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Abstract

In this work, we consider the localization problem of multiple unknown
radiation sources with measurement uncertainty by using robotic systems in
a geometric environment. The goal is to give an accurate map of radiation
which contains a number of sources, locations, and intensities. Furthermore,
the exploration cost must be minimized. We proposed the scheme for the
localization of multiple radioactive sources using the particle filter. In a
normal circumstance, a robot will estimate the source location by pursuing
the intensive intensity site. However, a low radiation area has little information
which makes an unpredictable estimation. Thus, an exploration algorithm
must be utilized. In consequence, the exploration cost must be minimized
because the exploration time might be restricted. We propose the exploration
method using frontier-based exploration which involves the target point
selection algorithm by considering the minimum distance from a robot to
an unexplored region, and the increasing gradient direction. In addition,
the area pruning algorithm is introduced to further decrease the exploration
time by overlooking less important areas and applying Bayesian estimation
to further eliminate the potentially no source area. After every source is
discovered, we proposed the sources intensity separation algorithm to further
raise the estimation accuracy. The proposed method has been verified by the
simulations using MATLAB in both ideal environment and SLAM dataset
of a real building. In addition, the uncertainty in the robot self-localization
was introduced and experimented. The effect of environment attenuation
that decreases the radiation measurement is also investigated and the robot
is successfully localized the radiation source inside a single entrance room.
The proposed strategy can incredibly decrease the exploration cost compared
to the regular techniques and increment the accuracy of multiple sources
localization.

Keywords: Bayes’ theorem, source localization, information theory,
exploration and path planning, mobile robot
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Chapter 1

Introduction

The environmental hazard is an important threat where chemical substance
damages the environment, which has an unfavorable effect on living organisms.
One of the causes that contaminate surroundings is radioactive material
leakage, which is an increasing concern in national security [5, 6]. This
emerging threat can be either induced by a malicious attack or accidental
release of radioactive material. Thus, the radiation source estimation can be
a valuable tool in order to plan a counter-measure to the problem, including
saving human life and clean up the leakage material [7, 8].

Nowadays, the existing technologies in radiation detection mainly operate
manually or stationary [9,10]. The first method is to use human as an explorer
by manually waving the radiation detection device in the possible area of
radioactive leakage [11]. In this method, the gathered information may not
provide the complete visual or statistic data map. In the worst case, the
operators may be exposed to the radiation themselves, which can later cause
a serious radiation sickness [12]. Another method to detect the radioactive
material is to use a stationary portal monitor. This method is mainly used
in the port to scan the shipping container or cargo. The drawback of this
method is the lack of mobility.

Autonomous robotic systems have become increasingly interested by
researchers around the world [13]. The replacement of human force to perform
dangerous task such as nuclear radiation detection is the advantage of the
robotic systems. In addition, the mobility given by robots can surpass human
in the process of data gathering in an inaccessible area by human. Moreover,
robots can work together as a team to quickly accomplish the task objective
with either centralized or decentralized way. Thus, using robots in the task
of radiation intensity mapping is a better choice.

This thesis is divided into 6 chapters. Chapter 1 consists of the
introduction. Chapter 2 is the literature review. Next, chapter 3 explains the
recursive bayesian estimation and particle filter. Chapter 4 talks about the
exploration algorithms for robots. Chapter 5 shows the experimentation and
analysis of this research. Lastly, chapter 6 is the conclusion of all works.
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1.1 Problem Statement

The main problem of exploration in the radiation field is the measurement
uncertainty [14–16]. Each sensor measurement of the robot at the same
position does not guarantee to have the same value. In a particular case,
it is based on Poisson distribution. The particle filter is one of the tools
that give flexibility over the non-linear system. One way to navigate through
the exploration field to locate the radiation source is to follow the estimated
source location of the particle filter [17,18]. However, that does not guarantee
to be the optimum path, or the result may be a failure in the worst case due
to the distance between the robot and the source. If the location of the robot
is far away from the source or in low radiation area, the particle filter does
not guarantee to give an accurate result due to lack of information. This work
proposed the method for both exploration and multiple sources localization
using robotic systems. The minimum cost in exploration can be achieved by
moving a robot to the appropriate position. We proposed the algorithm for
selecting the next best position by considering several conditions, such as,
the minimum distance from the current position of the robot to the available
target position and the largest gradient direction. Furthermore, the area
pruning algorithms are employed to decrease the exploration cost by avoiding
the possibly low intensity area using recursive Bayesian estimation pruning
and low priority flag. In addition, for single source case, information gain
based exploration has been investigated. The robot will use the information
gain-based exploration, which can calculate the best possible action for the
robot by using the particles information (weight, intensity, and location).
Finally, after the sources localization is finished, unknown sources intensity
separation algorithm will be applied to further increase the measurement
accuracy.
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Chapter 2

Literature Review

2.1 Basic Knowledge of Radioactivity

Radioactivity is a process of an unstable atom emits ionization radiation. The
atom loses a nucleus in the process. Radioactivity is also known as radiation
decay, or nuclear decay. The material which emits radiation is consider a
radioactive [19–21].

2.1.1 Type of Radiation

The types of energy that emit from an unstable atom are alpha particle (α),
beta particle (β), and gamma ray (γ). Fig. 2.1 shows those particles and
their penetration properties.

2.1.1.1 Alpha Particle

Alpha particle is the weakest type of radiation. It consists of two neutrons
and two protons which weight about 8,000 times of an electron. It can be
shielded by a piece of paper which means it is completely harmless to human
when a body get exposed. However, it is only harmful when it is inside the
body.

2.1.1.2 Beta Particle

Beta particle is an electron particle which has very light weight around 1/2000
the mass of single proton or neutron. It can be shielded by a wall of wood
or aluminium. It is able to penetrate the human skin a little which is not
harmful to human in a small dose.

2.1.1.3 Gamma Ray

Gamma ray is the third kind of radiation which is not particle. It is a high
energy form of light which has no mass. It has high penetration property
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Figure 2.1: Alpha particle (α), beta particle (β), and gamma ray (γ) with
their penetration properties [1].

which mean it can penetrate through almost everything including human
body. However, it can be blocked by a thick wall of lead. It is very hazard to
living organisms [22].

2.1.2 Radioactivity Measurement

The most common radioactivity measurement is a Geiger counter. It consists
of a metallic tube which is filled with a gas. Fig. 2.2 shows how a Geiger
counter works. When the device is exposed to the radiation, The atom inside
the tube will be ionized by the radiation. The negatively charged electrons
(blue particle) are attracted the positively charged anode (red wire) while
the positively charged protons (red particle) are attracted to the side of the
tube which is a negatively charged cathode (blue wall). A Geiger counter will
count the electron that passed the anode wire. The unit of a Geiger counter
is count per second (count/s) [22].

2.1.3 Radiation Model

The radiation reading from a measurement device follows the inverse square
relationship. The intensity of the radiation source is inversely proportional to
the distance relatively to the instrument according to the following equation
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Figure 2.2: The operation inside a Geiger counter [2].

[23]:

λk =
I

(xk − x0)2 + (yk − y0)2 + (zk − z0)2
+ λb (2.1)

where λk is the intensity at the measurement device. I is the intensity of the
source, (xk, yk, zk) is the position of the measurement device, (x0, y0, z0) is the
position of the source, and λb is the background intensity at the measurement
point. In our case, we use a ground mobile robot and we assume that the
intensity source is on the ground. Therefore, the altitudes zk, z0 are zero.
However, from the experiment, if the robot moves closer to the source point,
the reading becomes near infinity because the different between (xk, yk) and
(x0, y0) is near zero. To solve this problem, we set the altitude different z to
be 1. The new equation is as follow:

λk =
I

(xk − x0)2 + (yk − y0)2 + 1
+ λb (2.2)

The example plot of the radiation using Eq. 2.2 is shown in Fig. 2.3. For
multiple sources case, since there are two or more sources, the intensity model
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Figure 2.3: The example plot of the radiation of the source intensity of 10,000
at the location (0,0). The background intensity is set to 1,000.

equation (Eq. 2.2) cannot be applied to map the source. In this case, we
adopt the new intensity model by combining every sources using the following
equation:

λk =

{
M∑
i=1

Ii
(xk − xi)2 + (yk − yi)2 + 1

}
+ λb (2.3)

where λk is the kth measurement at (xk, yk). M is the maximum number of
the source. Ii is the ith intensity at (xi, yi). λb is the background radiation.
The example plot of the radiation using Eq. 2.3 is shown in Fig. 2.4.
However, each decay event of radioactive is random, independent and occurs
at a fixed mean rate λ. [24] describes the model of radioactive decay using
Poisson statistics as the following equation:

f(k, λ) =
λke−λ

k!
(2.4)
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Figure 2.4: The example plot of the radiation of 4 sources with random
intensities. The background intensity is set to 1,000.

where λ = I is the average number of count for that period of time. k is
the exact measurement reading from the source. Gaussian distribution can
be used to approximate Poisson distribution when λ becomes large (with
λ = µ = σ2). Fig. 2.5 shows the uncertainty of measurement vary with
distances and graph fitting using Poisson and Gaussian distribution.

We assume that the radiation detector attached to the robot location
(xk, yk) is uniformly directional response and neglect the air attenuation. The
measurement by a robot is independently distributed and the exposure time
τ of all measurement is constant. The radioactive are separable point sources
and have a finite number of points in a known geometric area without obstacle.
However, the number of sources is unknown by the robot.
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Figure 2.5: A measurement uncertainty of radioactive vary with distances
with the graph fitting using Poisson and Gaussian distribution [3].

2.2 Related Works

The radioactive measurement gives a non-linear output [25,26], yet introduces
uncertainty in measurement [24]. In order to handle these issues, there are
several studies addressing the problem of source localization and estimation.

The radioactive source localization can be achieve using several techniques.
The main categories for localizing the radiation source lies in the single
source and multiple sources localization. For a single source localization, the
common method is to use radiation reading as signal strength in different
locations to determine the possible source in a certain area. [3], [27] utilize
this approach by measurement the radiation circularly around the possible
intensity source. The author applied three estimation techniques: maximum
likelihood estimator (MLE), the extended Kalman filter (EKF), and the
unscented Kalman filter (UKF). The Cramér-Rao lower bound was used to
find the lower bound for estimation algorithms. The MLE gave the best result
among other methods, but the computational intensive is the problem of this
algorithm. It is unlikely that MLE can be used in real-time application. The
EKF and UKF gave inaccurate result. The EKF, moreover, diverged from
the CRLB. The test was done on both simulated source and trial data.

Similar technique of MLE was used in [28] to detemine multiple sources by
measuring the source from the distance which the number of source, intensity
strength and location are unknown. The author managed to estimate the
source location using MLE and use generalize maximum likelihood to find the
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number of souces. Another technique is to estimate the sources parameters
using particle filter using important sampling with a progressive correction.
The author successfully estimates 0-2 sources but from three sources onward,
it was not very good using MLE. Bayesian estimation perform well in both
cases.

[29] use the concept similar to global positioning system calculation by
finding the level curves of the sources using the detector placed in the corner
of the room. Thus, they said the intersection point has the highest probability
that the source exist. The recursive least square optimization was used to
estimate the sources from different sensors. However, the source intensity is
claimed to be known as a priori. They successfully utilized realtime tracking
of the source with some error in an indoor environment.

One of the interesting approaches is to use a vehicle to carry a detection
device for measuring the intensity. [4] used a helicopter to carry a detector
and flew over the area to localize the radiation source. The particle filter was
used as the localization technique with a prior knowledge of the intensity of
the source type of 1/R2. [30] used a mobile ground robot equipped with a
detector to localize a source. There are obstacles in the environment and the
author used the artificial force field algorithm with the control vector to avoid
them. As a result, the smooth path was generated and the robot successfully
located the source.

The multi sensor approach is presented in [31]. The author used a group of
mobile robots with detectors to map the radiation over a given polygonal area.
Each robot is capable to share the measurement information and its location
with another robot using wireless communication. The search environment
was divided into a grid map. The robots will follow the information gradient
and map the radiation by measure every grid cell. The test was done using a
red LED as a simulated source.

For multiple radiation sources localization, [32] presents glowworm algo-
rithm for a swarm of robots for multiple sources localization. The glowworm
optimization is a well-known algorithm for localize the local optima of function.
The agents in the algorithm carry a luminescence quantity called luciferin,
which used to for information sharing. The agent will vary its sensor range
parameter in order to compute its movement and move toward the one
that has higher luciferin then its own. The author adapted the glowworm
optimization for the case of radiation sources localization. It is successfully
run with a swarm of 100 agents. The achieve minimum distance between two
sources is 0.39m.

Another interesting technique for multiple sources localization is the
contour tracking technique as in [23]. The author used a helicopter that
equipped with the measurement device. The helicopter flew in the radiation
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field by tracking its contour at low intensity measurement. Since the shape
of the radiation that emits from the source is a circular shape. The contour
of a single source is circle. For multiple sources, the Hough transform is used
to determine multiple circles, in order to find the centers of the circles, which
leads to the source locations. The limitation of the helicopter is that the
fuel burns very fast. The author managed to swiftly tracking contour and
provided a rough estimation of the radioactive sources.

In an intense radiation field, it is possible to locate the radioactive source
by letting a robot follows the intensity gradient. However, if the robot is a long
distance from the radiation source, the intensity measurement will be weak.
Thus, a robot needs an exploration algorithm to efficiently locate the strong
measurement which will lead it to the source. In addition, the exploration
time might be constrained since there is limited measure of battery and limit
evacuation time. Thus, an efficient exploration scheme for a robot must be
utilized, which should minimize the exploration cost (e.g. traveling distance,
time) but maximize the information for a robot. For exploration strategy, [33]
presented the frontier-based exploration algorithm by directing robots to a
region, called frontier cells, which lies between known and unknown areas.
The algorithm is able to fully explore a reachable workspace and generate a
reachability map [34,35]. A robot will use appropriate criteria for choosing
the best frontier for the best performance. The common criterion is the
minimum distance from a robot to the frontier cell. However, it depends on
the environment that additional criteria may be applied (e.g. terrain type,
path cost, input measurement).
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Chapter 3

Radiation Estimation Algorithm

Due to the fact that the reading of a measurement device is uncertain as
discuss in Section 2.1.3, the gradient-based methods may not work because
they do not consider sensor uncertainty [36]. Thus, the estimation algorithm
is needed to tackle the problem of noisy measurement.

3.1 Recursive Bayesian Estimation

Recursive Bayesian estimation (RBE) or Bayes filter is an excellent method
to deal with sensor uncertainty [37, 38]. It also provide the real-time
computational feasibility with localization accuracy [9, 39]. Most recursive
Bayesian estimations have the same concept which is to predict the system
behavior by using the measurement to correct the prediction following Bayes
theorem:

P (x | z1, . . . , zn) =
P (zn | x, z1, . . . , zn−1)P (x | z1, . . . , zn−1)

P (zn | z1, . . . , zn−1)
(3.1)

where x is the estimated state. z is the observation as the measurement.
The left hand side of the equation is P (x | z1, . . . , zn) which is the posterior
belief. It is the product of the measurement model P (zn | x, z1, . . . , zn−1)
and the prior belief P (x | z1, . . . , zn−1) divided by the normalization constant
P (zn | z1, . . . , zn−1).

Recursive Bayesian estimation start with the initial state. Next step is
the prediction step, it will update the belief space. Then the measurement
step, the prediction is corrected using the measured data [40]. The process
will repeat at the prediction step and will converge when the prediction is
close to the measurement. Fig. 3.1 shows the basic of recursive Bayesian
estimation operation. There are two kinds of belief space in recursive Bayesian
estimation. The first one is the bell-shape belief space called Gaussian belief
space as in Fig. 3.2. The Kalman filter utilizes this kind of belief space due
to the fact that it has only two parameters; mean and covariance. Another
one is the non-Gaussian belief space which has an arbitrary shape [41, 42].
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Figure 3.1: Overall process of the recursive Bayesian estimation algorithm.

This belief space suits for recursive Bayesian estimation algorithms like the
particle filter because the filter has particles which have random attributes
and each of them represent a single belief. The plot of these beliefs can be any
shape, for instance in Fig. 3.3. The grid-based method and element-based
method are also suit non-Gaussian belief space. the In this work, we use
the non-Gaussian belief space because a single static sensor measurement of
a source intensity cannot be used to determine the source location directly.
The non-Gaussian belief space would provide a ring-like shape which tells us
where the source may locate.

Each recursive Bayesian estimation algorithms comes with different
performance in efficiency, ability for non-Gaussian, and ability for non-linearity
as in Fig.3.4. The simplest algorithm of recursive Bayesian estimation is the
Kalman filter (KF). It is the most efficient but perform poorly in non-Gaussian
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Figure 3.2: A Gaussian belief space.

system and it is a very linear process model [43,44]. The extended Kalman
filter (EKF) uses the Jacobian matrix to relax the linear constraint but it still
suffer from non-Gaussian distribution [45,46]. The unscented Kalman filter
(UKF) allows some non-Gaussian belief space but does not work well with
highly non-linear and non-Gaussian system [3,47]. The grid-Based method
(GM) has the performance depends on the selection of grid mesh or the
number of elements and it suffers from computational complexity because
the convolution of motion and measurement update e.g. the 3-D grid update
requires 6-D operation [48–50]. The same reasons go for element-based method
(EM). The most compromise of efficiency and performance for non-linear
and non-Gaussian system is the particle filter (PF) [51]. In addition, the
particle filter is non-parametric, thus it provides heuristic and more flexibility
than other algorithms [52–55]. Therefore, it is used for intensity mapping
algorithm in this work.
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Figure 3.3: A non-Gaussian belief space.

3.2 Particle Filter

In this work, we choose the particle filter as the mapping algorithm since it
compromises efficiency and performance for the non-linear and non-Gaussian
systems [56, 57]. In addition, the particle filter is non-parametric. Thus, it
provides heuristic, and it is more flexible than other algorithms [58, 59]. The
particle filter or Sequential Monte Carlo (SMC) is the method representing
the posterior belief using a set of random state samples as particles [60].
Each particle is basically a hypothesis of the real state at time t with an
associate weight to represent the accuracy of the hypothesis based on the
state measurement. The detail of the particle filter algorithm is in Algorithm
3.1. The particle filter starts with initialization of random hypothesis states
as initial particles with equally associated weights. Then, the error model is
used to find the error between measurement and prediction. The weight of
each particle will be updated by the product of the weight of previous time
step and the likelihood function. The likelihood function comes in the form
of the normal distribution of the error with mean µ and variance σ. The
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Figure 3.4: Recursive Bayesian estimation algorithms comparison [4].

weight must be normalized so they sum up to 1. The estimated state will be
calculated by state estimate model. Some of the lowest weight particles will
be resampled at the high weight particles at resampling step. Finally, the
particles and the weights will be updated to be used in the next time step.

3.2.1 Target State

We use mobile robots to explore and map the radiation. The estimation state
x for each particle requires the location (x, y) of the source and its intensity
I as:

x =
[
x y I

]
(3.2)

3.2.2 Intensity Estimation of Particles

We can use Eq. 2.2 to calculate the particle expected intensity I at the location
(x, y) as we have a kth measurement zk at the robot location (xk, yk). However,
it may introduce an estimation accuracy problem since we only use the current
measurement that only provides the information at a specific location. If we
combine the previous measurements, which include measurement locations
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Figure 3.5: Overall process of the particle filter.

(x1:k, y1:k) and intensity measurement λ1:k, the particles’ intensity estimation
will be more accurate.

3.2.2.1 Single Landmark Intensity Estimation

From Eq. 2.2, we can estimate the particle’s intensity I i at (xi, yi) using the
current measurement zk by:

I i

d2k
+ λb = zk (3.3)

where dk =
√

(xk − xi)2 + (yk − yi)2. However, the drawback of single
landmark intensity estimation is that, the current measurement does not
estimate the intensity quite well. The reason is because the measurement
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Algorithm 3.1 Particle Filter

1: Initialize particles: x0 = rand(N, 1)
2: Initialize particles’ weights: w0 = 1/N
3: while Not converge do
4: errori = error model(measurementi, predictioni)
5: for i = 1 to N do
6: Update weight: wik = wik−1 · likelihood function(errori)
7: end for
8: Normalize weights: w = w∑N

i=1 w
i

9: Calculate state estimate: x̂ = state estimate model(w, x)
10: Resampling process
11: Update particles: xk+1 = xk
12: Update weights: wk+1 = wk
13: end while

error from sensor worsen the estimation. Thus, using multiple estimation
points can improve the measurement drastically.

3.2.2.2 Multiple Landmarks Intensity Estimation Algorithm

Optimization method To get more accurate estimation of the intensity
point I i is to use all n measurement zk−n, . . . , zk. Optimization algorithm is
one of the method to achieve this goal. In this work, we want to show you
the example of using an optimization algorithm to determine the estimation
intensity. The algorithm that we choose is the nonlinear program solver in
MATLAB called fmincon, which specify the constrains and function by:

min
x
f(x) such that



c(x) < 0

ceq(x) = 0

A · x ≤ b

Aeq · x = beq

lb ≤ x ≤ ub,

where c(x) and ceq(x) are the subject of minimization of inequality and
equality of nonlinear function respectively. A ·x ≤ b and Aeq ·x = beq subject
to the minimization of linear inequality. lb and ub are lower bound and upper
bound of x. For this work, we only require lb and ub parameters for intensity
I i. The rest of the parameters are empty. The objective function is the
likelihood function equation (Eq. 3.14) in section 3.2.3.
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However, the drawback of the optimization method is the computational
time. Since it requires intensive calculation from the lower bound lb to
upper bound ub of every particle, the computation time increases directly
proportional to the number of particles.

Calculation method From section 3.2.2.1, consider the previous measure-
ments from the first measurement to measurement n, they also can estimate
the intensity I i by:

I i

d2k
+ λb = zk (3.4)

I i

d2k−1
+ λb = zk−1 (3.5)

I i

d2k−n
+ λb = zk−n (3.6)

combining those terms, we have:

I i

d2k
+ λb +

I i

d2k−1
+ λb + · · ·+ I i

d2k−n
+ λb = zk + zk−1 + · · ·+ zk−n (3.7)

I i

d2k
+

I i

d2k−1
+ · · ·+ I i

d2k−n
=

n∑
j=0

(zk−j − λb) (3.8)

I i · (d−2k + d−2k−1 + · · ·+ d−2k−n) =
n∑
j=0

(zj − λb) (3.9)

I i ·
n∑
j=0

d−2k−j =
n∑
j=0

(zk−j − λb) (3.10)

I i =

∑n
j=0(zk−j − λb)∑n

j=0 d
−2
k−j

(3.11)

Thus, Eq. 3.11 can be used to estimate the particle’s intensity I i using
previous and current measurements.

3.2.3 Likelihood Function

By using Eq. 2.4, we can calculate the likelihood xi of particle i by using the
kth measurement zk and the predicted intensity λik from Eq. 2.2, in the case
of single landmark estimation. Here, we approximate the Poisson distribution
to the Gaussian distribution to reduce the computational complexity [3]:
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p(zk; x
i) = P(zk;λ

i
k) (3.12)

≈ N (zk;λ
i
k, λ

i
k) (3.13)

In the case of multiple landmarks estimation using the previous and
current measurements z1:k at (x1:k, y1:k), the new likelihood function is the
product of all likelihoods from all measurements as:

p(z1:k; x
i) ≈

k∏
j=1

N (zj;λ
i
j, λ

i
j) (3.14)

where zk is the measurement update from the robot at time step k. xi

is the current state of the particle i which is used to calculate the predicted
intensity λik at the robot location using Eq. 2.2 as follow:

λik =
Ii

(xk − xi)2 + (yk − yi)2
+ λb (3.15)

where (xk, yk) is the robot position at time step k. Ii is the intensity
of the particle i. (xi, yi) is the location of the particle i. λb is the
background radiation. The Poisson distribution is approximated as the
Gaussian distribution by µ = σ2 = λk.

The state estimation of the particle filter is usually the average state of
the particles with the highest weights. If the portion of the top particles
is too high, the algorithm may not converge. If the portion is too low, the
algorithm may converge to the wrong location.

3.2.4 Resampling Process

The resampling process is on how to remove the lowest weight particles and
resample them elsewhere in order to avoid the problem of degeneracy [61].
The degeneracy problem is the usual problem in the particle filter, which is a
few highest weight particles dominate the distribution while most particles
will have weights close to zero [62]. The resampling process will remove a
portion of the lowest particle weights and resample them at the high weight
particles using the roulette wheel selection [63, 64]. In addition, the particles
that have zero weight will be resampled as well. It is to ensure that some
of the high weight particles will be selected and also add diversity to the
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population from lower weight particles. The newly born particles x
indexjL
k+1 will

have the a uniform weight as:

windexLk = U(1/N) (3.16)

where windexLk is the low weight particles with index indexL, and N is the
number of particles. The Gaussian noise is applied to the portion of those
which are resampled near the high weight particles xtargetk to increase the
diversity as in the following equation:

x
indexjL
k+1 = xtargetk +N (µ, σ2) (3.17)

where x
indexjL
k is the low weight particle j. xtargetk is the selected target of high

index using the roulette wheel selection. randn is the Gaussian noise with the
mean µ = 0 and the standard deviation σ is mag. However, as the process
continues, the standard deviation of the noise mag becomes linearly lower
overtime to make the algorithm converge. When the measurement is higher
than the detection threshold, the robot will pretty much know which area
contains the source. Thus, resample the particle at the estimated states will
accelerate the convergence process.

3.2.5 Termination Criteria

The algorithm will converge when the termination criteria are met. In this
case, we set the termination criteria as: if the root mean square error of
the estimated intensity is less than 5% for 5 iterations and if the robot has
visited the area within 1.5m around the estimated location, the algorithm
has converged. The reason why the robot has to visit the estimated location
is to prevent the algorithm from ending too soon, which may lead to the false
location of the radiation source.
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Chapter 4

Exploration Algorithms

4.1 Frontier-base Exploration

In order to explore the environment, the robot needs to know which part of
the area is not visited and which part is visited. By knowing visited and
unvisited area, the robot will not have to move to the same location, thus it
gives an efficient exploration [65]. Frontier-based exploration is the excellent
tool for a robot exploration. It uses a grid map to determine visited and
unvisited area. The cells between visited and unvisited area are called frontier
cells, which the robot uses to determine where to go next [33,66–69].

Fig. 4.1 shows how a robot creates grid map. The white area is the area
that has already been visited by the robot. The green area is the area that
has not been visited by the robot yet. The blue asterisks are the frontier cells.

4.1.1 Target Point Selection

To determine the direction of a robot, an algorithm for choosing an appropriate
frontier cell is needed. We will use a cost function to determine the for the
robot using the following criteria:

1. Intensity gradient: the robot will choose the frontier in which the
intensity measurement tends to be higher by following the direction of
increasing intensity gradient.

2. Distance: the robot will calculate the Euclidean distance from itself to
the frontier.

The minimum-cost path is computed using the following equation:

V i
t = α||i− t||+ (1− α)D(ax0 + by0 + c, (tx, ty)) (4.1)

where V i
t is the cost of a robot ix,y to reach frontier position tx,y. α is

the importance weight of the distance and the intensity gradient which set
between [0, 1]. From experiment, we set α = 0.8. The intensity gradient
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Figure 4.1: Left side, the simulated environment with a robot represented
by a square. Radiation sources are represented by black dots. Small dots
with color indicate the particles with associate weights. Right side, The robot
grid map with visited area (white), unvisited area (green) and frontier cells
(asterisks).

can be achieved by using the past and current measurements of a robot.
D(ax0 + by0 + c, (x, y)) is the distance from a frontier position (x, y) to the
gradient line ax0 + by0 + c as in Eq. 4.2.

D(ax0 + by0 + c, (tx, ty)) =
|atx + bty + c|√

a2 + b2
(4.2)

where ax0 + by0 + c is the line equation of the gradient direction and (tx, ty)
is the position of a frontier cell.

4.1.2 Area Pruning

To create an accurate map, the robot needs to visit every cell in the grid map.
However, a small isolated unvisited cell that is surrounded by explored cells
with low intensity can be ignored because it gives low exploration gain. In
addition, a source is unlikely located in that area because the surrounding
cells are examined. We can apply Eq. 2.2 to find the possible intensity of
that cell, if it is lower than the detection threshold, it can be ignored, thus,
explored. The situation like this usually happen by chance. In our case, we
will assume that some frontier cells are not worth to visit. We intentionally
skip some frontier cells and flagged them as low priority cells in order to
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examine the surrounding area. The flagged frontier cells are not adjacent
to each other. As a result, we can increase the chance that the cells are
automatically avoided as we explored.

Every unvisited cells in the grid map can still potentially be ignored. We
introduce the cells’ weight by applying recursive Bayesian estimation (RBE).
The intention of this algorithm is not to find the radioactive sources, but
it determines which cells has low value as a robot travel and measure the
intensity along the way. RBE uses the same technique as PF (Eq. 3.13) to
determine the weight of each cell. Thus, if the measurement is decreasing
as the robot moves toward one cell, that cell could be ignored because the
probability of finding a source in that cell is low. However, the low weight
cells can only be remove when the robot moves close to that cells, to prevent
the problem of over pruning, since a single measurement cannot determine
the whole weight of all cells. In addition, the algorithm will not work in
the high intensity area (e.g. near the sources) because it will be come a
source searching algorithm instead, which is the task of the particle filter.
Fig. 4.1 also shows the cells those are marked with low priority flags (�) and
all unexplored cells are assigned with weights.

4.1.3 Multi-robot Systems Extension

From a single robot, we can extend our work to muti-robot systems by
adding one or more robots to the workspace. Each robot can communicate
to exchange information, including grid map, partial intensity map, and the
current source estimation. However, in some cases, two or more robots choose
the same frontier cell which is not the optimal solution. To prevent this,
robots will compute the utility of frontier cells Ut [70]. Initially, each frontier
cell t will have the utility Ut set to 1. Once a robot choose a frontier cell t′,
the utility of that frontier cell and adjacent frontier cells in distance d from t′

are reduced by P (d). Thus, the utility U(tn|t1, ..., tn−1) of a frontier cell tn
given that the frontier cells t1, ..., tn−1 are assigned to the robots 1, ..., n− 1
is computed by

U(tn|t1, ..., tn−1) = Utn −
n−1∑
i=1

P (||tn − ti||) (4.3)

If there are many robots which choose the frontier cell tn, the utility of
that cell tends to be low. In our case, the environment is known and has no
obstacles. P (d) is set to be the normal distribution with µ = 0 and σ = 0.4,
so the utility of the target frontier cell tn will be close to 0.
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Algorithm 4.1 Target Point Selection

1: Determine frontier cells of all robots
2: Compute the cost V i

t for each robot
3: Set the utility Ut = 1 for all frontier cells
4: while there is a robot without a target point do
5: Determine a robot i and a frontier t that satisfy:

(i, t) = argmax(i′,t′) Ut − γV i
t

6: Reduce the utility of the selected frontier cell and adjacent frontier cells
by Ut′ ← Ut′ − P (||t′ − tn||)

7: end while

By considering a trade-off between the cost of moving to the target frontier
cell V i

t and the its utility Ut, the target point selection can be calculated
using Algorithm 4.1.

From Algorithm 4.1, Ut − γV i
t is used to find the robot i and the frontier

t which give the best evaluation. The process continues iteratively until all
robots choose their frontier cells. γ ∈ [0.01, 50] gives the importance of cost
versus utility. It is set to 1 in this case.

When any robots discovers any neighbors, they will start sharing infor-
mation to each other. The exchange information process aims to reduce the
exploration time. Thus, there are several crucial information to be shared,
which are the current source estimation, exploration map, and partial intensity
map. The current source estimation is shared among neighbors in order to
increase the converging process. When two or more robots have the same
source estimation, the robot will accelerate the termination process. To reduce
the exploration time, the unvisited grid maps of robots will intersect and the
intersection part could be where both robots have not visited. Another piece
of information to share is the partial map of the sources discovered by each
robot. The partial intensity maps of each robot will be merged so each robot
knows the locations of the sources that have already been discovered. The
merging process is to compare discovered sources with each other. If there
are any new sources from other robots, the sources will be added. If there
are sources which are already discovered, the position and intensity of any
duplicate sources will be averaged.

4.2 Information Gain-based Exploration

The entropy is the tool to measure the uncertainty of a random variable [71,72].
In this case, we want to evaluate the uncertainty of the map using the entropy

24



to model this in the probabilistic manner [73].

H [P(x)] = −
∫
x

pi log pi (4.4)

≈ −
n∑
i=1

pi log pi (4.5)

where, pi = P(x = xi). In our case, the particle filter entropy is as the
following equation:

H [P(x|zt)] = −
#particle∑

i=1

wip(xi|zt) log p(xi|zt) (4.6)

where, x is the distribution of the particles. wi is the weight of each particle
i. zt is the observation that we obtain at the time step t. Then, the action of
the robot at can be evaluated using the expected information gain. It is the
change of the entropy for the particle filter when we apply the action as:

I (ẑ, at) = H [P(x|zt)]− H [P(x, x̂|at, ẑ)] (4.7)

where ẑ is the observation to be obtained when action a is taken. This
value can be calculated by Eq. 2.2, using the estimated intensity value from
the current particle filter time step t. x̂ is the new distribution of particles
introduces by the action at. The expected information gain can be obtained
by integrating all the possible measurements ẑ when the robot takes action
at.

E [I(at)] =

∫
ẑ

p(ẑ|at, zt)I (ẑ, at)dz (4.8)

However, to compute the expected information gain is usually a complicated
task. Instead, the utility function using the greedy aspect of the maximum
information gain I when the robot takes action a as:

a∗ = argmax
a

H [P(x|zt)]− H [P(x, x̂|a, ẑ)] (4.9)

The utility function becomes:

U (a) = I (a)− αcost(a) (4.10)

where α is the weight of the cost of the action a that the robot has to take.
We choose the best action, i.e., the action that gives the highest utility as
the robot action. The robot will evaluate the available adjacent cells around
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Figure 4.2: The simulated environment with a robot represented by a green
square. The small squares that follow the robot are the previous reading
in the last two time steps (k − 1, k − 2). The real location of the source
represented by the red circle and the background of the map represents its
corresponding radiation level. The estimated location of the radiation source
by particle filter represented by the yellow circle.

the robot, at most 8 cells, to calculate the utility of those cells and choose
the highest utility as the next action.

Fig. 4.2 shows the overall radiation map that the robot has to explore.
The radiation map is the map with different radiation levels corresponding
to the radiation source. According to Eq. 2.2, radiation intensity will reduce
inversely proportional to the distance from the radiation source. Fig. 4.3
shows the particles of the robot that are the possible location of the source.

However, as the robot progress through the area, the entropy of the map
becomes less and less significant, according to Fig. 4.4. On the opposite,
when the robot is getting closer to the radiation source, the particle filter
estimation becomes more accurate. Thus, in order to get an accurate result,
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Figure 4.3: The particles of the robot that represents the hypothesis of the
source. The white area with no particle is the area that the robot already
visited with low information, so the particles in the particular area are
resampled elsewhere on the map.
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Figure 4.4: The entropy value vs iteration when the robot explores the
radiation field. The entropy value decreases as the iteration increases, which
means the information that we gain from the map is lower after each iteration.

the robot should switch to use the particle filter estimation as the target, and
takes the action that makes the robot get closer to the target.

4.3 Unknown Sources Intensity Separation

A robot will move to the target frontier until the measurement is higher than
a certain threshold. Then, a robot will use the particle filter to estimate
the source. The source will be determined sequentially and a robot will use
discovered sources to create a partial intensity map using Eq. 2.3. Then,
a robot will subtract the intensity of sources of the partial map from the
measurement in the real world, using the following formula:

z′k = zk −
M′∑
i=1

Ii
(xk − xi)2 + (yk − yi)2

(4.11)

where z′k is the kth measurement subtracted by the partial map. zk is the
original kth measurement at (xk, yk). M′ is the number of source that the
robot has discovered so far. Ii is the ith discovered source at (xi, yi).

From Eq. 2.3, a source is created and summed with other sources of
different location and intensity. Thus, each source will add some intensity to
each other according to this equation:

I ′i =

{
M∑
j=1

Ij
(xi − xj)2 + (yi − yj)2

}
+ λb (4.12)

where I ′i is the ith output intensity source at (xi, yi). M is the number of
intensity points. Ij is the intensity point at (xj, yj). The estimated intensity
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from particle filter is the measurement of I ′i. If the robot uses the direct
measurement, the intensity map created by the robot will be inaccurate. To
solve this, we need the intensity correction algorithm. We know that:

I ′1 = I1 +
I2
d21,2

+ · · ·+ IM
d21,M

+ λb (4.13)

I ′2 =
I1
d22,1

+ I2 + · · ·+ IM
d22,M

+ λb (4.14)

...

I ′M =
I1
d2M,1

+
I2
d2M,2

+ · · ·+ IM + λb (4.15)

where I ′1, I
′
2, . . . , I

′
M are the sources which have influence from other sources.

I1, I2, . . . , IM are the original sources without influence from other sources.
di,j is the Euclidean distance from point i to point j. We know I ′1, I

′
2, . . . , I

′
M

from the measurement and also the location of each source which can be
used to calculated di,j. Only I1, I2, . . . , IM are unknown. Thus, there will be
M unknown variables with M equations which are linear equations. The
Gauss-Jordan elimination can be used to solve this as:

I1
I2
d21,2

. . . IM
d21,M

I ′1 − λb
I1
d22,1

I2 . . . IM
d22,M

I ′2 − λb
...

...
. . .

...
...

I1
d2M,1

I2
d2M,2

. . . IM I ′M − λb

 (4.16)
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Chapter 5

Experimentation and Analysis

5.1 Overall Process

The flowchart of our proposed method is in Fig. 5.1. A robot starts with the
initialization of particles. The particles are always initialized randomly in the
unvisited region of exploration grid because there is no point to place the
particle in the visited region. Next, the robot will determine an appropriate
frontier cell and move accordingly until the sensor pick up a high intensity
reading. Now, the robot will use the particle filter to determine a source by
moving closer to the expected stat. When a robot discover the source, it will
create a partial intensity map using Eq. 2.3. The measurement of a robot
will now subtract the intensities of the sources in the partial map. For multi-
robot systems extension, a robot will check for its neighbors when it moves
toward the frontier cell and estimation point. When any robots discovers any
neighbors, they will start sharing the information to each other. We assume
that each robot broadcasts their findings in the circular area around itself.
For simplicity, the information is always transmitted without delay and no
data loss. After one robot receive the piece of information, it will update
their own information immediately. The exchange information process aims
to reduce the environment exploration and source intensity estimation time.
Two robots will exchange information including visited and unvisited regions,
discovered locations and intensities of sources, and the current estimation of
the source. The process will be restarted in the initialization again until there
is no frontier cell left, which means all the area is explored and all intensity
sources should be found.

The illustrated example is in Fig. 5.2. A robot starts with the initialization
of particles together with the Bayesian pruning algorithm. The particles are
always initialized randomly in the unvisited region of exploration grid. There
are two type of maps which are real map and robot’s map (Fig. 5.2a). The
robot will explore the real map to locate intensity sources. When the robot
has discovered a source, it will create its own intensity source in separate
map. Next, the robot will determine an appropriate frontier cell and move

31



Start

Initiate particle at
unvisited area

A robot moves toward the
minimum cost frontier cell.

Measurement
exceed

threshold?

Estimate the source by the
particle filter and move

toward it

The source is
found?

Use partial maping

Any frontier
cells left?

Source intensity correction

End

Comm.

yesComm.

yes

no

no

yes

no

Figure 5.1: Overall process of the proposed method for a single robot which
involves exploration and intensity sources estimation.
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Real map

Robot’s map

Radiation source

Robot

Next position

(a) t = 1 (b) t = 4

(c) t = 11 (d) t = 14

(e) t = 16 (f) t = 21

Figure 5.2: The robot operation in different time step. The black dots with
faded red color are radiation sources. The robot is the yellow square. The real
map will be explored by the robot where the unexplored area fills with green
color and the explored area is white. The cells between those two areas are
frontier cells which form the red line. The blue dot is the next best position
for the robot and also serves as the best intensity estimation location. The
blue line is the robot trajectory.
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Complete exploration
Raw

measurement

Sources intensity
separation

Final intensity
map

Figure 5.3: Apply sources separation algorithm by isolating and determining
true strength of each source and recombine them to increase the map accuracy.

accordingly (Fig. 5.2b) and prune out any possibly low intensity frontier cells
until the sensor picks up a high intensity reading. Now, the robot will use the
particle filter to determine a source by moving closer to the estimate source
location and use disperse resampling algorithm to ensure the location of the
source (Fig. 5.2c). When a robot discover the source, it will separate the
source by creating a partial intensity map in the robot’s map using Eq. 2.3.
The measurement of a robot will now subtract the intensities of the sources
in the robot’s map as in Fig. 5.2d. The process will restart in the initial state
again until there is no frontier cell left, which means the area is explored and
all intensity sources should be found.

Fig. 5.3 shows the final step of the process. After source localization,
the raw measurement at each source location is fused with other sources
according to Eq. 2.3. If we use the raw data to recreate the information map,
it will not be as accurate as the true map. Thus, the robot will apply the
sources intensity separation to find the true strength of the sources and it
will increase the accuracy of the estimated sources.

5.2 Cramér-Rao Lower Bound Analysis of a

Particle Filter

Cramér-Rao (CR) lower bound is a lower bound on the variance of any
unbiased estimator [74]. The bound provides a benchmark which we can
compare the performance of any unbiased estimator. The performance is high
if the estimator is close to the CR lower bound. However, the performance of
the estimator cannot possibly be better than the CR lower bound.

The parameter vector xk is estimated as x̂k where the index k is the
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Figure 5.4: The simulation of multiple radiation sources estimation using 3
robots. The main plot shows the environment where the black dots are the
radiation sources and the squares are the robots. The side plots show the
corresponding exploration grid maps of each robot. Each exploration grid
map shows a robot position (square), partial intensity map (black dot), next
frontier cell/current estimated point (yellow diamond), visited area (white)
and unvisited area (green).

time step. Ck is the lower bound of the mean-square error (MSE) Σk of any
unbiased estimator x̂k which is defined as:

Σk = E
{

(x̂k − x)(x̂k − x)T
}
, (5.1)

where E is the expectation operator. The CR lower bound is the inverse of
the information matrix Jk:

Σk ≥ Ck ≡ J−1k (5.2)

From the Gaussian likelihood model in Eq. 3.13, the information matrix can
be calculated using the following formula:

Jk = Jk−1 +
1

λk(x)
Hk(x)THk(x) (5.3)

The formula above is computed in the recursive Bayesian framework by using
prior knowledge J0. Hk(x) is the Jacobian of the measurement function λk(x)
in Eq. 2.2, which is:

Hk(x) =
[
∂λk(x)
∂x0

∂λk(x)
∂y0

∂λk(x)
∂I

]
, (5.4)
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where

∂λk(x)

∂x0
= − 2I(x0 − xk)

[(x0 − xk)2 + (y0 − yk)2]2
(5.5)

∂λk(x)

∂y0
= − 2I(y0 − yk)

[(x0 − xk)2 + (y0 − yk)2]2
(5.6)

∂λk(x)

∂I
=

1

(x0 − xk)2 + (y0 − yk)2
(5.7)

The prior knowledge J0 corresponds to the parameter P0 which is the
covariance of the Gaussian prior with mean x̂0. Thus, J0 = P−10 . The
mean x̂0 and covariance P0 are acquired based on intelligence information.
The covariance matrix Ck consists of:

Ck =

 var(x̂) cov(x̂, ŷ) cov(x̂, Î)

cov(ŷ, x̂) var(ŷ) cov(ŷ, Î)

cov(Î , x̂) cov(Î , ŷ) var(Î)

 . (5.8)

From the matrix Ck, the standard deviation of estimation error in position
is defined as

√
Ck[1, 1] + Ck[2, 2] and the standard deviation of estimation

error in intensity is
√
Ck[3, 3].

5.2.1 Analysis

The test scenario is a single robot searches for a source. The intensity of the
source is fixed at I = 5 · 104 and the initial covariance is:

P0 = diag(
[
σ2
x σ2

y σ2
I

]
) (5.9)

where σx = σy = 19 and σI = 5 · 103. For the robot, we recorded the walk for
100 time steps and run it 100 times. Then, we find the standard deviation
of the error of position and intensity acquire from the robot. However, the
particle filter is required to gather at least 20 samples to be reliable. The
estimation of the first 20 sample is unreliable, thus omitted. Fig. 5.5 shows
the performance of the particle filter and the CR lower bound. The position
error is very close to the CR lower bound but the intensity error is pretty
noisy. It is because of the reading is uncertain so the estimated intensity at
the same position is change every time. Thus, the position is more likely to
be used as a stopping criteria than the intensity by the above reason.

5.3 Single Robot Informative-based Exploration

In this case, we want to compare in a single robot case between informative-
based exploration using information theory with a common particle filter.

36



Figure 5.5: Performance of the particle filter compared with the CR lower
bound.

5.3.1 Environment Settings

In the experiment, the environment is in a square shape, 20 × 20m2 with
no obstacle. We test each case with the scenario as in Fig.4.1, which the
radiation source spawns at the top right corner. The radioactive source has a
random intensity between 30,000 to 50,000 counts. The background intensity
is set to 1,000 counts [23].

5.3.2 Robots Settings

A robot in the test knows its location using a GPS with the assumption that
the GPS reading has no error. The robot will always start at the furthest
location away from the source at the bottom left of the map. The background
intensity is known by the robot. There are 1000 particles initialized. The map
is divided to a small 1× 1m2 grid cell. The robot will measure the radiation
only one time when they landed on the next exploration cell. It can move in 8
directions. When the robot is further away from the source, the information
gain-based exploration will be used. The measurement threshold that the
robot will switch to the source estimation seeking is 2000 counts.

5.3.3 Experimentation and Analysis

We run the experiment 100 times with different radiation intensity counts. We
notice that the path of the robot of the proposed method is not the optimum
path, which is to be expected because of the uncertainty of the measurement.
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Table 5.1: Performance comparison of the proposed method vs traditional
methods

Travel distance
(unit)

Position Error
(m)

Intensity Error
(count)

Snake row scan 381.00 0.01 115.05

Snake column scan 381.00 0.03 152.90

Estimation seeking 39.67 0.23 1,661.40

Informative-based 36.16 0.20 1,283.00

We tested our algorithm versus the traditional methods such as the snake
scan patterns and source estimation seeking method.

Table 5.1 shows the average travel distance and average error in intensity
and position that the robot takes to finish the task. It clearly shows that the
traditional method, such as the snake scan that does not rely on a sensor
to guide the robot to the next possible best action, gives the highest travel
distance. The source estimation seeking method gives a competitive travel
distance to the proposed method. However, the proposed method works
better because of the selection of the next best action based on the maximum
information gain.

In the accuracy aspect, the traditional methods have a lot more measure-
ment points which, result in higher accuracy. The estimation seeking method
and the proposed method have a lower number of measurement points, but
they give decent accuracy of both intensity and position. Fig. 5.6 gives one
example of the route that the robot takes using the proposed method and its
corresponding entropy value.

5.4 Particle Filter’s Intensity Estimation Meth-

ods Comparison

We compare three intensity estimation methods, namely, single landmark
intensity estimation, multiple landmarks intensity estimation using optimiza-
tion function, and multiple landmarks intensity estimation using calculation
in different scenarios.

5.4.1 Envinronment Settings

In the experiment, the environment is in a square shape, 10 × 10m2 with
no obstacle. We test each case with a single source on the top right corner
(9, 9) in order to see which algorithm can gives the most accurate and fastest
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(a) The radiation map.

(b) The particle filter view.
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(c) The map entropy value.

Figure 5.6: The green line in the radiation map (a) shows the route that the
robot takes to localize the radiation source. The particles in the particles
view (b) converges to the source. The map entropy decreases as the iteration
increases as expected.

estimation.The intensity point has a fixed radiation level at 30,000 counts.
The background intensity is set to 1,000 counts [23]. Fig. 5.7 shows the test
environment of this experiment.

5.4.2 Experimentation

We compare these three methods using traditional various intensity sampling
methods (realistically and unrealistically) as in Fig. 5.8. We set the stopping
criteria as if the best estimate satisfies less than 5% error of all previous
measurement points for 5 iterations. In addition, at least one measurement
point must be less than 1.5m from estimation point to prevent early converges
which leads to a wrong conclusion. We tried to stop the algorithm earlier
by excluding “at least one measurement point must be less than 1.5m from
estimation point”, but some results have high error because some incorrect
estimate particles can fit to low measurement points.

Different sampling methods have different sampling counts. The algorithms
results are shown in Table 5.2 – 5.4 and comparison plots in Fig. 5.9. From
the tables and plots, the multiple landmarks method, both optimization and
calculation, surpass the single landmark method in terms of position and
intensity errors because the effect of adding more measurement points into the
calculations. Thus, the calculation and optimization of the estimated intensity
point is more accurate. The travel distance of multiple landmarks method is
also less then the single landmark method because it use less measurement
points to end the algorithm.

The optimization method of multiple landmarks intensity estimation
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Figure 5.7: Test scenario of intensity estimation algorithms. The top left
corner is the robot measurement points in magenta. The environment
radiation level is indicated by the color (blue = low radiation, yellow =
high radiation). The red dot is the intensity estimation location.

algorithm requires more computational power than the calculation one. Since
the calculation can be done at once using matrix operation, it can be calculated
quickly. The error in position and intensity of both methods are similar,
which is expected. Therefore, the calculation method should be used instead
of optimization one.

However, multiple landmarks methods require more memory to store
the datapoints for calculation, which may not suit for small robots with
limited memory capacity. We can limit the robot to memorize only important
landmarks, for example, the newest n points of measurement.

The intensity sampling methods also play the important role. They
are the factor of how far the robot travels until the algorithm meets the
stopping criteria. From the tables and figures, source seeking movement
use the least amount of measurement points but effectively gain the same
estimation accuracy compared to other methods. We notice that the useful
information is in the high intensity area, especially the measurement points
around the intensity point. Thus, this method could be developed further
into the realistic algorithm, for example, a robot must try to find the highest
gredient direction to meet the intensity point fast.

Now, we want to reduce the memory stored in the robot to make the
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Sampling method
Measurement
Count

Travel
Distance

Position
Error (m)

Intensity
Error (count)

Computation
Time

Snake scan row 95 93 0.01 7.57 33.74
Snake scan column 96 94 0.14 1115.21 33.59
Spiral pattern outter 25 23 0.05 1541.11 8.86
Spiral pattern inner 54 52 0.23 1361.83 17.69
Source seeking 14 16.31 0.09 1204.16 6.25
Max to min 16 25.43 0.17 3148.44 6
Min to max 100 357.52 0.05 278.22 35.73
Random 34 158.56 0.23 1318.75 11.76
All measurement - - - - -

Mean 0.12 1246.91

Table 5.2: Single Landmark Intensity Estimation

calculation faster and use more efficienly memory capacity. We select the
best sampling method, which is the source seeking method, and the efficiency
intensity estimation method, which is the multiple landmarks intensity
estimation using calculation, then try to experiment with different memory
capacity of the robot from maximum of 2 points to 14 points as shown in
Fig.5.10. The result shows that 2 measurement points gives highest error. The
possible reason is that it gives too little information surround the intensity
point. 3 measurement points onward gives a better performance. From the
figure, we recommend 4 measurement points which has the lowest memory
(4) but the performance is good. More measurement points do not mean the
result is better, since their calculation must include low intensity points, which
may introduce some errors (9-14). Notice that, the number of measurement
counts depend on how particles randomly generate at the intensity points
which can effect the computation time.

5.5 Global Map Decomposition Analysis

5.5.1 Environment Settings

In the experiment, the environment is in a square shape, 40× 40m2 with no
obstacle. We test each case with 3 different scenarios as in Fig.5.11, which
are 4 sources at top right, 4 sources at bottom left and 9 sources equally
distributed on the map. Each intensity has a random intensity between 20,000
to 50,000 counts. The background intensity is set to 1,000 counts [23].
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(a) Snake scan row sampling method.

(b) Snake scan column sampling method.
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(c) Spiral pattern from outter layer sampling method.

(d) Spiral pattern from inner layer sampling method.
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(e) Source seeking sampling method.

(f) Max to min sampling method.
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(g) Min to max sampling method.

(h) Ramdom sampling method.
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(i) All measurement at once.

Figure 5.8: Sampling methods of radiation estimation algorithms.

Sampling method
Measurement
Count

Travel
Distance

Position
Error (m)

Intensity
Error (count)

Computation
Time

Snake scan row 93 91 0.05 370.2 864.51
Snake scan column 93 91 0.03 259.3 860.23
Spiral pattern outter 22 20 0.05 10.96 196.01
Spiral pattern inner 54 52 0.23 1223.43 482.68
Source seeking 14 16.31 0.12 870.12 146.26
Max to min 28 61.89 0.14 249.38 130.46
Min to max 100 357.52 0.01 33.29 915.7
Random 34 158.56 0.04 139.34 321.27
All measurement 1 171.5 0.14 962.93 42.64

Mean 0.09 457.66

Table 5.3: Multiple Landmarks Intensity Estimation using Optimization
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(a) Measurement counts comparison.

(b) Travel distance comparison.
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(c) Computation time comparison.

(d) Position error comparison.
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Sampling method
Measurement
Count

Travel
Distance

Position
Error (m)

Intensity
Error (count)

Computation
Time

Snake scan row 93 91 0.05 320.35 32.76
Snake scan column 93 91 0.03 235.86 33.1
Spiral pattern outter 22 20 0.05 50.47 8.04
Spiral pattern inner 54 52 0.23 1072.32 18.9
Source seeking 14 16.31 0.12 792.16 6.37
Max to min 13 18.95 0.11 719.96 4.94
Min to max 100 357.52 0.01 55.42 35.72
Random 34 158.56 0.04 31.19 12.06
All measurement 1 171.5 0.14 904.01 2.39

Mean 0.09 464.64

Table 5.4: Multiple Landmarks Intensity Estimation using Calculation

(e) Intensity error comparison.

Figure 5.9: The comparison between estimation methods and measurement
sampling methods.
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(a) Measurement counts comparison.

(b) Position error comparison.
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(c) Intensity error comparison.

(d) Computation time comparison.

Figure 5.10: Using the source seeking method and multiple landmarks intensity
estimation using calculation. We compare between different memory capacity
of the robot.
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5.5.2 Robots Settings

A robot in the test knows its location using a GPS with assumption that the
GPS reading has no error. The background intensity is known by the robot.
There are 100 particles initialized. The robot will measure the radiation after
it travel for 0.5m. The detection threshold is set to 2,000 counts. If the
measurement surpasses the threshold, the particle filter will start to converge
to the estimate states. For exploration part, a robot has to explore the
environment in order to determine all sources. The area pruning is set to
one isolated cell. The minimum weight threshold of RBE pruning is set to
e−20 within 5m around the robot. For multi-robot systems, robots are able
to communicate with a limited distance without delay and packet loss. Fig.
5.4 shows an example of a simulation of multiple radiation sources mapping
using 3 robots, together with their correspond exploration grid maps.

5.5.3 Experimentation

At this point, we compare the accuracy of the final intensity map using source
separation algorithm and without using one. We use the test scenario in
Fig. 5.15 as a ground truth. Table 5.5 shows the comparison at the radiation
source. The raw measurements of each source are fused with other sources
intensity, thus, the raw measurements are much higher than the ground truth.
After we apply the sources separation algorithm, the sources now are closer
to the ground truth. In this case, we are able to increase the accuracy from
94.34% to 96.98%.

5.5.4 Indoor Localization Uncertainty Experimentation

To make the experimentation more realistic, the introduction of uncertainty is
one of the important factors. In this experiment, we introduce the uncertainty
in robot self-localization. The robot will read the current position with
some error, according to [75], the error of the practical SLAM-based self
localization and mapping is around 0.017-0.047m. In the experiment we will

Sources Intensity
Algorithm/Source 1 2 3 4

Ground truth 40000 30000 35000 45000
Raw measurement 42396 32322 36665 46877

Sources separation algorithm 41505 31278 35643 46008

Table 5.5: Source Separation Algorithm Comparison
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(a)

(b)54



(c)

Figure 5.11: Test scenarios: (a) 4 sources at top right corner, (b) 4 sources at
bottom left corner, (c) 9 sources equally distributed.
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Figure 5.12: The comparison of position error between the ideal case (0m
error), 0.05m, and 0.1m error that were introduced to the measurement
reading.

compare the result of 0, 0.05, 0.1m error. The error will be added using the
normal distribution random function. Fig. 5.12 and 5.13 show the result of
the experiment. The ideal case with no error gives the highest accuracy of
the location of the source and intensity. When the error is introduced, the
accuracy in the intensity estimation decreases. The main reason is that error
makes the particle filter function predicts the result with some error which
is expected. However, the particle filter function is tolerate to the error of
this degree. A dramatic shift in the error value would collaspe the prediction
function and not reflect the real world situation.

5.6 Exploration Algorithms Comparison

One of the factors that impact the travel distance of robots is how they select
frontier cells. In this proposed method, we use two criteria which are the
distance between a robot and frontier cells and the direction of intensity
gradient. In addition, pruning processes which are low priority flag and RBE
pruning are utilized to further decrease the travel distance.
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Figure 5.13: The comparison of intensity error between the ideal case (0m
error), 0.05m, and 0.1m error that were introduced to the measurement
reading.
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Figure 5.14: The comparison of measurement count between the ideal case
(0m error), 0.05m, and 0.1m error that were introduced to the measurement
reading.
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We compare our proposed method with Frontier-based methods using
distance and increase gradient direction as: (1) RBE and random pruning
methods, (2) Only random pruning method. The conventional methods as
(3) Spiral pattern (4) Frontier-based using only distance as the target point
selection (5) Lawn mower pattern. The settings of the environment and
robots are the same as 5.5.

We can see that our proposed method surpass all conventional methods
(frontier-based exploration using minimum distance only, spiral pattern and
lawn mower pattern). It also perform better than RBE and random pruning
methods which indicates that the pruning using low priority flag helps decrease
the traveling distance drastically.

The frontier-based exploration using increase gradient direction also helps
in quickly search the source by comparison between the methods that apply:
(1), (2) and (3) with the one that did not apply: (4), (5).
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Figure 5.15: Algorithms performance in Scenario I.
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Figure 5.16: Algorithms performance in Scenario II.

5.7 Multi-robot System Extension

The extension of single robot case to multiple robots case is expected to reduce
the maximum exploration time. We perform the experiment by increasing the
number of robots from single robot up to 7 robots and the communication
ranges for all cases are fixed at 5m. The experiment has been performed for
150 times using 5 randomly generated radioactive sources. From Fig. 5.18,
the required distance to finish exploration decreases when the number of
robots increase as expected. In this case, there information sharing is happens
by chance. Thus, the worst case scenario that might happen is each robot
explores all area by its own. The mapping errors of all cases are at average of
4.513% in intensity and 0.15m on position.

For the effect of communication range of multiple robot, we compare a
single robot case and 3 robots case in the environment that have 5 random
generated intensity sources. The experiment has been performed for 150 times.
Fig. 5.19 shows the comparison of the distance travel by robots between
a single robot and 3 robots with variation in communication range. In
conclusion, the more robots, the faster process, and the larger communication
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Figure 5.17: Algorithms performance in Scenario III.

range, the lower number of overall travel distance. Notice that at the lowest
communication range, the maximum travel distance of the 3 robots case is
almost the same as the result of the single robot case. For other cases the
number of maximum distance may be larger which depends on how many
time robots exchange information.

5.8 Simulation in a Non-geometric Environ-

ment

5.8.1 Environment Settings

The geometric environment is a good example of showing how the robot
perform in ideal condition. In this case, we experiment with the recorded
environment. The major different between geometric environment and real
environment is that, robots cannot directly go to the point that they want in
a direct path. In this case, we simplify the problem by making no distortion
from radiation sources, i.e. the radiation sources does not change value when
they are inside the simulated building. Fig. 5.21 shows the simulated map of

61



Figure 5.18: Comparison between number of robots.

the Freiburg indoor building 079 that we use as a test map in the experiment.
The map was recorded using a robot with SLAM capability [76]. To analyze
the map, the white area is a free space, the black area is an occupied space
and the grey area is an unknown space. Thus, we can build the map for our
robot according to this information. We assume that there are three radiation
sources with a random strength between 30,000 to 50,000 counts inside the
free space area of the building. The background radiation is set to 1,000
counts.

5.8.2 Robot Settings

A robot in the test knows its location using a GPS with assumption that the
GPS reading has no error. The background intensity is known by the robot.
There are 1000 particles initialized. The robot will measure the radiation
after it travel for 1m. The detection threshold is set to 2,000 counts. If
the measurement surpasses the threshold, the particle filter will start to
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Figure 5.19: Multiple sources experiment: comparison between travel distance
vs number of robot with variation in communication range. The vertical
bars in the 3 robots case indicate the maximum and the minimum number of
travel distance.

converge to the estimate states. For exploration part, a robot has to explore
the environment in order to determine all sources. For multi-robot systems,
robots are able to communicate with a limited distance without delay and
packet loss.

5.8.2.1 Probabilistic Roadmap (PRM)

However, the robot cannot move directly from point A to point B like they
can in a geometric environment. We apply a path planning algorithm for
the robot to find the way from point A to point B inside the building. A
probabilistic roadmap (PRM) is employed to help the robot navigation in the
simulated environment.
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Figure 5.20: Inside a configuration space C, the algorithm samples nodes in a
free space Cfree. Then, the algtorithm will try to connect these nodes to form
a graph. The obstacle Cobs is the area that the nodes cannot be connected.

Given the configuration space C as a space of all possible placement of any
objects. The degree of movement of an object corresponds to a dimension
of C. Obstacles are consider a forbidden area which the robot cannot move
through inside the configuration sapce, we willl called it Cobs. We will form a
path from the start position to the goal position, which must be a collision
free path e.g. the path must not intersect with obstacles Cobs. The free area
that the path can be generated inside the configuration space C, denoted as
Cfree.

There are many renditions of probabilistic roadmap algorithm but the core
concept is the same [77–80]. The probabilistic roadmap algorithm samples
the free configuration space area Cfree as nodes, and connects these nodes to
form a roadmap of possible motions.

In the free space Cfree, a graph is formed from these nodes as G =
(V,E). The algorithm will try to connect nodes of the graph with each
other with conditions such as distance between nodes, the weight factor, etc.
Traditionally, the connection between nodes is a straight line and collision
free. Fig. 5.20 shows the concept of probabilistic roadmap algorithm using
nodes and graph.

After the graph is formed inside the configuration space C, it can now
be used to do the motion planning. The goal is to find the best path inside
the graph that connects from the starting point (the robot position) to the

64



Method
Average
travel distance

Position error Intensity error

Single robot 581.41m 0.06m 0.57%
3 robots with 1m comm. 300.62m 0.05m 0.70%
3 robots with 2m comm. 265.54m 0.06m 0.80%

Table 5.6: Comparison between different in communication range using real
world map.

goal point (the estimated intensity location). There are several algorithms
which can achieve such a result such as depth-first search, breath first search,
bouncing motion, etc. Algorithm 5.1 shows how PRM algorithm constructs
the graph.

Algorithm 5.1 Roadmap Construction

V ← ∅, E ← ∅
loop
V ←samples of node c in Cfree
for Each c′ ∈ V in order of increasing distance from c do

if c and c′ are not connected then
if the distance of c and c′ is less than Thres then

if the planner find the path between c and c′ then
E ← (c, c′)

end if
end if

end if
end for

end loop

In our case, the algorithm composed of a graph of possible paths, by
considering free space, occupied space, and unknown space [81,82]. The nodes
are generated semi-randomly in the free space of the map as in Fig. 5.22.
Then, random connections are created between nodes. Finally, we can find
the an obstacle free path by tracking the length of the edge between point A
to point B. The frontier cells are generated on free space of the map. Then,
we run the test if there is any frontier which is inaccessible and remove them.
We test this environment with 3 robots. Fig. 5.24 shows the map and how
those robots navigation inside the map.
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5.8.3 Experimentation

In this experiment, we compare the effect of using the different communication
range in the real map. We use the particle filters that is proposed in this
work as a localization tool. The experiments was performed 60 times in the
same environment. Table 5.24 shows the comparison between three cases,
single robots, 3 robots with communication range of 1m, and 3 robots with
communication range of 2 meters. The result shows that the increment in
communication range does affect the overall performance of of the robots. The
robots will have more chance to connect with each other if the communication
range is bigger, since the communication happens by chance.

5.9 Simulation in a Geometric Environment

with Wall Attenuation

Similar to the previous section, in reality, the radiation is blocked by the
environment such as concrete, lead, metal, etc. However, some amount of
radiation is able to pass through such materials with lower magnitude because
the radiation atom will interact with matter. In our case, we consider gammar
particles only, since the attenuation of beta and alpha particles is more
complicated. The gamma particles that travel through substance will get
absorbed. Fig. 5.25 shows the radiation intensity get decreased when pass
through matter.

We have I0 as an initial intensity on the left hand side. The final intensity
on the right side Ix is the reduced through the absorber with thickness of x.
The geiger counter will measure the radiation that pass through as number
of particles/time. As you can see, when the absorber gets thicker, the I(0)
will be smaller because the radiation get absorbed more in the absorber. The
approximation of the interation between gamma radiation and substance can
be written as Eq. 5.10 [83–85]:

I(x) = I0e
−αx (5.10)

The amount of radiation that pass through the matter is decreased
exponentially with thickness x. The equation is called Lambert’s law. It is
widely used for linear attenuation. α refers to the linear attenuation coefficient
of the material. It is often in the unit of distance−1. In general, x is in the
centimeter (cm). Thus, the αx is usually unitless.
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5.9.1 Environment Settings

We will use this information to calculate the amount of the radiation that
can pass through the wall. In our case, we assume that the wall is a concrete
wall with a linear attenuation of 0.0833. The wall will have thickness of 5cm.
Fig. 5.26 shows the environment that we will use in this experiment. The
environment is indoor. The robot cannot go outside the boundary and the
robot knows the map as priori. The robot task is to localize a radiation source
in the environment by measuring the radiation that passes through wall.

5.9.2 Experimentation

5.9.2.1 Gridmap and PRM Creation

First, the robot generate the occupancy grid map of the environment as in
Fig.5.27 to understand the free and occupied area. It is essential step for the
robot to do path planning using probabilistic roadmap. The green nodes is
the cells that the robot can travel to. Some of the nodes are in the occupied
area (black area), thus, those nodes are deleted to prevent the robot for
traveling through walls.

The next step is to create the probabilistic roadmap. In this case, we can
connect nodes to the nearby nodes. Fig. 5.28 shows the probabilistic roadmap
created by the robot. After PRM is created, the robot can use the node to
travel within free space of the environment and avoid wall as obstacles.

We create the intensity point at (4.5, 6) which is inside the difficult
accessible space. There is only one way to enter the area which is on the
top right corner. The robot must be estimate the radiation from outside
of the said area and generate the path to the inside of the area. The plot
of the radiation map can be found in Fig. 5.29. Notice that the radiation
is not distributed equally in all direction since it was distorted by the wall
attenuation.

5.9.2.2 Revised Particle Filter Function

The particle filter’s estimation and likelihood function must be changed to
accomodate the wall attenuation calculation. From inverse square function
Eq. 2.2, we add the exponential term to the equation as the linear attenuation
factor. The equation becomes:

λk =
Ie−αx

(xk − x0)2 + (yk − y0)2 + 1
+ λb (5.11)
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In this case, we use the multiple landmarks calculation as the intensity
estimation tool. Eq. 3.11 becomes:

I ie−αxk

d2k−1
+ λb = zk (5.12)

I ie−αxk−1

d2k−2
+ λb = zk−1 (5.13)

I ie−αxk−n

d2k−n
+ λb = zk−n (5.14)

combining those terms, we have:

I ie−αxk

d2k
+ λb +

I ie−αxk−1

d2k−1
+ λb + · · ·+ I ie−αxk−n

d2k−n
+ λb = zk + zk−1 + · · ·+ zk−n

(5.15)

I ie−αxk

d2k
+ λb +

I ie−αxk−1

d2k−1
+ λb + · · ·+ I ie−αxk−n

d2k−n
+ λb =

n∑
j=0

(zk−j − λb)

(5.16)

I i · (e−αxkd−2k + e−αxk−1d−2k−1 + · · ·+ e−αxk−nd−2k−n) =
n∑
j=0

(zj − λb)

(5.17)

I i ·
n∑
j=0

e−αxk−jd−2k−j =
n∑
j=0

(zk−j − λb)

(5.18)

I i =

∑n
j=0(zk−j − λb)∑n
j=0 e

−αxk−jd−2k−j
(5.19)

Since finding the thickness of the wall is a computational expensive due
to the ray casting algorithm require a lot fo calculation, we only use up to 5
recent measurement points to calculate the estimated intensity. The rest of
the particle filter stay intact.

5.9.2.3 Experiment Process

Fig. 5.30 to Fig. 5.34 shows the process of the algorithm to estimate the
radiation source inside the difficult accessible area. In the end, the robot
successfully localize the radiation souce inside the area using PRM path
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planning to access the area. The error of the position is 0.084m and the error
of the intensity is 1.66%.
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Figure 5.25: Assume that we have the absorber matter that has thickness of x,
The initial radiation I0 on the left hand side will pass through the substance
and the reduced intensity I(x) is on the right side as the result.
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Figure 5.26: The environment is assume to be indoor with defined boundary.
The robot can spawn anywhere in the environment, also the radiation point.
The robot is forbidded to cross the wall.
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Figure 5.27: The grid map created by the robot in order to understand the
free space and occupied area.

76



Figure 5.28: Probabilistic roadmap created by a robot as a tool to traverse
inside the environment.
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Figure 5.29: The plot of the radiation inside the difficult accessible area
(4.5, 6).
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Figure 5.30: The initial step of the experiment. The robot is placed at the
middle bottom of the environment so the robot will have the difficulty to
reach the radiation source inside the difficult accesible space.
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Figure 5.31: The robot will travel in the low intensity area and search for
high intensity area.
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Figure 5.32: When the robot is in the high intensity area, it will generate a
path to check the estimated intensity point that estimated by particle filter.
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Figure 5.33: After the robot has arrived at the estimated area, it will follow
the estimated point and measure the radiation near the estimated point in
order to fine tune the estimated location and intensity of the source.
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Figure 5.34: The robot will finish the process when the criteria is met. In this
case, if there is no improvement in the result for 5 iteration and the robot
has visited the estimated location, the algorithm will end.
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Chapter 6

Conclusion

In this research, we have developed a search strategy for multiple sources
of radioactive material using the robotic systems. The particle filter is
employed to deal with the measurement uncertainty of a radioactive measuring
instrument. The source separation strategy for mapping the multiple sources
of radiation is developed. Frontier-based exploration is employed to help a
robot navigate throughout the environment. The search strategy for multiple
radiation sources by using the target point selection is utilized to help a robot
choose an appropriate position, in order to reduce the exploration cost. The
area pruning algorithms are introduced and greatly decrease the exploration
time. The simulation is carried out in MATLAB using the radioactive source
model in the ideal conditions, in which robot knows its position but no
prior knowledge of the source. The indoor self-localization uncertainty was
introduced and our algorithm can tolerate with an increase in the error of
position and intensity. The proposed sources estimation and exploration
algorithms outperform the traditional area coverage method using lawn
mowing and spiral patterns, and frontier-based exploration using conventional
target selection methods. Furthermore, the proposed method gives 95%
sources intensity accuracy after applying sources separation algorithm and
less than 0.1m in sources localization estimation error. In addition, both ideal
geometric environment and indoor envinronment from the real building have
been tested using our proposed algorithm in MATLAB simulation. Moreover,
the effect of wall attenuation with the radiation is tested. The robot is
successfully localize the radiation even there is some attenuation from the
environment with precise accuracy.

Future work of this research may include the real environment testing
using mobile robots, such as UAVs or ground robots. The cooperative
algorithm between each robot can be included to reduce the redundancy of
the exploration. The increment in uncertainty, such as low GPS accuracy,
and false or loss in information can be quite a challenge. The mapping of
radiation sources with disturbances from natural factors is also an interesting
research topic.

85



86



References

[1] Wikipedia, “Radiation — Wikipedia, the free encyclopedia,” 2015,
[Online; accessed 27-July-2015]. [Online]. Available: https://en.wikipedia.
org/wiki/Radiation

[2] ——, “Geiger counter — Wikipedia, the free encyclopedia,”
2015, [Online; accessed 27-July-2015]. [Online]. Available: https:
//en.wikipedia.org/wiki/Geiger counter

[3] A. Gunatilaka, B. Ristic, and R. Gailis, “On localisation of a radiological
point source,” in Information, Decision and Control, 2007. IDC ’07, Feb
2007, pp. 236–241.

[4] E. T. Brewer, “Autonomous localization of 1/r2 sources using an aerial
platform,” Master’s thesis, Faculty of the Virginia Polytechnic Instutite
and State University, December 2009.

[5] W. K. H. Panofsky, “Nuclear proliferation risks, new and old,” Issues in
Science and Technology, vol. 19, 2003.

[6] R. Cortez, X. Papageorgiou, H. Tanner, A. Klimenko, K. Borozdin,
and W. Priedhorsk, “Experimental implementation of robotic sequen-
tial nuclear search,” in 2007 Mediterranean Conference on Control &
Automation. IEEE, 2007, pp. 1–6.

[7] P. Robins and P. Thomas, “Non-linear bayesian cbrn source term
estimation,” in Information Fusion, 2005 8th International Conference
on, vol. 2, July 2005, pp. 8 pp.–.

[8] A. Kumar, H. G. Tanner, A. V. Klimenko, K. Borozdin, and W. C.
Priedhorsky, “Automated sequential search for weak radiation sources,”
in 2006 14th Mediterranean Conference on Control and Automation.
IEEE, 2006, pp. 1–6.

[9] S. M. Brennan, A. M. Mielke, and D. C. Torney, “Radioactive source
detection by sensor networks,” IEEE Transactions on Nuclear Science,
vol. 52, no. 3, pp. 813–819, 2005.

87

https://en.wikipedia.org/wiki/Radiation
https://en.wikipedia.org/wiki/Radiation
https://en.wikipedia.org/wiki/Geiger_counter
https://en.wikipedia.org/wiki/Geiger_counter


[10] B. Ristic, M. Morelande, A. Gunatilaka, and M. Rutten, “Search for
a radioactive source: Coordinated multiple observers,” in 2007 3rd
International Conference on Intelligent Sensors, Sensor Networks and
Information. IEEE, 2007, pp. 239–244.

[11] A. Martin, An introduction to radiation protection 6E. CRC Press,
2012.

[12] N. Tsoulfanidis, Measurement and detection of radiation. CRC press,
2010.

[13] R. J. Nemzek, J. S. Dreicer, D. C. Torney, and T. T. Warnock,
“Distributed sensor networks for detection of mobile radioactive sources,”
IEEE Transactions on Nuclear Science, vol. 51, no. 4, pp. 1693–1700,
2004.

[14] A. A. R. Newaz, S. Jeong, H. Lee, H. Ryu, and N. Y. Chong, “Uav-based
multiple source localization and contour mapping of radiation fields,”
Robotics and Autonomous Systems, vol. 85, pp. 12 – 25, 2016.

[15] N. Pinkam, A. A. R. Newaz, S. Jeong, and N. Y. Chong, “Rapid coverage
of regions of interest for environmental monitoring,” Intelligent Service
Robotics, vol. 12, no. 4, pp. 393–406, Oct 2019.

[16] D. L. Stephens and A. J. Peurrung, “Detection of moving radioactive
sources using sensor networks,” IEEE Transactions on Nuclear Science,
vol. 51, no. 5, pp. 2273–2278, 2004.

[17] N. Pinkam, S. Jeong, and N. Y. Chong, “Exploration of a group of
mobile robots for multiple radiation sources estimation,” in 2016 IEEE
International Symposium on Robotics and Intelligent Sensors (IRIS),
Dec 2016, pp. 199–206.

[18] F. Caballero, L. Merino, I. Maza, and A. Ollero, “A particle filtering
method for wireless sensor network localization with an aerial robot
beacon,” in 2008 IEEE International Conference on Robotics and
Automation. IEEE, 2008, pp. 596–601.

[19] Hyperphysics. (2015, July) Radioactivity. http://hyperphysics.phy-astr.
gsu.edu/hbase/nuclear/radact.html.

[20] R. Finck, K. Liden, and R. Persson, “In situ measurements of environ-
mental gamma radiation by the use of a ge (li)-spectrometer,” Nuclear
Instruments and Methods, vol. 135, no. 3, pp. 559–567, 1976.

88

http://hyperphysics.phy-astr.gsu.edu/hbase/nuclear/radact.html
http://hyperphysics.phy-astr.gsu.edu/hbase/nuclear/radact.html


[21] E. Yee, “Theory for reconstruction of an unknown number of contaminant
sources using probabilistic inference,” Boundary-layer meteorology, vol.
127, no. 3, pp. 359–394, 2008.

[22] P. A. Karam and B. Stein, Radioactivity, ser. Science foundations.
Chelsea House, 2009. [Online]. Available: https://books.google.co.jp/
books?id=AgWtxh7uv84C

[23] J. Towler, B. Krawiec, and K. Kochersberger, “Radiation mapping in
post-disaster environments using an autonomous helicopter,” Remote
Sensing, vol. 4, no. 7, p. 1995, 2012.

[24] S. L. Cambell and J. M. G. Duarte, MIT Department of Physics, Oct
2009, Poisson Statistics of Radioactive Decay.

[25] A. Martin and S. A. Harbison, An introduction to radiation protection;
1st ed., ser. Sci. Paperbacks. London: Chapman and Hall, 1972.

[26] A. A. R. Newaz, S. Jeong, and N. Y. Chong, “Online boundary estimation
in partially observable environments using a uav,” Journal of Intelligent
& Robotic Systems, vol. 90, no. 3, pp. 505–514, Jun 2018.

[27] A. Gunatilaka, B. Ristic, and R. Gailis, “Radiological source localisation,”
Master’s thesis, Defence Science and Technology Organisation, July 2007.

[28] M. Morelande, B. Ristic, and A. Gunatilaka, “Detection and parameter
estimation of multiple radioactive sources,” in 2007 10th International
Conference on Information Fusion, July 2007, pp. 1–7.

[29] J. Howse, L. Ticknor, and K. Muske, “Least squares estimation techniques
for position tracking of radioactive sources,” Automatica, vol. 37, pp.
1727–1737, 11 2001.

[30] H.-I. Lin and H. J. Tzeng, “Search strategy of a mobile robot for
radiation sources in an unknown environment,” in Advanced Robotics
and Intelligent Systems (ARIS), 2014 International Conference on, June
2014, pp. 56–60.

[31] R. A. Cortez, H. G. Tanner, R. Lumia, and C. T. Abdallah, “Information
surfing for radiation map building,” International Journal of Robotics
and Automation, vol. 26, no. 1, p. 4, 2011.

[32] K. Krishnanand, P. Amruth, M. Guruprasad, S. Bidargaddi, and
D. Ghose, “Glowworm-inspired robot swarm for simultaneous taxis

89

https://books.google.co.jp/books?id=AgWtxh7uv84C
https://books.google.co.jp/books?id=AgWtxh7uv84C


towards multiple radiation sources,” in Robotics and Automation, 2006.
ICRA 2006. Proceedings 2006 IEEE International Conference on, May
2006, pp. 958–963.

[33] B. Yamauchi, “Frontier-based exploration using multiple robots,” in
Proceedings of the Second International Conference on Autonomous
Agents, ser. AGENTS ’98. New York, NY, USA: ACM, 1998, pp. 47–53.

[34] D. Holz, N. Basilico, F. Amigoni, and S. Behnke, “Evaluating the
efficiency of frontier-based exploration strategies,” Isr/Robotik 2010,
2010.

[35] B. Yamauchi, A. Schultz, and W. Adams, “Mobile robot exploration
and map-building with continuous localization,” in Proceedings. 1998
IEEE International Conference on Robotics and Automation (Cat. No.
98CH36146), vol. 4. IEEE, 1998, pp. 3715–3720.

[36] J.-C. Chin, D. K. Yau, N. S. Rao, Y. Yang, C. Y. Ma, and M. Shankar,
“Accurate localization of low-level radioactive source under noise and
measurement errors,” in Proceedings of the 6th ACM conference on
Embedded network sensor systems, 2008, pp. 183–196.
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