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Abstract—In dimensional emotion recognition, a model called
valence, arousal, and dominance is widely used. The current
research in dimensional speech emotion recognition has shown
a problem that the performance of valence prediction is lower
than arousal and dominance. This paper presents an approach to
tackle this problem: improving the low score of valence prediction
by utilizing linguistic information. Our approach fuses acoustic
features with linguistic features, which is a conversion from
words to vectors. The results doubled the performance of valence
prediction on both single-task learning single-output (predicting
valence only) and multitask learning multi-output (predicting
valence, arousal, and dominance). Using a proper combination
of acoustic and linguistic features improved valence prediction
and improved arousal and dominance predictions in multitask
learning.

Index Terms—valence prediction, linguistic feature, speech
emotion recognition, dimensional emotion, affective computing

I. INTRODUCTION

Recent research on dimensional emotion recognition (con-
tinuous degree prediction of valence, arousal, and dominance)
indicates that the performance of valence prediction is lower
than of arousal and dominance [1]–[3]. While arousal and
dominance obtained more than 0.4 of concordance correlation
coefficient (CCC) the score, valence only obtained around 0.1
of CCC score [1]. It will be difficult to obtain precise emotion
categories given the low performance of dimensional emotion
recognition, in which Russel argued that categorical emotion
could be derived from valence-arousal space [4]. In practice,
categorical emotion is widely used than dimensional emotion.

Several techniques have been proposed to tackle this limita-
tion on dimensional speech emotion recognition. The authors
of [5] utilized regularization rates for valence higher than for
arousal and dominance. The CCC scores improved from 0.29
to 0.31 on MSP-PODCAST [6] dataset. Other researchers [5]
tried different techniques; however, the improved valence score
is still lower than the scores of arousal and dominance on the
same method.

This paper proposes the use of linguistic information rep-
resented by linguistic features (also known as text/textual or

lexical features), i.e., word embeddings or word vectors, to
improve valence prediction in dimensional speech emotion
recognition (SER). In most acoustic-based SER approaches,
the performance of valence prediction is lower than arousal
and dominance predictions. Although the proposed method is
not new, our approach differs from reported approaches: we
evaluated a network concat [6]enation of state-of-the-art word
embeddings and an acoustic feature set. The details of our
approach are given in Methods section.

The use of linguistic features for valence prediction is
borrowed from sentiment analysis research. The sentiment,
according to Jurafsky [7], has the same meaning as “valence”
or “semantic orientation.” Following the success of using word
embeddings for sentiment analysis, such as in [8], we incorpo-
rate this linguistic information along with acoustic features for
dimensional speech emotion recognition. This strategy aims to
improve valence prediction in dimensional SER by benefiting
semantic knowledge obtained from linguistic features.

The contribution of this paper is the evaluation of the
addition of linguistic features to the dimensional SER system
for improving the performance of valence prediction. We kept
a single acoustic feature set while varying several linguistic
features for combination. Acoustic and linguistic features
(Acoustic+Linguistic) are trained in different networks in
parallel, and both networks are concatenated with a dense
network. We perform this valence prediction on single-task
learning (STL) to predict the valence dimension only and
multitask learning (MTL) to predict valence, arousal, and
dominance dimensions. State-of-the-art of word embeddings
including word2vec, GloVe, FastText, and BERT models are
evaluated to investigate how these models affect valence and
dimensional emotion recognition tasks. We report gains up
to 104 % for STL and 129% for MTL in improving valence
predictions. The best result was obtained by a combination of
high-level statistical functions (HSF) from an acoustic feature
set with GloVe embedding.



II. RELATED WORK

This section summarizes previous related works and ad-
dresses remaining problems on both valence improvement and
general speech emotion recognition.

In recent years, there have been several attempts to cope
with low score of valence prediction on dimensional speech
emotion recognition. In addition to the aforementioned pro-
posal of using higher regularization, a similar approach using
lexical information was proposed by Aldeneh et al. [9] using
pretrained word2vec with mel filterbanks (MFB) for the acous-
tic information. However, they converted the regression task
into the discrete classification task. The continuous valence
scores were divided into negative, neutral, and positive cate-
gory. The authors improved unweighted average recall (UAR)
from 0.59 to 0.694 on the IEMOCAP dataset. The authors
of [10] used acoustic and lexical properties of speech to rec-
ognize three valence categories from the IEMOCAP dataset.
The authors extracted lexical features of phonemes, i.e., 40-
dimensional distinct phoneme incorporating an additional “out
of vocabulary” label. The proposed method improved UAR
from 0.64 with acoustic-only modality to 0.74 with acoustic-
phonemes (lexical) modality.

Instead of predicting categories of valence only, research
on predicting categories and continuous degrees of emotion
is more familiar. In [11], the authors used semantic features
from the affective dictionary along with the MFCC features
to predict valence and arousal. A deduction of mean absolute
error (MAE) from 1.98 to 1.40 for valence and from to 1.29
to 1.28 was reported using the proposed acoustic-semantic
combination over acoustic only. In other research [12]–[15],
the authors used different deep learning architectures to predict
categorical emotion from both speech and text. Some authors
used phonemes instead of text for predicting emotion category
[10], [16], and some authors compared text feature from
automatic speech recognition (ASR) with manual transcription
to investigate its effectiveness its combination with acoustic
features for categorical emotion recognition [17].

We know of no authors who discussed valence improvement
on continuous-degree dimensional emotion recognition via
linguistic information. When valence is used as the target
of the prediction task, its continuous value is converted to
discrete categories. When acoustic and linguistic features were
combined, different linguistic features (e.g., semantics from
an affective dictionary) is used with. Most approaches on
that acoustic-linguistic combination also evaluated categori-
cal emotion instead of dimensional emotion. This research
discusses an evaluation of various word embedding models,
including state-of-the-art models, in combination with an
acoustic feature set for continuous-degree dimensional emo-
tion recognition. While the previous report focuses on three
emotional attributes [18], this report focuses on improvement
of valence prediction only with a comparison to other emotion
attributes.

III. METHODS

A. Dataset

The IEMOCAP dataset developed by Busso et al. [19]
was used to evaluate the proposed method. This dataset con-
tains speech and text modalities. The proposed method used
utterance-based audio files (apart from dialog-based audio
files) to extract acoustic features and dimensional labels. The
original labels are in 5-scale range, and we normalized those
labels to floating points in the range [-1, 1] when feeding
them into classifiers, following the work of [1]. All data were
used, totaling 100039 utterances and labels. A MinMax pre-
processing method removed the outliers by inflating labels
below 1 to 1 and deflating labels above 5 to 5 [20]. This
processing step followed the scale described in the reference
paper [19] because we found some labels are inconsistent with
the stated 5-level scale. We used the manual text transcription
provided in the dataset to generate the linguistic features,
i.e., word vectors, which are evaluated to improve valence
prediction. Sahu et al. [17] reported that the difference in
performance between automatic and manual transcriptions for
categorical emotion with Acoustic+Linguistic in that dataset
is four % using Google ASR, thanks to the advancement in
speech recognition technology.

We split the dataset into training and test partition; session 1
– 4 are used for training while session 5 is left for a test. This
scenario is a speaker independent strategy for cross-validation.
In the training set, 20% of data were used for validation.

B. Feature sets

Our method utilized two types of feature sets, acoustic and
linguistic features.
Acoustic features: pyAudioAnalysis (pAA), an open-source
Python library for audio signal analysis was used to extract
34 low-level descriptors (LLD). Although this tool is not
designed for affective analysis, several authors reported the
effectiveness of the acoustic features extracted from that tool
in speech emotion task [17], [21]. In [17], the authors obtained
comparable results between that pAA and affective-designed
GeMAPS feature sets [22]. By default, pAA extracts 34 LLDs
for a given audio file. In this research, we did not use those
LLDs directly. Instead, we used high-level statistical functions
(HSF), which are extracted from those LLDs. Note that the
definition of HSF here only refer to mean and standard
deviation (Mean+Std) of LLDs, since a report suggested that
both functionals performed better than the whole set of audio
features (LLDs + HSFs) and audiovisual features [23]. Instead
of extracting HSF from GeMAPS, we extracted HSF from
the pAA feature set. Hence, the input feature set is a 68-
dimensional feature vector for each utterance. Table I shows
a list of LLDs in the pAA feature set. Note that only HSF
features are used in this research.
Linguistic features: Linguistic information/features are ex-
tracted from speech data. We defined linguistic features here
as vector representations of every word in each sentence in
the dataset. In addition to directly using word embeddings



TABLE I
PYAUDIOANALYSIS FEATURE SET (PAA) [29]; ONLY HSFS ARE USED AS

INPUT FEATURES.

LLDs zero crossing rate, energy, entropy of energy, spectral
spread, spectral centroid, spectral entropy, spectral roll-
off, spectral flux, 13 MFCCs, 12 chroma vectors, chroma
deviation.

HSFs Mean, Std

(word vectors) from the conversion of vocabularies to vectors
in the dataset [24], we also used pretrained word embeddings
from other models, that are trained in larger datasets (e.g.,
Wikipedia), to weigh original word embeddings. Those pre-
trained models are Word2Vec [25], GloVe embeddings [26],
FastText [27], and BERT [28]. All pretrained models have
a 300-dimensional vector per token, including the original
word embedding, excluding the BERT model. The BERT
pretrained model has a 768-dimensional vector for each word.
The maximum sequence length was limited to 554 based on
the longest sequence; utterances with the number of words
lower than this number is padded with zeros to achieve the
same length.

C. Dimensional Speech Emotion Recognition System

Several authors have proposed utilizing text with acoustic
features to improve performance of speech emotion recog-
nition, including a multimodal feature pooling [9] and an
early-late fusion technique [14]. The first report converted
continuous valence degree to discrete (categorical) classes
while the latter methods only applied to categorical emotion.
The proposed approach in this paper maintains continuous pre-
diction to the target (floating-point numbers) of the regression
task. The proposed method used some state-of-the-art of word
embeddings, including BERT embedding, while others only
used one or two types of pretrained embeddings (such as in
[9] using Word2Vec, [30] using FastText, and [13] using GloVe
embedding). Figure 1 shows an overview of our approach on
using acoustic and linguistic features for predicting valence
(V), arousal (A), and dominance (D).

Figure 1 shows our system processed acoustic and text
features in parallel, and concatenated both networks with a
dense network. We used a similar network for both acoustic
and linguistic networks with three LSTM layers stacked in
rows. The difference is the number of nodes in the first layer,
in which we used the same dimension as the input feature.
A part of Figure 1 bounded by the dashed line shows the
acoustic-only dimension emotion recognition, the baseline of
this research. A single-task learning with a single output,
which predicts valence degree only, is shown with a gray
background.

Acoustic Network. We transmitted a 68-dimensional acous-
tic vector from mean and std of pyAudioAnalysis acoustic
feature set to the acoustic network: three stacked LSTM
layers. Before entering the first LSTM stack, we performed
batch normalization on those acoustic features to accelerate
the computation process [31]. The batch-normalized inputs

LSTM (68)

LSTM (256)

LSTM (256)

Dense(64)

LSTM (300)

LSTM (256)

LSTM (256)

Dense(64)

Acoustic Features (68) Linguistic Features (300)

Dense(64)

Dense(1) Dense(1) Dense(1)

Dense(32)

Concatenate

V A D

Fig. 1. Dimensional speech emotion recognition system using acoustic
and linguistic features; numbers in brackets represent the number of nodes;
dashed line: valence-only prediction; gray background: acoustic-only emotion
recognition.

are then fed into an LSTM layer with 68 units, the same
as the acoustic features’ size. The other two 256-unit LSTM
layers are added into the acoustic network shaping a stack of
three LSTM layers. The final output (instead of full sequence
output) of the last LSTM layer is connected to a dense network
with 64 units as a final layer of the acoustic network. We do
not use the dropout layer on this network since the size of the
input features is small.

Linguistic Network. Word embeddings as linguistic fea-
tures are the input of the linguistic network. All word em-
beddings have 300-dimensional vectors, except for the BERT
model, which has 768-dimensional vectors. All word embed-
dings are fed into an embedding layer before entering the first
LSTM stack. Except for the original word embeddings (WE),
all embeddings are weighted by pretrained models. The size of
the first LSTM layer is the same as the size word embeddings,
i.e., 300 or 768. The other two 256-unit LSTM layers are
added with and coupled with a dense layer with 64 units,
the same as the acoustic network. We used a dropout rate of
p = 0.4 based on our experiment results for this linguistic
network.

Concatenation Network. We concatenated both acoustic



and linguistic networks and fed acoustic and linguistic features
into those networks. Mathematically, the combined Acous-
tic+Linguistic network, the “Dense(64)” after “Concatenate”
in Figure 1, was formulated as in equation 1. Here, f(y)
denotes the output of the corresponding layer; W1,W2 denote
the weights from previous layers (a: acoustic; l: linguistic),
i.e., dense a layer after LSTM for each network, and the
current hidden layer, respectively; xa and xt are the acoustic
features and word embeddings, respectively; b is a bias; and
g is an activation function. Thus, the output of the that dense
layer was

f(y) =W2g([W
>
1axa+ b1a;W

>
1lxl + b1l]) + b2. (1)

The next dense layer works in a similar way. Three dense
layers with one unit will output the prediction score of valence,
arousal, and dominance. The error between the predicted
emotion attributes and the gold-standard labels are minimized
using CCC loss function (CCCL), i.e., for STL, CCCL for
valence (CCCLV ) is defined as,

CCCLV = 1− CCCV . (2)

A CCC to measure concordance correlation between two
variables is formulated as follows [32],

CCC =
2ρxyσxσy

σ2
xσ

2
y + (µx − µy)2

, (3)

where ρxy is the Pearson correlation coefficient (PCC) be-
tween two variables, σ is a standard deviation, and µ is a
mean value.

For MTL, the total loss function is the sum of CCC losses
from three emotion dimensions. We weighted each emotion
dimension in MTL with a parameter modified from [33] and
[1],

CCCLT = αCCCLV + βCCCLA + (1− α− β)CCCLD.
(4)

Using a linear search, we found the optimum parameters are
α = 0.7 and β = 0.2 for both linguistic-only and acoustic-
linguistic networks, while α = 0.1 and β = 0.4 worked best
for the acoustic-only networks.

We optimized acoustic-only emotion recognition using an
Adam optimizer with Nesterov momentum (Nadam) [34]. For
Acoustic+Linguistic emotion recognition, we optimized the
model with RMSProp [35], since this optimizer gave better
results than the previous Adam optimizer in our experiments.
This model was implemented in Keras toolkit [36] with
TensorFlow backend [37]. The Python codes to run these
experiments are available at https://github.com/bagustris/dser
with text.

IV. RESULTS AND DISCUSSION

In the experiments, we set fixed random numbers for each
evaluated method in Python files. However, the use of linguis-
tic features resulted in different CCC scores on each run. The
reported scores below are an average of 20 experiments. The
acoustic-only method (HSF) obtained the same score for every
run thanks to seed number initialization.

A. Performance of Acoustic vs. Acoustic+Linguistic

Table II shows our result using linguistic features to improve
valence prediction. We have divided our results on that table
into two parts: results obtained by STL to predict valence,
and results obtained by MTL to predict valence, arousal, and
dominance, simultaneously. The use of text feature improves
valence prediction by a remarkable margin: the best result
from Acoustic+Linguistic features, i.e., HSF+GloVe, doubled
the valence prediction of the acoustic-only feature (HSF). All
combinations of acoustic features with any word embedding
demonstrated improvement on both STL and MTL approaches.

Since there is only one parameter to be predicted in STL,
the valence prediction may result better than MTL on the
same size input features. Surprisingly, there are no remarkable
differences between the results obtained by STL and MTL in
our results. Generally, STL still obtained higher performance
by a very small margin than MTL. However, given the same
running time and resources (including the same input size),
obtaining valence, arousal, and dominance is more beneficial
than obtaining valence only. Our results suggest that instead
of predicting valence only using STL, predicting all emotion
dimensions using MTL is recommended for future research
direction. There is no significant difference between results
(STL vs. MTL) for improving valence prediction by incorpo-
rating text features in dimensional SER.

In MTL, the result obtained by HSF+GloVe improves
not only the prediction of valence, but also the predic-
tions of arousal and dominance. All combinations of Acous-
tic+Linguistic features improved the prediction for valence
and dominance. If we used averaged CCC scores from va-
lence, arousal, and dominance as a single metric to determine
overall performance among all emotion dimensions, all com-
binations of Acoustic+Linguistic features gain performance
improvements from acoustic-only dimensional speech emotion
recognition.

In comparing pretrained word embeddings to weigh the
original tokens, we found that the model trained by GloVe
embeddings achieved higher CCC scores than other models.
A newer word embedding model than GloVe, i.e., FastText
and BERT embeddings, cannot surpass the result obtained by
GloVe embedding in this affect recognition. Note that in our
implementation, we did not perform the fine-tuning of the
BERT model. Instead, we used the same architectures as other
Acoustic+Linguistic networks used for the BERT pretrained
model [28]. Although the dimension of the BERT model is
larger than other word embedding models (i.e., 768 vs. 300),
the result is still lower than GloVe embedding, but higher than
that of any other model. Fine-tuning the BERT model may
improve the performance of valence prediction, as suggested
in other classification tasks [38].

To this end, it is shown that linguistic information helps
to improve valence prediction. The semantic of the spoken
word contains emotional contents which are translated into
word embeddings and their pretrained models. Fusing acoustic
and linguistic information is a straightforward way to improve



TABLE II
CCC SCORES OF VALENCE (V), AROUSAL (A), AND DOMINANCE (D) FROM ACOUSTIC FEATURE (HSF) VS. ACOUSTIC AND LINGUISTIC FEATURES

(HSF+); STL: SINGLE-TASK LEARNING SINGLE OUTPUT; MTL: MULTITASK LEARNING MULTI OUTPUT.

Methods STL MTL
V V A D Mean

HSF 0.208 0.183 0.577 0.444 0.401
HSF+WE 0.363 ± 0.007 0.364 ± 0.010 0.565 ± 0.022 0.474 ± 0.014 0.468
HSF+Word2Vec 0.380 ± 0.013 0.387 ± 0.012 0.558 ± 0.019 0.471 ± 0.016 0.472
HSF+FastText 0.380 ± 0.011 0.374 ± 0.011 0.561 ± 0.021 0.475 ± 0.013 0.470
HSF+GloVe 0.424 ± 0.010 0.421 ± 0.008 0.590 ± 0.008 0.484 ± 0.009 0.498
HSF+BERT 0.380 ± 0.016 0.377 ± 0.026 0.574 ± 0.021 0.482 ± 0.017 0.478

HSF+WE HSF+Word2Vec HSF+FastText HSF+GloVe HSF+BERT
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Fig. 2. Relative improvement of Acoustic+Linguistic features over acoustic-
only feature with different pretrained word embedding weights in single-task
and multitask learnings; the error bars shows variances.

dimensional emotion recognition since linguistic information
also can be extracted from speech.

B. Relative Improvements

Since the goal of this paper is to report improvements of va-
lence prediction, we have included relative improvements ob-
tained by Acoustic+Linguistic over acoustic-only dimensional
speech emotion recognition. Figure 2 shows these results.
All Acoustic+Linguistic concatenation results with pretrained
word embedding obtained relative improvement more than
80%. The highest performance, obtained by HSF+GloVe,
doubled the performance on both STL and MTL valence
predictions. The relative improvements obtained by MTL are
higher than the relative improvements obtained by STL. The
proposed dimensional emotion recognition utilizing acoustic
and linguistic features improved not only valence prediction
but also overall dimensional emotion prediction, as indicated
by averaged CCC scores. Although they are not shown in
the table, these averaged CCC scores can be obtained by
averaging the scores of V, A, and D in the last three columns
of Table II. Note that although all Acoustic+Linguistic pairs
obtained averaged CCC scores, only the pair of HSF+GloVe
obtained improvement on all emotion dimensions. The rest
of Acoustic+Linguistic pairs improved only on valence and
dominance predictions.

We observe that our approach using the linguistic feature for
dimensional SER improved continuous-degree valence predic-
tion than any of the previously reported results. Although the

performance of STL is higher than MTL (Table II), the relative
improvements in MTL are higher than in STL on predicting
valence (Figure 2). Hence, the MTL approach is suggested for
future research for improving the prediction of all emotional
dimensions.

V. CONCLUSIONS

This paper reported on the use of linguistic features to
improve valence prediction in dimensional speech emotion
recognition. The proposed approach doubled the previous
level of performance of valence prediction in single-task and
multitask learnings. When using the latter learning method,
the performance of valence improved, and the performance
of dominance by combinations of the acoustic features with
any evaluated word embedding also improved. By using
a proper word embedding weight, i.e., GloVe embedding,
improvements of valence, arousal, and dominance measures
were obtained from acoustic-only approach. By including the
linguistic features, our approach doubled the performance
of the baseline valence prediction on both STL and MTL
approaches. Although the performance was improved, the
current results on dimensional speech emotion recognition
still lack advancement compared to other machine learning
implementations. Further studies are required to improve these
performances to close to human annotations.
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