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 i 

 

Abstract 

 

 

 This research introduces the new approach of the 3D active contour model to evaluate 

the velocity vectors of the lung motion and learning the inhomogeneous motion pattern from 

each lung lobe to generate the predictive model. The non-rigid registration model by using its 

biophysical model is applied. The velocity vectors between EI and EE models are evaluated by 

the corresponding points on the parametric surface model of the EE model to the EI model. The 

external energy from the EI models is the external force that pushes the 3D parametric surface 

reaching the boundary. The external forces such as balloon force and Gradient Vector Flow 

(GVF) were adjusted adaptively based on the Zratio which calculated from the ratio of the 

maximum value of EI to EE model in Z axis.  Next, the feature representation is studied and 

evaluated based on the lung structure which is separated into 5 lobes. The hierarchical 

classification is applied to screen the lung diseases into normal, obstructive lung, and restrictive 

lung by using the stepwise regression and Artificial Neural Network techniques. Lastly, the 

inhomogeneous motion pattern of lungs integrated with the medical based knowledge can be 

used to analyze the lung diseases: firstly, by differentiating normal and inhomogeneous motion 

pattern, secondly by separating restrictive and obstructive lung diseases and thirdly basing on 

the cause and location of the disease which is the function of the immune and lymphatic system.  

 

Keywords: 3D Active Contour Model, non-rigid registration, inhomogeneous motion pattern, 

velocity vector map, hierarchical classification 
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Chapter 1  

Introduction 

 

1.1 Background 

 A lung is a vital and heterogeneous organ in the human body. An abnormality of 

respiration leads to regional differences, depending on diverse functions in the lymphatic 

system, immune system, metabolic system, and also on mechanical properties such as the 

gravity force. According to the World Health Organization (WHO) [1], lung diseases, especially 

Chronic Obstructive Pulmonary Disease (COPD), are the third leading cause of deaths globally 

in 2016. It was found that the death rate from impaired lungs is increased by the primary risk 

factors, which are tobacco use, air pollution, chemicals, viruses, and bacteria. The lower 

respiratory infection and trachea, bronchus, and lung cancer also includes in the top 10 global 

causes of death. The cause factors directly affect our daily life nowadays. The early detection 

of respiratory abnormality is essential to consider when it is reversible or almost fully reversible. 

The predominant diseases in each regional lobe can be divided into three regions: upper lobe, 

middle lobe, and lower lobe. Disease characterization is challenging because of its diversity in 

many aspects. It can be considered by lung components such as airways, air sacs, interstitium, 

blood vessels, pleura, and chest wall. Initially to diagnose a lung disease is to distinguish an 

obstructive lung disease and a restrictive lung disease. In the physical level, a patient who has 

obstructive lung disease has difficulty during expiration because of the narrowed or blocked 

airways (airflow limitation). The remaining air inside affects the residual volume (remaining 

high) of the lung and leads to the air trapping and hyperinflation problems which can be 

observed in the anterior-posterior (AP) axis of CT images. In contrast, a restrictive lung disease 

limits the ability to inhale air. The patient cannot take a deep breath, which affects the total lung 

capacity and residual volume (low). 
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 The criteria to diagnose obstructive and restrictive lung diseases is defined by the 

Pulmonary Function Tests (PFTs). The PFTs consist of three main parameters: 1). The Forced 

Vital Capacity (FVC) test shows the amount of air that a person can quickly and forcefully 

breathe out, after a deep breath, 2). The Forced Expiratory Volume in One Second (FEV1) test 

shows the amount of air a person can forcefully exhale in one second of the FVC test, and 3). 

The Total Lung Capacity (TLC) test describes the volume of air remaining in the lung after 

exhalation. The FEV1/FVC ratio is used to diagnose the type of lung disease and the severity of 

a disease. The FEV1/FVC ratio is decreased in the obstructive pattern and increased in the 

restrictive pattern. For example, an FEV1/FVC ratio of less than 0.7 [19] is considered as COPD 

and the stage of COPD is classified by the percent of FEV1: Mild FEV1 ≥ 80%, Moderate 

50%≤FEV1<80%, Severe 30% ≤ FEV1< 50%, and Very Severe FEV1< 30%. These tests are 

the gold standard to diagnose COPD. The TLC is increased or normal in an obstructive pattern 

by the remaining air in the lungs and decreased in a restrictive pattern. These characteristics of 

lung patterns are detected and analyzed to diagnose lung diseases. However, to identify a 

complex lung disease, thorough lung function testing is required, such as an X-ray, CT-scan. In 

this work, the Deep Inspiration Breath-Hold (DIBH) technique of CT-scan is used to 

characterize two different phases of respiration which are the End Inspiratory Phase (EI-images) 

and End Expiratory Phase (EE-images). 

 Nowadays, there are some difficulties for radiologists to analyze the two images (EI and 

EE images) at one time. They need to separately examine EI and EE images on two monitors 

and manually locate anatomical reference points between the two models, such as blood vessels, 

spinal cord (Thoracic Vertebrae), and trachea, to diagnose diseases. This requires experience to 

detect the abnormalities for answering the clinical questions on a diagnostic test. Therefore, to 

interpret the medical information from the two phases of respiratory CT images (EI and EE 

images) is still a research gap at present. 

 This research introduces a new approach to determine the velocity vector map of the 

lungs from paired inspiratory-expiratory chest CT images from the 3D Active Contour Model 

(3D ACM) technique. 3D ACMs are frequently used in medical image analysis because they 
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can detect a non-rigid object by using the parametric curve and the parametric curve drives by 

the potential forces from the boundary of the target object. In this work, the ACM is used to 

overcome the non-rigid registration of the deformation surface, and its external force is also 

useful to help in estimating the expanding motion of the lung. The computing time can also be 

reduced by using the ACM. 

 

 1.1.1 Lung diseases  

 - Restrictive lung disease has the limited expansion of the lungs in the inspiration. The 

lung becomes smaller in volume and the patient has to work harder to breathe against the 

decreased compliance which relates to the PFTs in the decreased total lung capacity (TLC). 

There are also many types of restrictive lung diseases such as Idiopathic Pulmonary Fibrosis 

(IPF), Usual Interstitial Pneumonia (UIP), Tuberculosis (TB), Pulmonary fibrosis, Pneumonia. 

Each disease may have a different course of disease but it shows the same restrictive pattern of 

the respiratory function.  

 - Obstructive lung disease is about the narrowed airway leading to increased resistance 

to airflow during expiration. The airways are mostly concerned with obstructive lung disease. 

It may have the air-trapping problem because of the narrowed airway and it happens when the 

patient has difficulty exhaling. When testing with the PFTs, it also shows that the airway flow 

rates are decreased. When the respiratory function is not well functioned, the ability to expand 

and shrink is dropped as shown in Fig. 1.1 compared to Fig 1.2. 

 

 

 

 

 

 

 

Fig. 1.1. Show the example of respiratory function: (Left) inspiratory, (Right) expiratory.  
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Fig. 1.2. Show the example of respiratory function and its disability to expanding and 

shrinking: (Left) inspiratory, (Right) expiratory. 

 

 The inhomogeneous expanding motion of the lung can be used to analyze lung disease 

especially the expanding of the lower lobe to the inferior and the expanding of upper lobe to the 

anterior. Table 1.1 compares the restrictive and obstructive lung disease in different viewpoints 

and because of the reasons explained in Table 1.1, it affects the inhomogeneous expanding 

motion pattern of the lung as shown in Fig. 1.1 and Fig. 1.2.  

In Fig. 1.2, the expiration (right) has almost the same height (vertical direction) as the inspiratory 

(left). This motion pattern is collected to the learning machine process to analyze and predict 

the type of lung diseases based on their characteristic moving pattern.         

Table 1.1 The difference between obstructive and restrictive lung disease. 

Obstructive Lung Disease Restrictive Lung disease 

Characterized by: Air flow  

Decreased airway flow rates 

Characterized by: Lung volume  

Decreased lung volumes or capacities 

Considered: FEV1, FEV1/FVC Considered: TLV<80% 

Anatomy affected: airways Anatomy affected: lung tissue or thorax 

Breathing difficulty: expiration Breathing difficulty: Inspiration 

Pathophysiology:  

Increased airway resistance  

Pathophysiology:  

Reduced lung or thoracic compliance 



 

 5 

 

 1.1.2 Clinical Procedures 

 - Pulmonary function tests (PFTs) 

Pulmonary function tests used a spirometer to measure the ability to breath. 

The FVC (Forced Vital Capacity) shows the amount of air that a person can breathe out, quickly 

and forcefully, after a deep breath. The FEV1 (the Forced Expiratory Volume in One Second) 

shows the amount of air a person can forcefully exhale in one second of the FVC test. The ratio 

of FVC and FEV1 can help the medical doctors diagnose the specific type of lung disease and 

the severity of their condition. In addition. PFTs can determine obstructive or restrictive lung 

diseases. In the obstructive lung disease airways are narrowed, which result in resistance to 

airflow during breathing. The signal to detect the abnormality in obstructive disease or 

decreased expiratory flow rate or FEV1.  Examples of obstructive lung diseases are asthma, 

COPD, bronchiectasis, cystic fibrosis, and bronchiolitis. In restrictive lung disease, expansion 

of the lung is limited by disease that affects the chest wall, pleura, or lung tissue itself. The 

abnormal signal of restrictive lung disease is decreased total lung capacity (TLC). TLC is the 

volume of air in the lungs after a maximum inspiration. The examples of lung conditions that 

stiffen and scar the lung are pulmonary fibrosis, radiation damage to the lung, and 

pneumoconiosis. However, the PFTs still have some limitations to understand the lung tissue 

pattern and also the details about physiology of each lobe.  Fig 1.3 shows the result of PFTs by 

different types of lung disease such as normal, early small airways obstruction, chronic 

obstructive disease, fixed large airway obstruction, variable extra thoracic large airway 

obstruction, and restrictive disease. It shows the ability to breath by flow (L/sec) and also the 

volume of the lung (%FVC). 
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Source: CTS Position Statement: Pulmonary physiology laboratory personnel qualifications. California Thoracic Society, 1998. 

Fig. 1.3. The result of PFTs with different specific type of lung diseases. 

 

 - Chest X-ray 

 The imaging procedure uses a small amount of radiation. It can be used to indicate a 

large variety of chest diseases such as emphysema, pneumonia, cancer, cystic fibrosis, etc. It is 

quick and fast for the first screening. However, there are some limitations of using 2D X-ray 

images to analyze the complex or overlapped lung diseases. The occlusion problem and 

detection error from unclear information may appear. Even the X-ray image can be taking in 

the frontal (coronal) plane as posteroanterior (PA) or anteroposterior (AP) views and in the 

sagittal plane as lateral views but it is still not enough to analyze or to make the medical decision 

in suspect fracture case. It is possible that small masses cannot be detected in the regular film. 

However, medical doctors often used X-ray as a first screening technique to rule out obvious 

things before an advanced modality is applied such as CT-scan or MRI-scan.   

 

 - Computed Tomography (CT) scan 

 The multiple views with the different angles are needed to clarify to confirm the disease. 

This test is for diagnosis of lesions difficult to access by conventional x-ray images such as lung 

tissue, mediastinum, and pleura. The breath-hold technique is used for the CT-images by taking 

two shots: end inspiratory (EI) and end expiratory (EE). EI is the moment when the patient holds 

the full inhalation, and the EE is when the patient holds at the end of expiration as shown in Fig. 

1.4. The comparison of PFTs, X-ray, and CT-scan protocols is shown in Fig. 1.5. 
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Fig.1.4. 3D model of lungs: (left) End Expiratory (EE) and (right) End Inspiratory (EI).  

 

 
 Fig. 1.5. The PFTs, X-ray, and CT-scan and their examination results.  

  

 1.1.3 Anatomy of lung  

 The anatomy and structure of the lung which is described in this section is considered 

on the important information for understanding the medical terms and also the function of each 

part. The respiratory function for gas exchanging consists of three important parts: trachea, 

bronchi, and alveoli as shown in Fig. 1.6. the trachea is the main airway to flow the air into the 

lung and then it will pass through a smaller air tube called bronchi separated into two main 
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bronchi for left and right lung and several lobar bronchi for each lung lobe. Finally, the air will 

reach the end called alveolar sacs which are the exchanging gas organ.  
 

 
 

 
Figure 1.6 Trachea, bronchi, and alveoli. 

 

 The structure of the lungs, not only the trachea, bronchi, and alveoli, also included the 

oblique fissures and horizontal oblique fissure as shown in Fig. 1.7 and Fig. 1.8 for left and right 

lungs. The oblique fissures also called major fissures appear in both left and right lungs but the 

horizontal oblique fissure only appears in the right lung. Normally the angle of the oblique 

fissure is approximately 45 degrees with respect to the z-axis and the angle of the horizontal 

oblique fissure is almost parallel to the XY-plane or 90 degrees with respect to the Z-axis. As 

mentioned in [24], they observed the pattern of the oblique fissures and horizontal oblique 

fissures and it was found that the horizontal fissure is horizontal oriented. When there is the 

presence of disease which either pushes or pulls the fissure, the horizontal fissure will be 

displaced as shown in Fig. 1.9  
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Fig. 1.7. The left lung with two lobes and one fissure [24].  

 

 
Figure 1.8: The right lungs with three lobes and two fissures [24].  

 

  
Fig. 1.9. Horizontal oblique fissure: (left) horizontally oriented, (right) displaced inferiorly in 

case of RML collapse. [24]  
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 1.1.4 Research story 

 This research introduces the new approach of the 3D active contour model to evaluate 

the velocity vectors of the lung motion and learning the inhomogeneous motion pattern from 

each lung lobe to generate the predictive model. The non-rigid registration model by using its 

biophysical model is applied. The velocity vectors between EI and EE models are evaluated by 

the corresponding points on the parametric surface model of the EE model to the EI model. The 

external energy from the EI models is the external force that pushes the 3D parametric surface 

reaching the boundary. The external forces such as balloon force and Gradient Vector Flow 

(GVF) were adjusted adaptively based on the Zratio which calculated from the ratio of the 

maximum value of EI to EE model in Z axis.  Next, the feature representation is studied and 

evaluated based on the lung structure which is separated into 5 lobes. To screening the lung 

diseases into normal, obstructive lung, and restrictive lung, the stepwise regression and 

Artificial Neural Network technique are used to evaluate the result. In conclusion, the 

inhomogeneous motion pattern of lungs integrated with the medical based knowledge can be 

used to analyze the lung diseases: firstly, by differentiating normal and inhomogeneous motion 

patterns, secondly by separating restrictive and obstructive lung diseases and thirdly basing on 

the cause and location of the disease which is the function of the immune and lymphatic system.            

 

1.2 Motivation and Problem Statements  

 1.2.1 Motivation 

 The prior motivation comes from my interest in Biomedical Image Processing. 

Normally, the research trends are the image segmentation and pattern recognition. The motion 

pattern of the lung while breathing is very interesting to analyze. The motion pattern of 

inhomogeneous motion of non-rigid objects is the main scope of this research. To detect the 

motion of the lung which does not need the manually registration points is considered. 

Therefore, 3D Active Contour Model is selected by using its parametric surface as the predictive 

surface of the motion from the EE to EI model. Moreover, the next research question is shifted 

to which part of the lung that is important to analysis. Therefore, the velocity vector map of the 
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lung model is divided into five lung lobes to feed in the machine learning module to screening 

the type of lung diseases.    

 

 1.2.2 Problem statements 

 
Fig. 1.10. Body planes. 

 Sometimes, it takes time and is subjective for the radiologists to interpret a stack of CT 

images from the coronal, sagittal, and axial planes in order to detect the abnormality. The 

anatomy-based and pathology-based knowledge are needed to interpret the 2D CT-images into 

medical findings. The experience of the radiologists is required to confirm the clinical result. 

Referring to the literature [37], surgeons/radiologists also face difficulties in identifying the 

horizontal fissure (RHF) in a stack of cross-sectional CT-images and take approximately 60-90 

minutes to detect the RHF manually. Moreover, the challenge of CT images in breath hold 

technique is needed to compare the difference between two images by separating the window 

and the radiologists need to detect and evaluate the difference or abnormality manually.  It is 

shown that there appears a gap between these two stages of respiratory (EI and EE). It is hard 

to explain the dissimilarity between these two by just comparing in two dimensions even if it is 

in different planes as demonstrated in Fig. 1.11.  
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Fig. 1.11. The 2D plane of the EI and EE obstructive lung disease: (Top) EI images, (bottom) 

EE images. 

 

 
Fig.1.12. The 3D rendering images of obstructive lung disease: (left) expiratory and (right) 

inspiratory. 

 

 This research introduces the new dimension for data interpretation and feature 

representation of CT images in three dimensions with the lung-lobes separation in order to 

screen the lung diseases by using the inhomogeneous motion pattern as an important feature 

from 3D lung models as shown on Fig. 1.12. 
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1.3 Contribution and Significant of Study 

 1.3.1 Contribution to medical image processing 

• New feature representation for HRCT images (EI and EE): velocity vector map 

of each lung lobe and its ratio (EI to EE). 

• Generate predictive models based on the medical knowledge and breathing 

motion of the lungs. 

 

 1.3.2 Contribution to Information science 

• New approach for 3D Active Contour Model in three-dimensional surface data 

to detect the motion and also the biophysical model for image registration. 

 

 1.3.3 Significant of this study 

• Fill the gap between the medical knowledge-based and image processing and 

computer vision techniques by generating the predictive modelling to screening 

the lung diseases learning from the inhomogeneous motion of the restrictive 

and obstructive lung diseases.   

 

1.4 Philosophy of this work  

 The analysis of the inhomogeneous motion of the 3D shape of the lung in order to 

diagnose the lung diseases. The velocity vector map from the End Inspiration (EI) to the End 

Expiration (EE) Model can be estimated by 3D Active Contour Model (3D-ACM) with 

automated adjusted-parameters with 3 selective feature sets. The abnormality of the movement 

is detected and separated into 5 lobes in order to analyze the characteristic of the lung diseases. 

Lastly, the hierarchy predictive modeling is applied in order to increase the efficiency of 

classification compared to the traditional multiclassification model.  
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1.5 Dissertation Organization  

 The introduction and background of this dissertation is described above. The motivation 

and problem statements are also mentioned in the First Chapter including the philosophy of this 

research. The other Chapters are organized as follows: related works about lung diseases 

analysis by using IE and EE CT-images, registration steps, 3D motion analysis, lung lobe 

detection, feature representation, and classification techniques are explained in the Second 

Chapter. The Third Chapter is about how to collect the data, to set the environment of the 

experiment, and to explore and generate the characteristic model to analyze lung diseases.  The 

Fourth Chapter provides the overview of the methodology and also gets insight into each step 

starting from the data acquisition till the analyzation part. The next Chapter is the evaluation 

and the discussion of the results. The evaluation technique is also described in this Fifth Chapter. 

The last Chapter concludes the research story, results, and its contribution in different point of 

views and the future works. 
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Chapter 2 

Related works 

 

2.1 Overview of knowledge-based approach to lung diseases 

 Nowadays Machine Learning and Artificial Intelligent (AI) is popular in many research 

fields. In biomedical research, the feature representation of medical data is detected in order to 

classify the abnormality. The formal technique to analyze the diseases is pattern recognition. As 

described in Chapter 1, lung disease can be mainly separated into 2 groups: restrictive and 

obstructive lung disease. Analyzing the obstructive lung diseases such as Chronic Obstructive 

Pulmonary Disease (COPD), Emphysema, Asthma, and Small Airway Disease is found in many 

research articles. Referred to [6], Thoracic Quantitative computed tomographic (QCT) 

technique was applied to distinguish the airflow limitation problem between Asthmatic and 

COPD patients by using emphysema assessed based on lung density (Hounsfield Unit (HU)), 

air trapping detection from measuring the mean lung density expiratory to inspiratory ratio and 

Proximal airway percentage wall area (%WA). It was shown that HUs for normal, asthma and 

COPD were -937, -937, -964, the mean lung density expiratory to inspiratory ratios were 0.816, 

0.852, and 0.922 and %WA were 60.3%, 62.5%, and 62.7% respectively. They found the 

structure-function relationship among these findings related to the identification and severity of 

the COPD and asthma. The challenge of this research is to identify the abnormality based on 

their findings to diagnose the clinical result which directly benefits the patient for the right 

treatment. The overlap syndrome between asthma and COPD is called (ACOS) [8]. In [8], the 

clinical phenotypes (symptoms, physiology, and biomarkers) are used to scale the diseases 

(asthma, ACOS, and COPD). The susceptibility factors (such as genetics), Environment (such 

as smoking, biomass exposure, pollution, infections, microbiome, and diet) were combined to 



 

 16 

manage the airway disease including identification of specific treatment targets to optimize 

symptom control and reduce risks of overtreatment. As summarized in [15], ACOS is 

characterized by persistent airflow limitation with several features usually associated with 

asthma and several features usually associated with COPD. Therefore, the features shared with 

asthma and COPD are used to diagnose the ACOS for the proper treatment. In [11], the 

characteristic function to analyze ACOS was studied from CT images in the sagittal plane by 

showing the larger variations of the sagittal lung. The variations were lung height (measured 

from lung apex to the dorm of hemidiaphragm), anterior-posterior lung diameter (measured 

through hilum at widest point), hemidiaphragm height (measured from apex of hemidiaphragm 

to line connection anterior and posterior costophrenic angles), anterior sterno-diaphragm angle 

(measured where hemidiaphragm touches anterior thoracic wall), and retrosternal lucency 

(measured as maximum length of intrapulmonary septum in Axial plane). It was found that the 

sagittal-lung CT measurement can be used to differentiate asthma, COPD and ACOS.  

However, they mentioned that this measurement still had many limitations because it cannot 

confirm the diagnosis result without sputum cellular profiles, airway hyper-responsiveness, and 

fractional exhaled nitric oxide, and etc. Other parts of the respiratory system such as the airway 

is used to determine lung disease such as COPD as well. In [16], they evaluated the computed 

fluid dynamic (CFD) inside the airway to show how the airway related to the COPD. They found 

that the lower branch of the airway influences the most and they also studied the recirculation 

of the respiratory system. They suggested that the patient with COPD or airway disease has to 

breathe gently in order to avoid the circulation because the re-circulation will block the air from 

entering the lower branch of the airway. 

  There is another work conducting the research on the small airway disease in COPD 

[10]. In [10], the HU was evaluated to detect the emphysema inside the lung by comparing the 

HU between EI and EE CT images. The threshold HU of EI phase is -950 and HU of EE is -

856 and the EE to EI ratio of mean lung attenuation (MLA) from density histogram was 

determined. Moreover, the relative volume change (RVC) of different HU varying from -850 to 
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-950 is measured. Finally, it was found that the findings such as air trapping inside the lungs 

can be used to understand the pathobiology of COPD subtype.  

 Another feature that relates to the COPD is heart size. The lung function and heart 

function are associated by blood and the particles inside the blood cell such as oxygen and 

carbon dioxide. In [14], their experiment was set by checking hyperinflation consisting of the 

inspiration-to-total lung capacity ratio (IC/TLC) of the 6-min walk distance COPD patients, 

functional residual capacity, and residual volume. Based on their experiment result, the heart 

size trends to be decreased in the increasing rate of severity in COPD. The hyperinflation, 

therefore, is associated with the severity of the COPD.  

 In addition, the interpretation of HRCT images using HU is not only can determine the 

obstructive lung disease but also the restrictive lung diseases such as interstitial lung disease by 

detecting the pattern of tissue inside the lung e.g. honeycombing pattern [4], nodules (size > 3 

cm) [2]. The volume of interest into nodules and nodules was analyzed in [2] in order to reduce 

the false positive (FP) case between masses opacity and nodules which is associated with 

clinical diagnosis result and their treatment.    

 In this research, End Inspiratory and End Expiratory CT images (EI and EE CT images) 

are used as a parallel input data in order to analyze and detect the inhomogeneous motion of 

lungs. As mentioned above, it infers that the shape and inhomogeneous motion of the lungs are 

associated with emphysema, air trapping, small airway disease, nodules, tissue texture inside 

the lungs. Therefore, the motion prediction between EI and EE CT images is used as a feature 

to evaluate the shape changing which refers to the different types of lung disease. The restrictive 

type is mostly influenced in the EI phase because the patient lost the ability to take the full 

inhalation. The lung size is limited based on the destroyed tissues inside. The obstructive one is 

significant in EE phase because the patient lacks ability to exhale caused by small airway disease 

or inflammation of the airway or mucus. 
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2.2 Literature reviews of the EI and EE lung CT images 

 The CT images are separated into two types: 3D CT images and 4D CT images. The 

fourth dimension is time. 4D-CT images are mostly used to detect the motion of the tumor while 

radiation in chemo treatment in order to reduce the false shooting of the radiation. The 4D-CT 

consists of many sets of images during natural respiratory. The guideline for taking 4D-CT may 

be changed based on the analysis or clinical question. On the other hand, the traditional 3D CT 

images use breath hold technique from End-Inspiratory to End-Expiratory (EI to EE). The use 

of EI and EE CT images is by analyzing the inside pattern of the tissue, airway, heart size, 

attenuation (HU), volume, area, diameter and etc. or using the surface and its predicted velocity 

vector. The literature reviews and the uses for the 3D-CT images and 4D-CT images is described 

in Table 2.1. 

 

Table 2.1 The literature reviews of the data types and its segmentation scope. 

References (year) CT types Segmentation Lung diseases 

[6] 3D-CT (EI, EE) Coronal plane, HU Asthma, COPD 

[10] (2013) 3D-CT (EI, EE) Volume, HU Small airway, COPD 

[11] (2017) 3D-CT (EI, EE) Sagittal plane, HU Asthma, ACOS, COPD 

[4] (2011) 3D-CT (EI, EE) Coronal plane, HU Interstitial lung disease, 

bronchiectasis  

[2] (2017) 3D-CT Volume (VOI) Nodules 

[18] (2014) 4D-CT Motion Cancer 

[17] (2009) 4D-CT Motion Cancer 

[19] (2015) 4D-CT Displacement, 

Deformation 

Cancer 

[20] (2015) 4D-CT Biomedical model   Cancer 

[22] 4D-CT Motion Cancer 

[23] (2012) 4D-CT Motion Cancer 

[26] (2017) 4D-CT Motion - 
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[28] (2017) 4D-CT Motion - 

[37] 3D-CT Oblique fissure Lung lobes 

[36] 3D-CT Oblique fissure Lung lobes 

[35] (2009) 3D-CT Oblique fissure Lung lobes 

[46] (2014) 3D-CT Oblique fissure, HU 

volume 

Lung lobes, emphysema 

Based on the trend of study (from the 20th century until now) in Tab. 2.1, it can be concluded 

that the 3D-CT with breath hold technique is generally applied to diagnose diseases in different 

ways such as coronal plane analysis, sagittal plane analysis. 4D-CT images are mostly analyzed 

by using a 3D model to evaluate the respiratory motion (natural breathing).  

 

2.3 Literature reviews of non-rigid registration and landmark points  

Table 2.1: The literature reviews of non-rigid registration and landmark points. 

References  CT types Registration Landmark or corresponding point 

[18](2014) 4D-CT Deformation model and a patch-based 

framework. 

- Patch size is 32 x 32 voxels in a slice 

- 24 voxels overlap between patches 
[17](2009) 4D-CT Dense diffeomorphic deformations 

between image of all the time points  

- 450 surface points 

[19](2015) 4D-CT Dynamic biomechanical model  - 21,000 linear tetrahedral elements 

- 75 landmarks 
[20](2015) 4D-CT Biomechanical model - 414 landmarks 

- a trust-region optimizer 
[22](20xx) 4D-CT Interpolation using thin-plate-spline 

deformation field 
- corresponding landmark calculated from 

the motion vectors using PCA 
[23](2012) 4D-CT Biomechanical Fast Finite Method 

(FEM) 
- not given 

[26](2017) 4D-CT Hybrid patient-specific biomechanical 

model-based image registration 

method. 

-3000 landmarks 

[28](2017) 4D-CT Bayesian registration  -300 landmarks 
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2.4 Literature reviews of 4D inhomogeneous motion analysis 

Table 2.3 The literature reviews of 4D inhomogeneous motion analysis. 

References CT types Motion Analysis Comments 

[18] (2014) 4D-CT Approximate deformation and 

Computational fluid dynamics 

(CFD) 

Study the change of flow pattern and 

pressure distribution. 

[17] (2009) 4D-CT Linear mapping function  Mapping a shape change to its 

corresponding image deformation. 

[19] (2015) 4D-CT Finite element method Predict lung tumor displacement and 

deformation. 

[20] (2015) 4D-CT Biomedical model   Estimate patient-specific thoracic pressure 

value 

[22]  4D-CT Motion Vector from landmark 

points. 

Diaphragm and rib-cage motion  

[23] (2012) 4D-CT Biomechanical Fast Finite Method Fast predictive lung wall motion 

[26] (2017) 4D-CT Finite element method (FEM+B-

spline) 

Displacement compensation  

[28] (2017) 4D-CT Trajectory modelling Motion model based on a continue time-

related displacement filed by linking the 

displacement fields at discrete phases  

 

2.5 Literature reviews of lung lobe segmentation  

 The anatomy of the left and the right lung are different. Left lung consists of 2 main 

lobes: left upper lobe (LUP), left lower lobe (LLL). The LUP and LLL is divided by left oblique 

fissure (LOF). Right lung contains 3 lobes: right upper lobe (RUL), right middle lobe (RML), 

and right lower lobe (RLL). The RUL and RMD is separated from the RLL by right oblique 

fissure and the RUL and RML are distinguished by right horizontal fissure (RHF). The 

characteristic and the angle of the LOF and ROF plane with respect to the Z-axis go to the 

similar way. The angle is approximately 45 degrees with respect to Z-axis in normal people. 

The RHF plane angle is approximately 90 degrees with respect to Z-axis or parallel to the XY-

axis in normal people. The techniques to detect the location of the oblique fissure and horizontal 

fissure are commonly applied in 2D plane in sagittal and transverse plane which are described 
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in more details in Chapter 1. After the estimated location of the fissures are obtained, the next 

step is image verification and 3D modeling for visualizing the separated lung lobes. In [36], the 

adaptive fissure sweeping technique was applied to find the fissure regions and then wavelet 

transformation was applied to identify the fissure location and curvature within the regions. In 

[35], the ridgeness measure was used and 3D graph search was applied to search the optimal 

surface within the ROI and water shade segmentation was taken afterward to fill the ROI. 

However, they showed the solving problem of incomplete fissure by using a fast matching-

based segmentation of a projection of the optimal surface. In addition, as explained in [046], the 

three fissures were detected as a 3D plane and then they found more findings such as lung 

density, texture, airway, blood vessel structure, ventilation, perfusion. After that they detect the 

low attenuation area of emphysema from each lung lobe aiming to analyze the abnormality from 

the different lobes. Compared to this research, the analysis of velocity vector maps is estimated 

and to make the model more effective and robust, the lung lobe segmentation is applied to 

analyze the characteristic model of each lobe. The lung diseases and medical knowledge based 

in anatomy and pathology is integrated to generate the analysis model to screening the lung 

disease for example the small airway disease will affect most in the lower lobe.            
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Chapter 3 

Data Set and Experiment Setting 

 

3.1 Ground Truth 

 The characteristics of normal lungs can be described by spirometry’s metrics which are 

Forced Vital Capacity (FVC), Forced Expiratory Volume in 1 second (FEV1), and FEV1/FVC 

ratio. FVC measures the total exhaled volume after full inspiration. FEV1 measures the exhaled 

volume only in the first second. FEV1 can measure the elasticity of lung and the ability to exhale 

which can be used to analyze the obstructive and restrictive lung diseases. The relation between 

FVC and FEV1 can be described by using the FEV1/FVC ratio.  

Group 1: Normal  

 The term ‘Normal’ means the healthy respiratory function with no past lung diseases. It 

has the ability to bring air into the lungs with full and deep breath without any difficulties that 

might reduce the amount of space in the lungs or narrow down the airway. 

Group 2: Abnormal 

 Abnormal can be divided into 2 main sub-groups: 

Sub-group Abnormal A: Obstructive Disease 

As described in Chapter 1 about the pulmonary function test (PFTs), the people who have 

obstructive disease will have some common findings such as air trapping, small airway disease, 

emphysema, bronchiectasis, mucous plugging as found in Tab. 3.1. This kind of finding groups 

also can represent the severity of the disease and it affects the motion of the lung in each lobe 

while breathing such as air trapping, small airway disease, emphysema, bronchiectasis, mucous 

plugging 

Sub-group Abnormal B: Restrictive Disease 

 Restrictive lung disease is commonly found in the fibrosis, atelectasis, air trapping, scar 

which represent the destroyed lung tissues inside. When the lung detects bacteria, virus, or fungi 

which are the general cause of restrictive disease, the immune system and lymphatic system and 



 

 23 

its circulatory system will help to detect and remove or destroy the foreign substances out of the 

body. The part of the lung which is infected by the foreign substance can be used to predict the 

lung disease. The diffuse lesion that can be eliminated by the lymphatic system such as TB, 

silicosis. It is usually found in the diffuse lesion left at the apical part of the upper and superior 

of the lower lobe because in these areas the circulation of the lymphatic system does not flow 

as much as the other parts. In addition, the diffuse lesion that can be eliminated by the immune 

system such as UIP, NSIP, asbestosis, fibrosis, interstitial lung disease. Mostly it will appear at 

the lower lobe of the lung and also in the posterior side.    

 

Table 3.1 The example of ground truth information for analyzing lung diseases based on its 

finding in each lobe.  
 

LEFT RIGHT 

LUL LLL RUL RML RLL 

1 Emphysema Emp, fibrosis Emp, nodule Emp Emp, fibrosis 

2  n/a AT, fibrosis n/a plate atelectasis fibrosis, AT, traction 

bronchiectasis 

3 n/a mucous plugging n/a nodule mucous plugging 

4 mild cylindrical 

bronchiectasis 

mild cylindrical 

bronchiectasis 

AT, mild cylindrical 

bronchiectasis 

n/a mild cylindrical 

bronchiectasis 

5 n/a n/a n/a n/a n/a 

6 inflammatory, ground 

glass opacity 

AT,  emp inflammatory, ground 

glass opacity 

n/a AT, emp, 

inflammatory nodule 

7 fibrosis, nodule, AT  AT  AT  AT  AT 

8 n/a n/a n/a n/a n/a 

9 nodule, AT AT calcification, nodule, 

AT 

AT AT 

10 AT AT n/a n/a AT 

11 emp, mucous 

plugging 

Emp, mucous plugging Emp, mucous plugging Emp, mucous 

plugging, nodule 

Emp, mucous plugging 

12 n/a n/a n/a n/a n/a 

13 AT AT  AT  thin wall cyatic 

lesions scattering, 

AT  

AT  
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14 traction 

Bronchiectasis, AT 

lung fibrosis, traction 

Bronchiectasis, AT 

AT traction 

Bronchiectasis, AT 

lung fibrosis, traction 

Bronchiectasis, AT 

15 AT, interstitial 

fibrosis 

AT, interstitial fibrosis AT, interstitial fibrosis AT, interstitial 

fibrosis 

AT, interstitial fibrosis 

16 AT, interstitial 

fibrosis 

bular septal, AT, 

interstitial fibrosis 

AT, interstitial fibrosis AT, interstitial 

fibrosis 

bular septal, AT, 

interstitial fibrosis 

17 AT AT  interstitial fibrosis, AT AT interstitial fibrosis, AT 

18 bronchiectasis bronchiectasis bronchiectasis bronchiectasis Ground glass opacity, 

bronchiectasis 

19 AT, mucous plugging AT AT, mucous plugging AT, mucous 

plugging 

AT 

20 bronchiectasis bronchiectasis bronchiectasis, AT, 

ground glass opacity 

bronchiectasis, AT bronchiectasis, AT, 

ground glass opacity 

21 bronchiectasis bronchiectasis AT, bronchiectasis  n/a bronchiectasis 

22 bronchiectasis bronchiectasis bronchiectasis bronchiectasis, 

reticulonodular 

bronchiectasis 

23 ground glass opacity, 

mucous plugging 

mucous plugging ground glass opacity, 

mucous plugging 

mucous plugging mucous plugging 

24 nodular, 

bronchiectasis 

cavity lesions  n/a  n/a  n/a 

25 nodular, 

bronchiectasis, 

mucous plugging 

  n/a nodular, 

bronchiectasis, mucous 

plugging 

nodular, 

bronchiectasis, 

mucous plugging 

 n/a 

26 AT AT AT AT AT 

27  n/a  n/a  n/a  n/a  n/a 

28 bronchiectasis, AT bronchiectasis, AT bronchiectasis, AT Consolidation, 

bronchiectasis, AT 

bronchiectasis, AT 

29 AT, interstitial 

fibrosis 

AT, interstitial fibrosis AT, interstitial fibrosis AT, interstitial 

fibrosis 

AT, interstitial fibrosis 

30 emp, AT, 

bronchiectasis, 

nodules 

emp, AT, bronchiectasis emp, AT, 

bronchiectasis, nodule 

emp, AT, 

bronchiectasis, 

nodule 

emp, AT, 

bronchiectasis 

31 AT, fibrosis, 

atelectasis 

AT, lobular septal AT AT, atelectasis AT, lobular septal 
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32 AT AT AT bronchiectasis, 

atelectasis, AT 

bronchiectasis, AT 

33  n/a mucous plugging, 

bronchiectasis, nodule 

 n/a  n/a mucous plugging, 

bronchiectasis, nodule 

34 AT, tree-in-bud AT, tree-in-bud AT, tree-in-bud AT, tree-in-bud AT, tree-in-bud 

35 AT, fibrosis AT AT, fibrosis, 

consolidation 

AT AT 

36 n/a n/a  n/a n/a nodule 

37 AT, fibrosis, 

bronchiectasis 

AT AT AT, fibrosis, 

bronchiectasis 

AT 

38 AT, atelectasis AT AT AT AT 

39  n/a calcification, AT ground glass opacity  n/a AT 

40 fibrosis  n/a fibrosis  n/a nodule 

41 emp emp emp, nodule emp emp, bular septal 

42 AT AT AT AT AT 

43 bronchiectasis, 

fibrosis 

bronchiectasis, mucous 

plugging, nodules 

fibrosis bronchiectasis n/a 

44 n/a n/a nodule nodule nodule 

45 n/a n/a n/a n/a n/a 

46 n/a bronchiectasis, 

atelectasis 

n/a n/a n/a 

47 n/a  n/a n/a n/a n/a 

48 AT, atelectasis AT AT, mucous plugging, 

atelectasis 

AT AT, mucous plugging 

49 AT, fibrosis, 

atelectasis 

At, lobular septal AT AT, atelectasis AT, lobular septal 

50 AT AT AT bronchiectasis, 

atelectasis, AT 

bronchiectasis, AT 

51 n/a mucous plugging, 

bronchiectatis, nodule 

n/a n/a mucous plugging, 

bronchiectatis, nodule 

52 AT, tree-in-bud AT, tree-in-bud AT, tree-in-bud AT, tree-in-bud AT, tree-in-bud 

53 AT, fibrosis AT AT, fibrosis, 

consolidation 

AT AT 
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54 inflammatory, ground 

glass opacity 

AT,  emp inflammatory, ground 

glass opacity 

 n/a AT, emp, 

inflammatory nodule 

55 fibrosis, nodule, AT  AT  AT  AT  AT 

56 bronchiectasis, 

fibrosis 

bronchiectasis, mucous 

plugging, nodules 

fibrosis bronchiectasis  n/a 

57 n/a n/a nodule nodule nodule 

58 n/a n/a n/a n/a n/a 

59 n/a bronchiectasis, 

atelectasis 

n/a n/a n/a 

60 at, interstitial fibrosis AT, interstitial fibrosis AT, interstitial fibrosis AT, interstitial 

fibrosis 

AT, interstitial fibrosis 

61 emp, AT, 

bronchiectasis, 

nodules 

emp, AT, bronchiectasis emp, AT, 

bronchiectasis, nodule 

emp, AT, 

bronchiectasis, 

nodule 

emp, AT, 

bronchiectasis 

62  n/a mucous plugging n/a nodule mucous plugging 

63 mild cylindrical 

bronchiectasis 

mild cylindrical 

bronchiectasis 

AT, mild cylindrical 

bronchiectasis 

 n/a mild cylindrical 

bronchiectasis 

64 n/a n/a n/a n/a n/a 

65  n/a mucous plugging n/a nodule mucous plugging 

66 AT, tree-in-bud AT, tree-in-bud AT, tree-in-bud AT, tree-in-bud AT, tree-in-bud 

67 AT, fibrosis AT AT, fibrosis, 

consolidation 

AT AT 

68 AT, interstitial 

fibrosis 

AT, interstitial fibrosis AT, interstitial fibrosis AT, interstitial 

fibrosis 

AT, interstitial fibrosis 

69 AT, interstitial 

fibrosis 

bular septal, AT, 

interstitial fibrosis 

AT, interstitial fibrosis AT, interstitial 

fibrosis 

bular septal, AT, 

interstitial fibrosis 

70 AT, fibrosis, 

bronchiectatis 

AT AT AT, fibrosis, 

bronchiectatis 

AT 

71 AT, atlectasis at at at at 

72 AT, atlectasis at at at at 

73 n/a calcification, at ground glass opacity  n/a at 

74 fibrosis  n/a fibrosis  n/a nodule 

75 emp emp emp, nodule emp emp, bular septal 

76 n/a n/a nodule nodule nodule 

77 n/a n/a n/a n/a n/a 
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78  n/a bronchiectasis, 

atelectasis 

n/a n/a n/a 

79 AT, interstitial 

fibrosis 

bular septal, AT, 

interstitial fibrosis 

AT, interstitial fibrosis AT, interstitial 

fibrosis 

bular septal, AT, 

interstitial fibrosis 

80 AT AT  interstitial fibrosis, AT AT interstitial fibrosis, AT 

81 bronchiectasis bronchiectasis bronchiectasis bronchiectasis Ground glass opacity, 

bronchiectasis 

82 traction 

Bronchiectasis, AT 

lung fibrosis, traction 

Bronchiectasis, AT 

AT traction 

Bronchiectasis, AT 

lung fibrosis, traction 

Bronchiectasis, AT 

83 AT, interstitial 

fibrosis 

at, interstitial fibrosis AT, interstitial fibrosis AT, interstitial 

fibrosis 

AT, interstitial fibrosis 

84 AT, interstitial 

fibrosis 

bular septal, AT, 

interstitial fibrosis 

AT, interstitial fibrosis AT, interstitial 

fibrosis 

bular septal, AT, 

interstitial fibrosis 

85 AT AT  interstitial fibrosis, AT AT interstitial fibrosis, AT 

86  n/a AT, fibrosis n/a plate atelectasis fibrosis, AT, traction 

bronchiectasis 

87  n/a mucous plugging  n/a nodule mucous plugging 

88 emp, AT, 

bronchiectasis, 

nodules 

emp, AT, bronchiectasis emp, AT, 

bronchiectasis, nodule 

emp, AT, 

bronchiectasis, 

nodule 

emp, AT, 

bronchiectasis 

89 AT, interstitial 

fibrosis 

AT, interstitial fibrosis AT, interstitial fibrosis AT, interstitial 

fibrosis 

AT, interstitial fibrosis 

90 AT, interstitial 

fibrosis 

bular septal, AT, 

interstitial fibrosis 

AT, interstitial fibrosis AT, interstitial 

fibrosis 

bular septal, AT, 

interstitial fibrosis 

91 mild cylindrical 

bronchiectasis 

mild cylindrical 

bronchiectasis 

AT, mild cylindrical 

bronchiectasis 

n/a mild cylindrical 

bronchiectasis 

92 n/a n/a n/a n/a n/a 

93 mild cylindrical 

bronchiectasis 

mild cylindrical 

bronchiectasis 

AT, mild cylindrical 

bronchiectasis 

n/a mild cylindrical 

bronchiectasis 

94 inflammatory, ground 

glass opacity 

AT,  emp inflammatory, ground 

glass opacity 

 n/a AT, emp, 

inflammatory nodule 

95 AT AT AT AT AT 

96 AT AT AT AT AT 

97 at, interstitial fibrosis at, interstitial fibrosis at, interstitial fibrosis at, interstitial 

fibrosis 

at, interstitial fibrosis 

98 mild cylindrical 

bronchiectasis 

mild cylindrical 

bronchiectasis 

AT, mild cylindrical 

bronchiectasis 

 n/a mild cylindrical 

bronchiectasis 

99  n/a AT, fibrosis n/a plate atelectasis fibrosis, AT, traction 

bronchiectasis 
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100 bronchiectasis, 

fibrosis 

bronchiectasis, mucous 

plugging, nodules 

fibrosis bronchiectasis n/a 

*AT=air trapping, Emp=emphysema, n/a=not specify 

 

3.2 Programs and Experiment setting 

 The dataset is managed by the new index number with a label for each lung lobe in both 

left and right sides. The 3D rendering part is done by OsiriX MD (on macOS) with added plugins 

such as invert data, labels, volume calculator. The database is transferred and collected in the 

external hard disk to link the DICOM file to the OsiriX MD. The ROI tools, volume rendering, 

and surface rendering are used to generate the 3D model of the lungs. Meshlab (on macOS) is 

applied to reduce some noise from the 3D rendering process. Meshlab is also used to visualize 

the 3D model because it can easily transform, rotate, and collect the landmark points for 

generating the cutting plane for separating the lung lobes. After that, MATLAB 2016a is used 

to analyze the velocity vector by using 3D Active Contour Model. The Image Processing, 

Computer Vision system, 3D point cloud processing, 3-D Volumetric Image Processing, and 

Geometric Transformation and Image Registration toolboxes and etc. are used to analyze the 

lung models. Finally, the classification model is generated by Statistics and Machine Learning 

Toolbox. 
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Chapter 4 

Methodology for 3D Image Analysis of Lung Diseases 

 

 This chapter explains the methodology of 3D image analysis of lung diseases using the 

velocity vector map evaluated by the 3D active contour model (3D ACM). The initial condition 

of 3D ACM is selected depending on the shape of the lung by calculating the ratio of the height 

from EE to EI model. Then 3D ACM is applied to generate the parametric surface and the 

expanding motion of the lung. The velocity vector of the lung’s expanding motion is separated 

into 5 lobes. There are 2 lobes in the left lung and 3 lobes in the right lung. The reason we need 

to separate the lobe is each lobe has its movement pattern and this characteristic is extracted and 

analyzed for the classification model. All extracted information is used to examine and interpret 

lung diseases by using pattern recognition techniques. The predictive model is generated and 

optimized to classify lung diseases based on the motion of the lung by the integrated knowledge 

of pathology and medical images. 

 

4.1 Overview of the System 

 The methodology is separated into 6 main parts: (1) Data Acquisition, (2) Pre-

Processing, (3) Active Contour Model, (4) Velocity vector map, (5) Lung-lobe separation, and 

(6) Lung disease analysis. Figure 4.1 shows the overview of the system starting from the data 

acquisition until classification.  
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Figure 4.1 Overview of the system. 

 

4.2 Data Acquisition  

The dataset is EI and EE HRCT images in a transverse plane with 1 mm thickness. The stack of 

images consists of approximately 200 images or 2 mm thickness with approximately 100 images 

in a stack. In this research, the OsiriX MD is used to render the 3D surface model of lungs. To 

analyze the lung disease, the EI and EE CT images are divided into left and right models: 

EIright,EEright,EIleft, and EEleft as shown in Fig.4.2.   
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Fig. 4.2. EIright,EEright,EIleft, and EEleft models  

 

4.2.1 DICOM File and Image Series 

 This research uses HRCT image series compressed in DICOM format. It contains the 

slice images as a stack with 512 x 512 pixels in-plane resolution. We can use HRCT images to 

analyze the lung diseases in both 2D and 3D planes. Fig. 4.3 shows the example of 2D 

segmentation of the lung region in every slice in the CT stack. The 2D plane of DICOM also 

has another image coordinate system represented in (i, j, k).   
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Fig. 4.3 2D ACM for region detection of lung CT images. 

 

 There are two images stacks used: (1) AX Ins. Sup. and (2) AX Exp. Sup. with 1 mm or 

2 mm thickness as shown in Fig. 4.4. The 3D surface rendering is performed to generate 3D 

model as shown in Fig. 4.2 as EIright, EEright, EIleft, and EEleft models. 

 The image plane in anatomical and cartesian coordinates is represented in a slightly 

different way. For the DICOM file, the anatomical coordinate with LPS format is used. L stands 

for Left. P is Posterior and S is Superior. The anatomical coordinate system consists of 3 planes: 

axial plane (Superior-Inferior), coronal plane (Anterior-Posterior), and sagittal plane (Left-

Right). Compared to the cartesian coordinate system, the axial plane is the Z-axis, the coronal 

plane is the Y-axis, and the sagittal plane is the X-axis. 

 

 Anatomical Coordinate Cartesian Coordinate 

Superior-Inferior axial plane Z-axis 

Anterior-Posterior coronal plane Y-axis 

Left-Right sagittal plane X-axis 

 

 4.2.2 Image Planes 

 The transverse plane is used to visualize the cross-section of the chest. However, in the 

transverse plane can be separated to two positions: supine and prone. Supine transverse plane is 
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the stack of chest when the patient lies on his back position and prone is to lie on his stomach. 

Normally the data is the supine transverse plane. The prone position is token when the patient 

has a hard time When the data is in the prone transverse plane, the rotation of the data stack is 

needed before starting the analysis step.   

 

 
Fig 4.4: the HRCT Image series in different plane and demonstrates the supine and prone 

transverse planes with 2 mm thickness. 

 

 4.2.3 Window Width and Window Level (WW and WL) 
 The window width and window level are the threshold number for setting the range 

of gray-scale. The different shades of gray level can represent the different density of body 

elements such as air, bone, water, fat. The suitable WW and WL for the pulmonary image are 

1000 and -700 respectively.  Fig. 4.4 explains the HU and specific range of the body elements 

density. 

 
Fig. 4.4: Hounsfield scale and WW/WL setting. 
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4.3 Preprocessing 

 For the preprocessing step, the image preparation such as noise reduction and smoothen 

surface is performed. To reduce the segmentation error and reduce noises in further feature 

detection steps, the preprocessing is a must to concern.    

 

 4.3.1 Noise Deduction from Small Bronchi 

 The noise from the bronchi inside the lung needs to be removed before rendering the 3D 

surface model. First, the WW and WL are set to clearly show the pulmonary elements. Then the 

invert filter is performed to convert the intensity from -1024 to 1024 and from 1024 to -1024. 

(black and white colors are represented in -1024 and 1024 respectively) Then the ROI is applied 

to the pulmonary area and converts the intensity inside the ROI into 1024 as demonstrated in 

Fig. 4.5 (right).  

 

 

Fig. 4.5 Noise deduction process: (left) WW and WL setting, (middle) invert filter, and (right) 

removing noise inside the lung.  

 4.3.2 3D Surface Rendering 

 After removing noises, the volume rendering is used to generate a 3D model from the 

stack of CT images. Some unwanted areas are also removed such as the main airway. Then, 

the left and the right lungs are separated. After that, the 3D volume rendering is applied to 

each lung. Finally, 4 lung models are generated: EIright,EEright,EIleft, and EEleft as shown in Fig 

4.6 and the main airway is already removed. 
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Fig. 4.6. Lung model: (left) End-Expiratory (EE), (right) End-Inspiratory (EI). 

            

 4.3.3 Resampling Surface 

 To reduce the time consuming, the elements of the surface are reduced to 6,000 - 

10,000 elements depending on the size of the lung. As mentioned in Chapter 2, some literature 

shows that 3,000-10,000 elements are acceptable to estimate the motion of the lung without 

losing important information such as the sharp edge at the lower lobe. 

 

  
Fig. 4.7 Resampling 3D surface model to 10,000 vertices. 

 

 4.3.4 Thoracic landmark points 

The landmark points are used to separate the lung lobes by using 3 sets of cutting plane: ROF 

(ROF1, ROF2, ROF3), RHF (RHF1, RHF2, RHF3), and LOF (LOF1, LOF2, LOF3). The cutting plane is used 

to represent the oblique fissure on the lung. The right lung has 2 oblique fissures to separate 3 

lobes which are Right Oblique Fissure (ROF) and Right Horizontal Fissure (RHF). The left lung 
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has only one oblique fissure called Left Oblique Fissure (LOF). The thoracic landmarks of ROF, 

RHF and LOF are represented in Fig. 4.8 and Table 4.1.  

 

Table 4.1 The location of landmark points 

Fissures Landmark points Anatomical location 

 

ROF 

ROF1 Spinal cord: T3 

ROF2 6Th rib at midclavicular line 

ROF3 6Th rib at midclavicular line 

 

RHF 

RHF1 4Th rib 

RHF2 5Th rib 

RHF3 5Th rib 

 

LOF 

LOF1 Spinal cord: T3 

LOF2 6Th rib at midclavicular line 

LOF3 6Th rib at midclavicular line 

 

 
Source: https://www.slideshare.net/AliMohamedAziz/thoracic-lung-assessment 

Fig. 4.8. The thoracic landmarks of ROF, RHF and LOF 
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Fig 4.9 Representation of landmark points and 3 oblique fissures (RHF, ROF, and LOF) on 

3D model: (left) right lung and (right) left lung. 

Fig. 4.9 shows the example of landmark points on the real 3D model. The cutting plane is 

generated by the points and then uses the cutting plane to separate the surface of interest. This 

step will be applied after detecting the expanding motion of the lung by 3D ACM.  

   

4.4 3D Active Contour Model (3D ACM) 

 The 3D ACM is used to detect the velocity vector map of the expanding motion of the 

lung. First, the parameter setting has to be simulated to find the best fit parameter for the 3D 

lung model.  However, there is a challenging point on various sizes of lungs. 

   The setting of 3D ACM, the alignment is applied to set the environment for the 3D 

motion prediction technique. After that, the 3D parametric surface model has to be robust to the 

different types of data. Therefore, the parameters of 3D ACM for adjusting internal and external 

forces are adaptable depending on the Zratio which sketchily explains the shape of the lungs. 

 

 4.4.1 Alignment 

 For the alignment, the apex part of the lung is detected. The anatomy in Fig. 4.11 

represents the location of the apex part which is in the upper most of lungs. Fig. 4.10 shows the 

misaligned models between EE and EI. The top most point of the EI phase is detected in order 

to be the reference point for alignment of the EE model.    
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Fig. 4.10.  The misaligned of 3D lung models from EI and EE phases. 

 

 4.4.2 3D Parametric Active Contour Model 

 The 3D ACMs are generally used as a non-rigid segmentation-based technique, 

especially in biomedical images. The concept of 3D ACM is to minimize the internal and 

external energies, and the final evaluation of the active contour will be stopped by the desired 

boundary of the target. In this study, the velocity vector map of the respiratory motion starting 

from the EE to EI phase is detected by estimating the control point on 3D ACM technique. The 

apex part of the lung is detected and assigned as the reference point for aligning the model. After 

that, the parameters of the 3D ACM for adjusting internal and external forces are set due to the 

sensitivity to the shape such as a sharp edge. Therefore, they are adaptable depending on the 

𝒁𝒓𝒂𝒕𝒊𝒐 which represents the shape of the lungs.   

     The 3D Parametric Active Contour Model is performed to estimate the velocity vector 

between the EE and EI lung models. A mesh represents the control points of the 3D active 

contour. The energy function in 3D ACM develops the parameter function to control the control 

points in more dimensions as 𝒗 ∶ [𝟎, 𝟏] × 	[𝟎, 𝟏] → ℝ𝟑. The 3D contour is described by a 

function of v. The contour is placed on an image as 𝒇 ∶ 	ℝ𝟑	 → 	ℝ. The snake model combines 
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the internal energy 𝑬𝒊𝒏𝒕 and external energy 𝑬𝒆𝒙𝒕into 𝑬 = 𝑬𝒊𝒏𝒕(𝒗) +	𝑬𝒆𝒙𝒕(𝒗). The 3D image 

force concerns the movement in 3 directions of the parametric curve in 𝑬𝒊𝒏𝒕(𝒗). Therefore, the 

parameter function (𝒗 = 𝒗(𝒔, 𝒓) = [𝑿(𝒔, 𝒓), 𝒀[𝒔, 𝒓], 𝒁(𝒔, 𝒓)]) is added to control the 

corresponding points (or the control points) where 𝑿,𝒀, 𝒁 are the corresponding coordinate 

function of the surface.  

The internal energy 𝑬𝒊𝒏𝒕(𝒗) can be expressed as 	

𝑬𝒊𝒏𝒕 = A[𝜶𝒔|𝒗𝒔D |𝟐 + 𝜶𝒓|𝒗𝒓D |𝟐] + [𝜷𝒔|𝒗𝒔𝒔DD |𝟐 + 𝜷𝒓|𝒗𝒓𝒓DD |𝟐 + 𝜷𝒔𝒓|𝒗𝒔𝒓DD |𝟐] 𝒅𝒔𝒅𝒓 

 where 𝜶𝒔 and 𝜶𝒓 denote the elasticity, respectively,	𝜷𝒔 and 𝜷𝒓 are the corresponding 

rigidities, and 𝜷𝒔𝒓	is the resistance to twist.  

    The external energy 𝑬𝒆𝒙𝒕(𝒗)  is the image force of the boundary. In this work, the EI model 

is modified from the 3D surface (EI model) to 3D matrix of contour point by setting the 

boundary of 𝑰𝑬𝑰(𝒙, 𝒚, 𝒛) = 𝟏 and the inner and outer of a closed parametric surface (EE model) 

are set as 0. The 𝑬𝒆𝒙𝒕(𝒗) represents by 𝑬𝒊𝒎𝒂𝒈𝒆(𝒗).   𝑬𝒊𝒎𝒂𝒈𝒆(𝒗)  shows the features of the EI 

model such as the boundary and represented it by potential force fields or the gradient of the 

image 𝛁𝒑(𝒗, 𝒇) under the closed plane conditions. Next, the energy (𝑬 = 𝑬𝒊𝒏𝒕(𝒗) +	𝑬𝒆𝒙𝒕(𝒗)) 

is minimized by using the Euler-Lagrange equation to find the v that satisfies the equation 

balances the internal force and image force. When all energies are balanced, the total energy is 

minimum as shown. 

 
[𝜶𝒔|𝒗𝒔D |𝟐 + 𝜶𝒓|𝒗𝒓D |𝟐] − [𝜷𝒔|𝒗𝒔𝒔DD |𝟐 + 𝜷𝒓|𝒗𝒓𝒓DD |𝟐 + 𝜷𝒔𝒓|𝒗𝒔𝒓DD |𝟐] = −𝛁𝒑(𝒗, 𝒇) 

 

    The internal energy 𝑬𝒊𝒏𝒕(𝒗) and its minimizing equation are set by using the 3D mesh of EE 

model. The characteristic of the internal force is to control the expanding motion of the 

parametric curve. The weighted parameters such as  𝜶	and 𝜷 are used to control the tension and 

rigidity of the parametric curve. Fig. 4.12 shows examples of when the energy is over controlled 

and cannot stop at the boundary. 

 

 



 

 40 

 
Fig. 4.12 The example when the magnitude of velocity and acceleration is unbalanced. 

   

 To generate 3D images from point clouds, the idea is by generating the squared zeros 

matrix in 3D in the same size as the EI model in x, y, z direction and sketching the point cloud 

into the zeros matrix. The 3D image of the EI model is now represented in 3D box containing 

0 value for background and 1 for the object which is the EI model as shown in Fig.4.13.    

 
Fig 4.13 (left) transform 3D point cloud to 3D image, (right) the initial position of EE and EI 

models 

 

          To solve this problem as shown in Fig. 4.12, the weighted parameters of the contour and 

image are estimated based on the conditions for each model calculated by Zratio equation. The 

internal energy 𝑬𝒊𝒏𝒕(𝒗)  discourages stretching and bending of the contour while the image 

potential force pulls, pushing the contour toward the desired image boundary. The effect of 

shape and size of the lung is used the adaptive parameter technique to find the suitable 

parameter. Due to the complexity of the parametric contour and the potential force fields, the 

parameters are allowed to adapt, depending on the individual shape of a lung as shown in Fig. 
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5. Therefore, the additional step before applying 3D ACM is to measure the diameter of the lung 

in 𝒙, 𝒚, 𝒛 directions. The 𝒁𝒓𝒂𝒕𝒊𝒐 is introduced to distinguish the different sets of shape 

(represented by range) estimated by the ratio of diameter EI to EE on the Z-axis as shown in 

Zratio equation. The shape and size of the lung is separated into 3 sets based on the data set of 

this study and then the weighted parameters are assigned each set called 𝑷𝑨𝑹𝑨𝑴𝟏 , 

𝑷𝑨𝑹𝑨𝑴𝟐 ,and 𝑷𝑨𝑹𝑨𝑴𝟑. When the 𝒁𝒓𝒂𝒕𝒊𝒐 is higher than 1.2, 𝑷𝑨𝑹𝑨𝑴𝟏 is applied, the 

challenge of 𝑷𝑨𝑹𝑨𝑴𝟏 is the sharp edge in the lower lung, the balloon force and GVF are tuned. 

𝑷𝑨𝑹𝑨𝑴𝟐 represents the normal or slightly abnormal lungs where 𝒁𝒓𝒂𝒕𝒊𝒐 is between 1 to 1.2.  

𝑷𝑨𝑹𝑨𝑴𝟑 is the abnormality case where it mostly appears in patients with air trapping problems 

(obstructive lung disease). Fig. 4.15 also demonstrates the 3D models at 3 different ranges of 

diameter. The 𝑷𝑨𝑹𝑨𝑴𝒔  consists of the weight of the image edge energy, image force, Gradient 

Vector Flow, and snake energies. They control the expanding and stop conditions of the 

deformable model from reaching the outer boundary. 

 Before starting the minimization step, the parameter setting of the contour and image is 

estimated based on its condition for each model calculated by Eq. (6-7). The internal energy 

discourages stretching and bending of the contour while the image potential force pulls, pushing 

the contour toward the desired image boundary.  Due to the complexity of the parametric 

contour and the potential force fields based on the shape of the lung, the parameter setting is 

adaptable depending on the how much difference between the IE and EE especially at the lower 

lobes as shown in Fig. 4.14. Therefore, before applying the ACM, the length of the lung is 

determined. Zratio is the length ratio of EI to EE in Z-axis. When Zratio is higher than 1.2, the 

PARAM1 is used. Fig. 4.15 demonstrates the 3D models with different ranges of Zratio. The 

structure of the PARAM1 consists of the weight of image edge energy, image force, Gradient 

Vector Flow, and snake energies. It is to control the expanding and stop condition of the 

deformable model to reach the outer surface.  
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Fig. 4.14 Zratio estimation from EI and EE models. 

 
Fig4.15: Example of data set belonging to PARAM1, PARAM2, and PARAM3 

 

Zratio is estimated as following equation: 

 

𝑍𝑅𝑎𝑡𝑖𝑜 = 	
|𝑀𝑎𝑥]^_(𝐸𝐼. 𝑧) −𝑀𝑖𝑛]^_(𝐸𝐸. 𝑧)|
d𝑀𝑎𝑥efg(𝐸𝐼. 𝑧) −𝑀𝑖𝑛efg	(𝐸𝐸. 𝑧)d

  

 

Where |𝐦𝐚𝐱(𝑬𝑰. 𝒛) −𝐦𝐢𝐧	(𝑬𝑰. 𝒛)|	represents the diameter in Z direction of EI model and 

|𝐦𝐚𝐱(𝑬𝑬. 𝒛) − 𝐦𝐢𝐧	(𝑬𝑬.𝒛)| is the diameter in Z direction of EE model. The weighted 

parameter function depends on the range of 𝒁𝒓𝒂𝒕𝒊𝒐as explained below: 

Parameter setting function will depend on the range of Zratio as explained below:  

 

𝑍𝑟𝑎𝑡𝑖𝑜(𝑥) = n
𝑃𝐴𝑅𝐴𝑀q,																	𝑥 ≥ 1.2
𝑃𝐴𝑅𝐴𝑀t,									1 < 𝑥 < 1.2
𝑃𝐴𝑅𝐴𝑀v,																					𝑥 ≤ 1
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Table 4.2. The parameter setting structure of PARAM1, PARAM2, and PARAM3 
 𝑃𝐴𝑅𝐴𝑀q 𝑃𝐴𝑅𝐴𝑀t 𝑃𝐴𝑅𝐴𝑀v 

Iterations 60 60 40 

Alpha(α) 0.5 0.5 0.5 

Beta (β) 0.7 0.7 0.7 

𝑊x]^e  0.5 0.5 0.5 

𝑊eyze  12 12 5 

Kappa (κ) 10 10 10 

Lambda (λ) 0.9 0.9 0.9 

𝑊{|}  0.2 0.2 0.2 

Delta (ll,) 10 5 0.1 

   

 To overcome some problems as shown in Fig. 4.12, Balloon Force and Gradient Vector 

Flow (GVF) are considered to adjust the parametric surface. These two forces help force the 

surface to reach the target boundary and also control the inflation force to stopped by the outer 

boundaries. 

 

4.5 Velocity vector map  

 The velocity vector is evaluated from the corresponding points on EE model represent by 3D 

mesh called FV and FV.vertices is demonstrated the contour points of the active contour curve. 

The structure of FV contains FV.faces with a facelist (Nx3) and FV.vertices with (Nx3) vertices 

list. The velocity vector map is generated by the accumulating of the velocity and acceleration 

pixel by pixel by the active contour as shown in the 𝑑(𝐹𝑉. 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠’ − 𝐹𝑉. 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠)  

 

𝑑(𝑥D, 𝑦D, 𝑧D: 𝑥, 𝑦, 𝑧) = �(𝑥D − 𝑥)t+(𝑦D − 𝑦)t+(𝑧D − 𝑧)t  

 
 

    The magnitude and direction from 𝑭𝑽. 𝒗𝒆𝒓𝒕𝒊𝒄𝒆𝒔	to 𝑭𝑽. 𝒗𝒆𝒓𝒕𝒊𝒄𝒆𝒔′ is a velocity vector where 

𝑭𝑽. 𝒗𝒆𝒓𝒕𝒊𝒄𝒆𝒔′ is the stopping point (EI phase) and FV.vertices’ is the starting point (EE phase). 

In this research, 𝒅(∆𝑭𝑽. 𝒗𝒆𝒓𝒕𝒊𝒄𝒆𝒔) is used to analyze the inhomogeneous motion pattern of 
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the lung. The velocity vector map calculated by 𝒅(∆𝑭𝑽. 𝒗𝒆𝒓𝒕𝒊𝒄𝒆𝒔) is managed as a feature of 

the classification model.  

 

4.6 Lung Lobe separation  

 Until this step, the velocity vector map calculated by 𝒅(∆𝑭𝑽. 𝒗𝒆𝒓𝒕𝒊𝒄𝒆𝒔) is managed as 

a feature to the classification model. The lung lobe separation is applied to simplify the features.  

 4.6.1 Landmark Points and plane generation 

 Point based registration of oblique fissures and horizontal fissure in order to differentiate 

lung lobes based on its anatomical characteristic. The idea is to use the plane to separate the 

lung lobe.  It is shown in the literature that the fissures appear naturally as 3D surfaces separating 

adjacent lung lobes. In some works, they combined the segmentation in 2D and 3D as a hybrid 

approach in order to fill in an incomplete and disrupted fissure automatically [37]. However, in 

this research, it is just the approximate surface of each lobe based on its anatomical 

characteristic. The human lungs are divided into 5 distinct anatomic compartments called lobes 

which are separated by the pulmonary fissures. The left lung consists of the upper and lower 

lobes, which are separated by the oblique or major fissure.  

 LungLeft = {Left Upper Lobe (LUL), Left Lower Lobe (LLL)} 

 Oblique fissureLeft = {Left Oblique Fissure (LOF)} 

The right lung consists of the upper, middle and lower lobes: the upper and middle lobes are 

separated by the horizontal or minor fissure; both upper and middle lobes are separated from 

the lower lobe by the right oblique (major) fissure.  

 LungRight = {Right Upper Lobe (RUL), Right Middle Lobe (RML), Right Lower  

         Lobe (RLL)} 

 Oblique fissureRight = {Right Horizontal Fissure (RHF), Right Oblique Fissure (ROF)} 

 

 The technique to separate each lobe is using the cutting plane and generating the cuboid 

to select the region of interest (ROI). To localize the cutting plane, there are three landmark 

points as explained in section above. The cutting plane is generated and then the cuboid is 
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created to select the region of interest (ROI). To localize the cutting plane, there are three 

landmark points as explained above. To create the plane, the normal vector 𝒏��⃑ = [𝒂, 𝒃, 𝒄] needs 

to be determined by crossing two vectors on the plane (𝒂𝒙 + 𝒃𝒚 + 𝒄𝒛 + 𝒅 = 𝟎). After we 

obtain the cutting plane, the angle of rotation could be calculated. The idea of angle of rotation 

is from the literature [035]. It is found that on sagittal views, the oblique and horizontal fissures 

are oriented at approximately 45 degrees and 90 degrees with respect to the Z-axis as shown in 

Fig. 4.16. 

 

 
Fig. 4.16. The oblique and horizontal fissures are oriented at approximately 45 degrees and 90 

degrees with respect to the Z-axis. 

 
Fig. 4.17 the landmark points and its cutting plane. 

The point cloud data is rotated based on that degree of rotation to select the ROI as shown in 

Fig. 4.19. 
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Fig. 4.18 The cutting plane of LOF in the left lung.  

 
Fig. 4.19 Rotation of point cloud for cuboid ROI selection. 

 
Fig. 4.20 The ROI of LUL and LLL.  
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 4.6.2 Lung lobe separation for the right lung 

For right lung separation, it is more complicated than the left lung because it consists of two 

fissures: RHF and ROF. Firstly, the ROF is performed by cutting RLL out of RUL and RML. 

Second, the RHF is generated and divides the RUL from RML. The step to generate the cutting 

plane and cuboid ROI is written in the Section 4.6.1 and shown in Fig. 4.16-21.   

 
Fig. 4.21 Lung lobe separation for the right lung. 

 4.6.3 Lung Lobe separation for the left lung 

The step to generate the cutting plane and cuboid ROI of the left lung is written in the Section 

4.6.1 and shown in Fig. 4.16-20 and 4.22.   

 
Fig. 4.22 Lung lobe separation for the left lung. 
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4.7 Feature representation  

 4.7.1 Bag-of-words (BOW) model 

 The BOW model is a simplifying representation of complicated features to the same 

dimension for feeding to the machine learning technique as training and testing data. 

The velocity vector with different number of control points is applied to the BOW model to 

simplify the dimension of information into accumulated histogram as compared in Fig. 4.23. 

 
Fig. 4.23 Feature presentation from the velocity vector map to the bag-of-words.  

      

4.8 Feature analysis and classification  

 4.8.1 Neural Network  

 The velocity vector map calculated by 𝒅(∆𝑭𝑽. 𝒗𝒆𝒓𝒕𝒊𝒄𝒆𝒔) is used to analyze the 

expanding motion of lung. After applying lung lobe separation, there are 5 sets of lung lobes: 	
𝑳𝒖𝒏𝒈𝑳𝒆𝒇𝒕	 = {𝑳𝑼𝑳, 𝑳𝑳𝑳} and 𝑳𝒖𝒏𝒈𝑹𝒊𝒈𝒉𝒕 = {𝑹𝑼𝑳, 𝑹𝑴𝑳,𝑹𝑳𝑳}. The complex features are 

simplified by using bag-of-words (BOW) model to represent in the same dimension. The 

velocity vector with a different number of control points is applied to the BOW model to 

simplify the dimensional information into an accumulated histogram represented by 

𝒅(∆𝑭𝑽. 𝒗𝒆𝒓𝒕𝒊𝒄𝒆𝒔). The vector set of lung lobes are obtained called visual velocity vectors. 

After that the normalization (𝒙′𝒊 = � 	𝒙𝒊�𝒙𝒎𝒊𝒏
𝒙𝒎𝒂𝒙�𝒙𝒎𝒊𝒏

		� (𝒙′𝒎𝒂𝒙 − 𝒙′𝒎𝒊𝒏) + 𝒙′𝒎𝒊𝒏) is applied to each 

visual velocity vector in order to deal with distribution of data where 𝒙′𝒊 is the actual input 

feature, 𝒙𝒎𝒊𝒏	and 𝒙𝒎𝒂𝒙 are the minimum and maximum value of input feature and 𝒙′𝒎𝒊𝒏	and 
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𝒙′𝒎𝒂𝒙 are the minimum and maximum target range of input feature which is [0,1]. Next, the 

machine learning techniques are: Artificial Neural Network (ANN)  

 In the ANN model, the number of hidden layers (NL) is set as 20 based on the 𝑵𝒊	and 

𝑵𝒐. For the number of hidden neurons (𝑵𝑵), there are many rules of thumb for calculating 𝑵𝑳 

such as method [18] 𝑵𝒏 = �𝑵𝒊𝑵𝒐  where the input neuron and output neuron represent by 

𝑵𝒊	and 𝑵𝒐, method [17], 𝑵𝒏 = 𝟐𝑵𝒊 − 𝟏, method [16], 𝑵𝒉 =
𝟐𝑵𝒊
𝑵𝒊
+ 𝟏. In this research, we 

optimize the performance and 𝑵𝒏 = �𝑵𝒊𝑵𝒐 + 𝟏	are used for setting the hidden neurons. The 

activation function of the output layer is TanH function (𝑻𝒂𝒏𝑯 = 𝟐
𝟏�𝒆�𝟐𝒙

− 𝟏) which has range 

values between (0,1).  

 

 4.8.2 Classification 

 The predictive model is mainly separated into three sub-modules. The first module is 

to separate the normal and abnormal patient by using Zratio and Yratio combined to the motion 

feature of each lung as shown in Fig 4.23. Secondly, the lung diseases are divided into 

obstructive and restrictive lung diseases by using Module 2. To separate the obstructive and 

restrictive lung diseases, the inspiratory and expiratory phase of normal people is used to 

analyze the similarity in order to distinguish them as shown in Fig. 4.26. Finally, Module 3 in 

Fig. 4.27, the training feature is rearranged in order to detect the inhomogeneous motion pattern 

based on the causes of diseases which are also related to the motion in each particular lobe.     

 

 
Fig. 4.24 The predictive model. 
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Fig 4.25. Module 1: To classify normal and abnormal lungs. 

 

 
Fig 4.26. Module 2: To classify obstructive and restrictive lungs. 
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Fig 4.27. Module 3: To classify lung diseases that are caused by immune system or lymphatic 

system. 

 

 

 

 

 

 

 

 

 

 

 



 

 52 

Chapter 5 

Evaluation and Discussion 

 

5.1 Evaluation Techniques  

The confusion metric in Table 4 is used to evaluate the performance of the predictive model by 

accumulating the result from Module 1 to Module 3. The Weighted Average Sensitivity and 
Specificity ( 𝑺𝑬𝑵𝑺𝑨𝒗𝒈 and 𝑺𝑷𝑬𝑪𝑨𝒗𝒈) are introduced to overcome the imbalanced data 
problem.  

Table 5.1 Confusion Matrix of the predictive model. 

Predictive Model Actual Classification 

0 1 

Predictive Result 0 True Negative False Negative 

1 False Positive True Positive 

 

True Positive (TP)   : Correctly predicts (Actual=0 the model predicts as 0) 

True Negative (TN) : Correctly predicts (Actual=1 the model predicts as 1) 

False Positive (FP)  : Incorrectly predicts (Actual=0 the model predicts as 1) 

False Negative (FN) : Incorrectly predicts (Actual=1 the model predicts as 0) 

 

o The sensitivity (SENS) is the rate of TP over all of class 0. It can be defined as 

follows: 

𝑆𝐸𝑁𝑆	 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 

 
o The specificity (SPEC) is the rate of TN over all of class 1.  It can be defined 

as follows: 

                                                            𝑆𝑃𝐸𝐶 = ¥¦
¥¦�}§
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o The precision (PRE) is the rate of TP over all the positive events. It can be 

defined as follows: 

                                                            𝑃𝑅𝐸 = ¥§
¥§�}§

  

 

Due to the imbalanced-data. The data that belongs to each class is not equal and 

the performance measure is different from the binary classification.  

 

o Weighted Average Precision (𝑷𝑹𝑬𝑨𝒗𝒈) is used as described: 

𝑃𝑅𝐸 ©z =
𝑤]�q × 𝑃𝑅𝐸𝐶]�q + 𝑤] × 𝑃𝑅𝐸𝐶]

𝑤]�q + 𝑤]
 

wi  represents the number of data points in each class where i is the number of classes. 

 

5.2 Evaluation of 3D ACM from different parameter settings.   

 This experiment is done by selecting 6 important points related to the most distant point 

in the basal lobe and sharp curve at the basal and anterior of the lung. The superior and the 

posterior have no challenge point except the stop boundary condition. However, the anterior has 

another sharp edge which is not easy to detect in some specific cases that deviate from the 

normal conditions.  

 As mentioned in Chapter 4 Tab. 4.2, PARAM1 has the most error in the lower lobe at 

the bottom the error is 2.43 mm and 3.22 mm on average. Since the balloon force is sensitive to 

the external energy and the potential force to reach the boundary. It has a very high chance to 

exceed the boundary of the EI model. Therefore, the balloon force is controlled as a small 

number to prevent its sensitiveness. Moreover, the Gradient Vector Field (GVF) is the image 

energy that can help enhance the stopping boundary and also acts as the stop energy as well.   
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Table 5.2 Evaluation of 3D ACM from different parameter settings.   

 

Parameter settings 

Average displacement from the EE to EI (mm) 

Top Bottom Front Back  Left Right 

R L R L R L R L R F R L 

PARAM1 
0.1 0 2.43 3.22 0 0 0 0 0.64 0 0 0.48 

PARAM2 0 0 1.56 1.28 0.02 0.04 0 0 0.40 0 0 0.36 

PARAM3 0 0 0.84 0.52 0.03 0.04 0 0 0.42 0 0 0.44 

1 pixel (X) = 0.2645833333 mm 

 

5.3 Evaluation of lung lobe degree of rotation 

 This experiment is to detect the degree of rotation of the oblique and horizontal fissures 

as shown in Table 5.3. The LOF and ROF are approximately 45 degrees rotated with respect to 

the Z-axis and RHF is approximately 90 degrees with respect to the Z-axis. The Standard 

Deviation (SD) is high in Obstructive diseases for the LOF and ROF. This implies that the small 

airway disease may limit the airflow into some area in the EI model. The degree of rotation can 

help to interpret and understand the motion pattern of obstructive lung disease and overlapped 

diseases.    

 

Table 5.3 Degree of rotation for each lung lobe with respect to Z-axis.  

 Left Lung Right Lung 

Left Oblique Fissure Right Horizontal Fissure Right Oblique Fissure 

Normal 44.3° (+/- 2.32) 87.5° (+/- 3.76) 43.1° (+/- 2.56) 

Obstructive 48.0° (+/- 8.22) 91.3° (+/- 4.29) 44.3 (+/- 5.92) 

Restrictive 43.2° (+/- 4.32) 79.4° (+/- 2.44) 46.2(+/- 3.12) 
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Fig. 5.1 the hierarchy predictive model. 

 

5.4 Evaluation of Module 1: Classify normal and abnormal lungs. 

 The first module is to classify normal and abnormal lungs. Although the data set of a 

normal class is not high, it is useful to extract and learn the normal motion pattern to the 

predictive system. This can help avoid false positive detection. Even the false positive is not the 

serious condition but it can improve the efficiency of the overall system and screen the normal 

case out of the deviation from normal class. Tab. 5.4 shows the classification result of normal 

and abnormal. The total number of datasets is 100: normal 10 cases and abnormal 90 cases. The 

precisions of each class (PRE0 and PRE1) are calculated: PRE0 is 50% for normal class and PRE1 

is 98.78% abnormal class. Then the weighted average precision (PREAVG) is shown at 93.20% 

on Table 5.4.  

 

 Table 5.4 Evaluation results of Module 1: Classify normal and abnormal lungs. 

Module 1 Actual Class Evaluation 

normal abnormal PRE0 PRE1 PREAVG 

Predict Class normal 9 9  

50.0% 

 

98.78% 

 

93.90% abnormal 1 81 
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5.5 Evaluation of Module 2: classification of obstructive and restrictive lung diseases.  

 This module uses the pathological knowledge of the restrictive and obstructive lung 

diseases to classify. The restrictive lung disease is when the patient cannot take a full and deep 

inhalation. Therefore, when compared to the normal size of the lung in EI CT images, the patient 

with restrictive lung disease can be differentiated from the normal patient. In obstructive lung 

disease, the patient has a problem with exhalation. They cannot exhale naturally because there 

is some blocked area in the small airway or bronchus. To classify obstructive lung diseases, the 

EE CT images of the normal patient and obstructive lung disease patients are analyzed. The 

total numbers of dataset for this module are 90 cases: obstructive lung disease (Obs.) 48 sets 

and restrictive lung disease 42 sets. The precision of obstructive class (PREObs) is 90.0% and the 

precision of restrictive class (PRERes) is 92.5%. The weighted average precision (PREAVG) is 

91.06% as shown below on Table 5.5.  

 

Table 5.5 Evaluation results of Module 2: Classify obstructive and restrictive diseases. 

Module 2 Actual Class Evaluation 

Obs. Res. PREObs PRERes PREAVG 

Predict 

Class 

Obs. 45 5  

90.0% 

 

92.5% 

 

91.06% Res. 3 37 

 

5.6 Evaluation of Module 3: the classification of immune system and lymphatic system 

 This module is to detect the inhomogeneous motion pattern based on the causes of 

diseases, immune system and lymphatic system, which are also related to the expanding motion 

of each particular lobe. For the restrictive lung disease, the cause of disease is the interstitium 

which is the tissue and space around the pulmonary alveoli called alveolar capillary membrane.  

The dataset of this module is 42 sets: 19 sets for lymphatic system and 23 sets for the immune 

system. The precision of the lymphatic system (PRELym) is 83.0% and the precision of the 

immune system (PREImm) is 83.0%. Then, the weighted average precision of this module is 

83.0% as shown on Table 5.6.        
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Table 5.6 Evaluation results of Module 1: Classify immune and lymphatic system.  

Module 3 Actual Class Evaluation 

Imm. Lym. PREImm PRELym PREAVG 

Predict 

Class 

Imm. 15 3  

83.33% 

 

83.33% 

 

83.33% Lym. 4 20 

 

To summarize the overall system, Fig. 5.2 compares the precision on each class from 3 modules. 

The highest performance is class 2 on module 1 which is to classify the normal to abnormal 

class. The third module is difficult to classify because of the variety of severity on the lung. The 

average precision on class 5 and class 6 is 83.33%. Fig. 5.3 shows the comparison among 3 

classification. Again, the third module has more challenge to classify 2 different courses of 

restrictive lung disease.  

 

 
Fig. 5.2 The precision of each class: Class 1 is normal, Class 2 is abnormal, Class 3 is 

obstructive lung disease, Class 4 is restrictive lung disease, Class 5 is lymphatic system, and 

Class 6 is immune system. 
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Fig. 5.3 The weighted average precision of 3 predictive modules. 

 

Table 5.7 The evaluation of predictive model (Module 1-3) 

 

 

 

 

 

 

 

 

 

 

Predictive Model Actual Class Evaluation results 

Abnormal 

(0) 

Normal 

(1) 
PRE0 PRE1 PREAVG 

 

 

Predict 

Class 

 

Abnormal (0) 81 1  

98.78 

 

50.00% 

 

93.90% Normal (1) 9 9 

Obs. (0) 45 5  

90.00% 

 

92.50% 

 

91.06% Res. (1) 3 37 

Imm. (0) 15 3  

83.33% 

 

83.33% 

 

83.33% Lym. (1) 4 10 
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Figure 5.4 Compare the performance of each class by PRE, SENS, and F1 score 

 

 Fig. 5.4 shows the comparison of other measurement metrics which is SENS and F1 

score. It is shown that the result of class 1 is varied based on the measurement metric such as 

PRE = 50.0%, SENS = 90%, and F1 score = 64.28%. Finally, the False Positive and False 

Negative is the important metric that needed to be considered. In the future work, the unbalanced 

data will be resampled in order to avoid this bias. 
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Chapter 6 

Conclusion 

 

6.1 Conclusion 

  This research introduces the new approach of the 3D active contour model to evaluate 

the velocity vectors of the lung motion and learning the inhomogeneous motion pattern from 

each lung lobe to generate the predictive model from the characteristic of breathing motion. The 

non-rigid registration model by using its biophysical model is applied. The velocity vectors 

between EI and EE models are evaluated by the corresponding points on the parametric surface 

model of the EE model to the EI model. The external energy from the EI models is the external 

force that pushes the 3D parametric surface reaching the boundary. The external forces such as 

balloon force and Gradient Vector Flow (GVF) were adjusted adaptively based on the Zratio 

which calculated from the ratio of the maximum value of EI to the EE model in Z-axis.  Next, 

the feature representation is studied and evaluated based on the lung structure which is separated 

into 5 lobes. To screening the lung diseases into the normal, obstructive lung, and restrictive 

lung, the stepwise regression, and Artificial Neural Network technique are used to evaluate the 

result shown in Tab. 6.1. 

 The inhomogeneous motion pattern of lungs integrated with the medical-based 

knowledge can be used to analyze the lung diseases: Module 1 by differentiating normal and 

inhomogeneous with motion patterns with PREAVG=93.90%, Module 2 by separating restrictive 

and obstructive lung diseases with 90% of PREObs. And 92.5% of PRERes., that makes the PREAVG 

is 91.06% dependent on the weight of each class. Module 3 by basing on the cause and location 

of the disease which is the function of the immune and lymphatic system, the PREImm. = 83.33% 

and PRELym.= 83.33% too and the final  PREAVG = 83.33%. The false detection comes from the 

severity of the disease. When it is in the early stage, the change in motion is not too different 

compared to the healthy one. The solution on this limitation is to relabel and separate the 

subclass based on level of severity or to increase the size of data set in order to detect more the 
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pattern of lung motion. In this way, we may discover the new pattern of the motion. Lastly, the 

hierarchy predictive model in this research can be used for screening the lung diseases especially 

for the first and the second hierarchy to classify normal and abnormal class and obstructive and 

restrictive class.   

 

6.2 Future works 

• Reduce the false detection by finding more relative points between EE and EI 

inhomogeneous motion and studying more in feature representation and feature 

selection.   

• Increase the number of database in order to discovery more motion patterns to analyze 

the lung diseases.  

• Integrate more knowledge of pathology, radiology, and image processing to find the 

insight from the pattern of data.  

• Improve the accuracy of the model to widely use for screening lung diseases. 

• Develop the user friendly user interface (GUI) 

 

6.3 Recommendations 

Please see Appendix A 
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Appendix A 

Comments from Committee Members 

 

Q.1 On the presentation slide, the number of Abnormal is 90 in Table 7 but 80 

patients appear in Table 8. Which is correct?  

 - (Assoc. Prof. Toshiaki Kondo) 

There is a typo error on Table 8. The number of abnormal patients is 90. Table 1 shows 

the data sets on each class. 

Table 1: The data sets on each class. 

Class Description Data sets 

Class 1 Normal  10  

Class 2 Abnormal 90 

Class 3 Obstructive Lung Disease 48 

Class 4 Restrictive Lung Disease 42 

Class 5 Lymphatic system 19 

Class 6 Immune system 23 
 

Q.2     The weighted average should be between the two values; higher and lower ones. 

There is something wrong in Tables 8 and 9 (on the presentation slide slide). The 

average cannot be lower than a smaller value and larger than a large value. If 

you think your results are correct, explain why.  

- (Assoc. Prof. Toshiaki Kondo) 

Ans:  As mentioned in Question 1, there is a typo error at the weight parameter 

according to the number of data sets. Therefore, the weighted average result is 91.06% 

between the 2 values 92.5% with 48 patients and PRERes is 90% with 42 patients.    
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Q.3 In conclusion, PREabnormal is missing. Why don't you use a hexagon graph 

instead of a pentagon graph? PREobt is also wrong in the graph. Compare with 

Table 8.  

- (Assoc. Prof. Toshiaki Kondo)   

 

Ans: It can be shown by using hexagon graph. Fig. 1 shows the updated version of 

hexagon graph and Fig. 2 shows the weighted average precision on each predictive 

module. 

 

 
 

Figure 1. Precision on each class using Neural Network technique 

 

 
Figure 2. Weighted average precision on each class 
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Q.4 Why and how to evaluate the hierarchy predictive model?  

- (Prof. Jianwu Dang) 

  

Ans: We would like to evaluate the accumulative accuracy of the system by using the 

hierarchy predictive model as shown in Fig.3. The output of the higher level effects 

the input dataset of the lower level (Module 1 - 3). Therefore, we need to use this 

model to evaluate the model performance. 

 

 
Figure 3.the overview of the purposed technique and the hierarchy predictive model. 
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Q.5  It is velocity vector or displacement?  

- (Prof. Jianwu Dang) 

 

Ans: For the velocity vector map, the expanding lung motion is estimated from the 

end-expiratory (EE) to the end-inspiratory (EI). The motion is considered as a vector 

and it contains magnitude and orientation. However, this research focuses on the 

magnitude by using the function as shown below: 

 

𝒅(𝒙D, 𝒚D, 𝒛D: 𝒙, 𝒚, 𝒛) = �(𝒙D − 𝒙)𝟐 + (𝒚D − 𝒚)𝟐 + (𝒛D − 𝒛)𝟐 

 

Generally, the first criteria for clinical screening to diagnose obstructive and 

restrictive lung diseases is defined by the Pulmonary Function Tests (PFTs). The 

volume of lungs and ability to expanding and shrinking is considered to classify the 

type of lung diseases.   

 

The PFTs consists of three main parameters:  

1). The Forced Vital Capacity (FVC) test shows the amount of air that a person can 

quickly and forcefully breathe out, after a deep breath,  

2). the Forced Expiratory Volume in One Second (FEV1) test shows the amount of 

air a person can forcefully exhale in one second of the FVC test, and  

3). the Total Lung Capacity (TLC) test describes the volume of air remaining in the 

lung after exhalation.  

     The FEV1/FVC ratio is used to diagnose the type of lung disease and the severity 

of a disease. The FEV1/FVC ratio is decreased in the obstructive pattern and increased 

in the restrictive pattern.  

     For example, an FEV1/FVC ratio of less than 0.7 [1] is considered as COPD and 

the stage of COPD is classified by the percent of FEV1: Mild FEV1 ≥ 80%, 
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Moderate 50%≤FEV1<80%, Severe 30% ≤ FEV1< 50%, and Very Severe FEV1< 

30%. These tests are the gold standard to diagnose COPD [2,3]. The TLC is increased 

or normal in an obstructive pattern by the remaining air in the lungs and decreased in 

a restrictive pattern. 

 
[1] P. P. Walker, P. Mitchell, F. Diamantea, C.J. Warburton, and L. Davies, “Effect of primary-care spirometer on the diagnosis and 

management COPD”, European Respiratory Journal 2006, Vol. 28: 945-952. DOI:10.1183/09031936.00.00019306 

[2] Y. Qu, Y. Cao, M. Liao, and Z. Lu, “Sagittal-Lung CT Measurements in the Evaluation of Asthma-COPD Overlap Syndrome: A 

Distinctive Phenotype from COPD alone”, Radio Med (2017) 122:487-497. DOI: 10.1007/s11547-017-0743-9 

[3] R. A. Hartley, B. L. Barker, C. Newby, M. Pakkal, S. Baldi, R. Kajekar, R. Kay, M. Laurencin, R P. Marshall, A. R. Sousa, H. Parmar, 

S. Siddiqui, S. Gupta, and C. E. Brightling, “Relationship between Lung Function and Quantitative Computed Tomographic Parameters of 

Airway Remodeling, Air Trapping, and Emphysema in Patients with Asthma and Chronic Obstructive Pulmonary Disease: A Single-Center 

Study”, vol. 137, no. 5, (2016) DOI: 10.1016/j.jaci.2016.02.001 

 

 

Q.6 Evaluation of accuracy of 3D ACM from adaptive parameter settings, if this 

number of errors is reduced, can it help to improve the accuracy of ACM in the 

next step.  

– (Assoc. Prof. Shinobu Hasegawa) 

Ans: 

There is a challenge point of ACM on the sharp corner. In the case of sharp corner, 

we need to increase the balloon force and also the Gradient Vector Flow (GVF) in 

order to push the parametric contour to the boundary of EI model. We cannot apply 

the same parameter to all datasets because it shows the difference characteristics to 

expanding as shown in Fig. 5. Therefore, the diameter of 3D model is evaluated called 

Zratio. The Zratio is introduced to distinguish the different sets of shape estimated by the 

ratio of diameter EI to EE on the Z-axis as shown in Zratio equation. 

 

𝒁𝒓𝒂𝒕𝒊𝒐 = 	
|𝐦𝐚𝐱(𝑬𝑰. 𝒛) − 𝐦𝐢𝐧	(𝑬𝑰. 𝒛)|
|𝐦𝐚𝐱(𝑬𝑬. 𝒛) − 𝐦𝐢𝐧	(𝑬𝑬. 𝒛)| 
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     Where |max(𝐸𝐼. 𝑧) − min	(𝐸𝐼. 𝑧)|	represents the diameter in Z direction of 

EI model and |max(𝐸𝐸. 𝑧) − min	(𝐸𝐸. 𝑧)| is the diameter in Z direction of EE 

model. 

 By using Zratio, it can overcome the difficulty of the parametric contour to control the  

The shape and size of lung is separated in to 3 sets based on the data set of this study 

and then the weighted parameters are assigned each set called PARAM1, PARAM2, and 

PARAM3 as shown in Fig.4. When the Zratio is higher than 1.2, PARAM1 is applied, the 

challenge of PARAM1 is the sharp edge in the lower lung, the balloon force and GVF 

are tuned. PARAM2 represents the normal or slightly abnormal lungs where Zratio is 

between 1 to 1.2.  PARAM3 is the abnormality cases where mostly appears in patient 

with air trapping problem (obstructive lung disease).   

   If we can reduce the error from 3D ACM technique by using adaptive parameters, 

it will help improve the accuracy for in the classification model too.  

 

 

 

Figure 4. 𝒁𝒓𝒂𝒕𝒊𝒐 estimation from EI and EE models and examples of a dataset with 

3 different parameter function: 𝑷𝑨𝑹𝑨𝑴𝟏  , 𝑷𝑨𝑹𝑨𝑴𝟐, and 𝑷𝑨𝑹𝑨𝑴𝟑 
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Figure 5. Examples when the magnitudes of weighted parameters are unbalanced. 

Q.7 Unbalanced data problem and how to fix it? Example: sampling data  

– (Assoc. Prof. Shinobu Hasegawa) 

 

Ans: To solve the unbalanced data problem, we can resample the data by copying the 

minority class which is 10 datasets. However, there are the criteria to identify the 

normal lung and also the factor that affects lung volume such as age, height, people 

who live at higher/lower altitudes. In particular FEV1/FVC (as mentioned in Question 

5) is used to distinguish the obstructive and restrictive lung diseases. For the restrictive 

lung disease, the volume is decreased and for the obstructive lung disease, there is the 

air trapped inside, then flow rates are impeded.  

Therefore, to resampling the normal lungs we need to consider the physical 

environmental factors and selected the one that represents the main characteristics of 

the healthy lung. 

However, if the number of data set is not so much difference we can use F1 score or 

average precision to evaluate the classification model by using the number of 

instances of each class. We also need to specify the considering points  
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 Q.8 Why we need to consider the normal case. Normally the data from the hospital 

is mostly unhealthy. Why we need to separate the normal and abnormal 

according to the first Module. 

– (Assoc. Prof. Shinobu Hasegawa) 

 

Ans. To classify the normal from the abnormal cases, it can help avoid the false 

positive (FP) from the patient who has no lung disease. However, the medical doctor 

concerns the accuracy of false negative (FN) more than the false positive (FP). If our 

focus group is the lung disease classification, we can use module 2 and 3 to classify. 

However, for the overall system in practical, it might have the false positive case to 

the screening system. Therefore, the module 1 is still important to learn and classify 

the false positive case. 

 

Q.9 Normally ACM is used to segmentation object and in this research, ACM is used 

to estimate the motion?  

- (Prof. Mineo Kaneko) 

 

Ans.  

    The 3D ACMs are generally used as a non-rigid segmentation-based technique, 

especially in biomedical images. The concept of 3D ACM is to minimize the internal 

and external energies, and the final evaluation of the active contour will be stopped 

by the desired boundary of the target.  

     The 3D Parametric Active Contour Model is performed to estimate the velocity 

vector between the EE and EI lung models. A mesh represents the control points of 

the 3D active contour. The energy function in 3D ACM develops the parameter 

function to control the control points in more dimensions as 𝒗 ∶ [𝟎, 𝟏] ×	 [𝟎, 𝟏] → ℝ𝟑. 

The 3D contour is described by a function of v. The contour is placed on an image as 

𝒇 ∶ 	ℝ𝟑	 → 	ℝ. The snake model combines the internal energy 𝑬𝒊𝒏𝒕 and external energy 
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𝑬𝒆𝒙𝒕into 𝑬 = 𝑬𝒊𝒏𝒕(𝒗) +	𝑬𝒆𝒙𝒕(𝒗). The 3D image force concerns the movement in 3 

directions of the parametric curve in 𝑬𝒊𝒏𝒕(𝒗). Therefore, the parameter function (𝒗 =

𝒗(𝒔, 𝒓) = [𝑿(𝒔, 𝒓), 𝒀[𝒔, 𝒓], 𝒁(𝒔, 𝒓)]) is added to control the corresponding points (or 

the control points) where 𝑿,𝒀, 𝒁 are the corresponding coordinate function of the 

surface.  

The internal energy 𝑬𝒊𝒏𝒕(𝒗) can be expressed as 	
𝑬𝒊𝒏𝒕 = A[𝜶𝒔|𝒗𝒔D |𝟐 + 𝜶𝒓|𝒗𝒓D |𝟐] + [𝜷𝒔|𝒗𝒔𝒔DD |𝟐 + 𝜷𝒓|𝒗𝒓𝒓DD |𝟐 + 𝜷𝒔𝒓|𝒗𝒔𝒓DD |𝟐] 𝒅𝒔𝒅𝒓 

 where 𝜶𝒔 and 𝜶𝒓 denote the elasticity, respectively,	𝜷𝒔 and 𝜷𝒓 are the 

corresponding rigidities, and 𝜷𝒔𝒓	is the resistance to twist.  

    The external energy 𝑬𝒆𝒙𝒕(𝒗)  is the image force of the boundary.  

In this work, the EI model is modified from the 3D surface (EI model) to 3D matrix 

of contour point by setting the boundary of 𝑰𝑬𝑰(𝒙, 𝒚, 𝒛) = 𝟏 and the inner and outer 

of a closed parametric surface (EE model) are set as 0. The 𝑬𝒆𝒙𝒕(𝒗) represents by 

𝑬𝒊𝒎𝒂𝒈𝒆(𝒗).   𝑬𝒊𝒎𝒂𝒈𝒆(𝒗)  shows the features of the EI model such as the boundary and 

represented it by potential force fields or the gradient of the image 𝛁𝒑(𝒗, 𝒇) under the 

closed plane conditions. Next, the energy (𝑬 = 𝑬𝒊𝒏𝒕(𝒗) +	𝑬𝒆𝒙𝒕(𝒗)) is minimized by 

using the Euler-Lagrange equation to find the v that satisfies the equation balances the 

internal force and image force. When all energies are balanced, the total energy is 

minimum as shown. 

[𝜶𝒔|𝒗𝒔D |𝟐 + 𝜶𝒓|𝒗𝒓D |𝟐] − [𝜷𝒔|𝒗𝒔𝒔DD |𝟐 + 𝜷𝒓|𝒗𝒓𝒓DD |𝟐 + 𝜷𝒔𝒓|𝒗𝒔𝒓DD |𝟐] = −𝛁𝒑(𝒗, 𝒇) 

    Therefore, the corresponding point on the parametric surface from EE to EI model 

can be used to evaluate the expanding motion of lungs. 

 

 

 

 



 

 71 

Q.10 Why select Neural Network technique as a classification technique, how about 

the Support Vector Machine (SVM)? Comparing to the previous work, SVM is 

better than Neural Network, why you select NN? 

 – (Assoc. Prof. Waree Kongprawechnon) 

 

Ans.  

Now the SVM is used to compare the accuracy to the neural network technique. Due 

to the size of training data, using SVM can provide the maximum margin between 2 

classes by using RBF kernel function. For the estimation model, we still use the 

hierarchy predictive model to evaluate the performance of the model because SVM 

has a limitation to binary classification.  

 

Q.11 The time consuming of Finite Element Method is under the same assumption as 

the proposed technique?   

– (Assoc. Prof. Waree Kongprawechnon) 

 

Ans.  

For the time consuming, there are 3 factors that highly affect which are the number of 

elements, the number of iterations and preprocessing method. If those factors are 

complicated, it will take more time consuming.  For the Finite Element Method 

(FEM), The preprocessing of FEM is started by setting the geometric construction, 

discretization, shape function, element equation, initial condition, and then material 

properties. The mesh convergence is also analyzed be selected the suitable number of 

mesh. In the biomedical image, the elements of mesh are approximately 10,000 to 

20,000 elements. The number of elements and conditions (by shape and delicacy of 

3D mesh) will affect the time consuming for tuning FE simulation which may use 13 

hours [4] or 86 hours [5]. Some research solves this problem by considering the 
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landmark points which can reduce the computed elements to 300 – 400 elements [6-

7].    

    However, this research using 3D mesh for the initialization by assigning it to the 

initial parametric curve of the 3D ACM which is also generated from 3D mesh. The 

alignment for registration and the parameter setting is applied before the iteration 

process starts. The adaptive parameter is calculated by size of the lung in order to 

adjust the controlled energy of both internal energy such as the tension and rigidity of 

the parametric curve and external energy such as balloon force and gradient vector 

flow. The adaptive parameter can also help to reduce the simulation time by using the 

set of parameters based on the physical shape of lungs.  In this research, the 

approximate time-consuming starting from 3D mesh to the last iteration is about 10 

minutes per model. 

 

[4] L. Han, H. Dong, J. R. McClelland, L Han, D. J. Hawkes, and D. C. Barratt, A hybrid patient-specific biomechanical model-

based image registration method for the motion estimation of lungs, Medical Image Analysis, Vol. 29, pp. 87-100 (2017) 

[5] M. Zehtabian, R. Faghihi, M. A. Mosleh-Shirazi, A. R. Shakibafard, M. Mohammadi, and M. Baradaran-Ghahfarokhi, “A 

Fast Model for Prediction of Respiratory Lung Motion for Image-Guided Radiotherapy: A Feasibility Study”,      Iran. J. 

Radiat. Res., Vol. 10(2), pp. 73-81 (2012) 

[6] X. Liu, R. R. Saboo, and S. M. Pizer, A shape-navigated image deformation model for 4D lung respiratory motion estimation, 

IEEE ISBI (2009) 

[7] P. A. Yushkevich, J. Piven, H. C. Hazlett, R. G. Smith, S. Ho, J. C. Gee, and G. Gerig, User-guided 3D active contour 

segmentation of anatomical structures: significantly improved efficiency and reliability, NeuroImage, pp. 1116-1128 (2006) 
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