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An Improved Security Analysis on an
Indeterminate Equation Public Key
Cryptosystem by Evaluation Attacks

Akifumi Muroi1, Shinya Okumura1, and Atsuko Miyaji1,2

1 Graduate School of Engineering, Osaka University
2 Japan Advanced Institute of Science and Technology

Abstract. Akiyama, Goto, Okumura, Takagi, Nuida and Hanaoka in-
troduced an indeterminate equation analogue of learning with errors (IE-
LWE) problem as a new computationally hard problem and constructed
a candidate of post-quantum cryptosystem, called “Giophantus”. Gio-
phantus satisfies the indistinguishability under chosen plaintext attack
(IND-CPA) if IE-LWE problem is computationally infeasible. Akiyama et
al., Shimizu and Ikematsu proposed improved Giophantus to the post-
quantum standardization project. Beullens, Castryck and Vercauteren
proposed an evaluation at one attack against IND-CPA security of Gio-
phantus. However, Akiyama et al. assert that recommended parameters
can resist Vercauteren et al.’s attack. Therefore, the security analysis on
Giophantus is still needed.
In this paper, we propose a new kind of evaluation attack against IND-
CPA security of Giophantus. Our attack solves IE-LWE problem by com-
bining a part of Vercauteren et al.’s attack with a lattice attack on low
rank lattices, e.g., 6-rank lattices for recommended parameters. More-
over, we investigate a way to avoid our attack and some variants of our
attack. We give some remarks on modification of the IE-LWE problem.
Our experimental analysis shows that our attack can solve IE-LWE prob-
lem efficiently, and that Giophantus does not satisfy IND-CPA security
unless IE-LWE problem is modified appropriately.

Keywords: IE-LWE problem · evaluation at one attack · closest vector
problem.

1 Introduction

Post-quantum cryptography now becomes a central role in cryptography as can
be seen from the post-quantum cryptography standardization project (PQC
project) by the National Institute of Standards and Technology (NIST) [15].
Some computationally hard problems arising from lattice theory, coding the-
ory and algebraic geometry (solving multivariate polynomial systems) have suc-
cessfully provided various candidates of post-quantum cryptographic protocols
[7, 11, 14, 18]. However, the development of attacks on known computationally
hard problems make difficult constructing efficient and practical post-quantum
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cryptographic protocols. Therefore, finding new computationally hard problems,
which are also hard even by using sufficiently large scale quantum computers, is
an important task in post-quantum cryptography.

At SAC 2017, Akiyama, Goto, Okumura, Takagi, Nuida and Hanaoka [1] in-
troduced the smallest solution problem and an indeterminate equation analogue
of learning with errors (IE-LWE) problem as new computationally hard prob-
lems. The smallest solution problem is that given a polynomial F ∈ Rp[x, y],
where Rp := Fp[t]/(t

n − 1) for a prime p, find a solution (x, y) = (ux, uy) ∈ R2
p

with small coefficients to F = 0. IE-LWE problem is roughly described as fol-
lows: Given a pair (X,Y ) of polynomials in Rp[x, y], distinguish whether (X,Y )
is chosen from a ‘noisy’ set in Rp[x, y] × Rp[x, y] or not. For more detail, see
sections 2.2 and 3.1. The smallest solution problem and the IE-LWE problem
are expected to be computationally infeasible even by large scale quantum com-
puters because these problems are reduced to the (approximate) closest vector
problem (CVP) on lattices with large rank, which is usually used as a compu-
tational hard problem to construct candidates of post-quantum cryptographic
protocols.

Akiyama et al. constructed a candidate of post-quantum cryptosystem, which
was named “GiophantusTM” later, based on the small solution problem [1]. (We
refer to Akiyama et al’s cryptosystem as “Giophantus” for short.) Giohantus is
not only a candidate of post-quantum cryptosystem but also a multi-bit some-
what homomorphic encryption scheme (cf. [3, Section 11.1]). The smallest so-
lution problem is (almost) equivalent to the recovering secret key problem of
Giophantus, and Akiyama et al. proved that Giophantus satisfies the indistin-
guishability under chosen plaintext attack (IND-CPA) under the assumption
that IE-LWE problem is computationally infeasible (cf. [1, Theorem 1]). Akiyama
et al. described a key recovery attack and a linear algebra attack, which are based
on lattice attacks, and experimentally analyzed their difficulty. Akiyama et al.
set recommended parameters according to their experimental analysis and con-
cluded that sizes of public/secret keys of Giophantus are relatively small among
well-known candidates of post-quantum cryptosystems, e.g., LWE base [13] and
NTRU base [16] cryptosystems (cf. [1, Table 4]). The two properties are impor-
tant in post-quantum cryptography.

However, at PQCrypto 2018, Xagawa [17] proposed some attacks on Gio-
phantus and firstly suceeded in recovering (partial/full) messages and secret
keys of Giophantus for recommended parameters by lattice attacks. Xagawa’s
attacks decrease ranks of lattices occurring in lattice attacks by applying Gen-
try’s technique for attacking NTRU [10] to recover partial messages and partial
secret keys of Giophantus. Xagawa also applied subring technique, which also
decreases ranks of lattices by substituting 0 for a variable x (or y) of multivari-
ate polynomials occurring in Giophantus, and succeeded in recovering messages
in the case of deg(X) = 2. In order to avoid Xagawa’s attacks, a parameter
n (degree of modulus polynomial tn − 1) must be increased and should be a
prime number, and thus Akiyama et al. modified recommended parameters of
Giophantus by executing many experiments and by using “2016 Estimate” [4].
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After modifying parameters and security analysis, Akiyama et al., Shimizu
and Ikematsu submitted Giophantus [2] to NIST’s PQC project. Akiyama et
al.’s experiments show that Giophantus with modified parameters is expected
to resist Xagawa’s attacks. However, Vercauteren, Beullens and Castryck [5]
submitted a distinguishing attack for breaking IND-CPA security of Giophantus
to official comments of NIST’s PQC project. Their attack is based on the fact
that a map φ : Fp[t]/(t

n − 1) −→ Fp by f(t) (mod. tn − 1) 7→ f(1) (mod. p) is a
ring homomorphism, which is similar to an attack on the Poly-LWE problem [8].
Vercauteren et al.’s attack tries to recover partial messages by substituting 1 for
a variable t of ciphertext and by searching small secret elements in small range
(see section 3.3 for more detail). We refer to a kind of this attack as an evaluation
attack.

Akiyama et al. [3, Section 7.3] analyzed Vercauteren et al.’s attack by many
experiments and concluded that recommended parameters of Giophantus can re-
sist Vercauteren et al.’s attack. However, Vercauteren et al.’s attack suggests that
there would exist evaluation (at one or at other special values) attacks which can
break IND-CPA security of Giophantus. We investigate such evaluation attacks.

1.1 Our Contribution

Our contribution in this paper is sammarized as follows:

1. Breaking IND-CPA Security of Giophantus
We propose a new and practical evaluation at one attack on IND-CPA secu-
rity of Giophantus. Our attack reduces the IE-LWE problem to the closest
vector problem (CVP) on low rank lattices, e.g., 6-rank lattices for rec-
ommended parameters, by substituting 1 for a variable occurring in the
IE-LWE problem, which is similar to the first step of Vercauteren et al.’s
attack and an attack on Poly-LWE problem [8]. We note that the dimension
of lattices occurring in our attack is also low, e.g., 9-dimensional lattices
(with 6-rank) for recommended parameters. We can use exact CVP algo-
rithm which can solve CVP exactly for such lattices. This is an advantage
of our attack. Another advantage of our attack is that our attack does not
require to search small secret elements, and thus our attack is efficient. We
conducted many experiments on our attack by using exact CVP algorithm
in computational algebra system Magma [6] and conclude that our attack is
efficient (within 4 seconds in average) and can break IND-CPA security with
high probability (about 99%). Our implementation of our attack is available
at https://github.com/Shinya-Okumura/S.O..git.

2. Modification of Giophantus
We investigate a way to modify Giophantus to avoid our attack. The IE-
LWE problem is characterized by two modulus parameters (a prime number
p and a univariate polynomial tn − 1) and by multivariate polynomials. An
easy way to avoid our attack is to change the modulus polynomial from tn−1
to other polynomials f ∈ Fp[t] satisfying f(1) ̸≡ 0 (mod. p). We, however,
show that if the modulus polynomial f satisfies f(α) = 0 for a small order
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α ∈ Fpd with any d, i.e., αk = 1 for a small k ≪ n, then the difficulty of the
IE-LWE problem w.r.t. f is decreased as in the Poly-LWE problem [9, 12].
We note that the extension degree d should be small, e.g., 1 ≤ d ≤ 3,
in the case of attacking the Poly-LWE problem, but the condition on d is
not required in the case of attacking the (modified) IE-LWE problem (see
section 6). This means that the condition f(1) ̸≡ 0 (mod. p) is not enough to
construct IND-CPA secure Giophantus. As a result, we recommend to use
polynomials f with small coefficients, which has roots of large order, e.g.,
the q-th cyclotomic polynomial with prime power integers q.

1.2 Remark

We remark that Giophantus could not move on to the second round of NIST’s
PQC project [15], which is mainly due to Vercauteren et al.’s attack. As we men-
tioned above, the effectiveness of Vercauteren et al.’s attack is still unclear (there
is no verification that Akiyama et al.’s analysis is enough). To our best knowl-
edge, our attack is the first attack that determines the correctness of NIST’s PQC
project members. However, we believe that the study of the IE-LWE problem
(and its variants) is still important and interesting for post-quantum cryptogra-
phy.

1.3 Organization

This paper is organized as follows: Section 2 gives some notation used in this
paper. Section 3 describes Giophantus, the IE-LWE problem and some possible
attacks on Giophantus. Section 4 describes our evaluation attack. Section 5 gives
our experimental results on our attack. Section 6 discusses the modification of
the IE-LWE problem and variants of our attack. Section 7 concludes our work.

2 Preliminary

We define some notation used in this paper. Let p be a prime number and Z the
(rational) integer ring. Suppose that any element in Fp := Z/pZ is represented
by integers in {0, . . . , p − 1}. Set Rp = Fp[t]/(t

n − 1). For an integer ℓ ≪ p, let
Rℓ be the subset of Rp consisting of all polynomials with coefficients represented
by integers in {0, . . . , ℓ− 1}. For a commutative ring R, we write a two-variable
polynomial A(x, y) over R as

A(x, y) =
∑

(i,j)∈ΓA

aijx
iyj (aij ∈ R),

where ΓA is a finite subset of Z2
≥0.
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2.1 IE-LWE problem

We explain the IE-LWE problem in this section. For finite sets Γr, ΓXr ⊂ Z≥0,
we define

FΓr/Rp
:=

 ∑
(i,j)∈Γr

aijx
iyj

∣∣∣∣∣∣aij ∈ Rp

 ,

FΓXr/Rℓ
:=

 ∑
(i,j)∈ΓXr

aijx
iyj

∣∣∣∣∣∣aij ∈ Rℓ

 ,

X(ΓX , ℓ)/Rp := {X ∈ FΓX
/Rp | ∃ux, uy ∈ Rℓ, X(ux, uy) = 0} .

We assume

(0, 0) ∈ ΓX , (0, 0) ∈ Γr.

For given polynomial sets X(ΓX , ℓ)/Rp, FΓr
/Rp and FΓXr

/Rℓ, we define the
IE-LWE problem as follows:

Definition 1 (IE-LWE Problem). Write UX and TX as follows:

UX = X(ΓX , ℓ)/Rp × FΓXr
/Rp,

TX = {(X,Xr + e)|X ∈ X(ΓX , ℓ)/Rp, r ∈ FΓr
/Rp, e ∈ FΓXr

/Rℓ}.

The IE-LWE problem is a problem that for a given pair of polynomials (X,Y ) ∈
UX , determine whether (X,Y ) is in TX or not.

For a set A, the notation a
U← means that an element a is sampled from A

according to the uniform distribution on A.

Definition 2 (IE-LWE Assumption). Let p, ℓ, n, X(ΓX , ℓ)/Rp, FΓr
/Rp

and FΓXr
/Rℓ be as above. The IE-LWE assumption is the assumption that for a

security parameter k and any probabilistic polynomial-time algorithm A for the
IE-LWE problem, the advantage of A defined as

AdvIE-LWE
A (k) :=∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr

A(p, ℓ, n, Γr, ΓX , X, Y )→ 1

∣∣∣∣∣∣
(p, ℓ, n, ΓX , Γr, X)← Gen(1k);

r
U← FΓr

/Rp; e
U← FΓXr

/Rℓ;
Y := Xr + e


−Pr

A(p, ℓ, n, Γr, ΓX , X, Y )→ 1

∣∣∣∣∣∣
(p, ℓ, n, ΓX , Γr, X)← Gen(1k);

Y
U← FΓXr

/Rp



∣∣∣∣∣∣∣∣∣∣∣∣∣
is negligible, where Gen(1k) is a function that outputs parameters p, ℓ, n, ΓX , Γr

and X ∈ X(ΓX , ℓ)/Rp for input k.
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2.2 Smallest-Solution Problem

For a given X ∈ X(ΓX , ℓ)/Rp, let us express a solution u = (ux, uy) ∈ R2
ℓ of an

integerminate equation X = 0 as

ux =

n−1∑
i=0

αit
i, uy =

n−1∑
i=0

βit
i (αi, β ∈ Rℓ).

Let αi and βi be integers representing αi and βi, respectively, for 0 ≤ i ≤ n− 1.
Then, we define the norm of the solution u := (ux, uy) as follows:

Norm(u) = max{αi, βi ∈ {0, ..., ℓ− 1} | 0 ≤ i ≤ n− 1}.

The smallest solution problem is defined as follows:

Definition 3 (Smallest Solution Problem). Let X ∈ Rp[x, y] be as above.
If X(x, y) = 0 is an indeterminate equation over the ring Rp, then a problem of
finding a solution (x, y) = (ux, uy) to X = 0 over Rp with the smallest norm is
called a smallest solution problem on X.

The IE-LWE problem is not more difficult than the smallest solution problem.
In fact, let (X,Y ) ∈ X(ΓX , ℓ)/Rp × FΓXr

/Rp be a sample, which we want to
distinguish, and (ux, uy) ∈ Rℓ a solution to the smallest solution problem on X.
If (X,Y ) is an IE-LWE instance, i.e., (X,Y ) ∈ TX , and the equation (1) below
is true, then all coefficients of

ℓ · Y (ux, uy) = ℓ · e(ux, uy)

are less than p and multiples of ℓ (note that we regard all coefficients of ℓ ·
Y (ux, uy) as integers, and that any integer > p is reduced by modulo p). If
Y is sampled from FΓXr

/Rp uniformly at random, then the probability that
all coefficients of ℓ · Y (ux, uy) are less than p and multiples of ℓ (as integers) is
about 1−1/ℓn which is non-negligible. Therefore, if the smallest solution problem
can be solved, then we can solve the IE-LWE problem by checking whether all
coefficients of ℓ · Y (ux, uy) are less than p and multiples of ℓ or not.

3 Description of Giophantus and Known Attacks

In this section, we briefly review Akiyama et al.’s encryption scheme ”Giophan-
tus” [1–3] and some possible attacks on Giophantus.

3.1 Giophantus and IE-LWE Problem

Here we describe Giophantus, which is IND-CPA secure under the IE-LWE as-
sumption, proposed by Akiyama et al. at SAC 2017. Let p and ℓ be a prime
number and a positive integer, respectively, that satisfy ℓ≪ p (as in Section 2).
Furthermore, for X, r ∈ Rp[x, y], wX and wr denote the total degrees of X and
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r, respectively. In order to decrypt any ciphertext correctly, it is necessary to
satisfy the following relation for p and ℓ:

p > #ΓXr
· ℓ(ℓ− 1) · (n(ℓ− 1))wX+wr . (1)

Next, we describe procedures of key generation, encryption and decryption
processes.

– Key Generation
Choose ux, uy ∈ Rℓ uniformly at random with deg(ux) = deg(uy) = n − 1
and generate X(x, y) ∈ Rp[x, y] satsifying X(ux, uy) = 0 as follows:
1. Choose a finite set ΓX ⊂ (Z≥0)

2 with (0, 0) ∈ ΓX .
2. For each (i, j) ∈ ΓX ∖ {(0, 0)}, choose aij ∈ Rp uniformly at random.
3. Put a00 = −

∑
(i,j)∈ΓX∖{(0,0)} aiju

i
xu

j
y.

4. Put X(x, y) =
∑

(i,j)∈ΓX
aijx

iyj .
The X(x, y) is a public key, and (ux, uy) is a secret key of Giophantus,
respectively.

– Encryption
1. Embed a plaintext M in the coefficients of the plaintext polynomial

m ∈ Rℓ.
2. Choose a polynomial r(x, y) ∈ FΓr

/Rp uniformly at random.
3. Choose a polynomial e(x, y) ∈ FXr

/Rℓ uniformly at random.
4. We set a cipher polynomial c(x, y) as follows:

c(x, y) = m+X(x, y)r(x, y) + ℓ · e(x, y).
– Decryption

1. Substitute the smallest solution (ux, uy) into c(x, y) and obtain

c(ux, uy) = m+ ℓ · e(ux, uy).

2. If p and ℓ satisfy the condition of (1), then all coefficiens of m + ℓ ·
e(ux, uy) ∈ Z[t]/(tn − 1) are in the range {0, . . . , p− 1}. Compute m′ =
c(ux, uy) (mod. ℓ) (note that we regard the coefficients of c(ux, uy) as
integers). If p and ℓ satisfy the condition of (1), then all coefficients of
c(ux, uy) = m+ ℓe(ux, uy) are smaller than p. Thus we have m = m′.

3. Recover the plaintext M from the coefficients of m.

Akiyama et al. proved that Giophantus is IND-CPA secure if the IE-LWE
problem is computationally infeasible. More precisely, the following theorem
holds true [3, Theorem 2].

Theorem 1. We denote by Σ the Giophantus encryption scheme. For a security
parameter k, let AdvIE-LWE

A (k) be as in Definition 2. Similarly, we denote by
AdvIND-CPA

B,Σ (k) the advantage of the probabilistic polynomial time algorithm B
for breaking IND-CPA security of Giophantus. Then we have

AdvIND-CPA
B,Σ (k) = 2AdvIE-LWE

A (k).

Akiyama et al., Xagawa and Vercauteren et al. proposed some possible at-
tacks on Giophantus. In sections 2.2 and 2.3, we briefly review Akiyama et al.’s
linear algebra attack and Vercauteren et al.’s evaluation attack because these
two attacks are closely related to our new attack.
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3.2 Linear Algebra Attack

For a given polynomial pair (X,Y ), we can determinate that (X,Y ) is sampled
from TX if we find r ∈ FΓr

/Rp and e ∈ FΓXr
/Rℓ such that Y = Xr + e. The

problem of finding such polynomials r and e can be solved by comparing the
coefficients of xiyj . To make a linear equation, put X =

∑
(i,j)∈ΓX

aijx
iyj , r =∑

(i,j)∈Γr
rijx

iyj , e =
∑

(i,j)∈Γe
eijx

iyj and Y =
∑

(i,j)∈ΓY
dijx

iyj , where rij
and eij are variables. We have

∑
(i,j)∈ΓXr

dijx
iyj =

 ∑
(i,j)∈ΓX

aijx
iyj

 ∑
(i,j)∈Γr

rijx
iyj

 +

 ∑
(i,j)∈ΓXr

eijx
iyj

 .

Consider the case of deg X = deg r = 1. Write the polynomials X, r, e and Y as

X(x, y) = a10x+ a01y + a00,

r(x, y) = r10x+ r01y + r00,

e(x, y) = e20x
2 + e11xy + e02y

2 + e10x+ e01y + e00,

Y (x, y) = d20x
2 + d11xy + d02y

2 + d10x+ d01y + d00.

From the above equation

X(x, y)r(x, y) = a10r10x
2 + (a10r01 + a01r10)xy + a01r01y

2+

(a10r00 + a00r10)x+ (a01r00 + a00r01)y + a00r00,

we get a linear equation

a10r10 + e20 = d20,

a10r01 + a01r10 + e11 = d11,

a01r01 + e02 = d02,

a10r00 + a00r10 + e10 = d10,

a01r00 + a00r01 + e01 = d01,

a00r00 + e00 = d00.

(2)

If an Rℓ-valued solution {eij}(i,j)∈ΓXr
is found, then (X,Y ) is sampled from

TX . In order to avoid a typical brute force attack on polynomial e, the form
#ΓXr is necessary to satisfy

((ℓ− 1)ℓn−1)#ΓXr > 2k,

where k is a security parameter. Next we use a lattice reduction attack to find
a small eij . Represent a10 as follows:

a10 = a
(10)
n−1t

n−1 + · · ·+ a
(10)
0 .
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When r10, d20 ∈ Rp and e20 ∈ Rℓ are represented in the same way as a10, then
a10r10 + e20 = d20 can be represented as follows:


a
(10)
n−1 a

(10)
n−2 · · · a

(10)
1 a

(10)
0

a
(10)
n−2 a

(10)
n−3 · · · a

(10)
0 a

(10)
n−1

a
(10)
n−3 a

(10)
n−4 · · · a

(10)
n−1 a

(10)
n−2

...
...

...
...

...

a
(10)
0 a

(10)
n−1 · · · a

(10)
2 a

(10)
1




r
(10)
0

r
(10)
1
...

r
(10)
n−2

r
(10)
n−1

 +


e
(20)
n−1

e
(20)
n−2
...

e
(20)
1

e
(20)
0

 =


d
(20)
n−1

d
(20)
n−2
...

d
(20)
1

d
(20)
0

 .

Thus the first equation (2) can be written as

A10r10 + e20 = d20, (3)

where

A10 =


a
(10)
n−1 a

(10)
n−2 · · · a

(10)
1 a

(10)
0

a
(10)
n−2 a

(10)
n−3 · · · a

(10)
0 a

(10)
n−1

a
(10)
n−3 a

(10)
n−4 · · · a

(10)
n−1 a

(10)
n−2

...
...

...
...

...

a
(10)
0 a

(10)
n−1 · · · a

(10)
2 a

(10)
1

 , r10 =


r
(10)
0

r
(10)
1
...

r
(10)
n−2

r
(10)
n−1

 ,

e20 =


e
(20)
n−1

e
(20)
n−2
...

e
(20)
1

e
(20)
0

 , d20 =


d
(20)
n−1

d
(20)
n−2
...

d
(20)
1

d
(20)
0

 .

The equation (3) is an equation over Fp, and we lift the equation (3) to an
equation over Z by adding an integer vector g20 to the left-hand side of (3):

A10r10 + e20 + pg20 = d20.

We consider the integer lattice L with the basis matrix (A10 pIn). If v ∈ L is
a vector closest to d20, then we can expect that a short vector ±e20 is found by
calculating d20−v. In order to find all eij , one needs to deal with all equations of
(2) simultaneously. See [3] for more detail. This means that the IE-LWE problem
can be reduced to the closest vector problem (CVP) on the lattice L. This attack
is called the linear algebra attack.

3.3 Vercauteren et al.’s Evalution Attack

In this section, we describe Vercauteren et al.’s evaluation attack that tries to
break IND-CPA security of Giophantus. This attack uses the fact that a map
Rp = Fp[t]/(t

n−1) −→ Fp by a(t) 7→ a(1) is a well-defined ring homomorphism.
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Let X(x, y) ∈ Rp[x, y] and (ux(t), uy(t)) ∈ R2
ℓ be the public key and the secret

key of Giophantusas, respectively, in section 3.1. The detailed description is as
follows:

1. We obtain the equation X(x, y, 1) = 0 over Fp, where X(x, y, 1) means
the image of X(x, y) under a map Rp[x, y] −→ Fp[x, y] by

∑
fij(t)x

iyj 7→∑
fij(1)x

iyj .
2. Perform exhaustive search to find a solution (u′

x, u
′
y) to X(x, y, 1) = 0 over

Fp such that u′
x and u′

y are represented by integers in {0, . . . , n(ℓ− 1)}. The
existence of such a solution is guaranteed by X(ux(1), ux(1), 1) = 0. In fact,
if the secret key is represented as

(ux, uy) =

(
n−1∑
i=0

αit
i,

n−1∑
i=0

βit
i

)
(0 ≤ αi, βi ≤ ℓ− 1),

then we have
0 ≤ max

{∑
αi,
∑

βi

}
≤ n(ℓ− 1),

where αi and βi are integers representing αi and βi, respectively. The small-
est solution (u′

x, u
′
y) can be found in two ways.

– Choose αx, αy ∈ {0, . . . , n(ℓ− 1)} ⊂ Fp and check whetherX(αx, αy, 1) =
0 or not.

– Choose α ∈ {0, . . . , n(ℓ− 1)} ⊂ Fp and check whether X(α, y, 1) has a
factor of the form (y − β) with 0 ≤ β ≤ n(ℓ− 1) or not.

3. Let m0 and m1 be plaintext polynomials in Rℓ with m0(1) ̸≡ m1(1) (mod.
ℓ). Randomly choose b ∈ 0, 1 and put c(x, y) = mb+X(x, y)r(x, y)+ℓe(x, y).
Substitute (u′

x, u
′
y) for x and y of c(x, y), respectively, and calculate

c(u′
x, u

′
y, 1) ≡ mb(1) + ℓ · e(u′

x, u
′
y, 1) (mod. ℓ).

4. Calculate m′
b ≡ c(u′

x, u
′
y, 1) (mod. ℓ).

5. Under the condition m0(1) ̸≡ m1(1) (mod. ℓ), we determine the value of b
by comparing m0(1), m1(1) and m′

b (mod. ℓ).

To get mb(1) (mod. ℓ) in Step 4, the modulus p needs to satisfy

p > max{c(u′
x, u

′
y, 1) | 0 ≤ u′

x, u
′
y ≤ n(ℓ− 1)}.

To estimate the value of c(u′
x, u

′
y, 1), we consider

c(u′
x, u

′
y, 1) = mb(1) + ℓ · e(u′

x, u
′
y)

= mb(1) + ℓ ·
∑

(i,j)∈Γe

eij(1)(u
′
x)

i(u′
y)

j .

Since

0 ≤ mb(1), eij(1) ≤ n(ℓ− 1),
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We have

max{c(u′
x, u

′
y, 1) | 0 ≤ u′

x, u
′
y ≤ n(ℓ− 1)}

≤ n(ℓ− 1) + ℓ ·
∑

(i,j)∈Γe

(n(ℓ− 1))i+j+1

≤ n(ℓ− 1) + ℓ ·
dX+dr∑
k=0

(k + 1)(n(ℓ− 1))k+1,

which is much larger than p if p is the smallest prime number satisfying the
inequality (1). Therefore, the above attack does not work well. However, Ver-
cauteren et al. pointed out that the distribution of c(u′

x, u
′
y, 1) over the integers

would leak information of mb(1), and thus Akiyama et al. conducted many ex-
periments on the distribution of c(u′

x, u
′
y, 1). As a result of their experiments, the

distribution of c(u′
x, u

′
y, 1) does not leak any information of plaintext polynomials

for recommended parameters of Giophantus.

4 Our Evaluation Attack

In this section, we describe our new evaluation attack. An idea of our evaluation
attack is similar to Vercauteren et al.’s evaluation attack in section 3.3 and a
known attack on Poly-LWE [8]. The main difference between our attack and
those attacks is that our attack does not require to search some partial informa-
tion of secret keys. In our attack, we reduce the IE-LWE problem to CVP on low
rank lattices, e.g., 6-rank for recommended parameters. We can solve such CVP
efficiently. 　 The detailed description of our attack is as follows: Let (X,Y ) be
as in section 3.2. By substituting t = 1 for the equation (2) and by adding phij

(hij ∈ Z to each equation of (2), we obtain a new linear equation over Z

a10(1)r10(1) + e20(1) + ph20 = d20(1),

a10(1)r01(1) + a01(1)r10(1) + e11(1) + ph11 = d11(1),

a01(1)r01(1) + e02(1) + ph01 = d02(1),

a10(1)r00(1) + a00(1)r10(1) + e10(1) + ph10 = d10(1),

a01(1)r00(1) + a00(1)r01(1) + e01(1) + ph01 = d01(1),

a00(1)r00(1) + e00(1) + ph00 = d00(1).
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We write aij(1) as aij for simplicity. By regarding rij(1) and eij(1) as variables,
we have the linear equations:


a10 0 0 p 0 0 0 0 0
a01 a10 0 0 p 0 0 0 0
0 a01 0 0 0 p 0 0 0
a00 0 a10 0 0 0 p 0 0
0 a00 a01 0 0 0 0 p 0
0 0 a00 0 0 0 0 0 p





r10
r01
r00
h20

h11

h02

h10

h01

h00


+


e20
e11
e02
e10
e01
e00

 =


d20
d11
d02
d10
d01
d00

 .

If (X,Y ) is an IE-LWE instance, then we have 0 ≤ eij ≤ n(ℓ− 1). We see that
n(ℓ − 1) is much smaller than p from the inequality (1). Thus if we can find a
vector closest to (d20 d11 d02 d10 d01 d00)

T in the lattice generated by the column
vectors of 

a10 0 0 p 0 0 0 0 0
a01 a10 0 0 p 0 0 0 0
0 a01 0 0 0 p 0 0 0
a00 0 a10 0 0 0 p 0 0
0 a00 a01 0 0 0 0 p 0
0 0 a00 0 0 0 0 0 p

 .

We obtain a short vector (e′20, . . . , e
′
00)

T (not necessarily (e20, . . . , e00)
T ). As a

result of solving CVP, if all e′ij are equal or smaller than n(ℓ − 1), then we
determine that (X,Y ) is an IE-LWE instance. In other words, the IE-LWE
problem is reduced to CVP on 6-rank lattices.

5 Experiments on Our attack

In this section, we report experimental results on our new evaluation attack
described in the section 4. The procedure of our experiments is as follows:

– Randomly sample IE-LWE instances and determine whether they are IE-
LWE instance or not by our attack.

– Randomly sample pairs of polynomials from UX . Determine whether they
are IE-LWE instanses or not by our attack.

In our experiments, we set ℓ = 4, i.e., the coefficients of the secret keys
(ux, uy) are in the range {0, ..., 3}. The number of attack experiments is 100,000
times. The computer environment is shown below.

– CPU: Intel(R)XeonCPU E7-4830 v4@2.00GHz,
– RAM: 3TB,
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Table 1. Attack for IE-LWE instances

k n p num. of success success probability average time (sec)

143 1201 467424413 100000 1 0.32235

207 1733 973190461 100000 1 0.61882

272 2267 1665292879 100000 1 3.20274

Table 2. Attack for random samples

k n p num. of success success probability average time (sec)

143 467424413 130 99870 0.99870 0.22551

207 973190461 151 99849 0.99849 0.43368

272 1665292879 142 99858 0.99858 2.23923

– OS: Ubuntu 10.04.5 LTS,
– Software: Magma [6].

We show our experimental results in Tables 1 and 2. In Tables 1 and 2, ”num.
of success” means the number of successes, respectively. From the above results,
we see that our attack can efficiently solve the IE-LWE problem within 4 seconds
for security parameters k = 143, 207, 272. When given a pair of polynomials
(X,Y ), it is possible to determine whether the pair is an IE-LWE instance or
not, and to break the IND-CPA security of Giophantus.

6 Modification of IE-LWE Problem

In this section, we discuss how to modify the IE-LWE problem to avoid our
attack and its variant described below. An easy way to avoid our attack is to
use other modulus polynomials f ∈ Fp[t] satisfying f(1) ̸≡ 0 (mod. p). However,
the following argument implies that the condition is not enough.

If there is a root α ∈ Fpd of f , i.e., f(α) = 0, then a map Fp[t]/(f) −→ Fpd

by a(t) 7→ a(α) is a well-defined ring homomorphism. We assume that αw = 1
for w < n− 1. For simplicity, we also assume w | (n− 1), say n− 1 = ww′. Put

nf := deg(f) and R
(f)
p := Fp[t]/(f). Let R

(f)
ℓ be the subset of R

(f)
p defined by

the same way as Rℓ. A variant of the IE-LWE problem is defined by replacing Rp

and Rℓ in Definition 1 by R
(f)
p and R

(f)
ℓ , respectively. We call the variant of the

IE-LWE problem the IE-LWEf problem. We try to solve the IE-LWEf problem
by combining the linear algebra attack in section 3.2 and evaluation attack at
t = α. For a given sample (Xf , Yf = Xfrf +ef ) from the IE-LWEf problem, put

Xf =
∑

(i,j)∈ΓXf
a
(f)
ij xiyj , rf =

∑
(i,j)∈Γrf

r
(f)
ij xiyj , ef =

∑
(i,j)∈Γef

e
(f)
ij xiyj

and Yf =
∑

(i,j)∈ΓYf
d
(f)
ij xiyj , where r

(f)
ij and e

(f)
ij are variables. If we find that

all e
(f)
ij are R

(f)
ℓ -values variables, then (Xf , Yf ) is an IE-LWEf instance.
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Put e
(f)
ij as

e
(ij,f)
n−1 tn−1 + · · ·+ e

(ij,f)
0 .

From the assumption αw = 1, we have

e
(f)
ij (α) = (e

(ij,f)
w−1 + · · ·+ e

(ij,f)
w′w−1)α

w−1

+ (e
(ij,f)
w−2 + · · ·+ e

(ij,f)
w′w−2)α

w−2

+ · · ·+ (e
(ij,f)
0 + · · ·+ e

(ij,f)
ww′ ).

If e
(f)
ij is in R

(f)
ℓ , then we can regard e

(f)
ij (α) as a polynomial with small coeffi-

cients within {0, . . . , w′(ℓ − 1)} of degree w − 1 < n − 2. The above argument

can be also applied to a
(f)
ij , r

(f)
ij and d

(f)
ij , i.e., a

(f)
ij (α), r

(f)
ij (α) and d

(f)
ij (α) can

be regarded as polynomials of degree w − 1. We see that w′(ℓ − 1) < n(ℓ − 1)
is much smaller than p from the inequality (1). Thus, by applying the linear
algebra attack, we can expect that the IE-LWEf problem is solved by solving
the (approximate) CVP on lattices with smaller rank. The rank of lattice is
reduced by applying Xagawa’s method (cf. [3]). We note that 1, α, . . . , αw−1

would be Fp-linearly dependent elements. Thus, we need to slightly modify the
linear algebra attack.

The above attack is similar to attacks on Poly-LWE problem [9,12]. However,
in the case of attacking Poly-LWE problem, the extension degree d should be
small, e.g., 1 ≤ d ≤ 3, because one needs to find secret elements in Fpd by
exhaustive search. On the other hand, the above attack does not require to
search secret elements and would work for any d.

From the above argument, we need to use modulus polynomials f whose roots
have large order (> n) to avoid our attack in section 4 and its variant above.
For instance, all roots of the m-th cyclotomic polynomial (mod. p) have order m
(see [9]). Moreover, we should use modulus polynomials with small coefficients,
e.g., the q-th cyclotomic polynomials with prime power integers q, so that the
coefficients of e(ux(t), uy(t)) does not become so large.

Remark 1. At Symposium on Cryptography and Information Security 2019,
which is a big symposium in Japan, Akiyama, Yuntao Wang, Ikematsu and
Takagi announced the modified IE-LWE problem and proposed Giophantus+

which is IND-CPA secure if the modified IE-LWE problem is computationally
infeasible. Their modification is to use tk + 1 for 2-power integer k, i.e., the
2k-th cyclotomic polynomial, as a modulus polynomial. Akiyama et al.’s modi-
fied IE-LWE problem cannot be solved by our evaluation attack and its variant.
However, Akiyama et al.’s analysis is only based on lattice attacks, and the value
of k is very limited even though k is closely related to the sizes of public/secret
keys and ciphertexts. Therefore, one should also consider other modifications as
in our argument above.
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7 Conclusion

In this paper, we proposed a new and practical evaluation attack on IND-CPA
security of an indeterminate equation public key post-quantum cryptosystem,
called ”Giophantus”. The Giophantus satisfies IND-CPA security under the
assumption that an indeterminate equation analogue of learning with errors
(IE-LWE) problem is computationally infeasible. However, our attack efficiently
succeeded in solving the IE-LWE problem with probability about 99% within 4
seconds in average. Moreover, we investigate how to modify the IE-LWE prob-
lem to avoid our attack. We gave the notable argument and a variant of our
evaluation attack. As a result, we conclude that one should use polynomials f
with small coefficients, which have roots of large order, e.g., the q-th cyclotomic
polynomial with prime power integers q.

Although our attack is cleary solve the IE-LWE problem with high proba-
bility, we could not give the theoretical estimate of the success probability of
our attacks. Moreover, our approach for solving the IE-LWE problem is simi-
lar to known attacks on Poly-LWE problem. Therefore, our future work is to
estimate the theoretical success probability and to investigate attacks of other
approaches.
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