JAIST Repository

https://dspace.jaist.ac.jp/

Title

gdddoXMLUOUOUOUOUOUoooouououoououooog

gooo
Author(s) oo, 00
Citation
Issue Date 2003-03
Type Thesis or Dissertation

Text version

aut hor

.net/101p9/ 1702

URL http:/7/7 hdl handl
Rights
Description Supervisor: oo 0O4d, ooooooo oo

AIST

JAPAN
ADVANCED INSTITUTE OF
SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology



Evaluation and Implementation of the Dynamic Slicer
Expressing the Execution History by XML

Yosuke Takeda (110073)

School of Information Science,
Japan Advanced Institute of Science and Technology

February 14, 2003

Keywords: Dynamic Analysis, Data Schema, XML, Dynamic Slicing.

1 Background

Dynamic slicing is a useful technology in engineering and much research
have been done. Dynamic slices are useful in debugging, testing, main-
tenance, and program understanding. Korel and Laski proposed the first
dynamic slicing. After that, Agrawal proposed some approaches of dy-
namic slicing. Besides such research of a technique, there is much research
for mitigation of the size of an execution history. In addition, there is the
technique of marking to a program tree for improvement of accuracy. In
order to use dynamic slicing as a practical use target more, there is also
research which supports a function call and pointer analysis. However,
these all are not research works on development efficiency.

Research of dynamic slicing has problems, such as the size of an execu-
tion history becoming large and being hard to treat, execution environment
is required, and the difficulty of data expression. Therefore, although re-
search is prosperous, as far as we know, there is only a dynamic slicer for
a small language. Moreover, if implemented for every technique, before
evaluating, which results in high development cost. Furthermore, accuracy
also becomes worse. Then, the data schema is introduced into the dy-
namic slicer. Extraction and analysis of an execution history are divided.

Copyright © 2003 by Yosuke Takeda



Thereby, we can concentrate on development of the essential of the tech-
nique. Therefore, the development cost reduction of each dynamic slicer is
important.

Generally, a dynamic slicer needs a data schema with the fine-grained in-
formation. There are ACML, I-model of Sapid, and JavaML as an example
of modeling of program information. JavaML is coarse-grained. Therefore,
information required for slicing is insufficient. ACML and I-model of Sapid
are fine-grained. But, it does not have dynamic information. Therefore, a
data schema with dynamic information is required.

2 Purpose

This research defines the data schema which uses XML for the execution
history. And development efficiency is improved. Separation of extraction
and analysis can be performed by defining a data schema using XML.
Thereby, development of an extraction part and an analysis part can be
performed simultaneously. By test case creation of handmade business,
even if there is no execution environment, evaluation of a dynamic slicer
can be performed. An improvement of the development efficiency of a
dynamic slicer can greatly contribute to promotion of research of dynamic
slicing.

Our goal is to realize a dynamic slicer corresponding to a full set of
ANSI C. As the first phase, the dynamic slicer using the subset of ANSI C
is realized.

The following three steps are required for realization.

e The design of the suitable data schema for execution histories.

e Experimentally implementing a dynamic slicer based on the data
schema

e The check of the validity of a data schema, the convenience of XML
related technology, and the usefulness of the common format by XML.



3 Proposal and Implementation of Dynamic ANSI C
Markup Language(Dynamic ACML)

The data schema for dynamic slicers is proposed in this research. Below,
the conditions of a data schema are shown.

e Compact design
e Structure which is easy to treat to extraction side and analysis side
e Simple structure which is easy to understand

The design factors for fulfilling these conditions are choice alternative of
required information(Syntax information, variable name, variable value,
address value, etc), the setup of the degree of abstraction, and the setup
of grained.

First, Dynamic ACML was defined based on the technique of Korel and
Laski. This has dynamic information, such as a variable value and a
boolean of a control instruction, at the execution time. Furthermore, it
has the static information such as the control range of a line number, a
variable name, typedef, definition or use of variable, and a control com-
mand. Next, Dynamic ACML was extended based on the technique of
Agrawal. This has the address and size of a variable. Therefore, a depen-
dency is extracted not in a variable name but in the address value and size
of a variable. Furthermore, a structure object and array are added to a
variable and it enabled to distinguish them clearly. This is for holding the
information on offset of a structure object and array. The accuracy of a
slice goes up using this information. For example, it turns out that it is
not the whole a but dependence to a[1] if i of a[i] is 1 when array A
exists.

4 Implementation of Dependence Analysis Tool

In this research, we implemented two kinds of the technique of Korel
and Laski, and the technique of Agrawal, based on two kinds of Dynamic
ACML stated for the preceding clause. It is from the following reasons to
have used these techniques.



e The former is the most fundamental technique. Therefore, the useful-
ness using a dynamic slicer and XML is checked.

e The latter is a more practical technique. Dynamic slicer including
pointer analysis is implemented.

Our implementation was straight forwardly done. By one developer, each
took about two weeks. Although restricted to our small-scale experiment,
the development cost reduction of XML was checked. In our opinion, this
is because the conditions of a definition of the data schema of the foregoing
paragraph were realized well.

For example, there is a data dependency with the important element of
dynamic slicing The definition of a variable and the information on use are
indispensable to this analysis. When the definition of a variable and the
information on use are described to a data schema, an extract side want to
extract simply in order of evaluation on the abstract syntax tree. On the
other hand, if an analysis side collects a definition and after use, it is easy
to search. If it is going to collect a definition and use in consideration of
the convenience by the analysis side, we will think that the increase in the
development cost which an extraction side wears becomes large. Therefore,
we expressed them in the form which gave the information on a definition
and use to the attribute of a variable, and accompanied it in order of
evaluation. For this reason, an analysis side must take into consideration
the information on expression which is different for the same information.
However, there is a method ”getElementByTagName” which returns a set
of child elements with the specified tag name in DOM. For this reason, the
flexibility of expression of a data schema was absorbable. Therefore, it was
able to implement without caring about the evaluation order of variables.

5 Discussions

The factors of development cost reduction are considered to be the fol-
lowing items.

e The design of a suitable data schema

— The compact execution history was realizable with deletion of syn-
tax information and the necessary minimum data check. Actual

4



size was settled about 8 times to the source code, about 20 times
to the Comma Separated Value.

— A trade-off is between an extraction side and an analysis side
about the ease of treating of data. This difference was solved by
giving flexibility to a data schema.

— If structure of a data schema is complicated, it will be difficult
narrow-minded both extraction side and analysis side. Time to
understand structure is added to development cost. For example,
the information of a certain execution time can be acquired as
one tree structure. This element is a child element of the root.
However, when there was a control dependence, it is considered
as the child element of a control instruction which it depends on.

e Text file format as intermediate data.

— Since it extracts as a file, the analysis and separation of an execu-
tion history can be performed and data extraction and dependence
analysis can be implemented in parallel.

— Since it is a text file, a test case can be created by the text editor
etc.

— Since it is text form, an execution history can be checked without
using a special viewer.

e Execution history is expressed by XML.

— DTD can define a data schema easily by using EBNF form. More-
over, validity verification can be easily performed using an XML
parser.

— Lexical analysis and syntactic analysis are also available.

— DOM has much simple operation. Therefore, acquisition does
not take much time. Moreover, if the above-mentioned method is
used, the child element of a tree structure can be treated as a set.
For this reason, it can be used also for set operation.



6 Conclusion and Future Works

We expressed the execution history using XML. DACML which is the data
schema used for a dynamic slicer was proposed. And the technique of two
kinds of dynamic slicers was implemented as implementation experiments.
One developer realized each of them in about two weeks, respectively. Al-
though restricted to our small experimental implementation, the usefulness
of development cost reduction and XML was checked by dynamic ACML.
Especially, we have a plan to study the following as future works:

e Introducing more pointer analysis
In the present Dynamic ACML, neither the pointer to pointer nor the
pointer returned by malloc is taken into consideration.

e Coping with a function call
The function call has many problems, such as reference delivery and
value delivery of an argument and access to a function pointer. These
cannot be coped with by the present dynamic ACML. However, this
is important for dynamic slicing.



