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Abstract—Manipulation is one of most emerging research
and development areas in the field of robotics. Recently, state
representation learning for control has been gaining attention.
In this paper, we proposed a novel learning model based on
neural networks in order to sample the actions of the robot
to push objects to desired positions. Furthermore, an intuitive
method was proposed to enable the robot to collect training
data in an efficiently way. Specifically, a fully convolutional
network encodes observations into latent space, and a mixture
density network is implemented to infer an action distribution,
since there are an infinite number of possible actions that may
result in the same change of the state of the object. Through
extensive experimental simulations and comparisons with the
existing models, we demonstrated the efficiency of the proposed
method applied to non-prehensile manipulation, such as pushing
or rotating of small objects on the table.

Index Terms— non-prehensile manipulation, state representation
learning, fully convolutional autoencoder, mixture density
network

I. INTRODUCTION

Object manipulation skills are important for humans in their
daily life as well as many other fields such as manufacturing
and service industries. Robotic manipulation has an important
role in many of these fields since, robots can help humans
to direct their efforts to more skill-needed works instead of
tedious and repetitive works. Also, robots improve efficiency
without having any distractions. Human beings can manipulate
objects with a small error, even they do not know the object
characteristics. In [1], authors inferred that it might be due to
the humans’ internal model of physics which enables them to
understand the physical properties of objects and to predict
their dynamics under the action of external forces. It is also
discussed in [16] that spending years playing with objects
helps infants to develop their own internal models. For a robot,
however, it is pretty difficult to manipulate a novel object.
In order to perform manipulation tasks successfully, a robot
must be able to detect the related features, such as the position
and orientation (pose), of the object under the current scene.
Moreover, the robot needs to understand the changes in the
pose of the object, which is even more challenging.

The fully convolutional neural network was proposed in
[10] and it has been successfully applied to the semantic
segmentation problem. It offers several benefits, such as no
limitation on the input size and preserving the spatial informa-

Fig. 1. The left image depicts the current position and orientation of the
object while the object is in the desired state in the second image. Red arrows
show some of the possible actions that impose the same effort to the object.
It should be noted that there might be infinite number of possible actions.

tion. In this work, we apply a fully convolutional autoencoder
(FCA) to transform the depth image into a low-dimensional
latent space. The FCA encoder uses the same weights to
encode each patch of input image individually. The size of
the patch depends on the size of the feature map included in
latent space. FCA also has the spatial-invariant property, which
results that FCA could encode the object properly regardless
of its position in the scene. Similar to the problem of robot
grasp synthesis, in the case of non-prehensile manipulation
of objects, pushing objects faces the same problem that there
is an uncountable number of possible solutions. An example
scenario is illustrated in Fig. [I] The objective is to push the
object to the desired state (shown in the second image), and
humans may push it in many different ways. Recently, inverse
and forward models have been used more and more in the
coding of sensorimotor simulations [14]]. Inverse models allow
the system to determine the motor commands necessary to
achieve the desired state, while forward models predict the
expected sensory feedback of a motor command, allowing
rapid error detection when the actual and predicted feedback
are ill-matched [3].

In this paper, we present a novel non-prehensile robotic
manipulation method that makes use of depth images obtained
from a down-looking sensor to model the change in the pose
of an object. An FCA was used to transform depth images
into latent feature maps. Also, Mixture Density Network
(MDN) was used to be an inverse model, and the forward
model was implemented in order to regularize the inverse
model. Experimental validations were carried out using V-
REP simulation environment [[13]]. The total number of 12,000



training samples were collected in 20 hours in the simulation
environment. 9 objects of different shapes (see Fig. @) were
used for collecting data, and 5 novel objects were used for
evaluating the performance of our method. The rest of the
paper is organized as follows: The next section is devoted to
outlining some of the related works. Section. presents our
proposed model, and in Section. we present experimental
evaluations and performance comparisons in different test
scenarios. The last section draws conclusions and describes
future research directions.

II. RELATED WORK

State representation learning (SRL) is a particular case of
feature learning in which the features to be learned are low
dimensional, evolve through time, and are inuenced by actions
or interactions [9]]. The recent state-of-art methods on SRL
for control problems have been reviewed in [9]. Many of
the existing works have used neural networks as an SRL
model. Auto-encoders(AEs) have been applied to reduce the
dimension of state to low-dimension vector. Mattner et al. [12]
used AE to encode the 2-dimensional state from real images
and used this 2D vector to balance pole. However, our goal is
to manipulate novel objects. There is a need for more features
such as the shape of objects, pose, and similar others. van
Hoof et al. [[17] assumed that the encoded low dimensional
space is linear, and the transition is also linear. However,
in the case of dynamics of object motion caused by robot
pushing, it becomes non-linear. Agrawal et al. [1] implemented
a joint training of both the forward model and inverse model
by summing over the loss of both models. Also, Duan et
al. [4] proposed a method that can combine the observation,
the forward model, and the inverse model jointly. However,
they only considered that the inverse model predicts a single
output, which cannot be applied to real situations especially
in the case of pushing motion. Different objective functions
for SRL were proposed in [8], [7], [6], [15)], where their
performance was shown under certain circumstances. However
they are most likely to face over-fitting problems when there
is unavailability of abundant data. Finn et al. [S] proposed
another model called spatial autoencoder which automatically
acquires related features in a data-efficient way. However, it
still requires the robot to interact with environment for several
hours. Chopra et al. [2]] proposed a neural network (called
Siamese networks) which consists of more than one network
that shares parameters with each other. This model can be
applied to the scenario of distinguishing different inputs. In
this work, we used the structure proposed in [2]] to transform
the depth image into latent feature maps, and developed an
inverse and forward model based on the latent feature maps.
Zeng et al. [18] underlines that skillful manipulator benefits
from versatile actions such as combining non-prehensile and
prehensile actions. They proposed a dual model that predicts
both push and grasp actions to improve the success rate of
grasping. However, our purpose is to develop a model to push
the object to the desired pose, which needs to model the state
change of the object and infer proper actions.

© @

Fig. 2. (a) The simulation environment; the black plane is the working space
of UR10 and a down-looking depth camera is set on the top of the black plane.
(b) the captured image is processed by Eq. (2) and the contour is extracted.
(c) The normal vector of each pixel on the contour is computed. (d) a normal
vector is sampled from normal vectors shown in (c) and will be executed by
the robot.

III. METHOD

In this paper, the current and target states given by depth
images were used as the input of the proposed model. There
is no restriction on how the objects move from the current
to the target state and there are an infinite number of possible
trajectories of the object motion. We assume that all the motion
of the robot is linear. Given a target and an initial state, there
is/are only one or multiple linear motion(s) which transforms
the initial state to the target. The velocity of the robot’s gripper
is assumed to be slow and steady enough not to cause any
sudden changes in the state. Only the motion in the XY plane
is considered and Z coordinate of the working space of the
robot is fixed.

A. Action Sampling

To overcome the problem (similarly reported in [1]]) of
having many actions that do not change the object state, we
apply normalization on the depth values using Eq.

I=1|I—-maz(l)l, (1)

where [ is a depth image. The object contour is extracted
by using the marching squares algorithm [11]. A window
of size 5 is used to compute the orientation of each pixel,
therefore the orientation of each pixel has 25 possible values.
The orientation is computed using Eq.

0 = arctan2(Ct (i) — Cl(i—9)), 2)

where Ct is a set of (x,y) coordinates of contour pixels in
metric and 7 refers to a location of single pixel on the contour.

N = [cos(0 + 7/2), sin(0 + 7/2)], 3)
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Fig. 3. The pipeline of the proposed model: The blocks with color
background are learning modules, O; and O;41 are inputs, while E; and
Ey11 are encoded latent feature maps. Action is labeled action defined by

Eq.[3

where N is the normal of the curve for each pixel on the
contour. As a final step, the homogeneous transformation
shown by Eq.[] in which (T') transforms the coordinate of the
image into the coordinate of the robot system. Fig [2] illustrates
the whole procedure.

[, Yy 1) = Tanes - [0, 90, 1), 4)

where x,., y, is the location with respect to the robot coordinate
and z;,y; is the location in the image coordinate frame. We
use homogenous transformation in 2D as we only consider the
motion in XY plane.

An action is defined by Eq. [3}

A={XYs, Xe, Yo}, ®)

where X and Y, represent the initial horizontal and vertical
coordinates, while X. and Y, represent the final one, respec-
tively.

B. Model

The pipeline of our model is given in Fig [3 and the
detailed illustration of the proposed model is given in Fig [3
An FCA is used to extract the features from the depth image.
Our model does not make use of any pre-trained layers from
other models. The current image, the action, and the changed
image caused by the gripper motion constitute one training
example. Inputs are two time-consecutive images and they
are fed into two identical networks. The networks encode
the current observation and target observation, respectively.
Since there are an infinite number of possible actions that can
cause the same motion of the object, also in the phase of data
collection, it is inevitable to collect different actions which
cause the same motion of the object. An MDN given in Eq. [f]
is used to infer a distribution of the action.

c
Palsi, si41) = Y acD(u(se, s141),0 (56, 8141)),  (6)
c=1

where ¢ denotes the index of the corresponding mixture com-
ponent. There are up to C mixture components, c. depends
on the input and the sum of all «a, is one. D denotes the
distribution to be mixed. In this work, we used Gaussian
distribution determined by p and o.

The usage of MDN provides several benefits; Firstly, it can
help to prevent overfitting due to the limited training samples,
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Fig. 4. The left two images are RGB images and the right ones are depth
images. The size and the ratio between height, width, length of objects were
changed randomly. It should be noted that depth images have been normalized.

infinite number of objects, and possible actions. Secondly,
learning the distribution of motion is easier for the neural
network than learning a single accurate action. Thirdly, MDN
can help to avoid stuck in a certain state, as it predicts diverse
actions for the same circumstance. Finally, again due to the
limited training data examples, existing models tend to fall
into a situation called “trap”. However, since MDN samples
actions, the actions are different even for the same input.

C. Training

In the phase of training, in the first step, we only trained
FCA as an initialization, then we integrated the pre-trained
FCA with MDN and forward model. The following equations
(Egs. 7-10) define the loss functions.

Ll = L(8t7 St;la Wen07 Wforward) (7)
L2 = L(aa d7 Wenw WnLdn) (8)
L3 = L(Ota Ot:‘rla Wenca Wdec) 9)

L =MLy + Ly) + Ls (10)

In the above equations, L is the loss of forward model
which acts as a regularizer to inverse model. Lo is detrimental
log-likelihood loss which could less than zero. L3 is the
reconstruction error. W, and Wy, are parameters of FCA,
Wyndn is the parameters of the MDN. We set A = 10~* during
the training phase to avoid overfitting.

IV. EXPERIMENT RESULTS

In this work, V-REP simulator [[13]] is used as the simulation
environment. UR10 robot is used as the agent to interact with
objects. The working space is 0.512 x 0.512 in a horizontal
and vertical direction. We used a resolution of 224 x 224 image
to capture the object on the plane. The gripper is always in
close status and the inverse kinematics is calculated by the
simulator software using the pseudo-inverse method. We set
the coordinates of the gripper is the same as the coordinates
of the plane.
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Oy and Oy are consecutive time step depth images and they are processed by three convolutional layers. The size of encoded latent space is

8 X 8 x 24, followed by the decoder of fully convolution autoencoder and the mixture density network. The decoder reconstructs the input based on the latent
feature maps, and mixture density network predicts a mixed multivariate Gaussian distribution of the action. There is also a forward model which predicts

the state of next time step based on the current state and action.

The data used in this work is acquired by a robot without
human intervention. First, the object is added to the scene,
and then a push action is sampled to interact with the object.
Finally, the initial image, the action, and the image after ex-
erting the action are collected to be a single training example.
There were 9 objects (see Fig. @) of different shapes and
sizes considered in the experiment. In order to improve the
generalization of the model, we randomly change the size and
the ratio of the height, width, and length of the object. Since
the depth image can describe the shape of the object more
accurately, we choose the depth image to be the observation
for the object. In this paper, we only consider a single object.

We used training data of size 64 as a mini-batch to train
the FCA and MDN. Adam optimizer is used to minimize the
loss function, and the learning rate is set to 1 x 10~3. After
200 epochs, the optimization procedure of FCA was ended.
The encoder part of FCA is used to transform the input high-
dimensional data into low dimension latent feature maps. For
the training of the MDN, we only ran 30 epochs as the loss
function did not reduce further.

To evaluate our model, 5 different objects which were not
used during the training phase were used. The objects are
shown in Fig. [f] The relative position error, which is the ratio
of the distance between the initial object position and target
object position and the distance between object position after
pushing by the robot and target object position, was used to
evaluate our model. Fig. [/|illustrates the relative position error
after pushing the objects; each plot in the figure demonstrates
the relative position error when the robot interacted with a
certain object. There are 4 different models compared, and our

0.030

0.025

0.020

0.015

0.010

0.005

© @ @ @ 6

0.000

Fig. 6. The RGB image on the top illustrates 5 novel objects, while the
bottom one is the corresponding depth image. It should be noted that depth
images have been normalized.

proposal is the second one in Fig. [/| We repeat each experi-
ment 100 times, and, for each time the robot was allowed to
push the object at a maximum of 15 times. After each pushing
step, the relative position error was computed. By comparing
with other models, we found that our model performs well
for each experiment: the mean of relative position error is
about 0.3, while other models performed unstable. Notably,
the 4th model shown in Fig. [7] performed even better than
ours when pushing object]l and object2, however performed
worst when pushing other objects. For the first 3 objects,
the performance of our model is similar compared to others,
while for the 4th and 5th objects, our model outperforms other
models. This might be because the 4th and 5th objects are
very small, which introduces more challenges for the robot to
interact. In such cases, it is more likely to fall into sub-optima
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Fig. 7. Each figure shows the relative position error after every pushing action. Five figures correspond to five objects. We repeat each experiment 100 times
and, for each experiment, the robot pushed object 15 times.

M Objectl Object2 Object3 Object4 Object5
odels . . . . .
mean std max | min | mean std max | min | mean std max | min | mean std max | min | mean std max | min
Step3 | 0.31 027 | 1.0 0.04 | 0.31 024 ] 1.0 0.01 | 0.35 027 [ 1.0 0.03 | 0.53 034 [ 1.0 0.03 | 0.57 032 [ 1.0 0.04
fca+mse Step6 | 0.33 0.3 122 1002103 024 [ 1.0 0.02 [ 034 028 [ 1.0 0.0I [ 0.51 033 [ 1.0 0.04 [ 0.56 033 ] 1.0 0.03
Step9 | 0.33 0.3 1.22 1 0.04 ] 031 024 1 1.0 0.03 [ 0.31 027 [ 1.0 0.0 [ 05 034 [ 1.0 0.04 [ 0.56 033 ] 1.0 0.03
Step3 | 0.16 0.12 | 0.58 | 0.01 | 0.19 0.14 | 0.81 | 0.01 | 0.25 023 | 1.0 0.04 | 0.53 032 | 1.0 0.02 | 0.62 033 | 1.0 0.06
fca+mse+forward | Step6 | 0.22 0.17 | 1.01 | 0.03 | 0.21 0.14 ] 078 | 0.03 | 0.26 0.2 1.0 0.03 | 0.52 033 [ 1.0 0.02 | 0.61 033 [ 1.0 0.03
Step9 | 0.21 0.18 | 1.01 | 0.02 | 0.23 0.16 | 0.81 | 0.02 | 0.25 0.2 1.0 0.01 | 0.52 033 [ 1.0 0.02 | 0.61 033 [ 1.0 0.03
Step3 | 0.29 028 | 1.28 | 0.01 | 0.3 024 | 1.41 | 0.01 | 0.32 0.3 1.75 | 0.02 | 0.48 033 | 1.24 | 0.04 | 0.63 039 | 1.57 | 0.01
fca+mdn Step6 | 0.32 029 | 1.68 | 0.01 | 0.22 0.19 | T.41 | 0.01 | 0.29 029 [ 1.75 [ 0.02 | 04 031 | 1.23 ] 0.01 | 0.58 0.4 1.57 | 0.01
Step9 | 0.3 022 | 1.09 | 0.01 | 0.25 021 | T.41 | 0.02 | 0.28 028 | 1.75 | 0.01 | 0.34 0.3 1.21 | 0.03 | 0.54 042 | 1.73 ] 0.03
Step3 | 0.24 0.18 | 097 | 0.01 | 0.22 0.17 | 0.81 | 0.01 | 0.27 025 | 1.33 | 0.02 | 0.35 0.3 1.0 0.01 | 042 036 | 1.84 | 0.03
fca+mdn+forward | Step6 | 0.23 0.17 1 0.82 ] 0.02 | 0.21 0.15 1 0.76 | 0.0 0.21 0.19 [ 1.32 ] 0.01 | 0.29 028 [ I.12 [ 0.01 | 036 036 | 1.84 | 0.02
Step9 | 0.24 0.17 ] 0.82 [ 0.02 | 0.22 0.16 | 0.68 | 0.03 | 0.21 0.16 | 1.18 | 0.03 | 0.26 025 | 1.12 | 0.01 | 0.35 036 | 1.84 | 0.02

TABLE 1

IN THIS TABLE, WE SHOW QUANTITATIVE RESULT FOR SOME STEPS. IT SHOWS MEAN, STANDARD DEVIATION, MAXIMUM AND MINIMUM OF RELATIVE
POSITION ERROR OF 100 TIMES TRIALS.



Fig. 8.
state 90 degrees. The upper row is the result of the model with mixture density network, and the other is the one which predicts exact actions for rotating the
object. The right two images depict the target state of the object, while the first left two images depict the initial state of the object.

resulting predicted actions without any object interaction. In
order to handle such situations, models need to be trained
with a substantial amount of training samples. Our model,
thanks to its MDN, outputs diverse actions even in the same
circumstances. This helps to handle such cases efficiently.
When comparing our model with the ones without the forward
model (FCA+MDN and FCA+MSE), It can be seen that our
model performed better than the other models. Therefore, it is
noted that the forward model can help FCA to learn a better
state than the ones without it. Table [I] shows the quantitative
result of this experiment, illustrating that our model performs
well for each object.

Fig. [8] shows an exemplary result of the case of a pure
rotation of a known object. It can be seen that our model
completed this task in several steps. However, the other model
predicting only one action failed and it just sway the object
without rotating.

Our model predicts a mixed Gaussian distribution of action
and command the robot to push novel object to the desired
position and orientation. Our method shows its advantage of
predicting diverse actions to avoid falling into local optima.
Besides, Fig. [8| shows that our methods performs better in the
case of pure rotating the object, since, in training phase, the
model tends to average the error that could cause inaccurate
action prediction.

V. CONCLUSIONS AND FUTURE WORK

Manipulation is one of the most important and developing
abilities of robots. Moving an object to the desired position
and orientation is a challenging task for a robot. Doing such
tasks with a novel object that has been neither defined nor
introduced to a robot previously is even more challenging.
In this work, we proposed an efficient learning model to
create a sequence of actions in order to push a novel object
to the given target position and orientation. We extended
the work of [1l] and proposed a new method that integrates
fully convolutional auto-encoder to dimension reduction and
mixture density network to select proper actions. This model
predicts a mixed Gaussian distribution for pushing objects

There are two examples to show the performance in the case of pure rotation motion. The object in the target state is obtained by rotating the initial

to the desired position and orientation. We presented the
efficiency of the proposed model through extensive simulations
with a variety of conditions. Also, we proposed an efficient
way to collect training data, which can improve the efficiency
of self-exploration.

In this work, we did not consider the impact of the past
actions on the current action. Furthermore, for push multiple
objects in the same scene to the desired pose, it will be much
more challenging, because the pose of objects can not only
be affected by the pushing action of robot, but also by the
motions of other objects. Our future efforts will be aimed at
addressing the aforementioned issues.
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