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Abstract—In this work, we consider the localization problem of
an unknown radiation source with measurement uncertainty by
using robotic systems in a geometric environment. We proposed
the scheme for localization of a radioactive source using the
particle filter with information gain-based exploration. The
traditional method to localize the radiation is to use the gradient
descent algorithm. However, such the algorithm may fail to
work in the case of uncertain measurements, which lead to an
inaccurate outcome. On the other hand, a standard particle
filter can be used to deal with the measurement uncertainty,
but the estimated intensity result may be unstable since it only
uses the current measurement update as a likelihood function.
To solve the problem of measurement uncertainty and unstable
intensity result, we proposed an exploration method using the
information gain with particle filter. The algorithm takes the
information of the particles in the filter to estimate the possible
actions for the robot. The expected information gain from those
actions can be used to select the best possible action for the robot.
The proposed method has been verified by the simulations. The
proposed strategy can decrease the time it takes to finish the task
comparing to the conventional methods such as the lawn mowing
algorithm and source estimation seeking algorithm.

Keywords—Source localization, information theory, mobile
robot

I. INTRODUCTION

The environmental hazard is an important threat where
chemical substance damages the environment, which has an
unfavorable effect on living organisms. One of the causes
that contaminate surroundings is radioactive material leakage,
which is an increasing concern in national security [1]. This
emerging threat can be either induced by a malicious attack or
accidental release of radioactive material. Thus, the radiation
source estimation can be a valuable tool in order to plan a
counter-measure to the problem, including saving human life
and clean up the leakage material [2].

The radioactive measurement gives a non-linear output [3],
[4], yet introduces uncertainty in measurement [5]. In order
to handle these issues, there are several studies addressing the
problem of source localization and estimation. In [6], three
estimation techniques were applied: the Maximum Likelihood
Estimator (MLE), the Extended Kalman Filter (EKF), and the
Unscented Kalman Filter (UKF) to estimate the location of
the radiation source. The authors used the Cramér-Rao lower
bound to find the lower bounds for those estimation algorithms.
The best result is obtained using the MLE, but it requires a

lot of computational power to calculate the maxima. In [7],
it was used a helicopter to carry a detector and flew over
the area to map the radiation source. The particle filter was
used as the estimation technique with prior knowledge of the
intensity of the source, type of 1/R2. In [8], it was used a
mobile ground robot equipped with a detector to map a source
in the environment with obstacles. The artificial force field
algorithm with the control vector was used to map the radiation
source while avoiding the obstacles. In [9], it was shown
the application of multi-robot systems to deal with radiation
mapping by developing the control algorithm to follow the
increasing information gradients. Each robot has to visit each
cell and determine which cell to go the following based on
the information of the past.

The main problem of exploration in the radiation field is the
measurement uncertainty [10], [11]. Each sensor measurement
of the robot at the same position does not guarantee to have
the same value. In a particular case, it is based on Poisson
distribution. The particle filter is one of the tools that give
flexibility over the non-linear system. One way to navigate
through the exploration field to locate the radiation source is
to follow the estimated source location of the particle filter
[12]. However, that does not guarantee to be the optimum path,
or the result may be a failure in the worst case due to the
distance between the robot and the source. If the location of
the robot is far away from the source or in low radiation area,
the particle filter does not guarantee to give an accurate result
due to lack of information. Therefore, in this work, the method
for exploration in the radiation field by using the information
gain is proposed. The robot will use the information gain-based
exploration, which can calculate the best possible action for
the robot by using the particles information (weight, intensity,
and location).

The rest of the paper is organized as follows: Section
2 describes the background of the radiation measurement
and shows the model for the radiation. Section 3 shows
the detail process of the particle filter with our proposed
intensity estimation algorithm. Section 4 describes the proposed
exploration method using the information gain. Section 5 is
the experimentation with the analysis of the result. The last
part, Section 6, presents our conclusion.



II. RADIATION MODEL

Radioactivity is a process of an unstable atom emits various
types of radiation, including alpha particles (α), beta particles
(β), X-rays, and gamma particles (γ). A Geiger counter and
a scintillator are radiation measurement devices that are used
to detect gamma rays [13]. The radiation reading from a
measurement device follows the inverse square relationship.
The intensity of a radiation source is inversely proportional
to the distance relative to the instrument according to the
following equation [3]:

λk =
I

(xk − x0)2 + (yk − y0)2 + (zk − z0)2
+ λb (1)

where λk is the intensity at the measurement device, I is
the intensity of the source, (xk, yk, zk) is the position of
the measurement device, (x0, y0, z0) is the position of the
source and λb is the background intensity at the measurement
point. Since we use ground mobile robots, we set the altitude
difference z to 0.

According to [5], the radiation measurement is uncertain
because of the nature of radioactive decay. Each decay event
is random, independent, and occurs at a fix mean rate λ that
follows the Poisson statistics as the equation below:

f(k, λ) =
λke−λ

k!
(2)

where λ is the average number of count for the period of an
exposure time τ . k is the exact measurement reading from the
source.

We assume that the radiation detector attached to the
robot location (xk, yk) is uniformly directional response and
neglect the air attenuation. The measurement by a robot is
independently distributed, and the exposure time τ of all
measurement is constant [14].

III. RADIATION ESTIMATION ALGORITHM

Recursive Bayesian estimation (RBE) or Bayes filter is an
excellent method to deal with sensor uncertainty [15]. It also
provides real-time computational feasibility with localization
accuracy [16]. Most recursive Bayesian estimators have the
same concept, which predicts the system behavior by using
the measurement to correct the prediction according to the
following Bayes theorem:

P (x | z1:k) =
P (zk | x, z1:k−1)P (x | z1:k−1)

P (zk | z1:k−1)
(3)

where x is the estimated state. z is the observation. The
posterior belief, P (x | z1:k), is the product of the measurement
model P (zk | x, z1:k−1) and the prior belief P (x | z1:k−1)
divided by the normalization constant P (zk | z1:k−1).

In this work, we choose the particle filter as the mapping
algorithm since it compromises efficiency and performance for
the non-linear and non-Gaussian systems [17]. In addition, the
particle filter is non-parametric. Thus, it provides heuristic, and
it is more flexible than other algorithms. The particle filter or
Sequential Monte Carlo (SMC) is the method representing the

Algorithm 1 Particle Filter

1: Initialize particles: x0 = rand(N, 1)
2: Initialize particles’ weights: w0 = 1/N
3: while Not converge do
4: for i = 1 to N do
5: Update weight:

wik = wik−1 · N (zik, λ
i
k, λ

i
k)

6: end for
7: Normalize weights: wk = wk∑N

i=1 w
i
k

8: Calculate state estimate:
x̂k =

∑N
i=1 w

i
k · xik

9: Resampling process
10: end while

posterior belief using a set of random state samples as particles.
Each particle is basically a hypothesis of the real state at time
t with an associate weight to represent the accuracy of the
hypothesis based on the state measurement. The detail of the
particle filter algorithm is in Algorithm 1.

In this work, we use a mobile robot to explore and map the
radiation. The estimation state x for each particle requires the
location (x, y) of the source and its intensity I as:

x =
[
x y I

]
(4)

A. Intensity Estimation of Particles

We can use Eq. 1 to calculate the particle expected intensity
I at the location (x, y) as we have a kth measurement zk at the
robot location (xk, yk). However, it may introduce an estimation
accuracy problem since we only use the current measurement
that only provides the information at a specific location.
If we combine the previous measurements, which include
measurement locations (x1:k, y1:k) and intensity measurement
λ1:k, the particles’ intensity estimation will be more accurate.

From Eq. 1, we can estimate the particle’s intensity Ii at
(xi, yi) using the current measurement zk by:

Ii

d2k
+ λb = zk (5)

where dk =
√
(xk − xi)2 + (yk − yi)2. Consider the previous

measurements from the first measurement to measurement n,
they also can estimate the intensity Ii by:

Ii

d2k−1

+ λb = zk−1 (6)

Ii

d2k−2

+ λb = zk−2 (7)

... (8)
Ii

d2k−n
+ λb = zk−n (9)



combining those terms, we have:

Ii ·
n∑
j=0

d−2
k−j =

n∑
j=0

(zk−j − λb) (10)

Ii =

∑n
j=0(zk−j − λb)∑n

j=0 d
−2
k−j

(11)

Thus, Eq. 11 can be used to estimate the particle’s intensity
Ii using previous and current measurements.

1) Likelihood Function: By using Eq. 2, we can calculate the
likelihood xi of particle i by using the kth measurement zk and
the predicted intensity λik from Eq. 1. Here, we approximate
the Poisson distribution to the Gaussian distribution to reduce
the computational complexity [6]:

p(zk;x
i) = P(zk;λik) (12)

≈ N (zk;λ
i
k, λ

i
k) (13)

However, since we use the previous and current measure-
ments z1:k at (x1:k, y1:k), the new likelihood function is the
product of all likelihoods from all measurements as:

p(z1:k;x
i) ≈

k∏
j=1

N (zj ;λ
i
j , λ

i
j) (14)

The state estimation of the particle filter is usually the
average state of the particles with the highest weights.

2) Resampling Process: The resampling process is on how
to remove the lowest weight particles and resample them
elsewhere in order to avoid the problem of degeneracy. The
degeneracy problem is the usual problem in the particle filter,
which is a few highest weight particles dominate the distribution
while most particles will have weights close to zero [18]. The
resampling process will remove a portion of the lowest particle
weights and resample them at the high weight particles using
the roulette wheel selection [19]. In addition, the particles that
have zero weight will be resampled as well. It is to ensure that
some of the high weight particles will be selected and also
add diversity to the population from lower weight particles.
The newly born particles xindex

j
L

k+1 will have the a uniform
distribution and spawn near the highest weight particles xtargetk

added by Gaussian noise.

x
indexj

L

k+1 = xtargetk +N (µ, σ2) (15)

3) Termination Criteria: The algorithm will converge when
the termination criteria are met. In this case, we set the
termination criteria as: if the root mean square error of the
estimated intensity is less than 5% for 5 iterations and if the
robot has visited the area within 1.5m around the estimated
location, the algorithm has converged. The reason why the robot
has to visit the estimated location is to prevent the algorithm
from ending too soon, which may lead to the false location of
the radiation source.

IV. INFORMATION GAIN-BASED EXPLORATION

The entropy is the tool to measure the uncertainty of a
random variable [20], [21]. In this case, we want to evaluate
the uncertainty of the map using the entropy to model this in
the probabilistic manner.

H [P(x)] = −
∫
x

pi log pi (16)

≈ −
n∑
i=1

pi log pi (17)

where, pi = P(x = xi). In our case, the particle filter entropy
is as the following equation:

H [P(x|zt)] = −
#particle∑

i=1

wip(xi|zt) log p(xi|zt) (18)

where, x is the distribution of the particles. wi is the weight
of each particle i. zt is the observation that we obtain at the
time step t. Then, the action of the robot at can be evaluated
using the expected information gain. It is the change of the
entropy for the particle filter when we apply the action as:

I (ẑ, at) = H [P(x|zt)]−H [P(x, x̂|at, ẑ)] (19)

where ẑ is the observation to be obtained when action a is taken.
This value can be calculated by Eq. 1, using the estimated
intensity value from the current particle filter time step t. x̂ is
the new distribution of particles introduces by the action at.
The expected information gain can be obtained by integrating
all the possible measurements ẑ when the robot takes action
at.

E [I(at)] =

∫
ẑ

p(ẑ|at, zt)I (ẑ, at)dz (20)

However, to compute the expected information gain is usually a
complicated task. Instead, the utility function using the greedy
aspect of the maximum information gain I when the robot
takes action a as:

a∗ = argmax
a

H [P(x|zt)]−H [P(x, x̂|a, ẑ)] (21)

The utility function becomes:

U (a) = I (a)− αcost(a) (22)

where α is the weight of the cost of the action a that the robot
has to take. We choose the best action, i.e., the action that
gives the highest utility as the robot action.

Fig. 1 shows the overall radiation map that the robot has to
explore. The radiation map is the map with different radiation
levels corresponding to the radiation source. According to
Eq. 1, radiation intensity will reduce inversely proportional
to the distance from the radiation source. Fig. 2 shows the
particles of the robot that are the possible location of the
source.

However, as the robot progress through the area, the entropy
of the map becomes less and less significant, according to
Fig. 3. On the opposite, when the robot is getting closer to the



Fig. 1: The simulated environment with a robot represented
by a green square. The small squares that follow the robot are
the previous reading in the last two time steps (k − 1, k − 2).
The real location of the source represented by the red circle
and the background of the map represents its corresponding
radiation level. The estimated location of the radiation source
by particle filter represented by the yellow circle.

Fig. 2: The particles of the robot that represents the hypothesis
of the source. The white area with no particle is the area that
the robot already visited with low information, so the particles
in the particular area are resampled elsewhere on the map.

radiation source, the particle filter estimation becomes more
accurate. Thus, in order to get an accurate result, the robot
should switch to use the particle filter estimation as the target,
and takes the action that makes the robot get closer to the
target.

Fig. 3: The entropy value vs iteration when the robot explores
the radiation field. The entropy value decreases as the iteration
increases, which means the information that we gain from the
map is lower after each iteration.

V. EXPERIMENTAL RESULTS

A. Environment Settings

In the experiment, the environment is in a square shape,
20×20m2 with no obstacle. We test each case with the scenario
as in Fig.1, in which the radiation source spawns at the top
right corner. The radioactive source has a random intensity
between 30,000 to 50,000 counts. The background intensity is
set to 1,000 counts [22].

B. Robots Settings

A robot in the test knows its location using a GPS with the
assumption that the GPS reading has no error. The robot will
always start at the furthest location away from the source at
the bottom left of the map. The background intensity is known
by the robot. There are 1,000 particles initialized. The map is
divided into a small 1× 1m2 grid cell. The robot will measure
the radiation only one time when they moved on the next
exploration cell. It can move in 8 directions. When the robot
is further away from the source, the information gain-based
exploration will be used. The measurement threshold that the
robot will switch to the source estimation seeking is 2,000
count.

C. Experimentation and Analysis

We run the experiment 100 times with different radiation
intensity counts. We notice that the path of the robot of the
proposed method is not the optimum path, which is to be
expected because of the uncertainty of the measurement. We
tested our algorithm versus the well-known methods such as
the lawn mowing algorithm [23] and source estimation seeking
method [8].

Table I shows the average travel distance and average error
in intensity and position that the robot takes to finish the task.
It clearly shows that the traditional method, such as the lawn
mowing algorithm that does not rely on a sensor to guide the
robot to the next possible best action as it gives the highest
travel distance. The source estimation seeking method gives a
competitive travel distance compared to the proposed method.
However, the proposed method works better since it selects
the next best action based on the maximum information gain.

In the accuracy aspect, the lawn mowing algorithm has a
lot more measurement points that result in higher accuracy.
The estimation seeking method and the proposed method have



TABLE I: Performance comparison of the proposed method
vs traditional methods

Travel distance
(m)

Position Error
(m)

Intensity Error
(count)

Lawn mowing (row) 381.00 0.01 115.05
Lawn mowing (column) 381.00 0.03 152.90
Estimation seeking 39.67 0.23 1,661.40
Proposed method 36.16 0.20 1,283.00

a lower number of measurement points, but they give decent
accuracy in terms of both intensity and position. Fig. 4 gives
one example of the route that the robot takes using the proposed
method and its corresponding entropy value.

VI. CONCLUSION

In this paper, we presented a strategy for a radiation
source localization using robotic systems. The particle filter
is employed to deal with the measurement uncertainty of a
radioactive measuring instrument. We utilize the information
gain-based exploration to solve the problem of navigation
in low-intensity areas and measurement uncertainty by using
the information from the particle filter to determine the best
possible action for the robot. We compare the proposed method
to the traditional methods such as lawn mowing and the source
estimation seeking methods. The proposed method clearly
shows that it surpasses all of the mentioned methods in terms
of the average traveling distance, which means the robot takes
less time to finish the task. It also gives a decent accuracy
(0.1949m positional error and 1,283 counts intensity error)
compares to the other methods.

Future work of this research may include real environment
testing using mobile robots, such as UAVs or ground robots.
The increment in uncertainty, such as low GPS accuracy, and
false or loss in information, can be highly challenging. The
mapping of radiation sources with disturbances from natural
factors is also an important research topic.
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