
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title

Optimized-FDanQ: Implementation of Hybrid Neural

Network "DanQ" on Cloud Multi-FPGA and its

Optimization under Given Costs

Author(s) 稲葉, 貴大

Citation

Issue Date 2021-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/17082

Rights

Description
Supervisor:井口　寧, 先端科学技術研究科, 修士（情

報科学）



Abstract

In this information society, the amount of data is rapidly increasing, especially in the
field of Astronomy, Twitter, Youtube, and Genomics. In these four fields, storage for
genomics is increasing the most, and the way to process it fast has been one of the big
tasks for a long time. There are so many DNA sequences that people have to work on.
One of the genome analysis that people have to face is to find the function of DNA
from a DNA sequence. Recently, Machine Learning has been used to find the function
of DNA from a DNA sequence. However, training a machine learning model for DNA
sequences takes much time due to the size of the dataset. Besides, since DNA sequences
are represented by four types of the base, which are Adenine, Guanine, Thymine, and
Cytosine, it can be represented by the bit-width of two. FPGA has a substantial ad-
vantage of processing these kinds of string operations because FPGA can construct a
dedicated state machine. Also, FPGA can be a useful resource for processing fast by
pipelining.

In addition, more and more companies are using cloud services such as AWS for
their acceleration. Since cloud users always have to consider the trade-off between
execution time and cloud instance usage fee, it is necessary to optimize these two things
depending on each cloud user.

In this paper, we propose the following two ideas.

• Mutli-FPGA Implementation

• Cloud Optimization under Give Costs

We tried to accelerate a deep learning model called DanQ using FPGAs. It is said
that FPGA is sufficient for data such as genomics data because DNA sequence can be
represented by 1 bit and does not require a large bit-width for processing. We mainly
focused on a BiLSTM layer, which is the most time-consuming part of the DanQmodel.
We quantized the parameters of the BiLSTM layer to the bit width of 16 in order to
implement on FPGA without losing the training accuracy. We also implemented the
BiLSTM layer to multiple FPGAs to obtain a better execution time. As a result, we
could accelerate the DanQ model by using a single FPGA by 1.05x compared to our
CPU implementation. Besides, our implementation on 8 FPGAs gets 2.87x faster than
the dual FPGA implementation and 6.00x faster than the CPU implementation.

Also, our implementations can change the resource size during the execution to
optimize the execution time or cloud instance usage fee depending on the users’ needs.
Comparing a case of using 8 FPGAs for all time and a case in which we optimized the
number of FPGAs during the training with our model, we obtained the result that we
can save the cloud usage fee for 56.28% by only taking 16.00% extra time.


