JAIST Repository

https://dspace.jaist.ac.jp/

Title A 2-Stage Framework for Lparning to
Objects

Author(s) Gao, Ziyan; Elibol, Armagpn; Chong,
2020 Joint | EEE 10th Intefnational (

Citation Devel opment and Learning pnd Epigen:t
(I CDL-Epi Rob)

Issue Date 2020-10

Type Conference Paper

Text version aut hor

URL http:// hdl handle.net/ 10119/ 17023
This is the author's versjon of the
Copyright (C) 2020 | EEE. P 020 Joint
Il nternational Conference pn Devel op!
Learning and Epigenetic Rpbotics (1
2020, DOl : 10.1109/ 1 CDL-EpJ Rob48136.
Personal wuse of this matefpial is pet

: Permi ssion from | EEE must]| be obtai ne

Rights .
ot her wuses, in any current or futur
including reprinting/repuplishing ¢t
for advertising or promotj)onal pur p
new coll ective wor ks, for resal e or
redistribution to servers|or | i st s,
any copyrighted component]|] of this w
wor ks.

Description

AIST

JAPAN

ADVANCED INSTITUTE OF

SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology



A 2-Stage Framework for Learning to Push
Unknown Objects

Ziyan Gao, Armagan Elibol, and Nak Young Chong

Abstract—Robotic manipulation has been generally applied to
particular settings and a limited number of known objects. In
order to manipulate novel objects, robots need to be capable
of discovering the physical properties of objects, such as the
center of mass, and reorienting objects to the desired pose
required for subsequent actions. In this work, we proposed a
computationally efficient 2-stage framework for planar pushing,
allowing a robot to push novel objects to a specified pose with
a small amount of pushing steps. We developed three modules:
Coarse Action Predictor (CAP), Forward Dynamic Estimator
(FDE), and Physical Property Estimator (PPE). The CAP module
predicts a mixture of Gaussian distribution of actions. FDE
learns the causality between action and successive object state.
PPE based on Recurrent Neural Network predicts the physical
center of mass (PCOM) from the robot-object interaction. Qur
preliminary experiments show promising results to meet the
practical application requirements of manipulating novel objects.

Index Terms—Robot Planar Pushing, Probabilistic Model,
Data-Driven Approach

I. INTRODUCTION

Robotic manipulation plays an important role in a wide
range of industries and it is gradually advancing toward
tackling skill-needed works, such as grasping or pushing novel
objects, from predetermined and repetitive tasks. Pushing is
a simple yet powerful action that can be used to rearrange
objects to a working line or exploring the physical properties
of objects such as the center of mass, inertia, and similar
others. Besides, pushing action can be used to complement
or replace grasping [1], allowing to achieve better grasping
options through reorienting objects. For repositioning or re-
orienting objects that are not easily grasped, such as the case
that object size is larger than the maximum openness of the
gripper, pushing gives an efficient way to change object state
with smaller efforts than grasping.

In [2], it was inferred that it might be due to the humans’
internal model of physics, which enables them to understand
the physical properties of objects and to predict their dynamics
under the action of external forces. In the recent works [3]
and [4], they proposed novel methods to predict intrinsic
object properties such as the center of mass (COM) or inertia
of the object. Inspired by [3], we proposed an efficient 2-
stage robotic pushing framework with disentangled learning
modules for enabling exploration of COM of the object and
pushing it to a desired pose.

All authors are with the School of Information Science, Japan Ad-
vanced Institute of Science and Technology, Nomi, Ishikawa 923-1292, Japan
{s1920013, aelibol, nakyoung}@jaist.ac.jp

First Stage

Greedy

Action————
Planner

PCOM

Physical Property | {Mi M1, A Simul
Estimator imulator

A

PCOM PCOM

: :: \ Action
M i Coarse Action Forward Dynamics
: *j‘ Predictor Estimator

Second Stage

Fig. 1. The proposed 2-stage framework for robot planar pushing. In the first
stage, a greedy planner utilizing PCOM of the current object and VCOM of
the target object in the image plane minimizes relative position error. In the
second stage, CAP and FDE find push actions for adjusting object pose to the
sub-goal given the current object mask M; and sub-goal object mask M,./.
PPE receives successive images and executed action recurrently to update its
own internal cell state to predict PCOM, predicted PCOM to greedy planer
in the first stage and to CAP and FDE in the second stage.

In the first stage, as shown in Fig. 1, a greedy planer is
used to minimize the relative position error between the current
position of the object and the target region. In the second stage,
both object orientation and position are adjusted to the target
pose. Physical Property Estimator (PPE) offers the physical
center of mass (PCOM) of the current object state, which is
an instinct property that cannot be measured directly from
the input image of the object, both in the first and second
stage. The greedy planner utilizes the predicted PCOM and
the visual center of mass (VCOM) of the target to re-position
the object. Please note that PCOM is the coordinates defined
in the XY plane and transformed into the image plane. Z-
direction is not considered. In this stage, the computational
effort is small, since only PCOM is estimated, and there is
no other computation involved. In the second stage, we used
additional two modules: Coarse Action Predictor (CAP) and
Forward Dynamics Estimator (FDE). CAP is a probabilistic
model based on Mixture Density Network (MDN [5]), which
predicts action distributions given by the current and target
object masks, and PCOM of the current object state. Instead
of random sampling in action space, we sample actions from a
mixed Gaussian distribution given by CAP. By utilizing CAP,
the number of sampling can be decreased dramatically. The



FDE module is a simple yet efficient plane neural network
that utilizes PCOMs, VCOMs of the current object masks,
and the executed action to predict the future state caused by
these action candidates. During the second stage, we generate
a sub-goal object mask M, using interpolation between the
current and target object masks similar to [3] to help the robot
reorient or reposition the object.

We performed extensive simulations to evaluate our ap-
proach quantitatively. The experimental results show that the
proposed framework samples efficiently for pushing tasks with
the help of CAP. PPE helps other models to make a more
accurate prediction to reorient objects, and FDE tremendously
improves the performance of the proposed models.

II. RELATED WORK

A data-driven approach for robot planar pushing was studied
in [6], where a model was proposed to learn a function of
object shape for pushing. However, the number of objects was
limited and insufficient for performance evaluations. Recently,
in [3], Long Short Term Memory [7] was utilized to learn
future outcomes through historical experience of robot-object
interaction, also based on Voting Theorem proposed by [§]
which pointed out that with the help of PCOM, the rota-
tion direction can be determined. They conducted auxiliary
learning of PCOM. Even though this method releases many
assumptions compared with [9], the proposed method still
needs extensive action sampling (e.g., 1000 action samples
are reported in the experiments). In this study, we developed
a probabilistic model to learn the action distribution from
collected data to reduce the number of sampling. In our
experiments, sampling 50 action candidates are enough to
perform on par with larger action sample sizes. Moreover,
in the first stage of our framework, action sampling is not
required. Thus, the computational cost can be further reduced.

Xu et al. [4] proposed a method that made use of several
dynamic interactions (e.g., sliding or colliding) to predict
dense representations that reflect the physical properties of the
object. They developed a module called Multi-step aggregator
to update the action-state representation in order to infer better
dense representation. In this research, we use PPE, which
consists of two LSTM layers and one output layer to predict
PCOM. Since LSTM possesses input, output, forget gate
mechanisms, it can efficiently propagate useful information
through robot-object interaction.

Kloss et al. [10] investigated the advantages and limitations
of neural network-based learning approaches for predicting
the effects of actions based on sensory input. They showed
how analytical and learned models could be combined to
compensate each other. Baumeister et al. [11] combined an-
alytical and learned models to a hybrid dynamic model for
model predictive control. Gao et al. [12] proposed a combined
prediction model (analytical and learned model) and an online
learning framework for planar push prediction. However, these
methods still hold several assumptions, such as known friction,
which is challenging to obtain in a new case or need large
computations. In this work, we try to develop an efficient

n
e > s : pusher start position
.’ Pe : pusher end position
Ps. veom ¢ : contact point
n: surface normal at ¢
vcom: visual center of mass
LR pcom: physical center of

mass

Fig. 2. Terminology for pushing.

model that should be good enough for selecting an action.
Agboh et al. [13] used a deep learning model as a coarse model
for Parareal to accelerate physics predictions and applied to
Model Predictive Control. In this research, instead of the raw
sensory input, we extract relevant features such as contact
point, norm associated with a contact point, action velocity,
predicted PCOM, and similar others. It should be noted that in
order to reduce the gap between reality and simulation, we do
not use the 'real’ contact point and associated norm which can
be obtained from the simulator. Instead, we extract the contact
point and associated norm based on the geometric relationship
by using Shapely [14]. We develop a fully connected neural
network to predict the future outcomes of an action. It is
computationally efficient and shows promising performance
at action selection in our experiment.

III. 2-STAGE FRAMEWORK
A. Problem Statement

We consider the following problem: Given the initial and
target object masks My and My, the proposed models need
to predict proper actions to re-arrange objects from the initial
pose to the target pose. Before introducing the proposed
models, firstly, we need to make a definition of action and
terminology for pushing.

An action is defined by

a = [ps, Pe, )]

where p; consists of x, and y, for representing the initial
horizontal and vertical coordinates of the pusher while p.
consists of x, and y. for representing the end of pushing
coordinates, respectively.

The terminology for pushing is illustrated in Fig. 2. It should
be noted that PCOM cannot be measured directly from an
image, and VCOM is the visual center of mass of the object
mask.

B. Coarse Action Predictor

The illustration of the proposed CAP is given in Fig. 3.
The input to CAP is M; and M,;,;, which are the current
and sub-goal object masks (M;,M;+), and current PCOM
predicted by PPE. M, is generated by using interpolation
between the current and target object mask. CAP predicts the
distribution both for a start and terminating position of pushing



S0 [enpIsoy

: target

Feature
Extraction

Feature
| | Aggregation | |

Fig. 3. Overview of Coarse Action Predictor (CAP) module

action. CAP consists of three parts: Feature Extraction, Feature
Aggregation, and Mixture Density Network (MDN). We used
residual blocks trained on ImageNet as Feature Extraction part.
For Feature Aggregation part, it integrates feature maps of M;
and My, obtained by Feature Extraction part, and a latent
representation of PCOM obtained through two fully connected
layers of size 32, 32. MDN predicts action distribution param-
eterized by o, 02 and p. The mixture distribution is computed
by the following equation:

C
P(ay|My, Myy1,peoms) = Y a.D(p,0%),  (2)
c=1

where ¢ denotes the index of the corresponding mixture
component. There are up to C mixture components, .. is the
coefficient of ¢ component and the sum of all «, is one. D
denotes the distribution to be mixed. In this work, we used
Gaussian distribution determined by p and o. After training
CAP, we can sample action candidates from the predicted
distribution, and this helps reduce the number of samples and
computational costs.

C. Forward Dynamic Estimator

The FDE module is a plane neural network that has three
layers of size 64, 64, and 3. ReLU activation function is added
after every layer except for the output layer. The output is
[41, Y11, 001], wWhere x41,y;1 are the future object position
and o, is the future object orientation. FDE is a function
of a low-dimensional feature vector shown in Eq. 3, where
c,n represent the contact position in the global frame and
associated surface norm, while A represents the shape area.
The output is the future movement of the object represented
by Ouy1 in Eq. 3. O;41 composed of the future position
and orientation of the object in the image frame. These input
features have a direct effect on object movement. vcom infers
the object position and pcom can help FDE predict the rotation
direction. ¢, n can help determine the type of contact: “sticking
contact” or “sliding contact”. In the first case, the object
movement will be the same as the velocity of the pusher,
while in the second case, the object movement will be almost
orthogonal to the resulting motion at the contact point. A can
be seen as a factor implicitly encoding the contact friction
between the object and the plane.

Ot+1 = fFDE(at, Ct, Tt, VCOMLt, PCOTN¢, A) 3

PCOM,, 4

‘ LSTM

!

LSTM

PCOMy,,

LSTM

—
—

LSTM

|

(Fmeiy fmgz) fra

(Fmy, fmg,0) fe

Fig. 4. Tllustration of Physical Property Estimator, fmyg, fm¢y1 are the
feature maps extracted from successive object mask, f¢ is the low-dimensional
vector.

Fig. 5. Simulation Environment: nine objects in data collection phase (left
lower) and seven novel objects (right lower) in evaluation phase. The size of
novel objects is ranging from 14cm? to 60cm?.

D. Physical Property Estimator

PPE is modeled as a recurrent neural network, and it is
composed of two LSTM layers of size 64 each and 2 plane
layers of size 32 and 2. ReLU activation function is added
after each layer except the output layer. The input to PPE has
two parts; one is two feature maps of two successive object
masks obtained by convolution neural network that is the same
as Feature Extraction part of the CAP module and the other
one comes from a low-dimensional feature vector shown in
Eq. 4, where pcomy; is the predicted PCOM of the object
shown in the second object mask.

peomy 1 = frpe(fMmui1, veome i, c,ne, ar)  (4)
IV. EXPERIMENTAL SETTINGS

All models are implemented in Pytorch [15]. The dataset
is collected through extensive simulations done using the
CoppeliaSim robot simulator. A cylinder with a radius of
0.5¢m and length 20cm is attached to the end link of the UR10
robot. A square table of 0.6m is used as the working space for
pushing. A camera is mounted on the ceiling above the table.
Nine objects (depicted in Fig. 5) of different shapes and sizes
were considered in the experiments. For the sake of stability,



PCOM is aligned to the object randomly within the half size
of its bounding box. In order to improve the capabilities of
the model, we randomly change the object size and the ratio
of its dimensions. Firstly, an object is loaded into the scene
with a random pose, then an action, which is performed as
a straight line of length 2.5c¢m, is sampled to interact with
the object. Actions are selected randomly with a guarantee
that each action changes the object pose. The procedure was
repeated multiple time steps. Finally, we record the object
mask and the executed action in each time step. The dataset
contains more than 57,000 sequences of interactions between
the robot and different objects. The lengths of these sequences
are ranging from 3 to 8. In order to re-use residual network
layers, we tiled mask images to three channels.

In the training phase of CAP, we used the negative log-
likelihood function to minimize the training error.

Loap = —log(P(as|My, My 1, pcomy)) ®)

We used the mean square error to minimize the training error
of FDE. For PPE, we used the weighted mean square error
defined in Eq. 6. The intuition behind this loss function is that,
with the increase of the number of interaction, the accuracy
of PCOM estimation in the current step should be higher than
the previous step.

T

1 .
Lppg = T Z at(pcom, — pcomy)?, oy
t=1

_ t
- T
2=t

For the training of all modules, we used Adam optimizer.
We set the size of mini-batch to 64 for training CAP and
PPE, and 200 for training FDE. The learning rate was set to
0.001 for CAP and PPE, and 0.0001 for FDE. We added the
Dropout layer before each output layer for all models and set
the deactivate ratio to 0.1. In the whole training phase, the
parameters of residual blocks were fixed.

In the evaluation phase, we aim to analyze the proposed
2-stage method for robot planar pushing both in terms of
efficiency and accuracy. We conducted two main experiments.
For the first experiment, we try to answer the question:
How many action candidates are needed to complete the
pushing task? For the second experiment, we try to answer
the question: how do PPE and FDE modules contribute to the
pushing task?

In the first experiment, We expect that with the number
of sampling increases, the accuracy will improve, and the
average number of pushing steps will decrease. Firstly, an
object is loaded into the workspace, and then we use a greedy
planner to minimize relative position error. After that, we use
the CAP and FDE modules to select an action to push the
object to the target pose. Action candidates are sampled from
the predicted action distribution, and action is selected based
on the mean squared error calculated between the required
change O, and Ot+1 predicted by FDE. In this experiment,
both initial and target object positions are sampled randomly
in a range of [-0.28m, 0.28m], and the relative orientation
error between the initial and target is set to 180 degrees. The

(6)

range of [-0.28m, 0.28m] is selected because we want to keep
the objects on the table. Compared with the evaluation settings
in [3], where the relative orientation between initial and target
pose is sampled between [-90,90] degrees, our case is more
challenging. Specifically, the number of steps executed in the
first stage is not taken into account, and only the pushing steps
in the second stage are counted, since the greedy planner in
the first stage can re-position the object successfully in all
new cases. In the second stage, we generate a sub-goal that has
2.5cm and 17 degrees closer to the target pose than the current
pose, since the pushing length of 2.5¢m is adopted during
data collection. Both 2.5¢m and 17 degrees can be changed.
However, a small orientation change will cause more steps to
reach the target pose, and a massive orientation change will
cause oscillations in orientation. We tried different orientations
of required change several times and found that the 17 degree
case provides a good compromise between efficiency and
stability. The robot needs to push the object from the initial
pose to the target pose within 20 steps. In the second stage,
if the final pose of the object is close to the target pose (for
the relative position error, it should be within £0.05m, for
the relative orientation error, it should be within £10degree,
the same criteria used in [3]), we regard this trial as success.
We used action candidates of 3, 10, 50, 100, 200 to 500
sampled from the action distribution predicted by CAP and
keep other settings the same. For each setting, we repeat the
same experimental trial for 100 times.

For the second experiment, we investigate the pure-rotation
and pure-translation actions. In this experiment, we only use
the modules in the second stage. PCOM is randomly aligned
to the object similarly in the first experiment. For the pure-
rotating object experiment, the object position is not taken into
account, and it was set to the center of the table with a random
orientation. The robot is expected to rotate objects 17 degrees
at each time step. The robot needs to rotate objects 180 degrees
within the relative orientation error +10 degrees within 20
steps. For a pure-translating object, the object position is set to
the center of the table as the target position. The initial position
is set randomly in a range of [-0.28m, 0.28m] and the initial
and target orientation were set to remain the same. The robot is
expected to re-position the object 2.5¢m at each time step and
keep its orientation unchanged. The robot needs to move an
object to the target region within the relative orientation error
+10 degrees. For each experiment, we used three alternative
configurations based on proposed models:

o Test Model 1 Model with a known PCOM; Instead of
relying on PCOM predicted by PPE, we directly provide
PCOM to CAP and FDE. Because of the precise PCOM
information, this setting should have higher performance
compared with other settings.

e Test Model 2 Model without the PPE module; Instead
of predicting PCOM, the setting assumes that PCOM
overlaps VCOM

o Test Model 3 Model without the FDE module; Instead of
selecting the best action from sampled action candidates



TABLE I
ACCURACY FOR THE FIRST EXPERIMENT

Number of 5 10 | 50 | 100 | 200 | 300 | 400 | 500

Samples

objectl | 0.58 | 0.79 | 0.97 | 096 | 0.96 | 091 | 0.96 | 0.97

objectZ | 0.52 | 0.86 | 0.98 | 0.98 | 0.97 | 0.99 | 0.99 | 097
object3 | 049 | 0.81 | 0.98 | 098 | 1.0 | 099 | 0.99 | 0.9
objectd | 0.55 | 0.86 | 098 | 1.0 | 095 | 0.99 | 0.98 | 0.97
objects | 044 | 092 | 0.98 | 0.98 | 0.97 | 0.99 | 0.99 | 0.98
object | 0.55 | 092 | 0.98 | 099 | 099 | 1.0 | 099 | 1.0
object7 | 0.56 | 0.86 | 0.94 | 0.96 | 0.98 | 0.98 | 0.97 | 097

TABLE I
ACCURACY FOR PURE ROTATING OBJECTS
Models object] | object2 | object3 | object4 | objectS | object6 | object7
Test Modell 0.99 1.0 0.98 0.98 1.0 0.99 0.98
Proposed Model 0.98 0.99 1.0 0.97 0.96 1.0 0.98
Test Model2 1.0 0.97 1.0 0.94 0.99 0.98 0.95
Test Model3 0.23 0.12 0.15 0.24 0.16 0.21 0.22

with the help of FDE, the setting select a best action
randomly from the predicted action candidates.

We conducted 100 trials for each novel object and each
testing configuration. For a fair comparison, we use the same
initial and target object pose and the same PCOM position
relative to the object frame in the same trial for all settings.

V. EXPERIMENTAL RESULTS AND DISCUSSION

The result of our experiments are provided in Figures 7, 8, 9,
and Tables I, II, and III. In these figures, we show the box plot
of pushing steps for successful pushing, where we use the 10th
and 90th quantile to represent the min and max pushing step.
In these tables, we report the accuracy for pushing objects
from the initial to desired pose calculated by Eq. 7, where
Nguccess 18 the number of successful trials and Ny,iq; 1S the
number of trials conducted. For all experiments, Nyyq; is 100.

ace — Nsuccess (7)
Ntotal

The result of the first experiment is presented in Fig. 7 and
Tab. I. We observe from the results that the average number of
steps has decreased gradually, especially from the settings of 3
action samples to 50 action samples. From 50 action samples
to 500 action samples, no such improvement was found as in
the case of smaller numbers of samples. For the accuracy, we
found that there is a significant improvement from the setting
of sampling 3 actions to sampling 50 actions, and there was
no considerable improvement in accuracy for other settings.
The results of the second experiment are summarized in
Fig. 8, Fig. 9 and Tab. II, Tab. III. From Fig. 8 and Tab. I, we
observed that Test Model 3 performed worse than others, and
Test Model 1 performed best for almost every novel object. In

TABLE III
ACCURACY FOR PURE TRANSLATING OBJECTS
Models object] | object2 | object3 | object4 | objectS | object6 | object7
Test Modell 0.92 0.97 1.0 0.97 0.97 0.99 0.98
Proposed Model 0.98 0.98 0.99 0.97 0.98 1.0 0.99
Test Model2 0.98 0.99 1.0 0.95 0.97 1.0 1.0
Test Model3 0.49 0.70 0.66 0.54 0.56 0.69 0.48

the experiment of pure rotation, Test Model 2 and the Proposed
Model performed similarly in terms of the mean pushing steps.
However, we observed that the pushing steps of Test Model 2
have varied greatly compared with the Proposed Model. In the
experiment of pure translation, we observed that the pushing
steps of Test Model 2 have varied less compared with the
Proposed Model.

Based on the experimental results and observations, we
found that our proposed framework is efficient in action
sampling, and furthermore it uses much fewer action samples
to yield promising performance. In the second experiment,
firstly, we found that FDE has a significantly important role
in action selection, as it can be seen in the case of Test Model 3
which does not utilize FDE, showing much worse performance
compared with other settings. Besides, we observed that Test
Model 1, in which we directly provide the ground truth PCOM,
performed almost best in terms of pushing steps. Therefore,
with the advantage of known PCOMs, the other module can
complete the pushing task with a smaller number of pushing
steps, especially in the case of a pure rotation experiment.

In the pure translation experiment, we still can find that
Test Model 1 and the Proposed Model have slightly better
performance compared with Test Model 2, even though the
differences are not as much as the ones in the pure rotation
experiment. This might be due to the fact that not only PCOM
but also object shape and initial position have a large impact on
the performance of our models. Fig. 6 shows several examples
of our pure-translation experiment.

We carried out an additional experiment for evaluating how
PCOM affects the performance of FDE. We used the test data
of the data set collected in IV. We used two input features for
comparison: features containing PCOM and VCOM, respec-
tively. For the second input feature, we simply replace PCOM
by VCOM. We use the mean square error to compute the
predicted position error and mean absolute error to compute
the predicted orientation error. The result is shown in Fig.10.
We can see that there is no obvious difference between the two
input features in terms of position prediction error. However,
PCOM does help FDE predict the orientation of the object
when calculating the orientation prediction error. We can see
that FDE with PCOM has a smaller prediction error and lower
variance than FDE with VCOM.

VI. CONCLUSIONS AND FUTURE WORK

In this study, we proposed a 2-stage framework with dis-
entangled learning modules for robot planar pushing. Our
proposed framework allows exploring PCOM and pushing
a wide variety of novel objects given a desired pose. The
validity of the framework was evaluated quantitatively through
extensive simulations. The obtained results show that our
proposed method can manipulate novel objects with unknown
physical properties. Compared with previous work, our method
is efficient in sampling and can handle more challenging tasks.
Through the experiments, our method achieved promising
accuracy by only utilizing 50 action samples instead of 1000,
as reported in [3]. Furthermore, we found that the proposed



Fig. 6. Examples of a pure-translating object, in the first row, objects are pushed without a significant change in orientation. In contrast, in the second row,

the orientation of the object varies in a large interval.

20

o
—
N

¢

steps

L)
. 0
.

1 2 3 4
objects

1 || | | | ]
e i oy e, *
| II—I R ||||—| |||_| |I|I|
] 1 I
) I |

0

| I

samples:3
samples:10
samples:50
samples:100
samples:200
samples:300
samples:400
samples:500

.

IDIIIIDI

Fig. 7. Box plots of the pushing steps for re-orienting objects to the desired pose. The vertical axes represent the steps executed to successfully re-orient
the objects. The horizontal labels are the object categories. For each object, there are multiple corresponded box plots, which represent a different number of
action candidates sampled from the output of CAP. We used 10th and 90th quantile to represent the min and max step, respectively.

steps
o
o

B Test Modell
B Proposed Model

. I I I I
B Test Model2

4 U & B Test Model3

objl obj2 obj3 obj4 obj5 obj6 obj7
objects

Fig. 8. Box plots of the pushing steps for rotating object 180 degrees
without considering the object position. The vertical axes represent the steps to
successfully rotate the objects. The horizontal labels are the object categories.
For each object, there are multiple corresponded box plots, which represent
different models used.

PPE does help the framework yield improved predictions for
pushing novel objects, and the proposed FDE plays a pivotal
role in action selection.

Despite the competitive advantages of the proposed frame-
work, it has not been yet evaluated on the real platform, which

-
<
n
T
o

-
o
o
—
—

B Test Modell
[ Proposed Model
[ Test Model2
B Test Model3

obj1 obj2 obj3 obj4 obj5 obj6 obj7
objects

Fig. 9. Box plots of the pushing steps for translating object without consider-
ing the object orientation. The vertical axes represent the steps to successfully
translate the objects. The horizontal labels are the object categories. For each
object, there are multiple corresponded box plots, which represent different
models used.

will be our future work. In addition, in our settings, the shapes
of objects used were relatively simple and similar to each
other. We will test more complex shaped objects to further
evaluate our model. We also used a cylinder as the pushing



Fig.

I FDE with pcom I FDE with vcom

Position(mm) Orientation(degree)
prediction error

10. Evaluation for Forward Dynamic Estimator; The mean of position

prediction error for FDE with PCOM and FDE with VCOM is 6.29 and 6.30
millimeters. The orientation prediction error for FDE with PCOM and FDE
with VCOM is 3.03 and 3.77 degrees.

tool to obtain precise contact points. Considering the different
types of widely used tools such as parallel-jaw gripper will
also be a future research direction.

(1]

[2]

[3]

[4]

[5]
[6]

[7]

[8]

[91

[10]

(11]

[12]

[13]

[14]

[15]

REFERENCES

Andy Zeng, Shuran Song, Stefan Welker, Johnny Lee, Alberto Ro-
driguez, and Thomas Funkhouser. Learning synergies between pushing
and grasping with self-supervised deep reinforcement learning. In 2078
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 4238-4245. IEEE, 2018.

Pulkit Agrawal, Ashvin V Nair, Pieter Abbeel, Jitendra Malik, and
Sergey Levine. Learning to poke by poking: Experiential learning of
intuitive physics. In Advances in neural information processing systems,
pages 5074-5082, 2016.

Juekun Li, Wee Sun Lee, and David Hsu. Push-Net: Deep Planar
Pushing for Objects with Unknown Physical Properties. 2018.

Zhenjia Xu, Jiajun Wu, Andy Zeng, Joshua Tenenbaum, and Shuran
Song. DensePhysNet: Learning Dense Physical Object Representations
Via Multi-Step Dynamic Interactions. 2019.

Christopher M Bishop. Mixture density networks. 1994.

Tucker Hermans, Fuxin Li, James M Rehg, and Aaron F Bobick.
Learning contact locations for pushing and orienting unknown objects.
In 2013 13th IEEE-RAS international conference on humanoid robots
(humanoids), pages 435-442. IEEE, 2013.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory.
Neural Comput., 9(8):1735-1780, November 1997.

Matthew T. Mason. Mechanics and Planning of Manipulator Pushing
Operations. The International Journal of Robotics Research, 5(3):53-71,
1986.

Jiaji Zhou, Robert Paolini, J Andrew Bagnell, and Matthew T Mason. A
convex polynomial force-motion model for planar sliding: Identification
and application. In 2016 IEEE International Conference on Robotics
and Automation (ICRA), pages 372-377. IEEE, 2016.

Alina Kloss, Stefan Schaal, and Jeannette Bohg. Combining learned and
analytical models for predicting action effects. 2017.

Thomas Baumeister, Alina Kloss, and Jeannette Bohg. Combining
Analytical and Learned Models for Model Predictive Control. (Nips),
2018.

Huidong Gao, Yi Ouyang, and Masayoshi Tomizuka. Online learning
in planar pushing with combined prediction model. arXiv preprint
arXiv:1910.08181, 2019.

Wisdom C Agboh, Daniel Ruprecht, and Mehmet R Dogar. Combining
coarse and fine physics for manipulation using parallel-in-time integra-
tion. arXiv preprint arXiv:1903.08470, 2019.

Sean Gillies et al. Shapely: manipulation and analysis of geometric
objects, 2007—-.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward
Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga,
and Adam Lerer. Automatic differentiation in pytorch. 2017.



