JAIST Repository

https://dspace.jaist.ac.jp/

(

(
[

| mproving multilingual sppech emot.i

Title by combining acoustic feafures in a
mo de |l

Author(s) Li, Xingfeng; Akagi, Masaf o

Citation Speech Communication, 110 1-12

Issue Date 2019-04-03

Type Journal Article

Text version aut hor

URL http://hdl.handle.net/ 10109/ 17071
Copyright (C)20109, El sevipr Licens
Creative Commons Attributjon-NonComi
NoDerivatives 4.0 Internaftional i c
NC- ND 4. 0) .
[http:// creativecommons.ofg/license
nd/ 4. 0/] NOTICE: This is fhe author
a work accepted for publipation by
Changes resulting from thpe publi shi

Rights including peer review, edjting, cor
structural formatting and| other qua
mechani sms, may not be reflected in
document . Changes may havpep been mad
since it was submitted fof publicat
definitive version was supsequently
Xingfeng Li and Masato Akpgi, Speec
Communicati on, 110, 2019, 1-12,
http://dx.doi.org/10.1016fj.specom.

Description

AIST

JAPAN
ADVANCED

INSTITUTE OF
SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology



Improving multilingual speech emotion recognition by combining acoustic features in a
three-layer model

Xingfeng Li*, Masato Akagi

Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology,
1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan

Abstract

This study presents a scheme for multilingual speech emotion recognition. Determining the emotion of speech in general relies
upon specific training data, and a different target speaker or language may present significant challenges. In this regard, we
first explore 215 acoustic features from emotional speech. Second, we carry out speaker normalization and feature selection
to develop a shared standard acoustic parameter set for multiple languages. Third, we use a three-layer model composed of
acoustic features, semantic primitives, and emotion dimensions to map acoustics into emotion dimensions. Finally, we classify the
continuous emotion dimensional values into basic categories by using the logistic model trees. The proposed approach was tested
on Japanese, German, Chinese, and English emotional speech corpora. The recognition performance was examined and enhanced
by cross-speaker and cross-corpus evaluation, and stressed the fact that our strategy is particularly suited for the task of multilingual
emotion recognition even with a different speaker or language. The experimental results were found to be reasonably comparable

with those of monolingual emotion recognizers as a reference.

Keywords: Multilingual emotion recognition, Human emotional perception, Emotional space, Three-layer model

1. Introduction

Identifying an emotional state from human voices based on
speech emotion recognition (SER) has been increasingly
turned into a principal focus within the affective computing
research for interpreting the semantics of a spoken utterance.
The purpose is to enable a machine with sufficient intelligence
to recognize human speech not only regarding what is said, but
also how it is expressed. SER is promising for many potential
applications, one of which refers to a call-center service. The
system can provide a user-friendliness response to a customer
upon identifying emotions from his or her voice [1]. On the
other hand, fatigue can be detected from a driver’s voice by a
car-board system and the driver can be alerted to ensure a safe
driving [2]. Likewise, SER is potential for giving feedback in
games and human-robot interactions [3, 4]. Other natural
human-computer interactions such as web-movies [5], health
care systems [6] and “Affective Mirror” [7] can also be
enriched by recognition of emotions in a speaker’s voice.

These days, psychology research has proven that human can
easily perceive emotions in speech cross-language, even they do
not understand the verbal content being spoken [8, 9]. With the
gain in accuracies and high generalization abilities of current
SER systems to be expected, increasing interest on SER has
lately been shifting from monolingual to multilingual scenarios
to be able to recognize speech emotions cross-language such
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as any human listener can easily react to. On the one hand, this
interest can incredibly enhance the full development of emotion
systems in a real-world-context. On the other hand, it allows for
investigating similarities between languages which in turn can
remedy the issue of data sparsity in training emotion models by
combining more speech instances from different databases.

A number of effort has been done to be able to identify
emotional state from speech and report substantial recognition
results [10, 11, 12]. Other examples of relevant research
include [13, 14]. Nevertheless, most of these have focused on
monolingual emotion classification of a specific language,
such as English, Chinese, German, and French, and so on.
However, it was found that the best vocal features for SER in
these works usually differ from one language to another. In
such scenario, changing a source language requires reselecting
a set of optimal acoustic features and retraining a system,
which in turn stresses the fact that adapting these monolingual
SER systems into multilingual SER tasks is still a challenge.

Recently, a number of studies have been developed to
approach the problem of variations among different languages.
Some attempts have been focused on examining many vocal
cues [15], or studying different feature normalization and
selection algorithms [16, 17], or combining the different
acoustic models or classifiers [18, 19]. In [20], authors focused
on transferring adaption schemes to make the instances among
joint corpora ’similar’. However, an appealing knowledge
based on human speech emotion perception has clarified that,
as an alternative to these adaption approaches, commonalities
and differences can be identified in a valence (how pleasant or
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unpleasant an emotional state is) and arousal (how relaxed or
aroused an emotional state is) space [21, 22]. As revealed, the
directions and distances from a position of a neutral voice to
that of another emotional state are common between
languages; however, the positions of neutral speech vary from
one language to another. This knowledge allows for
determining the common perceptual features for different
languages, and advancing the task of SER in the multilingual
scenario.

This study originally takes one step to incorporate this
human-perception-inspired knowledge for speech emotion
recognition under an assumption that the proposed system has
the capability to estimate emotion dimensions across multiple
languages accurately. To this end, this study still faces two
challenges: i) which model is appropriate to recognize and
predict emotion; ii) what are the best vocal features for SER
tasks.

To the first issue, the main focus is how to map acoustic
correlates into emotion dimensions. Over the past decade,
there has been a great deal of literature on predicting emotion
dimensions from different speech feature subsets using diverse
classifiers such as fuzzy inference systems, support vector
regressions, and k-Nearest Neighbour, etc. [23, 24, 25].
However, the limitation of these works lies in the fact that
performance has been poor regarding valence. Besides these
aforementioned classical estimators, the current study is
focusing on adopting new models to gain the accuracy of
estimation on the valence dimension, such as deep neural
network [18], and long short-term memory [26]. Likewise, the
estimations were promising for arousal and dominance, while
the obtained result for valence was required to be improved.
These approaches to SER treated human emotion perception as
two-layer processes that predict emotion dimensions directly
from acoustic correlates. This framework may not match the
cognitive processes utilized to judge emotions as humans do.

As Scherer depicted [27], in an adapted version of the
Brunswick lens model [28], the emotions are transmitted from
a speaker to a listener by multiple modalities, and the listener
perceives emotions as a multi-layer process. Other researchers
have further reinforced this conclusion, for instance, Huang
and Akagi proposed a multi-layered model to approach human
expressive speech underlying and demonstrated that human
subjects judge emotions by a small set of perceptions that are
expressed by semantic primitives instead of directly from
acoustic features [29], where low arousal and negative valence
speech, (such as sadness) in general easily make an impression
on listeners with dark and heavy feelings, but high arousal and
positive valence speech (pleasant or happiness) is oftentimes
uttered in a bright and well-modulated way. Other examples of
literature treat human emotion perception as a multi-layer
process also include [30], which aimed to accurately estimate
emotion dimensions based on a three-layer model, consisting
of acoustic features, semantic primitives, and emotion
dimensions.  Most interestingly, it was shown that this
three-layer model significantly advanced the accuracies of
estimation on emotion dimensions, particularly for valence
dimension. This human-perceptual-based strategy inspired our

study. We originally examined this three-layer model for
multilingual SER tasks, and verified that it is well suited for
mimicking the processing of human speech emotion
perception across languages [31].

The second issue to be considered is the extraction of the
best vocal features that can efficiently work for estimation of
emotion dimensions. Most literature commonly asserts that
prosodic features such as energy, fundamental frequency, and
duration often deliver many emotional cues [32, 33, 34, 35].
Our previous effort to multilingual SER has also been put into
developing effective acoustic sets from this domain [31].
Despite the substantial achievement reported, three restrictions
from previous work still limit the full development of SER in
the multilingual scenario.

First, speech emotion requires full representation, that may
not be settled yet. Even though prosodic features formed the
efficient feature type for predicting arousal dimension,
however, associations of these features to valence dimension
have generally been observed to be weak and limited.
Nonetheless, valence is promising for distinguishing emotions
with similar arousal state but differing in emotional categories,
such as happiness and anger. However, there is still less
evidence for the contribution of vocal parameters to this
dimension.

Second, the previous study to SER focused on relations
between acoustic features and semantic primitives, and
semantic primitives and emotion dimensions by examing a full
set of features without taking into consideration selection of
best ones. Nevertheless, the functional mapping used in the
three-layer model is fuzzy inference system, that can be
defined as a nonlinear mapping from an input space into an
output space. In such scenario, optimal features can be
advantageous to estimation, conversely, a full set of features
holding irrelevant and redundant features that may reduce the
estimation accuracy.

Third, as an aside, the early work on assessing the
performance of emotion systems using a 10-fold cross
validation on the same training and test instances in a specific
corpus. Other inherent mismatches between training and test
data, such as different speakers or languages have not been
investigated yet.

To solve each of these three problems that stemmed from
our previous study. We first hypothesized that the combination
of features from prosodic and spectral domains could improve
the estimation performance of valence and arousal. Prosodic
features were first decided on the grounds that these features
are advantageous for distinguishing low and high arousal
emotions in accordance with human perceptions [37, 38]. This
study examined prosodic features are the same in our earlier
attempt, and have been successfully used in the study of SER
[31]. In addition, we examined the spectral features in view of
the fact that these features are generally treated as strong
correlates of the shape of the vocal tract and the rate of change
in articulator movement [39, 40], that varies from one
emotional state to another [10]. It was further reported that the
valence dimension is also reflected in the acoustic correlates of
spectral cues [39, 41]. Beyond the conventional and most
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Figure 1: Block diagram of the multilingual SER system, illustrating the methodology proposed in this study, from preprocessing the emotional speech (feature
extraction and sequential floating forward selection (SFFS)) to predicting emotional dimensions over recognized emotional categories.

common spectral features, such as Mel-frequency cepstral
coeflicients and perceptual linear predictive coefficients that
were analyzed in terms of only short time frames in [42], our
work takes one step on examining modulation spectral
features, toward investigating the significant longer
temporal-behaviour information used by human listeners and
trying to gain insight into perceptual-inspired spectral features.
Secondly, we adopted a two-stage feature selection algorithm
to select the best features from an original set of acoustic
features and semantic primitives, separately. Thirdly, two
open-scheme evaluations were conducted over
leave-one-speaker-out and cross-corpus validations to
demonstrate the gain in accuracies and generalization from our
proposed strategies to multilingual SER.

Beyond most of the current SER systems, the main
contributions of this paper can be summarized as follows: 1)
we propose to incorporate the knowledge of human emotion
perception to develop an emotion recognition model in
multilingual tasks; ii) we define a robust set of combined
features to represent emotional information in speech not
sensitive to different languages; iii) we performed extensive
evaluations from different aspects, taking into account the
impacts of acoustic features and speaker normalisation and
no-normalisation, besides, the generalization ability of the
proposed system is even assessed by conducting a
cross-corpus evaluation.

The remainder of this paper is organized as follows:
Section 2 describes the block diagram of the proposed
multilingual emotion recognition system along with the
emotional corpora used in this study. It also describes the
collection of acoustic features, semantic primitives, and
emotion dimensions used for establishing the three-layer
model. Section 3 details the implementation of the system and
discuss the speaker-independent and cross-corpus validations.
Section 4 compares the achievements of this study and related
literature. Finally, conclusions are drawn in Section 5.

2. Methodology of multilingual emotion recognition

An essential aspect of designing the multilingual SER
system is the methodology of modeling relations between
emotions and speech features among languages. To make
machines reach a comparable level of performance as humans,
this research uses an emotional perception-inspired three-layer
model incorporating acoustic features, semantic primitives,
and emotion dimensions that possess the ability to predict

emotion dimensions accurately. Figure 1 depicts the block
diagram of our multilingual SER system. The input emotional
speech is first pre-processed to obtain a set of powerful speech
features. The best features are then used to predict emotion
dimensions through the semantic primitives in the three-layer
model. In the emotion recognition stage, four distinct
dimensional-based features, i.e., values of valence and arousal
and direction and distance from neutral to other emotions in
the dimensional space, are extracted from the speech to
recognize emotional categories by using logistic model trees
(LMT). The following subsections detail the system as
follows: Section 2.1 illustrates the emotional corpora in four
different languages that we used. Section 2.2 analyses two
different sets of speech features for the task of multilingual
emotion recognition. Section 2.3 describes the experimental
setup for collecting human evaluations on semantic primitives
and emotion dimensions.

2.1. Emotion corpora

This subsection is an overview of the four corpora of acted
emotional speech in Japanese, German, Chinese, and English.

2.1.1. Fujitsu database

The Fujitsu database was chosen as the Japanese emotional
corpus. It was recorded by Fujitsu Laboratory and acted by a
professional actress. The female speaker was asked to express
20 different sentences nine times with five emotions: neutral,
happiness, cold anger, sadness, and hot anger. Each sentence
was repeated once with neutral and two times with the other
four emotions. Since one sentence in cold anger was lost, this
database contains a total of 179 utterances.

2.1.2. Berlin Emo—DB

The German corpus was the well-known Berlin Database
of Emotional Speech (Emo—DB) recorded by five male and
five female professional actors [43]. The data contains
different numbers of spoken utterances in seven emotions: 127
anger, 38 disgust, 55 fear, 64 happiness, 53 sadness, 79
boredom, and 78 neutral. Overall the database consists of 494
emotional utterances.

2.1.3. CASIA dataset

The Chinese emotional database (CASIA) was produced
by the Institute of Automation, Chinese Academy of Sciences;
it contains neutral and five categories of acted emotion: angry,
happy, sad, fear, and surprise. It was produced by four



professional actors (two males and two females) [44]. The data
consists of dominant and spontaneous parts. The utterances of
the dominant part have at least one dominant word, e.g.
“anger” or “annoyed” for angry, “pleased” or “joyful” for
happiness, and ”sad” for sadness, etc. There are 100 utterances
for each emotion. The utterances of the spontaneous part were
picked up from news articles, conversations and essays without
emotionally-rich words. There are 300 utterances in this part.
Each speaker uttered (100 + 300) = 6 = 2400 sentences in total.

We chose 200 sentences from the spontaneous portion for
four speakers involving four basic emotions: angry, happy,
neutral and sad, taking 50 sentences from each category.
Different from the Fujitsu database or the Berlin Emo-DB, the
spontaneous speech in the CASIA Emotional Corpus do not
sufficiently simulate emotions in a natural or clear manner.
Four Chinese native speakers (2 male and 2 female) hence
were asked to verify the emotional categories in a listening
test. The experimental results provided a mean recognition
accuracy of 97, 39, 83, and 93% for neutral, happy, angry, and
sad. Compared with the other three well recognized emotions,
happy utterances were recognized with an extremely low
accuracy of 39%. The utterances therefore were re-annotated
by five female and six male Chinese native speakers into the
correct categories. The utterances were eventually labelled as
follows: 68 neutral, 29 happy, 51 angry, and 50 sad. Two
spoken utterances could not be identified as any one of the
above four emotional categories. These 198 instances were
taken from the CASIA corpus.

2.1.4. SAVEE database

The Surrey Audio—Visual Emotion (SAVEE) database,
which was produced for the purpose of developing an emotion
recognition system, consists of 480 British English utterances
made by four native English male actors in seven different
emotional categories: anger, disgust, fear, happiness, sadness,
surprise and neutral.

The above four emotional corpora were used for training
and testing the multilingual emotion recognition system. To
guarantee an equal contribution from each language to the
implementation, subsets on a similar scale and involving the
same emotions were taken from the emotional corpora and
used. The set of basic emotions to be recognized was: neutral,
happiness, anger, and sadness. Table 1 details the utterances
chosen from each corpus.

2.2. Extraction of acoustic features
2.2.1. Prosodic related features

The set of prosodic features, abbreviated as 1S16, was
analysed in our earlier attempt [31], and can be grouped into
five categories:

Fundamental frequency (F0): maximum, mean, mean of
rising slopes of the speech over all accentual phrases, and rising
slope of the first accentual phrase.

Power spectrum: mean value of the first, second, and third
formant in dB, spectral tilt, and spectral balance.

Power envelop: range(max-min), ratio of mean power in
high frequency domain over 3 kHz and the mean power over

Table 1: Details of four emotional corpora

Emotion

Corpus Language

Neu. Hap. Ang. Sad. Total

Fujitsu database
Berlin Emo-DB
CASIA database
SAVEE database

Japanese 20 40 40 40 140
German 50 50 50 50 200
Chinese 68 29 51 50 198
English 75 75 75 75 300

Emotional categories:  neutral (Neu.),
angerjangry (Ang.), sad(ness) (Sad.).

happinessfhappy (Hap.),

whole speech, mean of rising slopes of the speech over all
accentual phrases, and rising slope of the first accentual
phrase.

Timing: total length of whole speech, length of consonants,
ratio of length of consonants to that of vowels.

Voice quality: mean of the difference between the
fundamental frequency (H1) and the second harmonic (H2) for
each vowel. Since the vowels vary with languages, in this
study, we only focused on the common vowels among the
languages, namely, /a/, /i/, and /u/.

The above-mentioned acoustic features derived from FO,
the power envelop, power spectrum, and voice quality were
calculated using STRAIGHT [45]. In addition, the acoustic
correlates related to timing were extracted by manual
segmentation.

2.2.2. Spectral related features

The set of modulation spectral features, abbreviated as
MSF, was collected and calculated from the modulation
spectrogram. We herein referred to a previous attempt on
extracting MSF using an auditory-inspired system [46],
incorporating a 32 — band auditory filterbank with centre
frequencies scaled by the equivalent rectangular bandwidth
(ERB) from 3 to 35 ERB,mpers and a 6 — band modulation
filterbank with centre frequencies ranging from 2 to 64Hz. The
modulation spectrogram allows for analysis of the modulation
frequency content across different acoustic frequency bands.
The MSFs were hence calculated over two different domains:

Acoustic frequency domain: spectral centroid, spectral
spread, spectral skewness, spectral kurtosis, spectral flatness,
and spectral slope.

Modulation frequency domain: spectral centroid, spectral
spread, spectral skewness, spectral kurtosis, and spectral tilt.

As for the acoustic frequency domain, six statistics were
calculated over modulation frequency bands providing 36
acoustic correlates; additionally, 160 acoustic features were
obtained from the modulation frequency domain over 32
acoustic frequency bands for five statistics. In total, 196
acoustic features were extracted from the modulation
spectrogram.

In summary, 215 acoustic features were established as an
initial feature pool consists of 19 prosodic features from IS16
and 196 spectral features from MSF.

2.3. Evaluation of semantic primitives and emotion dimensions

To achieve the task on multilingual SER, we adopted a
three-layer model after [30], based on the assumption that



Table 2: Coefficients of Pearson’s correlation (cc) for semantic primitive evaluation of Fujitsu database, Berlin Emo-DB, and CASIA dataset by human listeners

averaged over all speakers and whole utterances.

Bright Dark High Low Strong Weak Calm Unstable

Well-modulated Monotonous Heavy Clear Noisy Quiet Sharp Fast Slow

Fujitsu database 0.92 090 0.89 091 092 091 0.89 0.90
Berlin Emo-DB  0.86  0.90 0.87 0.89 0.93 093 0.89 0.85
CASIA dataset 0.82 0.87 0.86 092 091 091 0.88 0.82

0.91 0.89 0.88 0.88 090 093 0.88 0.85 0.84
0.90 0.87 0.86 0.89 087 091 0.87 0.84 0.86
0.82 0.85 0.85 083 089 086 0.89 0.90 091

human perception of emotions embedded in speech does not
originate directly from a change in acoustic cues, but through
an indirect route of small perceptions on semantic primitives.
For instance, low arousal and negative valence speech easily
make an impression on listeners in the form of dark and heavy
feelings, but high arousal and positive valence speech is often
uttered in a bright and well-modulated way. The set of
semantic primitives was derived from [29], and examined by a
multidimensional scaling analysis. These semantic primitives
were used in a multi-layer model for describing emotional
speech, namely, bright, dark, high, low, strong, weak, calm,
unstable, well-modulated, monotonous, heavy, clear, noisy,
quiet, sharp, fast, and slow.

To conduct this three-layer model, speech emotions have to
be evaluated for semantic primitives and emotion dimensions.
Note that we did not carry out listening tests on the SAVEE
database because the use of it was not for an implementation of
this three-layer model, but only for a test task in a cross-corpora
evaluation.

2.3.1. Semantic primitive-based emotion evaluation

Each semantic primitive and emotion dimension was
evaluated on the Fujitsu database, Berlin Emo-DB, and
CASIA dataset. Eleven Japanese native speakers (nine male
and two female, mean age: 26.8 years old) were asked to
evaluate the Fujitsu database, and ten Chinese native speakers
(five male and five female, mean age: 25.3 years old) were
asked to evaluate the CASIA dataset. However, it was
impractical for us to recruit enough German native speakers
for the listening test. Nonetheless, psychology research has
recently shown that speech emotions can be recognized across
different languages [21, 22], so we asked nine Japanese native
speakers (eight male and one female, mean age: 26.2 years
old) to evaluate the Berlin-Emo DB instead. None of these
nine participants can understand German. To ensure the
consistency in the perception of emotions of different
nationalities, three extra Japanese native speakers (two male
and one female, mean age: 35.0 years old) took part in a
categorical perception test to label the Berlin Emo-DB.
Experimental result showed a mean recognition rate of 82.0%
over four emotional categories. This was somewhat same to
that obtained by the German native speakers in [43], reporting
a 87.0% recognition accuracy and stressed the fact that speech
emotion recognition is a cross-lingual process. Besides, all
three groups of participants are from Japan Advanced Institute
of Science and Technology under master or doctor course, and
no subjects have hearing impairments or mental disorders.

As for evaluating the semantic primitives, the emotional
speech was played randomly and evaluated 17 times by the

Table 3: Coefficients of Pearson’s correlation (cc) for emotion dimensions
evaluation of Fujitsu database, Berlin Emo-DB, and CASIA dataset by human
listeners averaged over all speakers and whole utterances.

Valence Arousal
Fujitsu database 0.96 0.96
Berlin Emo-DB 0.92 0.94
CASIA dataset 0.85 0.91

participants on a whole utterance level, once for each semantic
primitive for all utterances in one corpus. Each of these
semantic primitives was scored a five-point scale: ”1-Does not
feel at all”, ”2-Seldom feels”, ”3-Feels a little”, "4-Feels”,
and ”5-Feels very much”.

For each instance of speech n in corpus ¢, where
¢ € {Fujitsu, Berlin, Casia}, 1 < n < N, the averaged ratings
(” ) of listeners’ responses ')'cf,(f ) among all evaluators E were
calculated for each semantic primitive, where p refers to one

of the semantic primitives from bright, dark, high, low, strong,

weak, calm, unstable,well-modulated, monotonous, heavy,
clear, noisy, quiet, sharp, fast, and slow.
E
—(p) - —e,(p)
5 Zﬂ“ , (1)

The inter-evaluator agreement was evaluated using Eq. 2
following the related study reported in [23].
P («e ) _ LN w(p))(—(p)

n= ﬂt N nc

n =1

N =)
N Z,,':] xnl,z:)

ch,(p) -
N [=ze(p) L N ==(p) —(p) —(p)

\/Zn:l xﬂc - N Zn’ xn’ c \/Zn 1 nc N Zn ,1 )

(2)

Table 2 demonstrated the average results of inter-rater
agreement of the three emotional corpora. The inter-rater
correlation coefficient was moderate to high within the range
of 0.84-0.93, 0.84-0.93, and 0.82-0.92 over the Fujitsu
database, Berlin Emo—DB, and CASIA dataset, indicating
good evaluation results and good agreement among listeners.

2.3.2.

In terms of evaluating emotions in the two-dimension
emotional space of valence and arousal, we carried out
listening experiments by following the related study reported
in [47], where the definition of the emotions of valence and
arousal were demonstrated to the listeners, before they listened
a small set of demos involving different degrees of a specific
emotion. The same participants that evaluated the semantic
primitives were asked to score the values for emotion
dimensions on a five-point scale (-2, -1, 0, 1, 2) for valence (-2

Emotion dimension-based emotion evaluation



Table 4: Selected features of each layer for developing the three-layer model based multilingual emotion recognition system

Acoustic Feature

Semantic Primitive Emotion Dimension

5 IS16 related features Group
maximum;
mean rising slopes of the speech FO

over all accentual phrases;

spectral tilt Power Spectrum

total length of whole speech Timing
harmonic difference H1-H2 Voice Quality
17 MSF related features Group

spectral centroid (SC) cross MF band: 1, 3;
spectral slope (SSL) cross MF band: 1;
spectral flatness cross MF band: 2;

Acoustic Frequency
(AF) Domain

SC cross AF band: 2, 19, 28, 32;

SSL cross AF band: 13, 22, 25;

spectral skewness cross AF band 13, 23, 30;
spectral kurtosis cross AF band:17, 27;
spectral spread cross AF band: 25

(MF) Domain

Modulation Frequency

DARK
HEAVY VALENCE
STRONG AROUSAL
WEAK

being very negative and +2 being very positive) and arousal
(-2 being very relaxed and +2 being aroused). The emotional
speech was randomly and once played to each listener in a
soundproof room, and was evaluated two times by participants
on a whole utterance level, once for each emotion dimension
for all utterances in one dataset. The averaged ratings given by
the listeners were calculated for each emotion dimension using
Eq. 1. In this scenario, p refers to valence or arousal.

The inter-rater agreement on evaluations over emotion
dimensions was also measured by Eq. 2, and shown in Table 3.
As can be seen, the agreement among listeners was moderate
to high within the range of 0.85—-0.96 over the three emotional
corpora. The highest correlation was 0.96 for valence and
arousal on the Fujitsu database; this might have been due to
the fact that all emotions in this corpus were clearly produced
by one professional actress. The inter-rater agreement of the
Berlin Emo—-DB was moderate. However, the agreement
among the participants was relatively low on the CASIA
dataset. Although Berlin Emo-DB and CASIA both feature
multiple actors, the spontaneous emotional utterances in the
CASIA dataset were from news articles, conversations, and
essays; the poor performance may be attributed to the fact that
the spontaneous speech in the CASIA dataset does not
sufficiently simulate emotions in a natural and clear way. In
addition, it was found that the valence dimension generally
yielded a lower inter-rater agreement than arousal, indicating
that human evaluations are more poorly correlated in terms of
valence in comparison to arousal.

3. Experiments

3.1. Experimental setup

This section presents a two-stage estimation scheme for
multilingual SER. First, estimation of emotion dimensions for
valence and arousal was addressed by using a three-layer
model; Second, the task of emotional classification was
furnished by incorporating the human-perception-inspired
knowledge [21], namely, mapping four common features of

valence, arousal, and the directions and distances from a
neutral voice to other emotional states into basic categories
based on a classification scheme.

3.1.1. Preprocessing

Most researchers believed that speaker normalization (SN)
advances the accuracies of SER [42, 48]. We herein adopted
an approach to SN after [40], and compared it to a scenario in
no speaker normalization, where this process takes into
account the effect of variations among different speakers. In
such stage, the features were mean and variance normalized
within the scope of each speaker to compensate for speaker
variations. Let f,,(n) (1 < k < N,,) stand for the uth feature
from speaker v with N, , denoting its sample size, which in our
case is the number of all available samples in the database
from that speaker. The normalized feature f,;,u(n) processed by
SN is defined as:

f;yu(n) — ﬁt,}l\)](”) - fu.u — (3)
JNu,:;_l Zm‘;vl (ﬁtv(m) - fu,u)z
_ 1 Nit,!/
Jun = 5= D Fua). @)

WU =1

3.1.2. Feature selection

Large feature sets not only have exorbitant costs in terms
of time for system training, but they also involve irrelevant
features that reduce recognition accuracy [50]. In this regard,
we introduced a two-stage feature selection algorithm to define
the best features. In the first stage, we calculated the Fisher
discriminant ratio (FDR) for each feature individually to
eliminate the irrelevant ones. The normalized multi-class FDR
for the uth feature is given as:

_ 2
FDR() = —2—— > (et = He)” 5)

CC-1) Ll +a2)

with 1 < ¢; < ¢ < C, where y.1, and 0'32 , are the mean and
variance of the uth feature for the ¢ th class, and C is the total



number of classes. The F DR measure concerns the number of
binary comparisons made between two categories, which
favors features with well-separated means across classes and
small within-class variances. Features with relatively low
discrimination ability can then be removed by using the FDR
as a threshold. In this simulation, the thresholds for the
acoustic features and semantic primitives were empirically set
to 0.786 and 840, respectively, in light of the fact that
increasing the threshold does not improve performance.

In the second stage, we used the sequential floating
forward selection (SFFS) to select the best features from the
pre-screened feature set, on the grounds that SFFS is an
iterative algorithm to evaluate the selected subset and
combined effects of features and k-nearest-neighbor classifier
during the evaluation process. Table 4 details the 22 acoustic
features, four semantic primitives and two emotion dimensions
that we used to construct the proposed three-layer model.

3.2. Estimation and Classification

Adaptive neuro fuzzy inference systems (ANFIS) were
first used as bridges over the three layers in order to estimate
the emotion dimensions; ANFIS is a neural-fuzzy system
based on neural networks and fuzzy systems that can
efficiently model non-linear input and output relations by
incorporating human knowledge with smaller root mean
square errors [49]. Correspondingly, the nature of perception
of speech emotion was fuzzy and vague [23]. Furthermore, our
proposed three-layer model also incorporated human
knowledge from manual evaluations of semantic primitives
and emotion dimensions that involve non-linear processing
according to human emotion perception. Our previous effort
[31, 36] has proved that ANFIS is an efficient approach for
characterizing non-linear relations in this three-layer model
that could be a benefit to the estimation of emotion
dimensions.  Subsequently, with features extracted in the
valence and arousal emotional space, the performance of
categorical classification was given by the logistic model trees
(LMT).

3.3. Evaluation Metrics

First, the correlation coeflicient(CC) and mean absolute
error (MAE), between a system’s estimations and human
evaluations, are calculated as two metrics, in order to evaluate
the performance of estimation of semantic primitives and
emotion dimensions. In particular, the CC is merely a
preferred metric to evaluate the performance of estimation of
semantics primitives in the middle layer, in view of the fact
that ANFIS used in a three-layer model captured nonlinear
associations between input and output, where smaller MAEs
might not definitely result in a good performance in estimation
of valence and arousal.

Formally, X, are the values of an emotion dimension
estimated by a system, and the corresponding averaged values
of an emotion dimension given by human estimators are Y,,.

The CC and MAE are accordingly calculated as:
¥ (%, %) (-7

CC = (6)
VY (%, -X) 2 (v, - ¥)
MAE: lelen_ynl (7)
N

where X and Y are the mean values of X,, and Y, respectively.

In addition, N is the number of utterances. Notably, CC assigns
values that trend to 1 for a closer system’s estimation to human
evaluations; and MAE assigns values that trend to O for a better
performance of a system’s estimations.

Second, the recall, precision, and F-measure are reported in
terms of each emotional state for assessing the performance of
categorical classification.

Formulate, let C; stands for an emotional class to be
classified, where i € {neutral, happiness, anger, sadness}, and
N; is the total number of utterances for class C;. Supposing a
classifier predicts correctly NCI.T utterances for class C;, and
predicts NC lF utterances to be in C; where in fact those
utterances belong to other emotional classes, then the recall,
precision, and F-measure are defined as:

NCT
Recall = N ®)
. NCT

Precision = W (9)

2 % Precision * Recall
F — Measure = Ve'CfSlOIl eca (10)
Precision + Recall

3.4. Experiment 1: Comparison with individual feature sets

This experiment attempted to show that the use of the
proposed combination of IS16 and MSF features can benefit
SER in the multilingual scenario. All results in this subsection
were obtained by leave-one-speaker-out (LOSQO) validation
using a mixed corpus made from the Fujitsu database, Berlin
Emo-DB, and CASIA dataset, providing 538 utterances in
total: 138 neutral, 119 happiness, 141 anger, and 140 sadness
(see Table 1 for the details of each corpus).

Comparisons were accordingly carried out on the feature
set of IS16, MSF, and their combination that is the proposed
set, abbreviated as Proposed. Each of the aforementioned three
feature sets was examined under two conditions of speaker
normalization (SN) and no speaker normalization (NN). A
total of 2 x 3 systems were trained and tested to study the
impact of the selection of acoustic features and processing of
SN.

3.4.1. Performance of estimation of semantic primitives and
emotional space

We first evaluated the performance obtained during

estimation of semantic primitives. The CC values for dark,

heavy, strong, and weak were detailed in Table 5. Results

confirmed that the proposed acoustic features provides a better



Table 5: Estimation performance of semantic primitives obtained by multilingual emotion recognition systems using different feature sets

Features Speaker DARK HEAVY STRONG WEAK
Normalization | IS16 MSF  Proposed | IS16 MSF  Proposed | IS16 MSF  Proposed | IS16 MSF  Proposed
cc NN 0.841  0.840 0.886 0.682  0.642 0.706 0.878  0.819 0.905 0.878  0.839 0.890
SN 0.873  0.880 0.892 0.727  0.772 0.784 0.887  0.905 0.922 0913 0912 0.922
Table 6: Estimation performance of emotion dimensions obtained by multilingual emotion recognition systems using different feature sets
Features Speaker Valence Arousal
Normalization IS16 MSF Proposed 1S16 MSF Propsed
cc NN 0.640 0.568 0.749 0.907 0.865 0.933
SN 0.654 0.712 0.792 0.915 0.919 0.930
MAE NN 0.644 0.726 0.508% ¢ 0.364 0.435 0.290% ¢
SN 0.630 0.600 0.497n.s. 0.356 0.330 0.295n.s.

% and ¢ indicate that the estimations differ significantly between feature set of IS16 and Proposed, and MSF and Proposed under condition
of no speaker normalisation (NN) (p < 0.001); n.s. indicate that estimations not differ statistically significant between NN and speaker
normalisation (SN) for the Proposed features in terms of valence (p = 0.7285) and arousal (p = 0.7649).
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Figure 2: Scatter plots of systems’ estimations of emotional utterances for mixed data (Fujitsu database, Berlin Emo-DB, and CASIA dataset) in 2D emotion space,
obtained by a three-layer model incorporating feature set of IS16, MSF, and Proposed under conditions of no speaker normalisation (NN) and speaker normalisation

(SN).

performance that is closer to human evaluations and
outperformed that obtained with IS16 and MSF features that
trained with and without speaker normalization.

Figures 2 further display the scatter plots of manual
evaluation and systems’ estimation. The performance of
valence and arousal estimation was quantified in terms of CC
and MAE, and was demonstrated in Table 6. As can be seen,
the Proposed features (IS16 combined with MSF) always
furnished the best performance yielding a greater CC and
smaller MAE compared with those obtained by IS16 and MSF
features, both under scenarios of NN and SN.

Statistical test (one-way ANOVA) was performed between
two systems’s estimations on all emotional utterances. Mostly
interesting, the differences of MAE between the sets of
proposed features in term of NN and SN turned out to be not
statistically significant for both valence (F(1, 1074) = 0.1206,

p = 0.7285 ) and arousal (F(1,1074) = 0.0895, p = 0.7649 ).
On the other hand, under no speaker normalisation condition,
the proposed features yielded statistically significant
improvements over the IS16 and MSF features individually for
both valence: F(1,1074) = 15.4174, p < 0.001, and
F(1,1074) 39.6463, p < 0.001; and arousal:
F(1,1074) = 17.0243, p < 0.001, and F(1,1074) = 54.8106,
p < 0.001.

This fact indicated that our system could better cope with
the variation of acoustic correlates among speakers without
speaker normalization, which in turn benefit the full
development of SER in the real-life applications, especially in
a scenario without knowledge for an unknown speaker.



Table 7: Classification results for multilingual SER (All), obtained by three types of features on IS16, MSF, and Proposed with speaker normalisation (SN), and
no speaker normalisation (NN); and detailed classification performance of each of the multilingual corpora for Fujitsu databse, Berlin Emo-DB, and CASIA

dataset.
Precision Recall F-Measure
1S16 MSF Proposed IS16 MSF Proposed IS16 MSF Proposed
NN SN NN SN NN SN NN SN NN SN NN SN NN SN NN SN NN SN
All Neutral 58.52 64.06 53.35 72.26 73.01 74.51 86.69 89.13 72.46 81.16 86.23 82.61 70.1874.5562.11 76.45 79.07 78.35
Happpiness ~ 73.77 61.33 30.19 70.24 84.62 77.89 37.8238.66 13.45 49.58 55.00 62.18 50.0047.4218.60 58.13 66.67  69.16
Anger 69.80 74.66 58.96 73.75 76.36  84.11 73.7677.30 72.34 83.69 89.36 90.07 71.7275.9664.97 78.41 8235 86.99
Sadness 93.55 97.60 89.06 90.65 93.23 9424 82.8687.14 81.43 90.00 88.57 93.57 87.8892.0885.07 90.32 90.84 93.91
Weighted Avg. 74.04 74.96 59.25 76.99 81.72% ¢82.91n.5.71.56 74.35 61.71 77.14 80.71% ¢82.90n.5.70.7373.4859.21 76.52 80.23% ¢82.63n.s.
Fujitsu Neutral 72.00 48.78 66.67 82.61 73.68 55.60 90.00100.00 20.00 95.00 70.00 100.00 80.0065.5730.77 88.37 71.79  71.40
database Happpiness ~ 94.74 72.73 0.00 94.74 100.00 92.90 45.0020.00 0.00 45.00 50.00 32.50 61.0231.37 0.00 61.02 66.67 48.10
Anger 63.93 70.59 50.00 68.97 60.61 74.50 97.50 90.00 100.00100.00 100.00 95.00 77.2379.1266.67 81.63 7547  83.50
Sadness 100.00100.00100.00100.00 100.00 100.00 87.50 92.50 95.00 100.00 87.50  97.50 93.3396.1097.44100.00 93.33  98.70
Weighted Avg. 84.19 76.49 52.38 87.14 84.99 84.30 78.5772.14 58.57 83.57 77.86 78.60 77.5968.4051.28 81.95 77.53  76.00
Berlin  Neutral 64.18 80.00 62.12 80.36 78.57 93.75 86.00 96.00 82.00 90.00 88.00 90.00 73.5087.2770.69 84.91 83.02 91.84
Emo-DBHapppiness ~ 75.00 76.74 56.00 86.11 92.11  88.00 48.00 66.00 28.00 62.00 68.63  88.00 58.5470.9737.33 72.09 78.65  88.00
Anger 77.08 79.59 75.47 78.18 90.38  91.49 74.00 78.00 80.00 86.00 94.00 86.00 75.5178.7977.67 81.90 92.16  88.66
Sadness 88.68 97.92 87.50 90.57 89.09 90.91 94.00 94.00 98.00 96.00 98.00 100.00 91.2695.9292.4593.20 93.33 9524
Weighted Avg. 76.24 83.56 70.27 83.80 87.56 91.04 75.5083.50 72.00 83.50 87.06 91.00 74.7083.2469.54 83.03 86.75 90.93
CASIA Neutral 52.68 60.44 49.11 63.16 69.32 72.06 86.76 80.88 80.88 70.59 89.71 72.06 65.5669.1861.11 66.67 78.21  72.06
dataset Happpiness  30.00 23.81 16.67 34.38 55.00 56.25 10.3417.24 6.90 3448 37.93 62.07 15.3820.00 9.76 34.38 4490 59.02
Anger 70.00 73.91 55.00 74.47 8298 86.79 54.90 66.67 43.14 68.63 7647 90.20 61.5470.1048.3571.43 79.59 88.46
Sadness 94.44 95.00 79.41 82.61 93.02 93.33 68.00 76.00 54.00 76.00 80.00 84.00 79.0784.4464.29 79.17 86.02 88.42
Weighted Avg. 64.37 67.27 53.53 66.78 76.73  78.91 62.63 66.67 53.54 66.16 76.26 78.28 60.5966.0751.10 66.34 75.66  78.51

% and ¢ indicate that the classification results differ significantly between feature set of IS16 and Proposed, and MSF and Proposed under
condition of no speaker normalisation (NN) (p < 0.05); n.s. indicate that classification results not differ statistically significant between NN

and speaker normalisation (SN) for the Proposed features.

3.4.2. Performance of categorical classification

Given the estimations of valence and arousal in the
emotional space, we extracted four human-perception-inspired
common features of the values of valence, arousal, and the
directions and distances from a position of a neutral voice to
that of another emotional state, to perform categorical-based
classification using the logistic model trees. Table 7 details the
emotional classification performance in terms of recall,
precision, and F-measure over LOSO cross-validation for
different sets of features with SN and NN. As can be observed
that classification results in terms of recall, precision, and
F-measure turn out to receive a notable gain from the Proposed
features, irrespective of NN and SN.

As an aside, a one-way ANOVA analysis was conducted
between two systems of classification results on 15 speakers (4
speakers in CASIA dataset, ten speakers in Berlin Emo-DB, and
one speaker in Fujitsu database) to test whether the Proposed
features significantly advance the task of multilingual SER.

We first performed a statistical test between the two
classification results on the Proposed features with no speaker
normalization and speaker normalization, taking into account
an effect of speaker normalization. Results showed no
significant improvement, F(1,28) = 0.7498, p = 0.3939 for an
averaged precision, F(1,28) = 0.3722, p = 0.5468 for an
averaged recall, and F(1,28) = 0.5118, p = 0.4803 for an
averaged F-measure, with the Proposed features with speaker
normalisation yielded no statistically significant different
performance to that achieved by the Proposed features with no
speaker normalisation.

In addition, we conducted two more one-way ANOVA
analysis in the scenario of no speaker normalisation, between

features of IS16 and Proposed, and MSF and Proposed, taking
into account an effect of feature set. Results showed a
significant difference, F(1,28) = 12.1594, p < 0.05 for
averaged precision, F(1,28) = 10.0299, p < 0.05 for averaged
recall, F(1,28) = 11.5225, p < 0.05 for averaged F-measure,
with the Proposed features outperformed the IS16 features at
recognizing multilingual speech emotions.  Further, this
analysis showed that the Proposed features also significantly
improved the SER performance compared with MSF features,
F(1,28) = 12.2307, p < 0.05 for averaged precision, and
F(1,28) = 12.7435, p < 0.05 for averaged recall, and
F(1,28) = 14.8244, p < 0.05 for averaged F-measure.

In line with these findings, it showed that the Proposed
features outperformed the IS16 and MSF features at
identifying speech emotions. Notably, the Proposed features
can also deal with speaker-independent SER tasks irrespective
to languages, even without speaker normalization that is more
suitable for real-life applications.

3.5. Experiment 2: Cross-corpus evaluation

To further quantify the performance of our proposed
strategies to multilingual SER, we also performed an open data
evaluation, namely, training in one corpus and test on a
completely new database. To this end, the three emotional
corpora of Fujitsu database, Berlin Emo-DB, and CASIA
dataset were used. All systems conducted in this experiment
are same in collecting the acoustic features and semantic
primitives for a three-layer model (see Table 4). Table 8
summarises the permutations over pairs of training and test
data and corresponding performance, where three different



combinations of the remaining corpora were used for testing
each emotional corpus.

As can be seen, the performance obtained using Fujitsu
database for testing is slightly higher than the two other
corpora, this result was probably beneficial from the more
natural and clear recordings in this database. The system
trained on the Berlin Emo-DB achieved the highest average
F-measure relative to the systems trained on CASIA dataset
and their combination, reaching up to 85.5%. This
performance might be on the grounds that Berlin Emo-DB and
Fujitsu database have very similar characteristics. They are all
prototypical, acted corpora of emotional speech with a strong
degree or intensity. Conversely, the CASIA dataset contains
authentic emotions with an intensity varies gradually from
weaker to stronger. On the other hand, the accuracy is in
general lower for happiness than for the three other emotions.
This result is consistent with Grimm’s previous finding [23],
and could be due to that the expression of happiness was
significantly different for individual speakers. Additionally, we
found no significant difference on averaged F-measure over
three permutations while testing emotional speech from ten
German speakers data in Berlin Emo-DB, F(2,27) = 0.3625,
p 0.6993; and from four Chinese speakers in CASIA
dataset, F'(2,9) = 0.4536, p = 0.6491. Together, these results
suggested that our proposed system might not be modulated by
different target languages.

As an aside, the classification results achieved with
cross-corpus validation were somewhat decreased compared to
those of LOSO validation. Whereas these results are within the
relative error tolerance that can be expected in everyday
situations, in view of the fact that emotional corpora usually
vary with speakers, recording conditions, languages, or even
labeled annotations of acted emotions. For instance, the
degrees of each acted emotion in the Fujitsu, Berlin Emo-DB,
and CASIA corpora are different; while the Japanese
emotional speech is generally coloured by high intensities and
the German emotional speech is moderately to highly
coloured, the Chinese acted speech is closer to spontaneous
speech whose degree changes from the lowest to highest
smoothly. This is the main reason why the emotional speech
from the CASIA dataset is slightly harder to recognize even by
native Chinese speakers. In addition, it may not be sufficient to
identify multilingual speech emotions merely using acoustic
correlates from speech, taking into consideration that emotions
can also be transmitted from a speaker to a listener by other
modalities, such as gestures, facial expressions, and so on.

The principal conclusion that can be drawn from this cross-
corpus validation is that our proposed strategies may advance
the task to SER, even for a scheme of training on one language
and testing on a completely different one under an open speaker
and language conditions. It can yield comparable results even
in the event that the training and test speech delivered different
degrees in a specific emotion.

! Fujitsu database is a single speaker corpus
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Table 8: Classification performance for three-layer model based emotion
recognition systems over permutations in cross-corpus evaluation.

Classification Performance

Test Train Neu. Hap. Ang. Sad. Rec. Pre. F-Measure

Fujitsu’ Berlin 95.00 67.5090.00 95.00 85.70 87.40  85.50
CASIA 85.00 45.00 92.50 100.00 80.00 82.30  79.40
Berlin+CASIA 100.00 32.50 95.00 97.50 78.60 84.30  76.00

Berlin Fujitsu 74.00 74.00 68.00 90.00 76.5077.50  76.50
CASIA 86.00 50.00 66.00 90.00 73.0073.60  72.50
Fujitsu+CASIA 76.00 64.00 78.00 96.00 78.50 78.50  78.10
CASIA Fujitsu 57.40 37.90 56.90 84.00 61.1061.70  61.00
Berlin 66.20 48.3035.30 60.00 54.00 59.50 54.50
Fujitsu+Berlin  66.20 31.00 45.10 78.00 58.60 63.50  60.50

Table 9: Classification performance of each language by monolingual SER
systems, multilingual systems, and approaches used in [31] for Fujitsu
database, Berlin Emo-DB, and CASIA dataset.

F-Measure

Monolingual SER Multilingual SER

[31]  Proposed [31]  Proposed
Fujitsu Neutral 93.02 100.00 65.31 71.40
database  Happpiness 96.30 100.00 39.29 48.10
Anger 94.87 100.00 75.51 83.50
Sadness 97.44  100.00 90.91 98.70
Weighted Avg. 95.75  100.00 68.10 76.00
Berlin Neutral 82.69 96.97 82.00 91.84
Emo-DB  Happpiness 76.92 88.00 75.27 88.00
Anger 84.91 89.11 87.85 88.66
Sadness 90.91 98.00 92.00 95.24
Weighted Avg. 83.86 93.02 84.28 90.93
CASIA  Neutral 52.63 64.66 67.78 72.06
dataset Happpiness 0.00 36.73 11.43 59.02
Anger 59.26 80.81 70.71 88.46
Sadness 56.07 80.00 73.17 88.42
Weighted Avg. 47.50 68.60 61.64 78.51

4. Comparison with related literature

4.1. comparison within our studies

The proposed system might be beneficial to multilingual
speech emotion recognition only if it could reach a comparable
performance to a monolingual recognizer. To facilitate this
comparison, we also constructed three language-dependent
monolingual emotion recognition systems following our
proposed strategies. The classification performance of each
proposed monolingual system is demonstrated in Table 9, and
compared with that performed in multilingual scenarios.
Furthermore, the experimental results given in a previous
attempt [31] were also included in Table 9 for reference. All
results presented were obtained by the LOSO cross-validation,
apart from that of Fujitsu database, which was examined by
10-fold cross-validation on the grounds that it only involves
one female speaker.

As shown in Table 9, our proposed approach advanced the
performance of categorical classification on Fujitsu database
for both monolingual and multilingual SER systems, and
outperformed those obtained by [31]; Whereas, the averaged
F-measure fell from 100% in monolingual scenario to 75% in
multilingual scenarios, this is due to the fact classification in a
monolingual case was performed by a 10-fold cross validation,
training, and testing on close dataset. Conversely, the results
obtained by the multilingual SER system were performed on



an open data scheme in light of the fact that Fujitsu database
has only one speaker.

Regarding the performance of categorical classification on
the Berlin Emo-DB, obtainable results are significantly higher
than that achieved by the referred multilingual SER system
after [31] (p < 0.05). Notably, it is interesting that we achieved
a better performance on CASIA dataset in multilingual than
monolingual scenario, since acoustic features in different
languages generally varied from one to another.

For further analysis, the difference between our proposed
multilingual and monolingual SER systems is not statistically
significant, besides that of Fujitsu database which is not a fair
condition for comparison as mentioned above. These findings
stressed the fact that the proposed multilingual SER system
could perform comparable results to those obtained by the
language-dependent speech emotion recognizers.

4.2. comparison with other studies using the same corpora

As was reviewed in Table 10, the other studies targeting
speech emotion recognition have produced substantial results.
This subsection aims to demonstrate, discuss, and compare
these results obtained in the state-of-the-art approaches to
those of our strategy.

In light of the fact that Fujitsu database is a single speaker
corpus, all results were shown using 10-fold cross-validation.
A 92.5% overall recognition rate was obtained on the Fujitsu
database by exploiting 21 acoustic features in a three-layer
model [30]. By comparison, a monolingual SER system
conducted by our proposed approach substantially improved
the classification performance, yielding a recognition accuracy
up to 100%. On the other hand, a positive result of ours is that
an overall recognition rate reached up to 98.1% in a
multilingual scenario, resulting in an error reduction rate of
74.67% over the previous attempt [30]. We can see from these
results that exploring efficient vocal features contributes to
advancing the recognition and accuracies of all emotional
categories.

A number of effort has been done to be able to recognize
emotional state in the Berlin Emo-DB. Regarding attempts that
used combinations of different vocal features to improve the
SER performance on speaker-independent tasks, 85.80%
accuracy is achieved by exploring prosodic and spectral
features in [42]. Furthermore, Vlasenko et al. [40] reported a
comparatively improved accuracy of 89.9% by combining
utterance-level and frame-level speech features. In contrast,
our monolingual SER system presented in this paper showed
an average recognition rate of 93.00% using 22 speech
features, which is higher compared to the literature as
mentioned earlier. More specifically, our proposed
multilingual SER system can even furnish a better
performance compared to the monolingual recognizers
developed in [42, 40]. This might be due to the fact that
three-layer model could be more suitable to model the process
of human emotion perception than the conventional models.

Among the studies that were able to recognize speech
emotional state in the CASIA dataset, [52] once reported a
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Table 10: Comparisons of classification performance with state-of-the-art
works on Fujitsu database, Berlin Emo-DB, and CASIA dataset

Datasets

(Validation Methods) Tasks Refs  Unweighted Accuracies
Fujitsu database Monolingual 130] 92.50
(10-fold) . Ours 100.00
Multilingual ~ Ours 98.10
[40] 89.90
Berlin Emo-DB Monolingual [42] 85.80
(LOSO) Ours 93.00
Multilingual ~ Ours 91.00
. [52] 58.53
CASIA dataset Monolingual Ours 69.70
(LOSO) Multilingual ~ Ours 78.28

recognition rate of 58.53% by LOSO validation in a
monolingual scenario, using 384 acoustic features with
speaker normalization, that is an absolute deterioration of
11.17% while comparing it to our proposed monolingual SER
system. It should be noted that the multilingual system
outperformed the monolingual one in CASIA case. On the one
hand, this might be caused by the fact that the number of
utterances for each emotional category in this corpus is not
equally distributed, which in turn might limit the accuracy of
SER. On the other hand, CASIA dataset turned out to receive
better performance gain from a combination of Fujitsu
database and Berlin Emo-DB, which again indicate that the
proposed strategy provides a reasonable means of dealing
speaker-independent SER tasks regardless of languages.

To stress the well-established ability of generalization, we
carried out a further classification task for a new target
language in English. We analyzed the SAVEE corpus using
our multilingual emotion recognition system without training,
and resulting in an average recognition rate of 43.5%. This
was a significant achievement and somewhat comparable to
that obtained by a monolingual SER system [53], training and
testing under a 70-30% cross-validation, and reporting a
48.4% average recognition accuracy.

5. Conclusion

We presented a system for recognizing emotions expressed
in multilingual speech. We analyzed three crucial issues, the
question of which speech features to use to recognize emotions
in multiple languages; the effects of speaker normalization and
no speaker normalization; and the ability of the system to deal
with a completely new language without a training phase for
verifying its generalization ability.

The proposed features were evaluated on mixed emotional
corpora to classify four emotional categories. The individual
set of IS16 and MSF features were included for reference.
Experiments were conducted under conditions of speaker
normalization and no speaker normalization. The proposed
features provided a comparable performance under conditions
of speaker normalization and no speaker normalization,
yielding an average F-measure of 82.63%, and 80.23%
individually for a mixture of three different language corpora,
and the results showed the benefit of using combined features.



We carried out two evaluations involving LOSO
cross-validation and cross-corpus validation. The average
weighted F-measure was within the range of 58.6 to 95.8% in
the LOSO cross-validation depending on the speaker (cf.
Section 3.4.2), indicating that the inter-speaker differences in
expression of emotions might be the main reason for
mismatches. In the cross-corpus validation, the highest
recognition accuracy was obtained on the Fujitsu Database,
followed by Berlin Emo-DB and CASIA, indicating that
stereotypical emotions are slightly easier to recognize than
authentic ones.

Moreover, we reviewed the literature as general
benchmarks. In particular, our previous attempt presented a
multilingual emotion recognition system by analyzing the IS16
features only. The proposed features outperformed the IS16
features at identifying multilingual speech emotions, yielding
an error reduction rate of 34.50% and 32.46% respectively in
relative to conditions of speaker normalization and no speaker
normalization. Furthermore, in comparison with the related
work targeting recognition of the same emotional corpus, the
proposed system demonstrated a promising performance for
multilingual SER tasks. In particular, in a classification task
for a new target language without training, its performance
was comparable to that obtained in a monolingual emotion
recognition system.

Numerous studies conducted over the past few decades
have tried to recognize emotions in speech. Promising
performance has been achieved in monolingual scenarios in
various languages. However, implementation of multilingual
emotion recognition is still a challenging task. With respect to
the processing of human emotional perception, this study
achieved a multilingual emotion recognizer by combining
prosodic and spectral features in a three-layer model. In the
future, we would like to apply it to human-machine
interactions, such as in an affective speech-to-speech
translation system.
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