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ABSTRACT This paper proposes a non-parallel cross-lingual voice conversion (CLVC) model that can
mimic voice while continuously controlling speaker individuality on the basis of the variational autoen-
coder (VAE) and star generative adversarial network (StarGAN). Most studies on CLVC only focused on
mimicking a particular speaker voice without being able to arbitrarily modify the speaker individuality.
In practice, the ability to generate speaker individuality may be more useful than just mimicking voice.
Therefore, the proposed model reliably extracts the speaker embedding from different languages using a
VAE. An F0 injection method is also introduced into our model to enhance the F0 modeling in the cross-
lingual setting. To avoid the over-smoothing degradation problem of the conventional VAE, the adversarial
training scheme of the StarGAN is adopted to improve the training-objective function of the VAE in a
CLVC task. Objective and subjective measurements confirm the effectiveness of the proposed model and
F0 injection method. Furthermore, speaker-similarity measurement on fictitious voices reveal a strong linear
relationship between speaker individuality and interpolated speaker embedding, which indicates that speaker
individuality can be controlled with our proposed model.

INDEX TERMS Voice conversion, cross-lingual, controllable speaker individuality, variational autoencoder,
generative adversarial network.

I. INTRODUCTION
As a subset of voice transformation, voice conversion (VC) is
used to modify the speaker individuality conveyed in speech
while keeping the linguistic content unaffected [1]. When the
source and target voices are in different languages, a cross-
lingual VC (CLVC) model that can efficiently work with
multi-lingual input must be used. This type of VC model
can be useful in many applications such as personalizing
a speech-to-speech translator or language-learning platform.
Due to the unavailability of parallel source and target data,
a VC model based on conventional mapping methods can-
not be used for CLVC. To solve this problem, non-parallel
VC models have been actively researched. In contrast to the
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VC models using conventional mapping approaches, these
non-parallel VC models are used to disentangle the linguistic
information and speaker individuality from the speech wave-
form. The source speaker individuality is then swapped with
the target one while preserving the linguistic information.

The most straight-forward approach for CLVC is by cas-
cading an automatic speech recognition system and text-to-
speech system. As speaker identity and text transcription
are both required during the training process, this type of
approach can be referred to as a supervised approach. Semi-
supervised CLVC can be trained without text transcription
by applying regularization on the latent variables represent-
ing linguistic content. Therefore, a semi-supervised model
can be constructed using inexpensive un-transcribed speech
data. Common models for text-independent CLVC are the
deep Boltzmann machine [2], [3], autoencoder [4], [5],

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 47503

https://orcid.org/0000-0001-6819-0443
https://orcid.org/0000-0003-2450-6754
https://orcid.org/0000-0001-6695-6054


T. V. Ho, M. Akagi: CLVC With Controllable Speaker Individuality Using VAE and StarGAN

variational autoencoder (VAE) [6]–[8], and generative adver-
sarial network [9] (GAN). Most CLVC methods only focus
on mimicking a target speaker voice without generating new
speaker individuality. For certain practical applications, such
as customizing audiobook and avatar voices, the ability to
actively generate new voice individuality as well as passively
mimicking a particular target voice is much more useful than
solely mimicking the target voice.

In our previous study [10], we proposed a VAE-based
intra-lingual VC model with controllable speaker individu-
ality. By using principal component analysis (PCA), speaker
individuality can be derived from speaker embedding. How-
ever, this VC model has three drawbacks when applied to
a CLVC task. First, the learned speaker-embedding encodes
the speaker’s language along with other speaker individ-
uality, hence, linguistic information is also affected when
modifying the speaker embedding. Second, this model does
not model the F0 contour, which can significantly differ
between languages. Finally, the training objective of this
model does not implicitly guarantee that the output speech
carries the desired speaker individuality corresponding to
the input speaker embedding. This limitation reduces the
speaker similarity between the converted speech and target
speech. Moreover, using element-wise mean squared error in
the reconstruction loss suggests that the acoustic features fol-
low a normal distribution with no correlation across features.
This over-simplified objective often leads to over-smoothing,
which results in speech that sounds muffled.

Recently, the StarGAN [11] has been successfully applied
for non-parallel multi-speaker VC tasks [12]. The superi-
ority of a GAN over other deep generative models arises
from its adversarial training scheme, where a generator
and discriminator are simultaneously trained to compete
with each other. The training process ends when the gen-
erator can generate samples indistinguishable from natural
ones. This training scheme avoids the use of mean-squared-
error loss, reducing over-smoothing usually found in other
VC models. However, the training process of a GAN is often
very difficult and unstable, which may degrade converted
speech quality. Moreover, the lack of explicit latent model-
ing in a GAN may discourage the disentanglement between
speech content and speaker information, reducing the effec-
tiveness of speaker embedding in controlling the speaker
individuality.

Therefore, considering the pros and cons of previous stud-
ies, we improved upon our previous VAE-based VC model
and designed a model for text-independent CLVC that can
both mimic voice and continuously control speaker individu-
ality of generated speech. These improvements are as follows:
• The proposed model uses language embedding to rep-
resent the language property of input speech. There-
fore, language and speaker-individuality factors can be
disentangled.

• The value of F0 in logarithmic frequency scale (logF0)
is directly injected into the decoder to enhance the
F0modeling and provide controllability over F0 contour.

FIGURE 1. Overview of proposed CLVC model. VC is carried out by
selecting target speaker embedding from speaker codebook. Each voice
characteristic can be independently controlled by PCA-projected speaker
embedding.

• The adversarial training scheme of the StarGAN [11] is
adopted to improve the objective function of our previ-
ous VAE-based VC model.

Although combining the VAE and GAN has been proposed
for non-parallel VC [13], [14], none of these studies focused
on the controllability of speaker individuality. Our proposed
model specifically focuses on the many-to-many CLVC task
with controllability of speaker individuality by combining the
VAE and StarGAN. To take advantage of the high perfor-
mance of the recent neural vocoder Parallel WaveGAN [15],
our proposed model directly operates in the mel-spectrum
domain. Even though continuous speaker embedding has
been applied in some VC models [16], [17], they require
a trained speaker-recognition model to extract the speaker
embedding. In contrast, our proposed model can be trained
in an end-to-end fashion by directly optimizing the speaker
embedding during the training process. As shown in the next
sections, the proposed model improves upon the performance
of our previous VAE-basedVCmodel and provides good con-
trollability of speaker individuality by modifying the speaker
embedding. Even though our model shares a similar motiva-
tion with other VC model regarding F0 conditioning, there
are several differences between them. In general, our model
focuses on cross-lingual VC settings. As different languages
might have very different F0 characteristics, F0 conditioning
helps eliminate the language-dependent factor in the speaker
embedding. Our previous VAE-based VCmode can still work
well without F0 conditioning in an intra-lingual setting [10].

An overview of our proposed model is illustrated in Fig. 1.
In Section 2, we discuss related work on VAE- and
GAN-based VC models. In Section 3, we describe our pro-
posed CLVC model using the VAE and StarGAN with con-
trollable speaker individuality. We discuss the objective and
subjective experiments to evaluate the proposed model and
present the results in Section 4. We conclude the paper with
a summary in Section 5.
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II. LITERATURE REVIEW
In this section, we describe related studies on VAE-based
VC models for controlling speaker individuality. Then,
we introduce the StarGAN and explain its advantage points
that can be adopted to enhance the VAE-based CLVC model.

A. VARIATIONAL-AUTOENCODER-BASED VOICE
CONVERSION WITH SPEAKER INDIVIDUALITY CONTROL
1) VARIATIONAL-AUTOENCODER-BASED
VOICE CONVERSION
The VAE is a probabilistic model that can discover the
latent structure of data [18]. In VC, a previous study by
Hsu et al. [13] showed that linguistic information can be
interpolated via latent representation of the VAE. The latent
variable z is assumed to follow the normal distribution
N (0, I) that is independent from the speaker information.
Hence, the latent variable z can be regarded as linguistic
information conveyed in speech. From the input acoustic
feature x, the encoder of the VAE fenc outputs the estimated
parameters µ and σ of the posterior pθ (z|x) = N (µ, σ ).
Then z is sampled from the posterior as z ∼ p(z|x). How-
ever, back-propagation is impossible if z is directly sampled
from the posterior pθ (z|x). Therefore, a re-parameterization
trick is applied by sampling an independent variable ε from
normal distribution N (0, I) then executing a scale and shift
operation. The procedure of estimating z is as follows:

µ, σ = fenc(x)

ε ∼ N (0, I)

z = µ+ σ ◦ ε, (1)

where ◦ is the Hadamard product.
To reconstruct x, in addition to the linguistic information in

z, a variable s that contains speaker information is introduced.
The s can be expressed as a one-hot encoded vector or con-
tinuous vector that represents the speaker’s identity. From z
and s, the decoder of the VAE reconstructs xs as follows:

x̂ = fdec(z, s). (2)

The encoder and decoder are jointly trained by minimizing
the variational objective function:

Lv = −DKL(pθ (z|x)||p(z))− Ez∼pθ (z|x)(p(x|z, s)), (3)

where DKL is the Kullback-Leibler divergence between the
estimated posterior pθ (z|x) and the true prior distribution p(z).
Since p(z) is assumed to follow a normal distribution, DKL
can be expressed in closed form as

DKL(pθ (z|x)||p(z)) = −
1
2

∑
(1+ log σ 2

− µ2
+ σ 2). (4)

The second term on the right side of (3) is the reconstruction
loss. Assuming that x also follows a Gaussian distribution,
the term Ez∼pθ (z|x)(p(x|z, s)) can be described by a simple
mean-squared difference between reconstructed acoustic fea-
tures and original acoustic features as

Ez∼pθ (z|x)(p(x|z, s)) = −
1
2

∑
(̂x− x)2. (5)

FIGURE 2. Generated parameters for posterior q(z|x). Most dimensions of
latent mean µz and log variance log σ2 are invariant with respect to input.

According to Rolinek et al. [19], the optimization of (3)
will lead to a polarized regime situation, in which only a sub-
set of the latent variables (active subset) encodes meaningful
information, while the other subset (passive subset) purely
encodes noise. Clearly, the passive subset has DKL ≈ 0.
Therefore, the second term in (3) encourages a bottleneck
in the latent variable, where useful information is restricted
only in the active subset. Figure 2 illustrates the inferred
latent statistical parameters from an input utterance. Since
most of the dimensions are invariant with x, the decoder
is unable to fully reconstruct the xs without any additional
information. In this situation, the decoder network has to rely
on the speaker information contained in the input speaker
embedding to minimize the reconstruction loss (second term
in (3)). This is the cause of the disentanglement of linguistic
information and speaker information in the VAE.

2) CONTROLLING SPEAKER INDIVIDUALITY
In a previous study [20], the speaker identity s was rep-
resented as a one-hot vector. However, this representation
cannot be used to continuously control the degree of speaker
individuality. To solve this problem, we previously proposed
a continuous speaker embedding that can be optimized simul-
taneously with other model parameters [10]. Let y be the
one-hot vector representing speaker identity, the continuous
speaker embedding s is calculated using a simple linear trans-
formation as

s =Wᵀ
· y+ b, (6)

where W and b is a learnable kernel and bias in a fully-
connected neural network layer, respectively. In this inter-
pretation, the one-hot encoded vector y acts as a switch to
select the corresponding row vector in matrix W. In the case
of b = 0, each row vector in the kernel matrixW can be seen
as a speaker embedding. Figure 3 illustrates the first and sec-
ond principal components of the learned speaker embed-
dings of the Voice Cloning Toolkit (VCTK) dataset [21].
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FIGURE 3. 2D visualization of speaker embedding learned using
intra-lingual VAE-based VC model using PCA. speaker embeddings are
clustered on basis of voice gender and speaker language.

FIGURE 4. Example of GAN consisting of generator (G) and discriminator
(D). D distinguishes real sample Xr and fake sample Xf , which is
generated from G. In contrast, G generates more realistic fake sample
that can deceive D.

The speakers are clearly clustered on the basis of the voice
gender and input language; hence, the speaker embedding
can encode useful information about speaker individuality.
However, the language-dependent speaker embedding is not
ideal for CLVC as modifying the speaker embedding might
affect the linguistic content of the input speech (e.g., unnatu-
ral pronunciation).

B. STAR-GENERATIVE-ADVERSARIAL-NETWORK-BASED
VOICE CONVERSION
A typical GAN consists of two networks, a generator G and
discriminator D, which are alternatively trained to compete
with each other in an adversarial scheme [9]. On one hand,
D is trained to distinguish between the real sample from the
training set and the fake sample fromG. On the other hand,G
is trained to generate samples that could deceive D. Figure 4
presents an overview of the conventional GAN structure.
The model is converged when D exceeds its capability of
classifying the generated samples from real samples. In such
a situation,G is expected to generate highly realistic samples.

The conventional GAN can only convert data from one
domain to another. To solve the problem ofmulti-domain gen-
eration, the StarGAN [11] was proposed. The goal with the
StarGAN is to learn a single G that can map across multiple
domains. To achieve this, G is trained to translate the input
speech features xr into output speech features xf conditioned
on the target domain label yf , such that G(xr , xf ) → xf .
The target domain label is randomly generated to ensure
that G can flexibly translate the input data to different target

FIGURE 5. Flow chart of StarGAN training process.

domains. Simultaneously, D is trained to estimate the prob-
ability D(x, y) of whether x is authentic, conditioned on y
of the input data. Also, an auxiliary classifier C is trained
to predict this label. Figure 5 shows the training process of
the StarGAN. The training objective consists of three loss
functions, as detailed below.
• Adversarial loss: Adversarial loss encourages D to cor-
rectly classify real and fake samples while helping G to
generate more realistic samples. The adversarial losses
for D and G are respectively as follows:

LDadv = −Exr ,yr [logD(xr , yr )]

−Exr ,yf [log(1− D(G(xr , yf )), yf ))], (7)

LGadv = −Exr ,yf [log(D(G(xr , yf ), yf ). (8)

The LDadv is reduced when D can correctly classify real
and fake samples, while LGadv is minimized when G can
successfully deceive G.

• Classification loss: The C is trained for the speaker-
classification task and helps G produce fake data with
the correct target speaker voice. In particular, C outputs
the probability pC that x belong to speaker y. The losses
for C and G are defined as

LCcls = −Exr ,yr [log pC (yr |x)], (9)

LGcls = −Exr ,yf [log pC (yf |G(xr , yf ))]. (10)

The LCcls is reduced when C can correctly classify to
which target speaker the input speech belongs. The LGcls
is minimized when the converted utterance has similar
speaker individuality to the target speaker.

• Reconstruction loss: To preserve the linguistic content
in the converted utterance, cycle-consistent loss is intro-
duced to regularize G:

LGcyc = Exr ,yr ,yf [||xr − G(G(xr , yf ), yr )||
2
2], (11)
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FIGURE 6. Overview of processing flow of proposed model. VAE acts as G of StarGAN. lsrc refers to language embedding of input
mel-cepstrum. ssrc and star are speaker embedding of source and target speakers.

where yr and yf are the labels of arbitrary source and
target speaker, respectively, xr is the input speech feature
belonging to yr , and ‖·‖ is the Euclidean distance.
Identity loss is also introduced to keep the con-
verted speech unchanged when the input speech already
belongs to yr :

LGid = Exr ,yr [||xr − G(xr , yr )||
2
2]. (12)

In summary, the total loss for G is as follows:

LG = LGid + LGcyc + λadvLGadv + λclsL
G
cls, (13)

where λadv and λcls are the weighting factor for adver-
sarial loss and classifier loss, respectively.

As seen in the training objective (13), the StarGAN does
not completely rely on mean-squared-error loss to estimate
the distribution of converted acoustic features, as in the VAE.
In contrast, G uses feedback from D to produce the most
likely sample that can deceive D. Therefore, to avoid over-
smoothing in the VAE, the adversarial training scheme of
the StarGAN can be adopted to replace the conventional
mean-squared-error loss. However, the lack of an explicitly
defined latent variable in the StarGANmight reduce the effect
of speaker embedding on controlling speaker individuality
becauseGmight ignore the input speaker embedding. Hence,
the combination of the VAE and StarGANwould alleviate the
weakness of the other.

III. PROPOSED MODEL
In this section, we give a more detailed explanation of the
proposed CLVC model. We first describe the solution to
avoid the language-dependent speaker-embedding problem
of our previous VAE-based VC model. We then present the
F0 injection method to enhance the F0 modeling in different
languages. Finally, we introduce a method for enhancing the
spectral detail using the StarGAN.

A. CONTROLLING SPEAKER INDIVIDUALITY IN
CROSS-LINGUAL SETTING
In conventional VAE-based VC, speaker identity is usually
represented as a one-hot vector [20]. However, this type of
encoding does not allow controllability of speaker individu-
ality. Some studies have proposed using d-vector to represent
speaker individuality, but this type of speaker representation
requires an additional speaker-recognition network, which
introduces more complexity to the VC model. Our previ-
ous VAE-based VC model was developed for continuous
learnable speaker embedding that can be jointly learned with
other network parameters during the training process [10].
This model does not require any addition speaker-recognition
network yet still achieves controllability of speaker
individuality.

In this study, we improved upon this model for cross-
lingual settings by training the VAE on cross-lingual data.
We simplify (6) by setting b = 0; hence, the kernel W
can be regarded as the speaker codebook, which is randomly
initialized. During inference, only speaker embedding of the
target speaker is needed for conditioning the decoder net-
work. However, language differences can be captured during
the speaker embedding, as shown in Fig. 3. This behavior
is undesirable because manipulating the speaker embedding
would affect the linguistic content due to language differ-
ences. To avoid this problem, we implement an additional
language embedding to disentangle the language factor from
speaker embedding. In this study, the language factor is
simply represented by a one-hot encoded vector, which is
concatenated with the speaker embedding along the channel
dimension. The combined vector is then used to condition
the decoder on generating the mel-spectrogram, as shown
in Fig. 6.

B. ENHANCING F0 MODELING WITH F0 INJECTION
Various high-performance vocoders based on deep neural
networks have recently been proposed [15], [22], [23]. Most
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FIGURE 7. Stacks of WaveNet cells in WaveNet module.

FIGURE 8. Structure of (a) G, (b) classifier (C), and (c) D.

of these neural vocoders directly use mel-spectrum as the
input feature. However, it is difficult to directly manipu-
late the F0 information in mel-spectrogram, as it relates
to the harmonic structure. In addition, different languages
may have very different F0 contours, which can degrade the
cross-lingual converted speech with spurious pitch. To pro-
vide the controllability and stability of F0 in converted
speech, we directly conditioned the decoder in the VAE with
logF0 input, as shown in Figs. 6 and 7. We refer to this
method as F0 injection. To generate fake samples during
the training or inference phases, the source logF0 is lin-
early scaled to match the target F0 mean-variance. There-
fore, the statistics of the target F0 must be pre-calculated
for VC.

C. IMPROVING CROSS-LINGUAL VAE-BASED VC WITH
StarGAN TRAINING SCHEME
Our proposed model incorporates the StarGAN training
scheme [11]. An overview of our proposed model is shown
in Fig. 6. In this model, the VAE acts similarly to the G in
the StarGAN. The D identifies whether the input speech is
natural or converted given the speaker-identity label. The C
learns to classify to which speaker the input speech belongs.
Also, the converted voice is re-input to the VAE to convert it
back to the source voice. Cycle-consistent loss minimizes the
difference between the input features and re-converted fea-
tures. With all these modifications, the new training objective
for the VAE is to 1) generate converted speech to deceive D,
2) minimize the loss from C when inputting the converted
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speech, 3) minimize cycle-consistent loss, and 4) minimize
reconstruction loss and DKL loss.
• Discriminator loss: The D distinguishes real and con-
verted speech samples, which are labeled as 1 and −1,
respectively. To improve the stability of the training
process, the Wasserstein distance [24] is used instead of
vanilla discriminator loss in (7). Therefore, discrimina-
tor loss is written as

LDadv = Ex,ssrc [1− D(x, ssrc)]

+Ex,star [1+ D(VAE(x, star ), star )], (14)

where ssrc and star is the speaker embedding of source
and target speakers, respectively, and x is the input
acoustic features belonging to the source speaker.

• Classification loss The C is trained with cross-entropy
loss to identify the correct speaker identity conveyed in
the input utterance. The loss for training C is as follows:

LCcls = −Ex,y[log pC (y|x)] (15)

where log pC (y|x) is the output log likelihood that acous-
tic features x belongs to target speaker y.

• VAE loss: In addition to variational loss, adversarial
loss and classifier loss encourage the VAE to trick D
and reduce the speaker dissimilarity between converted
speech and natural speech. The adversarial loss and
classifier loss for the VAE are expressed as

LVAE
adv = −Ex,star [D(VAE(x, star ), star )], (16)

LVAE
cls = −Ex,star [log pC (VAE(x, star ), star )]. (17)

Similar to the StarGAN training scheme, cycle-
consistent loss is introduced to force the VAE to trans-
form the converted features back to the original. This
loss is written as

LVAE
cycle = Ex,star ,ssrc [‖x− VAE((VAE(x, star ), ssrc)‖22].

(18)

Combined with the variational loss described in (3),
the final training objective for the proposed model now
becomes

LVAE
obj = Lv + LVAE

cycle + λadvL
VAE
adv + λclsL

VAE
cls , (19)

where λadv and λcls are the weight factor for each loss
component. In empirical testing, λadv = 0.0005 and
λcls = 0.0001 showed good results in this study.

IV. EXPERIMENTS
To evaluate the performance of the proposed model,
we implemented CLVC between English and Japanese
speakers using three models: the conventional VAE
(VAE), StarGAN (StarGAN), and proposed model (VAE-
StarGAN). To evaluate the effectiveness of F0 injection,
we also implemented a VAE-based VCmodel trained without
F0 input. This model is denoted as VAE-noF0. For a fair

TABLE 1. Network architecture of VAE encoder and decoder, D, and C .

comparison, VAE and VAE-StarGAN had the same net-
work structure. In addition, the C and C of StarGAN and
VAE-StarGAN had an identical structure.

To train the models, we used two open-source multi-
speaker voice databases: the English VCTK corpus [21] and
the Japanese Versatile Speech (JVS) corpus [25]. The training
data included 100 speakers from the English VCTK dataset
and 100 speakers from the JVS dataset. For each speaker,
100 utterances were randomly selected as training data and
ten utterances as testing data. Each speaker was initially
assigned to a random speaker embedding. To condition the
decoder on the language of the input mel-cepstrum, we used
a one-hot embedding vector for language. Since there were
two input languages (English and Japanese), the number of
dimensions for language embedding was two.

A. PREPROCESSING
In the preprocessing step, the audio waveform was down-
sampled to 24 kHz and normalized to the [−1.0, 1.0]
range. Then, an 80-dimensional mel-spectrogram was
extracted using short-time Fourier transform (STFT) and
mel-filterbank. The window length of STFT was set to
2048 and the hop-lengthwas 300. Themel-filterbank spanned
from 80 to 7600 Hz to match the Parallel WaveGAN input.
Then, the mel-spectrum was transformed into mel-cepstrum
by applying inverse discrete Fourier transform on the log-
magnitude mel-spectrum. Although some studies further nor-
malized each mel channel by its mean and variance across the
time dimension, we found that this step degrades the quality
of converted speech from our models. Therefore, we directly
used the rawmel-cepstrum value as the input feature. In addi-
tion to the mel-cepstrum feature, F0 was extracted using the
WORLD analysis system [26]. After extracting the F0 from
all utterances, we calculated the mean and variance of logF0
for each speaker for linear scaling functions. To reconstruct
the waveform, we used the Parallel WaveGAN vocoder [15]
trained on the VCTK dataset for 1000k iterations.

B. NETWORK ARCHITECTURE
Similar to our previous study [10], the encoder and decoder
of the VAE were constructed from a smaller network that
resembles the WaveNet (WN) architecture [27]. Figure 7
shows the architecture of a WN cell. The input layer for the
hidden variable hn is the 1D dilated convolutional neural net-
work [28], which expands the receptive field in the temporal
dimension by dilation in the kernel. The details of the model
parameters of the VAE encoder and decoder, D, and C are
provided in Table 1.
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The D and C share the same architecture, as illustrated
in Fig. 8. EachWN cell is followed by a stride 1D convolution
layer to reduce the temporal dimension by half after each
stage. At the output, a fully connected layer consumes the
compressed vector to produce the output vector. The speaker
embedding and language embedding are represented as a
one-hot vector. Both D and C are conditioned on both the
speaker-embedding and language-embedding vectors, while
C is conditioned only on the language embedding vector.

C. TRAINING PROCEDURE
All models were trained using the Adam optimizer [29] with
32 samples per batch. The mel-cepstrum is truncated or warp-
padded to have 512 frames. The learning rate is initialized at
2× 10−4 and gradually reduced to 1× 10−4 for the first ten
epochs. The training process was conducted using twoNvidia
2080Ti GPUs until the model converged, which took roughly
two days for each model. The detailed training procedure for
StarGAN and VAE-StarGAN is shown in Algorithm 1.

Algorithm 1 VAE-StarGAN training procedure
Require: Functions G (VAE model), D, C , Scale (logF0

linear scale function), X (batch of source mel-
cepstrum), f 0 (batch of source logF0), ssrc (source
speaker embedding), star (target speaker embed-
ding), lsrc (source language embedding)

F Update the discriminator parameter θD
f 0f ← Scale(f 0)
xf ← G(x,F0f , star , lsrc)
dr ← max(0, 1− D(x, ssrc, lsrc))
df ← max(0, 1+ D(xf , star , lsrc))
LDadv←

dr+df
2

update θD to minimize LDadv

F Update classifier parameter θC
LCcls ← CrossEntropy(ssrc,C(x, lsrc)) update θC to minimize
LCcls

F Update VAE parameter θVAE
xid ,µz, σ z← G(x,F0, ssrc, lsrc)

xcycle← G(xf ,F0, ssrc, lsrc)
LVAEadv ←−D(xf , star , lsrc)
LVAEcls ← CrossEntropy(star ,C(xf , lsrc))
LVAEcycle←

∥∥xcycle − x
∥∥2
2

Lv← ‖xid − x‖22 −
1
2 (1+ log σ 2

z − µ2
z − σ 2

z )
F Calculate 19

LVAE
← Lv + LVAE

cycle + λadvL
VAE
adv + λclsL

VAE
cls

update θG to minimize LVAE

D. VISUALIZING SPEAKER EMBEDDING
After the VC model was trained, we visualized the speaker-
embedding space, as shown in Fig. 9, by analyzing the
speaker codebook using PCA. Figure 9a illustrates the

FIGURE 9. 2D PCA visualization of speaker embedding from model
(a) without language embedding input and (b) with language embedding
input. Speaker embedding from English and Japanese speakers are clearly
separated into distinct clusters when language embedding is not used.

PCA-projected speaker embedding learned using our previ-
ous VAE-based VC model [10]. Without the input language
embedding, we can see that the language of the speakers was
separated on the first principal dimension. On the other hand,
as shown in Fig. 9b, only the speaker’s sex was separated on
the first principal dimension when the model was trained with
language embedding input. Moreover, the clustering effect
on language was removed, as there was no clear separation
between Japanese speakers and English speakers. This result
indicates that the speaker embedding can encode useful infor-
mation from the speaker individuality while still remaining
language-independent.

E. OBJECTIVE EVALUATION
We conducted different objective measurements to evaluate
the performance of the proposed model. The objective evalu-
ation set consists of cross-lingual converted utterances from
English to Japanese and Japanese to English. We selected
five male and five female speakers from each language to
form 200 conversion pairs, and each pair had ten converted
samples. Therefore, the objective evaluation set consisted
of 2000 converted utterances.

1) MODULATION SPECTRUM MEASUREMENT
The modulation spectrum (MS) can provide hints about
speech naturalness: a higher MS corresponds to better speech
naturalness. Following the work of Takamichi et al. [30],
we calculated the MS of the converted mel-cepstral sequence
by taking the Fourier transform along the temporal dimen-
sion. Similar to a previous study [31], the MS was averaged
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FIGURE 10. Log-scaled modulation spectrum of natural speech, reconstructed speech, and converted speech averaged over all utterances
and modulation frequencies. StarGAN and VAE-StarGAN generated mel-spectrograms with higher MS than VAE.

FIGURE 11. Mel-spectrogram of source voice and converted voice from different models. Mel-spectrogram generated from StarGAN and
VAE-StarGAN clearly had more details than that generated from VAE.

for all modulation frequencies and all utterances as

MS =
1
N

1
F

N∑
n

F∑
f

|DFT [X(n, f)]|, (20)

whereX is a batch of test utterances,N is the number of utter-
ances, n ∈ [0,N ) is the utterance index, F is the number of
MS frequency bins, and f ∈ [0,F) is the MS frequency bins.
As shown in Fig. 10, VAE-StarGAN achieved a higher log-
scaledMS on the lowermel-cepstral coefficients than our pre-
vious VAE-based VC model. These results indicate that the
adversarial training scheme can lessen the over-smoothing of
converted mel-cepstral coefficients. Figure 11 illustrates the
mel-spectrogram generated from different models. We can
see that the StarGAN and t VAE-StarGAN produced mel-
spectrograms with a more detailed structure. Although the
mel-spectrum of VAE-StarGAN was more refined than that
of VAE, artifacts such as mispronunciation cannot be clearly
shown on the mel-spectrum. Therefore, a listening test must
be conducted to precisely compare the performances of dif-
ferent models.

2) F0 INJECTION
Tomeasure the effectiveness of F0 injection method, wemea-
sured the F0 histogram intersection [32] between converted

speech and target speech. The histogram intersection can
indicate the amount of similarity between two distributions.
Given the histogram of converted speech P and that of target
speech Q, where each one contains n bins, the histogram
intersection is defined as follows:

d∩(P,Q) =

∑n
j min(Pj,Qj)∑n

j Qj
. (21)

The maximum histogram intersection d∩max = 1 is
achieved when P and Q are completely identical. Figure 12
shows a comparison of the log2 F0 distribution between
source, target, and converted utterances from different mod-
els. We can see that the log2 F0 distribution did not
always follow the Gaussian shape. Therefore, simply execut-
ing F0 linear transformation by a parametric vocoder (e.g.,
WORLD or STRAIGHT [12], [17], [33]) cannot ensure the
correct shape of F0 distribution.

In addition to histogram intersection, we measured the
average error between the mean of converted log2 F0 and
that of target log2 F0. The voice/unvoiced error rate between
converted F0 and source F0 was also measured. The results
are summarized in Table 2. We can see that the models with
F0 injection had a significantly higher histogram intersection,
lower v/uv error rate, and lower mean F0 error than the model
without. The two-tailed t-test showed that the effect of using
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FIGURE 12. Distribution of log2 F 0 of source, target, and converted speech from different models. Intersection index d∩ indicates amount of overlap
between converted log2 F 0 and target log2 F 0.

TABLE 2. Average scores and standard deviations of F 0 analysis results from different models. For mean F0 error and voice/unvoiced error rate (v/uv)
error, lower is better. For histogram intersection, higher is better.

the F0 injection method is statistically significant. These
results indicate that the F0 injection method can improve
the performance of VC models for controlling the F0 in the
converted utterance.

F. SUBJECTIVE EVALUATION
We conducted listening tests to evaluate the speech natu-
ralness and speaker similarity of the converted utterances.
We selected one male and one female speaker from each lan-
guage, for a total of four speakers in the evaluation set. Since
only CLVC was carried out, there were eight combinations
from the selected speakers. We denote Japanese-to-English
conversion as ‘‘SJ-TE’’ and English-to-Japanese conversion
as ‘‘TE-SJ’’. Two sentences were selected from each source-
target pair to create the listening test set. Therefore, the lis-
tening test set consisted of 48 pairs of converted utterances
(2 sentences× 8 source-target speaker pairs× 3model pairs).
For reference stimuli in the ABX similarity test, we randomly
selected the original utterances of the target speakers from
the training set. Nine individuals with normal listening ability
participated in both listening tests. All participants had a basic
level of using Japanese/English even if Japanese/English was
not their first language. Each participant rated 24 random
pairs of converted utterances for each test via an online
interface.

To measure speaker similarity, the ABX test scheme
was used to compare the performance of VAE-StarGAN,
StarGAN, and VAE. Listeners were asked to select the
closest utterance (‘‘A’’ or ‘‘B’’) to the reference utterance
X or choose Same if there was no difference. The X is
the natural speech of the target speaker selected from the
test set, while utterances ‘‘A’’ and ‘‘B’’ are generated from
different models. For speech naturalness, we applied the AB
test scheme, in which listeners were asked to determine the
more natural utterance (‘‘A’’ or ‘‘B’’) or choose Same if there
was no difference. The generated utterance from both models
was presented in random order (AB or BA) to avoid any bias.
To analyze the results, we used the one-wayANOVA test with
alpha value of 0.05.

As shown in Figs. 13 and 14, VAE-StarGAN outper-
formed StarGAN for both naturalness and similarity in all
cases. Except for the similarity score of SE-TJ conversion,
these differences are statistical significant. When comparing
with the VAE, the one-way ANOVA test and the post-hoc
two-tailed t-test determined that VAE-StarGAN had a statis-
tically better similarity score than VAE in SJ-TE conversion.
However, no significant difference was observed between
these two models in other cases. VAE had better naturalness
and similarity scores than StarGAN in most cases except
for the SE-TJ similarity score. The reason might be that
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FIGURE 13. Preference scores of AB naturalness test with 95-percent
confidence interval and results from one-way ANOVA test. NP means no
preference.

FIGURE 14. Preference scores of ABX speaker similarity test with
95-percent confidence interval and results from one-way ANOVA test.

although the converted speech from StarGAN sounded less
muffled than that from VAE, artifacts such as mispronun-
ciation severely affected the perceived speech naturalness.
The low preference score of VAE-StarGAN for speaker
similarity indicates that the speaker embedding of StarGAN
has less controllability on speaker individuality than VAE
and VAE-StarGAN. This behavior may be due to the lack
of explicit latent modeling in StarGAN, which discourages
the disentanglement between speech content and speaker
information.

G. FICTITIOUS SPEAKER
To evaluate the controllability of speaker individuality with
VAE-StarGAN, 11 converted utterances were generated by
linearly interpolating the speaker embedding between the
source and target speaker embeddings. The source speaker
was a female Japanese speaker and the target speaker was
a male English speaker. The positions of the interpolated
speaker embedding s are shown in Fig. 15. The input F0 was
also transformed using the linearly interpolated mean and
standard deviation between the source and target F0.

FIGURE 15. Position of linearly interpolated speaker embedding between
source female Japanese speaker and target male English speaker. Index
of each converted utterance is marked from 1 to 11.

FIGURE 16. Similarity scores of interpolated speaker embedding with
standard deviation. Dotted line denotes expected similarity score that
linearly increased from 0 to 100. r and p indicate Pearson correlation and
p-value, respectively.

Each test utterance was marked from 1 to 11 with respect
to its position on the speaker-embedding map. In this test,
the participants listened to the test stimuli in random order
to avoid any bias then were asked to judge the similarity
between test stimuli and the reference utterance on a scale
from 0 to 100. Figure 16 shows the average similarity score
of each test utterance. We used the Pearson correlation coef-
ficient to evaluate the linear relationship between average
similarity scores and expected similarity scores, which is
calculated as

r =

∑
(x − mx)(y− my)√∑

(x − mx)2
∑

(y− my)2
, (22)

where mx is the mean of vector x and my is the mean of
vector y. The correlations of+1 or−1 suggest an exact linear
relationship. The measured correlation was r = 0.97 and the
p-valuewas p = 4.22×10−7, which indicates that the average
similarity scores have a strong positive correlation with the
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expected similarity score, thus statistically sufficient. Demo
samples can be found online.1

V. CONCLUSION
We proposed a CLVC model that is based on the combi-
nation of the VAE and StarGAN for controlling speaker
individuality. The objective and subjective results indicate
that our proposed model, which is trained solely on acoustic
features, can effectively control speaker individuality in a
cross-lingual setting via the speaker embedding. In terms
of over-smoothing, the objective results indicate that our
adversarial training scheme can effectively enhance the fine-
structure in the converted mel-spectrogram. The results from
the subjective test indicate that the improvement in SJ-TE
conversion is statistically significant. With the additional
language embedding, the language factor can be disentan-
gled from the speaker embedding, avoiding the undesirable
effect on linguistic information when converting voice. The
objective results also indicated that the F0 injection method
can improve the F0 modeling in a CLVC model, which
suggests the potential of using modern neural vocoders in a
VC model to enhance the quality of converted speech. More-
over, the high correlation between the average similarity
score of fictitious voice and the expected similarity score is
evidence for a strong linear relation between speaker embed-
ding and perceptual speaker similarity. This finding can be
justified for the controllability of speaker individuality in our
study.

Our main contribution in this work was to provide an effec-
tive model for controlling speaker individuality and several
enhancements for CLVC. The results from our study can be
directly applied in various applications such as customiz-
ing audiobook and avatar voices, dubbing, teleconferencing,
singing voice modification, voice restoration after surgery,
and cloning of voices of historical persons. In the future,
methods for further improving the controllability of speaker
individuality will be our next focus.
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