 to 0.572) for 

arousal prediction and a 32% improvement (0.308 to 0.534) for valence prediction.  

 General discussion  

Experimental results show that multi-resolution modulation cochleagram features have 

achieved the best performance in dimensional emotion recognition. In this section, we 

will further discuss the effectiveness of each resolution modulation cochleagram feature 

in emotion recognition. Figure 5.6 shows an example of arousal and valence prediction 

based on MRCG and MMCG features (RECOLA database P42 record). The green curve 

represents the predicted sequence of arousal (Fig. 5.6 (a)) and valence (Fig. 5.6 (b)) of 

MRCG feature in the continuous speech signal, and the orange curve represents the 

arousal of MMCG feature, the blue curve represents the corresponding ground truth. It 

can be seen from the figure that the arousal prediction and ground truth curve fitting based 

on MRCG and MMCG features are very good (CCC is 0.84 and 0.88, respectively), and 

the MMCG feature can fit better than the MRCG feature. However, the results of valence 

prediction and ground truth curve fitting based on MRCG and MMCG features are 

relatively weak (CCC is 0.45 and 0.63, respectively), and MMCG features are 

significantly improved over MRCG features. 
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Features (model) Arousal Valence 

MCG1-Delta (plain LSTM) .779 .348 

MCG2-Delta (plain LSTM) .761 .360 

MCG3-Delta (plain LSTM) .781 .359 

MCG4-Delta (plain LSTM) .791 .341 

MMCG -Delta (plain LSTM) .768 .431 

MMCG -Delta (parallel LSTM) .778 .474 

 

The first four lines of Table 5.7 list the recognition results of the plain LSTM network 

on the four resolution features MCG1-MCG4. Both delta and double-delta features are 

included here. The experimental results show that each resolution modulation 

cochleagram feature has close to arousal and valence prediction. The fifth row lists the 

results obtained by the MMCG feature under the plain LSTM network (including delta 

and double delta features). The experimental results show that the MMCG feature 

combined by multi-resolution features has not improved arousal prediction, but the 

valence prediction has been significantly improved. The possible reason is that the 

modulation-filtered cochleagram at each resolution can characterize the amplitude 

envelope for arousal prediction, and the modulation-filtered cochleagram features of 

different resolutions contain the respective dynamic characteristics of the amplitude 

envelope, so that the multi-resolution features generated by the combination of features 

can be obtained more temporal dynamic information improves valence prediction ability. 

The sixth line lists the results obtained by the MMCG feature under the parallel LSTM 

network. The parallel method achieves higher results in both arousal and valence 

prediction. This shows that using multiple LSTMs in parallel can obtain different scale 

dependencies, thus obtain more temporal and contextual information than the non-parallel 

mode. This indicates that each modulation-filtered cochleagram contains various features 

from other modulation-filtered cochleagrams, and multi-resolution features generated by 

combined features are more helpful for valence prediction. 

 Summary  

In this chapter, we proposed the multi-resolution modulation-filtered cochleagram 

(MMCG) features for predicting the valence and arousal emotional primitives. This 

feature is constructed by combining four modulation-filtered cochleagrams at different 

resolutions to capture various spectral and temporal features. In addition, a parallel LSTM 

Table 5.7: Performance comparison (in term of ρc ) under different resolution 

modulation-filtered cochleagram features on RECOLA dataset 
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network architecture is designed to extract more temporal dynamics from each resolution 

information of modulation-filtered cochleagram features. The experimental results show 

that the MMCG feature can significantly improve the performance of emotion recognition 

compared with the acoustic-based features and other auditory-based features, especially 

the performance improvement in valence prediction. In summary, the MMCG feature can 

effectively extract high-level features for emotion recognition. In addition, we plan to 

investigate this feature for other acoustic scene analysis, such as categorical emotion 

recognition, speech separation, voice activity detection, etc.



 

91 

 

Chapter 6   

Conclusion and future work 

 Summary  

The purpose of this study is to explore auditory-based emotion features and deep 

learning methods to improve the performance in categorical and dimensional emotion 

recognition. To this end, the following works have been done to solve the challenges of 

speech emotion recognition.  

This study first investigated the multi-channel acoustic frequency components obtained 

from auditory filterbank and temporal modulation cues obtained from modulation 

filterbank. As temporal modulation cues play an important role in speech perception and 

contain multi-dimensional spectral-temporal information, this study proposed a 3D CNN 

architecture to obtain discriminative auditory representations from the temporal 

modulation cues by joint spectral-temporal feature learning. The experimental results 

show that the joint spectral-temporal auditory representations can be extracted using 3D 

CNN from temporal modulation cues. The results demonstrate that the performance of 

emotion recognition based on joint spectral-temporal representation can exceed the 

recognition accuracy compared to that of the methods based on the acoustic feature. It is 

confirmed that the 3D convolution model based on temporal modulation cues can extract 

discriminative auditory representation to recognize the emotions effectively.  

The high-level auditory representation of sequence data is divided into non-

overlapping segments in 3D CNN architecture. These non-overlapping segment-level 

features cannot fully reflect the dynamic changes of real emotions. This study proposed 

an attention-based sliding recurrent neural network (ASRNN) to continuously track 

spectral-temporal representation and capture salient emotion regions for categorical 

emotion recognition. In the ASRNN model, the sliding window is used to extract the 

continuous segment level internal representation, and the temporal attention model is 

used to capture salient regions of emotion representation. The experimental results show 

that the proposed method could capture the salient emotion regions and exhibit better 

recognition accuracy. In addition, to explore the relationship between temporal attention 

model and human auditory attention, a subjective evaluation experiment is designed to 

analyze the correlation between them, and the results show that they have a strong 

correlation. This implies that the proposed attention model can reflect human selective 
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attention to a large extent. 

It is a new trend to recognize dimension emotion continuously in human-robot 

interaction. It can help the robot capture the temporal dynamics of the speaker’s emotion 

in real-time. In dimension emotion recognition, we need to track the change of arousal 

and valence value of short-term frames in a long sequence. Therefore, this study proposed 

a multi-resolution modulation-filtered cochleagram feature (MMCG) to capture the 

temporal and contextual modulation cues and used a parallel LSTM to track the emotion 

dynamics of emotion. This feature can encode temporal modulation cues into different 

resolution modulation-filtered cochleagram to capture temporal and contextual 

information. The parallel LSTM network architecture is designed to model the temporal 

dependence of each resolution modulation-filtered cochleagram feature and track the 

temporal dynamics of emotion. The experimental results showed that the MMCG feature 

could effectively extract high-level auditory representations for emotion recognition and 

the parallel LSTM network can model auditory representation sequence to track the 

temporal dynamics of emotion for dimensional emotion recognition. Compared with 

other evaluated features, experimental results showed that MMCG features could 

significantly improve the performance of emotion recognition. 

In conclusion, to categorical emotion recognition, this study proposed 3D CNN to 

extract joint spectral-temporal auditory representations and ASRNN to capture the salient 

from auditory representation sequence. Experiments showed that the 3D convolution 

model based on temporal modulation cues could extract discriminative auditory 

representation and the ASRNN model can effectively model human selective attention to 

capture the salient regions of emotion representation. To dimensional emotion recognition, 

this study proposed the MMCG feature and the parallel LSTM to capture the temporal 

dynamics for both valence and arousal prediction. Experiments showed that this method 

could effectively predict dimensional emotion. It is confirmed that using auditory 

representation from the auditory model and deep learning methods lead to better results 

in categorical and dimensional emotion recognition. This indicates that the auditory 

representation can provide spectral-temporal representations, and deep learning 

frameworks can effectively extract emotional information from such representation for 

emotion recognition. 

 Future work  

Identifying emotional states based on human auditory characteristics using deep 

learning methods is a perspective way. This study mainly focuses on joint spectral-

temporal analysis, continuous tracking of salient emotion regions, and capturing temporal 



 

93 

 

dynamics of emotion. In the future, the research of speech emotion recognition based on 

auditory characteristics mainly considers the following aspects: 

1) Application of multi-resolution modulation-filtered cochleagram feature for other 

acoustic scene analysis 

The experimental results of this study show that the MMCG feature can significantly 

improve the valence and arousal prediction performance compared with the acoustic-

based features. This feature should also be effective for other acoustic scene analysis. For 

future work, we plan to investigate this feature for other acoustic scene analysis, such as 

categorical emotion recognition, speech separation, voice activity detection, etc.  

2) Further exploration of auditory characteristics in speech perception 

The modulated signal in each band can be regarded as a temporal amplitude envelope 

with a carrier (temporal fine structure). Our existing methods mainly extract temporal 

modulation cues from time-domain envelope signals for emotion recognition. It is also 

necessary to understand the contribution of temporal fine structure for speech perception. 

In addition, the effect of frequency-domain processing of the auditory system on speech 

perception is also worth further investigation. 

3) Robustness analysis of auditory-based features 

Although many studies on auditory features have come to a common conclusion that 

auditory feature representation is noise-robust, however, there is no quantitative analysis 

on the noise robustness of the categorical emotion recognition method based on 3D 

spectral-temporal modulation representation and the dimension emotion recognition 

method based on the MMCG features. Therefore, the feature robustness in different 

environmental noise should be analyzed in future work. 

4) Exploration of the multimodal emotion recognition method 

The content of the interaction in natural HRI should be multimodal. It may use speech, 

spoken text, emoticons, facial expressions, and other information at the same time. It 

should be able to extract feature recognition emotion from different modal data to realize 

natural human-computer interaction so that users' emotional state can be recognized even 

when some modes are missing. 
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