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Abstract

In this thesis, we propose a new distributed sensors-based multi-target
geolocation and tracking technique. The proposed technique is a joint time-
of-arrival (TOA) and direction-of-arrival (DOA) factor graph (FG) for multi-
target geolocation (FG-GE), which is further combined with another FG
for extend Kalman filtering (FG-GE-EKF) for tracking. Two-dimensional
(2D) and three-dimensional (3D) scenarios are considered. In the FG-GE
part, a new sensor association technique is proposed to solve the matching
problem, which makes the correct correspondence between the DOA/TOA
information gathered by the distributed sensors and each target. With the
proposed sensor association technique, the measured signals from targets can
adequately be matched to their corresponding FGs. Thereby, the multi-
target geolocation can be reduced to multiple independent single target
geolocation. In addition, in the 3D scenario, each target is projected onto
three orthogonal planes in the (x, y, z) coordinate. With the projection, the
3D geolocation is decomposed into three 2D geolocation problems. In the
FG-GE-EKF part, the whole tracking system can be divided into two steps:
prediction step and update step. In the prediction step, the predicted state
is obtained from the previous state. Then, we utilize the predicted state
as a prior information, and also to update the message exchanged in FG-
GE. In the update step, the estimates obtained by FG-GE are regarded as
observation state which is used to refine the predicted state, and to acquire
the current state. With proposed the FG-GE-EKF, the position estimation
accuracy and tracking performance can be improved dramatically, without
requiring excessively high computational effort.

Keywords: Factor graph (FG), time of arrival (TOA), direction of
arrival (DOA), geolocation, extend Kalman filter (EKF), tracking, sensor
association.
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Chapter 1

Introduction

1.1 Background and Motivation

Wireless geolocation, also known as localization or position detection, is a
technology that uses distributed sensors to accurately identify the location
of radio emitters [3]. By obtaining measurements such as the propagation
angle, time and intensity of electromagnetic waves, the geolocation systems
aim to estimate radio emitter’s positions in the spatial coordinate.

In future wireless communication networks, wireless geolocation technol-
ogy is an indispensable link to every corner of the society, especially in the
smart city, smart vehicular communications systems, intelligent navigation
and other applications [4–6]. The demand for location-based services (LBS)
and applications have become more diversified with the rapid development
of technology, especially in today’s booming Internet of Things (IoT) busi-
ness: in terms of indoor location services, it provides users with indoor
navigation, indoor car search and location social services [7]; in public
safety and emergency rescue, such as Enhanced-911 [4], firefighters and
policemen can quickly start a rescue operation by accurately locating the
victims; in factories, managers want to keep track of precious materials and
production equipment accurately [8]; in driving, the driver wants to find
the smoothest route and the nearest parking space [9, 10]; the realization
of smart home is inseparable from the accurate positioning of users [11, 12],
as in Fig. 1.1. Moreover, when the fifth generation (5G) and beyond fifth
generation (B5G) mobile wireless communication systems are considered,
accurate geolocation techniques for position-related services are required. For
example, when beamforming [13–15] is applied in 5G systems to eliminate the
effects of detrimental attenuation in millimeter-wave (mmWave) signaling,
target tracking in massive multiple-input multiple-output (MIMO) systems
is of significant importance to ensure the effectiveness of beamforming, as
shown in Fig. 1.2.

It should be noted that Global Positioning System (GPS) and Global
Navigation Satellite System (GNSS) provide users with location service [16],
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Figure 1.1: Wireless geolocation in various applications

which basically solves the problem of accurate positioning in outdoor space
and has been widely used in daily life. However, in the indoor environment,
GNSS positioning accuracy is significantly degraded due to the influence of
building shielding and multi-path effects, which cannot meet the accuracy
requirements of indoor location services. Besides, when stand-alone radars
are considered, they usually require large scale hardware. Therefore, in this
research, distributed sensors instead of stand-alone radars are used to detect
and track the position of the target. This is because (1) compared to such
stand-alone radar systems, the distributed sensors are more flexible to be
located without requiring high hardware cost; (2) the distributed sensors can
be installed in both indoor and outdoor environments quickly, and the high
accuracy can be expected for wireless geolocation.

In wireless geolocation algorithm, the mathematical framework is, in
common, nonlinear, and the direct calculation of the multi-target positions,
including combinatory problems, is highly complex. To solve the problems,
a framework using factor graph (FG) has been proposed [1]. FG-based ge-
olocation (FG-GE) techniques do not require high computational complexity
due to the fact that only means and variances of the messages derived from
the measurements, which is assumed to suffer from Gaussian-distributed
measurement error, is exchanged between the nodes in the FG [17]. To
keep the Gaussianity of the messages exchanged in FG, the first order Taylor
series (TS) expansion is applied to approximate the trigonometric functions
by linear functions [18].

In practical application, compared with static target positioning, dynamic
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Figure 1.2: Beamforming based on wireless geolocation

target tracking is more widely used, leading to more complex problems.
Nowadays, target tracking technology is always accompanied by geolocation
technologies, which also plays an important role in many fields, such as robot
motion tracking, trajectory correction of the rocket, autopilot systems and
eyeball-tracking technique [19–22]. Therefore, in addition to multi-target
target geolocation, another purpose of this research is to achieve dynamic
multi-target tracking.

The background described above has motivated this research. In this
thesis, a new joint time of arrival (TOA) - direction of arrival (DOA)
technique is proposed not only to compensate each technique’s shortcomings
but also to solve the problem of associated to the observation and target
positions. The combined FGs for geolocation and extend Kalman filter
(EKF) can be used not only to estimate the positions of the static multiple
targets, but also to track their trajectories dynamically.

1.2 Related Work

In recent years, in-depth discussions on a variety of indoor geolocation
services and their evolution scenarios [23] have been taking place in industry.
[24] presents a technique that localizs multiple persons by utilizing on the
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reflections of wireless signals reflected from their bodies. However, calculation
for the intersection of several ellipses needs high computational effort because
of their non-linear properties. A multi-target localization technique based
on machine leraning (ML) is introduced in [25]. In general, extensive prior
training is required in the ML algorithms including recording of each position
feature. Also, database construction is needed to store the data.

In this research, comapred with other localization techniques, we only
focus on the FG-based geolocation technique due to the fact that the
proposed FG algorithm requires lower computational complexity because (1):
it decomposes the complex global function with many variables into a product
of several local functions with a few variables; (2): The message passing
process performed in the factor graph requires only means and variances,
owing to the Gaussian distribution of the measurement error. Nevertheless,
after several iterations, the FG-based message passing algorithm can achieve
maximum a posteriors probability (MAP) estimates of the target positions
by using the sum-product algorithm for the probability marginalization.

In the conventional FG based geolocation systems, different types of
wireless parameters such as DOA [26], TOA [27], time-difference-of-arrival
(TDOA) [28] and received-signal-strength (RSS) [29,30] are used. The time-
difference-of-arrival based factor graph (TDOA-FG), time-of-arrival based
factor graph (TOA-FG), direction-of-arrival based factor graph (DOA-FG)
have been proven to be useful for the detection of single target position.
However, FG-based accurate position identification of multiple anonymous1

targets has not yet been matured. When multiple targets have the same
distance to some of the distributed sensors, it is difficult to accurately identify
multiple target positions with the TOA/TDOA because the time of arrival
of the waves at those sensors are almost the same, which indicates the time
difference of arrival is almost zero. On the other hand, when multiple targets
are located on the same line originating from the some of the sensors, or when
the angle difference is small, the DOA detection is unreliable. For the RSS-
based technique, off-line training using reference signals from monitoring
spots is required beforehand, which can not be obtained from multiple
anonymous targets case.

In the conventional tracking systems, different types of tracking algorithm
have been proposed. The concept of Lucas-Kanade algorithm was first
proposed by [31]. By using the pixel relation between adjacent frames of
video sequence, the motion state of the target can be judged by looking
for the displacement change of the pixel, so as to realize the tracking of

1The terminology ”anonymous” is defined as the unknown device emitting radio wave
where the sensors/receives have no any knowledge about the emitter [3].
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the moving target. However, the poor real-time performance cannot be
avoided by computing all the pixels in the video. Kalman filtering (KF) is an
algorithm that can effectively predict the location of the target [32]. It utilizes
the knowledge of the dynamics of the target behavior, expressed by state-
space equation, utilizes the observed data in the state-space equation, and
achieves the most likely estimates. KF algorithm is only applicable to linear
Gaussian Markov model. [33] proposes a technique successfully utilizing deep
learning technique for target tracking. The tracking technique based on deep
learning requires a high resolution of the images on the data set, otherwise,
the training classifier cannot obtain effective features and has poor tracking
performance.

Therefore, in this research, to achieve high multi-target tracking accuracy
in dynamic scenarios, the EKF technique is used to solve the problems as
described above. The target positions estimated by FG-GE can be regarded
as observation state in the tracking process. However, the variance of the
observation error can not be directly detected. Instead, the smallest variance
of the observation which can be determined by the Cramér–Rao lower bound
(CRLB) is used as the variance of the observation error. The proposed
algorithm that combines FGs for GE and EKF is referred to as FG based
geolocation and EKF tracking (FG-GE-EKF) for the notation convenience
commonly in this thesis.

1.3 Research Contribution

This research focuses on distributed sensors-based geolocation technique.
The main contributions of this research are summarized as follows.

1. First of all, a new two-dimension (2D) joint TOA-DOA based FG is
proposed for multi-target geolocation and tracking by integrating the
EKF algorithm into a unified FG. Furthermore, the proposed technique
is then extended to a three-dimension (3D) scenario.

2. A new sensor association algorithm based on the joint TOA-DOA
measurements is proposed to solve the target-observation matching
problem occurring typically in the distributed sensors systems, both
in 2D and 3D scenarios.

3. A switching algorithm for the use of either TOA or DOA is proposed
to alleviate the shortcomings inherent in TOA-only and DOA-only
algorithms as described before.
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1.4 Thesis Outline

The structure of this thesis is illustrated as in Fig. 1.3, and organized as
follows:

In Chapter 1, the background, motivation and related work of this
research have been already described. We have also summarized the con-
tributions and provided the outline of this research.

In Chapter 2, the overview of factor graph and sum-product algorithm
is discussed. Also, the fundamental concepts of TOA, DOA and EKF are
described.

In Chapter 3, we present the proposed FG-based joint TOA-DOA tech-
niques for multi-target geolocation in the 2D and 3D scenarios.

In Chapter 4, the FG-based EKF algorithm is detailed, and performance
evaluation results by simulations are presented.

In Chapter 5, information theoretic background and relationship between
chief executive officer (CEO) and distributed hypothesis testing (DHT)
problems from the viewpoint of geolocation is briefly provided.

In Chapter 6, we conclude the thesis with some concluding remarks and
future work.
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Figure 1.3: The structure of the thesis
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Chapter 2

Research Background

In this chapter, we provide the background of the techniques used in the
thesis. First of all, the overview of factor graph (FG) and sum-product
algorithm (SPA) are introduced. Then we provide the fundamental concepts
of geolocation and Kalman filter (KF) using the FG.

2.1 Overview of Factor Graph and Sum-Product

Algorithm

Factor graph (FG) is a technique to graphically factorize the global function
into several local functions [2]. The sum-product algorithm (SPA) is an
efficient technique to calculate marginal probability of the global function,
and to finally obtain the maximum a posteriors probability (MAP) estimates.
In this thesis, we use the terminology “message passing” instead of the ”sum-
product algorithm”, because “message passing” includes broader concept and
the fact that we use the sum-product algorithm can easily be understood from
the messages and FG expressions.

As in [1], an example of FG, which consists of factor nodes and variables
nodes, represented as square and circle, respectively, is shown in Fig. 2.1.
Let g(x1, x2, x3, x4, x5) be a global function with five variables, Assume that
it is expressed as a product of several local functions, as

g(x1, x2, x3, x4, x5) = fA(x1)fB(x2)fC(x1, x2, x3)fD(x3, x4)fE(x3, x5), (2.1)

where fH(·), H ∈ {A,B,C,D,E} denotes the local functions. Use x3 as an
example, the marginal function of x3 can be computed as

9



g(x3) =
∑
∼{x3}

g(x1, x2, x3, x4, x5)

=

∑
∼{x3}

fA(x1)fB(x2)fC(x1, x2, x3)


×

∑
∼{x3}

fD(x3, x4)

×
∑
∼{x3}

fE(x3, x5)

 ,

(2.2)

where ∼ {x3} refers to all the variables except x3. As in Fig. 2.2, the
messages exchanged between the factor nodes and the variable nodes can be
defined as follow [1]:

• Variable to local function

The message passing from the variable node x to the local function
factor node f , denoted by µx→f (x), can be computed by the product
of messages from neighbors as

µx→f (x) =
∏

h∈n(x)\{f}

µh→x(x) (2.3)

• local function to variable

The message passing from the local function factor node f to the
variable node x, denoted by uf→x(x), is the product of the local function
with all the messages coming from variables except the destination
variable, which can be expressed as

uf→x(x) =
∑
∼{x}

f(X)
∏

y∈n(f)\{x}

uy→f (y)

 , (2.4)

where X = n(f) denotes the local function f .

In this thesis, we are interested in computing the several marginal
functions related to the estimates of target position in the (x, y) or (x, y, z)
coordinate. The details of the proposed techniques will be discussed in
Chapter 3 and 4.

10



Figure 2.1: The example of a simple factor graph

Figure 2.2: Message exchanges between factor nodes and variable nodes [1]

11



Figure 2.3: Geolocation category with different measurements

2.2 Overview of Geolocation

Accurate wireless geolocation has been expected to play crucial roles for
position-related services and applications. Wireless geolocation refers to the
operations for estimating the position of the target from the measurements
of various wireless parameters using the specific algorithms. The received
measurements information mainly includes three categories: time category,
angle category, electromagnetic field strength category. The geolocation
techniques and algorithms are different according to the categories of the
measurements, as shown in Fig. 2.3. Each technique has its own advantages
and disadvantages, as described before. In this research, we focus on the joint
TOA-DOA geolocation technique, because we consider that their inherent
shortcomings can easily be compensated.

2.2.1 TOA-based Measurement

Time of arrival (TOA) measurement indicates measuring the time difference
between the signal departure t0 from the target and arrival ti at sensor i. The
time difference 4t = ti − t0. The measurement of TOA can be converted to
the Euclidean distance between the target and the sensors by

di = 4t · c, (2.5)

where c = 3×108 meter/second is the light speed. The position of the target
can then be obtained from the TOA measurement as

12



Figure 2.4: Geolocation using TOA measurement

d̂i =
√

(Xi − x)2 + (Yi − y)2, (2.6)

where (Xi, Yi) and (x, y) are the positions of sensor i and target, respectively.
At least three distributed sensors are needed to estimate the position of the
target, as shown in Fig. 2.4

The Euclidean distances between the distributed sensors and the target
are r1, r2 and r3, respectively, in Fig. 2.4. Three circles can be obtained
by using the position of each sensor as the centre. Then the Euclidean
distances corresponds to the radius. The intersection point of three circles is
the position of target.

13



Figure 2.5: Geolocation using DOA measurement

2.2.2 DOA-based Measurement

Direction of arrival (DOA) measurement indicates the direction information
of the coming signal from the target. DOA geolocation technique focuses
on estimating the position of the target by using the angle measurement θi
between the target and sensor i. The model of DOA can be given by

θ̂i = arctan

(
Yi − y
Xi − x

)
, (2.7)

where (Xi, Yi) and (x, y) are the positions of sensor i and target, respectively.
By using DOA geolocation technique, only two distributed sensors are
required, as shown in Fig. 2.5. Using the positions of two distributed sensors
as the originating point, two lines are formed from the each originating points.
The position of the target is the intersection points of the two lines. It
should be noted that DOA-based FG geolocation techniques need at least
three sensors, as described in Chapter 3.
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2.3 Overview of Tracking

2.3.1 Kalman filter

Kalman filter (KF) is an efficient recursive estimation technique, which can be
used to estimate the state of dynamic systems from a series of measurements
suffering from measurement error. It has been proven to be useful in a wide
variety of applications, such as vehicle tracking, navigation systems, stock
prediction, and etc.

In general, the Gaussian-Markov state-space models (SSM) are used for
the tracking. As in [2], the system SSM can be defined as

xk = Akxk−1 + Bkvk, (2.8)

yk = Ckxk + Dkwk, (2.9)

where k = {1, 2, · · · , N} is the time index, vk and wk are independent
zero-mean Gaussian noise with vk ∼ Nvk(0, IK) and wk ∼ Nwk(0, IM). In
this research, we assume time-invariant SSM, and hence the time index k
is eliminated from {Ak,Bk,Ck,Dk}. We focus on factor graph (FG) and
the sum-product algorithm (SPA) based tracking by using KF. The FG of
KF can be illustrated in Fig. 2.6. It should be noted that all the messages
passing over the FG are Gaussian distributed. Hence, only the means and
the covariance matrix are exchanged over the FG for the messages processing
at the nodes. The previous state and the predicted state can be denoted as

µfk−1→xk−1
(xk−1) = Nxk−1

(mk−1|k−1,Pk−1|k−1), (2.10)

µ
x
(1)
k →=

(X
(1)
k ) = N

X
(1)
k

(mk|k−1,Pk|k−1), (2.11)

where m and P are the mean and covariance matrix, respectively. It should
be noted that the incoming message to node fk is µfk−1→xk−1

(xk−1), also
known as the previous state at timing k − 1. The outgoing message from
node fk is µfk→xk(xk), also known as the current state at timing k. The
whole tracking process can be divided into two steps: prediction step and
update step.

• Prediction step

mk|k−1 = Amk−1|k−1, (2.12)
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Figure 2.6: the structure of KF based on FG [2]

Pk|k−1 = APk−1|k−1A
T + BBT . (2.13)

• Update step

mk|k = mk|k−1 + Kk(yk −Cmk|k−1), (2.14)

Pk|k = (I−KkC)Pk|k−1, (2.15)

where Kk = Pk|k−1C
T (DDT + CPk|k−1C

T )−1.

2.3.2 Extend Kalman filter

KF can only be used on the premise that the variables are all Gaussian
distributed. However, since our measurements and system models are
nonlinear, conventional KF algorithm can not be utilized. Therefore, EKF
is proposed to approximate the nonlinear system model by a linear function.
The nonlinear system model can be given by

xk = f(xk−1) + wk, (2.16)

yk = h(xk) + vk, (2.17)
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where f(·) and h(·) are nonlinear functions, wk and vk are zero-mean
Gaussian distributed with wk ∼ N (0,Q) and vk ∼ N (0,R). In the same
way as KF process, the EKF process can also be divided into two steps: the
prediction step and the update step.

• Prediction step

xk|k−1 = f(xk−1|k−1), (2.18)

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 + Qk−1. (2.19)

where matrix F is the Jacobian matrix of the function f(·).
• Update step

xk|k = xk|k−1 + Kk(yk − h(xk|k)), (2.20)

Pk|k = (I−KkHk)Pk|k−1, (2.21)

where matrix Hk is the Jacobian matrix of the function h(·) and
Kk = Pk|k−1H

T
k (HkPk|k−1H

T
k +R)−1, however, again we assume time-

invariant dynamics of the target behavior, we omit the time index k
from Fk and Hk, as F and H.
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Chapter 3

Factor Graph-based Geolocation

In this chapter, we focus on multi-target geolocation based on factor graph
by using joint DOA-TOA measurements. The two-dimensional and three-
dimensional scenarios are considered. The proposed system model and
algorithms are detailed in the sub-chapter. The simulation results are also
included in this chapter, which are used to evaluate the performance of the
proposed algorithms.

3.1 Multi-target Position Detection in 2D sce-

nario

3.1.1 System Model

We start with a 2D scenario system model. A joint time-of-arrival and
direction-of-arrival measurements are used to estimate the multi-target po-
sitions. In the proposed technique, N distributed sensors locate at (Xn, Yn),
n = {1, 2, · · · , N}, in the global coordinate. The position information of all
the sensors are assumed to be known to the fusion center. I anonymous mul-
tiple targets are assumed to be located at (xi,k, yi,k), where i = {1, 2, · · · , I}
and k = {1, 2, · · · , K} are the target and timing indexes, respectively.

For simplicity, the target index i is omitted unless required. The
measurement of DOA at timing k can be given by

ϕ̂n,k = h(ϕn,k) + uϕ,n,k (3.1)

with the measurement error uϕ,n,k ∼ N (0, σ2
ϕ), and h(ϕn,k) denotes the true

DOA ϕn,k, which is given by

h(ϕn,k) = arctan

(
Yn − yk
Xn − xk

)
. (3.2)

The measurement of TOA at timing k is converted to Euclidean distance by

d̂2D,n,k = c · 4t = q(d2D,n,k) + v2D,n,k (3.3)
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with the measurement error v2D,n,k ∼ N (0, σ2
d), c the light speed and 4t the

time difference between the transmit and receive timings. q(d2D,n,k) denotes
the true TOA, which is given by

q(d2D,n,k) =
√

(Xn − xk)2 + (Yn − yk)2. (3.4)

In this thesis, we assume that the sensors and targets share the same time
reference, such as in aviation control or commercial navigation systems.

3.1.2 Sensor Association

In this thesis, all of the targets are anonymous. Thus, the matching problem
between distributed sensors’ observations and multiple anonymous targets
is focused on in this chapter. To recognize the targets, a simple, yet useful
algorithm is proposed.

First of all, we assume that (ϕi,n, di,n) is the i-th set of DOA and TOA
measurement from target i to the sensor n, where i = {1, 2, · · · , I} ans
n = {1, 2, · · · , N}, as shown in Fig. 3.1. By using the trigonometry functions,

Figure 3.1: Sensor association in 2D scenario
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Figure 3.2: Rough estimates of targets

the rough estimate of the position can be calculated by[
x̂n,i
ŷn,i

]
=

[
dn,i × cosϕn,i ±Xn

dn,i × sinϕn,i ± Yn

]
. (3.5)

Let sensor n obtain L sets of DOA and TOA measurement from the target
i. Each set of measurements is used to calculate the location information.
Therefore, for sensor n, I clusters of targets are obtained. However, the
position estimates obtained by (3.5) are unreliable because the estimation of
x̂ and ŷ uses TOA and DOA observed by each sensor alone without message
change over the FG. As shown in Fig. 3.2, the positions of the targets in
each cluster are largely scattered.

Even though the initial position detection without using FG iteration
is rough and the positions are scattered, we can identify which cluster the
observations are in. This information makes the target-observation matching
possible, and hence the measurement data can be properly input to the
corresponding FG.

3.1.3 DOA-TOA Switching Algorithm

In this sub-chapter, the problem of positioning in certain critical situations
is discussed. As show in Fig. 3.3(a), there may exist some sensors from
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(a) The disadvantage of TOA (b) The disadvantage of DOA

Figure 3.3: The problem of positioning in certain situations

which multiple targets have the same distance to such sensors. In this case,
TOA can not identify the positions accurately because the arriving time of
the waves from the targets at such sensor are very close. On the other hand,
there may exist some sensors when the multiple targets are on the same line
originating from those sensors, or the angle differences are small, as shown
in Fig. 3.3(b). In this case, DOA detection is unreliable.

Thus, a simple technique is proposed, which switches the use of either
DOA or TOA. Assume that n-th sensor can obtain three measurement of
DOA with mean and variance (ϕn,1, σ

2
ϕ), (ϕn,2, σ

2
ϕ) and (ϕn,3, σ

2
ϕ). Calculate

the relative angles by subtracting each of the two angles, and set the angle
interval [−kσϕ, kσϕ], where k is determined empirically. In this thesis, we
set k = 2 to identify weather or not the measured DOAs are reliable. For
the n-th sensor, TOA is used instead of DOA if one or some of the relative
angles is/are within this interval. The pseudo code of proposed algorithm is
shown in Algorithm 1, as below.
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Algorithm 3.1 Switching algorithm

Initialization: ϕ1, ϕ2. ϕ3 are the DOA measurement from target 1,2,3 to
n-th sensor;

1: 4ϕ1 = ϕ1 − ϕ2;
2: 4ϕ2 = ϕ2 − ϕ3;
3: 4ϕ3 = ϕ3 − ϕ1;
4: if 4ϕ1 ∪4ϕ2 ∪4ϕ3 ∈ [−kσϕ, kσϕ] then
5: Apply to TOA
6: else
7: Apply to DOA

3.1.4 Factor Graph-based Geolocation

The proposed joint DOA-TOA based FG is provided in this sub-chapter.
The target index i and the sensor index n are omitted. In order to preserve
the Gaussianity of the FG messages, the first order TS expansion centered
at the point β, is used to approximate the true DOA and TOA information,
expressed by equation (3.2) and equation (3.4), as

ϕk ≈ h(β) +
∂h(ϕk)

∂xk
(xk − βx) +

∂h(ϕk)

∂yk
(yk − βy) (3.6)

and

d2D,k ≈ q(β) +
∂q(d2D,k)

∂xk
(xk − βx) +

∂q(d2D,k)

∂yk
(yk − βy) (3.7)

with β = [βx, βy]
T . To achieve simple, yet accurate approximation, let β be

equal to predicted state sk|k−1, which is determined by the previous state.
Then, the true DOA ϕk can be approximated as

ϕk ≈ λ1x+ λ2y + λ3, (3.8)

where λ1, λ2 and λ3 are the constants, given by

λ1 =
Y − yk|k−1

(X − xk|k−1)2 + (Y − yk|k−1)2
, (3.9)

λ2 =
−(X − xk|k−1)

(X − xk|k−1)2 + (Y − yk|k−1)2
, (3.10)

λ3 =
(X − xk|k−1)yk|k−1 − (Y − yk|k−1)xk|k−1

(X − xk|k−1)2 + (Y − yk|k−1)2

+ arctan

(
Y − yk|k−1
X − xk|k−1

)
.

(3.11)
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Figure 3.4: Proposed FG-GE in 2D scenario

The target position can then be derived as:

x =
ϕk − λ2y − λ3

λ1
, (3.12)

y =
ϕk − λ1x− λ3

λ2
. (3.13)

In the same way as in DOA, the true TOA d2D,k can be approximated as

d2D,k = τ1x+ τ2y + τ3, (3.14)

where τ1, τ2 and τ3 are the constants, given by

τ1 =
−(X − xk|k−1)√

(X − xk|k−1)2 + (Y − yk|k−1)2
, (3.15)

τ2 =
−(Y − yk|k−1)√

(X − xk|k−1)2 + (Y − yk|k−1)2
, (3.16)

τ3 =
(Y − yk|k−1)yk|k−1 + (X − xk|k−1)xk|k−1√

(X − xk|k−1)2 + (Y − yk|k−1)2

+
√

(X − xk|k−1)2 + (Y − yk|k−1)2.
(3.17)

Therefore, the target position can be derived by

x =
d2D,k − τ2y − τ3

τ1
, (3.18)
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y =
d2D,k − τ1x− τ3

τ2
. (3.19)

The FG for the positions detection is illustrated in Fig. 3.4. Due to the
space limitation, only one target position is estimated through the proposed
FG. The positions of the rest of the targets can be obtained in the same
way. First of all, the multiple targets are recognized by using the proposed
sensor association. After the sensor association process, the measured DOA
and TOA messages are calculated by the measurement function node (FN)
Dn. The calculated mean and variance, i.e., (mϕ,n, σ2

ϕ,n) and (md,n, σ2
d,n),

are passed through DOA-TOA switching FN Cn. In this node, either DOA
or TOA message is selected, according to Algorithm 1, and is sent to the
iteration FN. Let ηn denote the DOA or TOA message from the DOA-TOA
switching FN. Let ξjx,n and ξjy,n denote downward messages from the iteration
FN hn to the estimated target FN Jx and Jy, respectively. Then, ρjx,n and
ρjy,n are the upward messages from Jx and Jy to hn, respectively. If the
DOA measurement is selected by node Cn, ηn denotes the DOA message,
i.e., (mϕ,n, σ2

ϕ,n). Otherwise, (md,n, σ2
d,n) denotes the mean and the variance

of the TOA message. According to equations (3.8 - 3.13) and equations (3.15
- 3.19), the iteration process of DOA messages is described as follows.

• Update of downward messages:

mξjx,n
=

1

λ1,n
mηn −

λ2,n
λ1,n

mρjy,n
− λ3,n
λ1,n

, (3.20)

σ2
ξjx,n

=
1

λ21,n
σ2
ηn +

(
λ2,n
λ1,n

)2

σ2
ρjy,n

, (3.21)

mξjy,n
=

1

λ2,n
mηn −

λ1,n
λ2,n

mρjx,n
− λ3,n
λ2,n

, (3.22)

σ2
ξjy,n

=
1

λ22,n
σ2
ηn +

(
λ1,n
λ2,n

)2

σ2
ρjx,n

. (3.23)

If the TOA measurement is selected by the node Cn, ηn denotes the
TOA message, i.e., (md,n, σ2

d,n), where only the constants λ1, λ2 and
λ3 are replaced by the constants τ1, τ2 and τ3.

• Update of upward messages:

1

σ2
ρjx,n

=
N∑

i=1,i 6=n

1

σ2
ξjx,i

, (3.24)

mρjx,n
= σ2

ρjx,n
·

N∑
i=1,i 6=n

mξjx,i

σ2
ξjx,i

, (3.25)
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1

σ2
ρjy,n

=
N∑

i=1,i 6=n

1

σ2
ξjy,i

, (3.26)

and

mρjy,n
= σ2

ρjy,n
·

N∑
i=1,i 6=n

mξjy,i

σ2
ξjy,i

. (3.27)

The iteration is performed until convergence or until the maximum
iteration time is reached. Finally, the estimated position is obtained
by (mjx , mjy), which can be given by

1

σ2
jx

=
N∑
i=1

1

σ2
ξjx,i

, (3.28)

1

σ2
jy

=
N∑
i=1

1

σ2
ξjy,i

, (3.29)

mjx = σ2
jx ·

N∑
i=1

mξjx,i

σ2
ξjx,i

, (3.30)

and

mjy = σ2
jy ·

N∑
i=1

mξjy,i

σ2
ξjy,i

. (3.31)

3.1.5 Simulation Results

In this sub-chapter, results of a series of simulations conducted to evaluate the
proposed FG-GE algorithms in the 2D, three targets scenario are presented.

The positions of three targets were set at (10, 47.5), (22.6, 41.6) and (28.2,
53.3). Three sensors were located at (-20, -10), (45, 110) and (100, 30). In
the 2D geolocation, number of the sensors needed to identify the positions of
the targets is common, regardless of how many targets exist. This is because
the sensor association makes FGs for each target independent. As shown in
Fig. 3.4, at least three sensors are need to exchange the messages in each
FG. According to the assumptions discussed before, the measured DOAs
and TOAs suffer from wihte Gaussian error. Let sensors obtain 60 DOA
and TOA samples having standard deviation σϕ = 3◦ and σd = 15 (meter),
respectively. Let the maximum iteration time J = 10. The convergence
behavior is shown in Fig. 3.5, with the initial guess was set at (0, 0). It can
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Figure 3.5: Convergence performance of FG-GE in 2D scenario

Figure 3.6: Trajectories of three targets with 3 sensors and 10 iterations
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Figure 3.7: Comparison between the average RMSE and the CRLB

be found that even the initial guess is very far away form the 3 targets, with
7 or 8 iterations, they converge into the points very close to the true targets
positions. Moreover, the trajectories of three targets with 10 iterations are
shown in Fig. 3.6.

The performance accuracy of the proposed FG-GE algorithm is evaluated
by comparing the average Root Mean Square Error (RMSE) with the CRLB.
The result is shown in Fig. 3.7. Obviously, the gaps between the average
RMSE obtained by the simulations and the CRLBs are very small, especially
in the value range of small σϕ.

3.2 Multi-target Position Detection in 3D sce-

nario

3.2.1 System Model

In the 3D scenario, ϕn is the same measurement as in the X-Y plane expressed
by equation (3.1). Another measurement of DOA θ, as shown in Fig. 3.8, is
the elevation angle given by

θ̂n,k = h(θn,k) + uθ,n,k (3.32)

28



Figure 3.8: System model in 3D scenario

at timing k, with uθ,n,k ∼ N (0, σ2
θ) the measurement error. The true DOA

h(θn,k) is given by

h(θn,k) = arctan

(√
(Yn − yk)2 + (Xn − xk)2

Zn − zk

)
. (3.33)

The measurement of TOA in the 3D scenario is given by

d̂3D,n,k =
√

(Xn − xk)2 + (Yn − yk)2 + (Zn − zk)2 + v3D,n,k (3.34)

with v3D,n,k ∼ N (0, σ2
d) the measurement error.

3.2.2 Sensor Association

In the 3D scenario, the sensor association is also used to solve the matching
problem between the multiple distributed sensors and anonymous targets.
Similarly to the 2D scenario, by using the trigonometric functions, the rough
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Figure 3.9: Rough estimates of the targets in 3D scenario

estimates of the targets can be given by x̂n,i
ŷn,i
ẑn,i

 =

 dn,i × sin θn,i × cosϕn,i ±Xn

dn,i × cos θn,i × sinϕn,i ± Yn
dn,i × cos θn,i ± Zn

. (3.35)

As shown in Fig.3.9, the positions in each cluster are also largely scattered
because of the same reason as in the 2D case.

3.2.3 Projection Algorithm

In this sub-chapter, the proposed geolocation technique in the 3D scenario is
described. In the 3D scenario, since the situation where the multiple targets
are on the same line originating from a sensor rarely exists, the DOA-TOA
switching algorithm is omitted. This sub-chapter proposes a technique for
estimating the multi-target positions, which can be performed using three
projected 2D FGs.

First of all, we project the target onto the Y-Z and X-Z planes as shown
in Fig.3.10. To combine the three projected 2D FGs for identifying target
position, we need the angle information on the projected plane between the
projected point and each sensor. Assume that sensors can measure the
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Figure 3.10: Projection onto 2D planes

azimuth angle ϕ, the elevation angle θ and the relative distance d based
on equations (3.1), (3.32) and (3.34). The relative distance in the (X, Y, Z)
coordinate can be calculated as 4x4y

4z

 =

 d× sin θ × cosϕ
d× cos θ × sinϕ

d× cos θ

. (3.36)

The tangent of the angle υ between the projected point (x, z) and the sensor
is given by

tan υ =
4x
4z

= tan θ · cosϕ. (3.37)

The tangent of the angle γ between the projection point (y, z) and the sensor
is given by

tan γ =
4y
4z

= tan θ · sinϕ. (3.38)

The mean and the variance of the product of two independent Gaussian
random variables, a ∼ N (ma, σ

2
a) and b ∼ N (mb, σ

2
b ), can be given by

ma·b = ma ·mb, (3.39)
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σ2
a·b = m2

a · σ2
b +m2

b · σ2
a + σ2

a · σ2
b , (3.40)

where a, b ∈ {tan θ, cosϕ} or {tan θ, sinϕ}. It should be noted that equations
(3.37) and (3.38) are nonlinear function which does not allow us to use the
Gaussian assumption of the messages in FG. Therefore, the first-order TS
expansion is applied to approximate the trigonometric functions as,

f(α) ≈ f(mα) + f ′(mα)(α−mα), (3.41)

where f(α) is either tan θ, cosϕ or sinϕ, and f(mα) is either tan(mθ),
cos(mϕ) or sin(mϕ). Then, the mean and the variance (mf(α), σ

2
f(α)) can

be given by
mf(α) ≈ f(mα), (3.42)

σ2
f(α) ≈ [f ′(mα)]2 · σ2

α. (3.43)

The mean and the variance of the trigonometric function calculated from
equations (3.42) and (3.43) are summarized in TABLE 3.1.

Table 3.1: Approximated means and variances of related trigonometric
functions

Approximated Approximated
mean variance

tan(α) tan(mα) sec4(mα) ·σ2
α

sin(α) sin(mα) cos2(mα) ·σ2
α

cos(α) cos(mα) sin2(mα) ·σ2
α

With the approximation described above, the tangent of the angle υ can
further be expressed as

mtan(υ) = mtan(θ) ·mcos(ϕ), (3.44)

σ2
tan(υ) = m2

tan(θ)σ
2
sin(ϕ) +m2

sin(ϕ)σ
2
tan(θ) + σ2

tan(θ)σ
2
sin(ϕ). (3.45)

Again, by using equations (3.42) and (3.43), the mean and the variance of υ
can be obtained by

mυ ≈ arctan(mtan(υ)), (3.46)

σ2
υ ≈

σ2
tan(υ)

sec4(mυ)
. (3.47)

The mean and the variance of angle γ can also be calculated in the same
way.
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Figure 3.11: Proposed FG-GE in 3D scenario

3.2.4 Factor Graph-based Geolocation

In the same way as the proposed FG algorithm in the 2D scenario was derived,
we apply the first-order TS expansion to approximate the true DOA ϕk, υk
and γk at the timing k. Since ϕk has been discussed in the 2D scenario, only
υk and γk are discussed in this sub-chapter. Note that the true DOA υk and
γk are given by

υk = arctan

(
X − xυ,k
Z − zυ,k

)
, (3.48)

γk = arctan

(
Y − yυ,k
Z − zυ,k

)
. (3.49)

By using the first-order TS expansion to approximate equation (3.48),
centered at the point sυ,k|k−1, υk can further be expressed as

υk ≈ a1xυ,k + a2zυ,k + a3, (3.50)

where

a1 =
−(Z − zυ,k|k−1)

(Z − zυ,k|k−1)2 + (X − xυ,k|k−1)2
, (3.51)

a2 =
X − xυ,k|k−1

(Z − zυ,k|k−1)2 + (X − xυ,k|k−1)2
, (3.52)
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a3 =
(Z − zυ,k|k−1)xυ,k|k−1 − (X − xυ,k|k−1)zυ,k|k−1

(Z − zυ,k|k−1)2 + (X − xυ,k|k−1)2

+ arctan

(
X − xυ,k|k−1
Z − zυ,k|k−1

)
.

(3.53)

Therefore, the target position can be expressed as

xυ,k =
υk − a2zυ,k − a3

a1
, (3.54)

zυ,k =
υk − a1xυ,k − a3

a2
. (3.55)

Similarly, γk can be expressed as

γk ≈ b1yγ,k + b2zγ,k + b3, (3.56)

where

b1 =
−(Z − zγ,k|k−1)

(Z − zγ,k|k−1)2 + (Y − yγ,k|k−1)2
, (3.57)

b2 =
Y − yγ,k|k−1

(Z − zγ,k|k−1)2 + (Y − yγ,k|k−1)2
, (3.58)

b3 =
(Z − zγ,k|k−1)yγ,k|k−1 − (Y − yγ,k|k−1)zγ,k|k−1

(Z − zγ,k|k−1)2 + (Y − yγ,k|k−1)2

+ arctan

(
Y − yγ,k|k−1
Z − zγ,k|k−1

)
.

(3.59)

The target position can then be expressed by

yγ,k =
γk − b2zγ,k − b3

b1
, (3.60)

zγ,k =
γk − b1yγ,k − b3

b2
. (3.61)

According to equations (3.8) - (3.13) and equations (3.48) - (3.61), the FG-
GE in 3D (3D FG-GE) using the three projected planes is illustrated in
Fig.3.11. A new function node, combination function node, is introduced
between iteration function node and estimated target function node. In the
combination function node, the fact that the product of two independent
Gaussian PDFs, following N (ma, σ

2
a) and N (mb, σ

2
b ), becomes also Gaussian

PDF with N
(
maσ2

b+mbσ
2
a

σ2
a+σ

2
b

, 1
1

σ2a
+ 1

σ2
b

)
is used. Therefore, the means and the
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variances of the message for the combination function node can be calculated
by

mjx =
mξjx,ϕ

· σ2
ξjx,υ

+mξjx,υ
· σ2

ξjx,ϕ

σ2
ξjx,ϕ

+ σ2
ξjx,υ

, (3.62)

mjy =
mξjy,ϕ

· σ2
ξjy,γ

+mξjy,γ
· σ2

ξjy,ϕ

σ2
ξjy,ϕ

+ σ2
ξjy,γ

, (3.63)

mjz =
mξjz,υ

· σ2
ξjz,γ

+mξjz,γ
· σ2

ξjz,υ

σ2
ξjz,υ

+ σ2
ξjz,γ

, (3.64)

and

σ2
jx =

1
1

σ2
ξjx,ϕ

+ 1
σ2
ξjx,υ

, (3.65)

σ2
jy =

1
1

σ2
ξjy,ϕ

+ 1
σ2
ξjy,γ

, (3.66)

σ2
jz =

1
1

σ2
ξjz,υ

+ 1
σ2
ξjz,γ

. (3.67)

3.2.5 Simulation Results

As mentioned before, in the 3D scenario, elevation angle θ is assumed to be
obtained from the distributed sensors. Since the disadvantageous situations
of TOA-only or DOA-only rarely occur in 3D scenario, the FG-GE based on
the DOA-only is utilized in the simulation, and the switching algorithm is
omitted.

All other parameters are the same as the 2D’s case, except that the
positions of the distributed sensors and the initial target points were changed:
the three distributed sensors were located at (-20, -30, -10), (45, 110, 55) and
(100, 30, 60). In 3D geolocation, also three sensors are needed regardless of
target numbers. This is because with the proposed technique, 3D geolocation
is decomposed into three 2D FG-based geolocations. The initial points of
three targets were set at (10, 47.5, 12), (22.6, 41.6, 65) and (48.2, 53.3,
80). We assume that each sensor can obtain 60 samples of azimuth ϕ and
elevation θ, with σϕ = σθ = 3◦. The accuracy of the proposed 3D FG-GE
was evaluated by changing σϕ and σθ values. It should be noted that σϕ
and σθ may differ among the distributed sensors in practice. However, in the
simulation, we assume that the DOA measurements of all sensors have the
same standard deviation. Therefore, we set σϕ = σθ. It is found from Fig.
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3.12 that the average RMSEs of the three targets are small, especially when
σϕ and σθ values are in a small value range.

Moreover, we compared the proposed technique with conventional linear
least-square (LS) detection algorithm to evaluate the performance. As in [34],
the position estimate [mx,my,mz] of the LS algorithm is given by mx

my

mz

 = (UTU)−1UTV, (3.68)

where U = [U1, U2, · · · , UN ]T and V = [V1, V2, · · · , VN ]T . It should be noted
that the sensor index is omitted for simplicity. The vector U and V are given
by

U =

 − cot(mϕ) 1 0
1 0 − sin(mϕ) tan(mθ)
0 1 − cos(mϕ) tan(mθ)

, (3.69)

V =

 Y −X cot(mϕ)
X − Z sin(mϕ) tan(mθ)
Y − Z cos(mϕ) tan(mθ)

. (3.70)

As shown in Fig. 3.13, it is obvious that the proposed technique has more
accurate performance than conventional linear LS detection algorithm.
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Figure 3.12: Average RMSE versus variance for FG-GE in 3D scenario

Figure 3.13: Average RMSE comparison between FG and LS in 3D scenario
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Chapter 4

Factor Graph-based Tracking

In this chapter, FG-based tracking algorithm with EKF is proposed to track
the multi-target trajectories in the 2D and 3D scenarios. The detailed
techniques are described in the following sub-chapters. The simulations of
two scenarios are also provided to evaluate the performance of the tracking
algorithm.

4.1 System Model

For the tracking system, the multi-target non-linear discrete state-space
model (SSM) is used, as in [35]. I anonymous target positions are located
in sk = [xk, yk]

T or sk = [xk, yk, zk]
T at timing k in the 2D and 3D scenarios,

respectively. The SSM equation is given by

sk = f(sk−1) + wk, (4.1)

where f(·) is a non-linear function, and wk = [wx,k, wy,k]
T or wk =

[wx,k, wy,k, wz,k]
T the white Gaussian noise vector in the 2D and 3D scenarios,

respectively. In order to keep the Gaussianity of the messages in the FG, the
first order Taylor series (TS) expansion needs to be used to approximate f(·)
by a linear function. The first order TS is given by

f(sk−1) ≈ f(α) + f ′(α)(sk−1 − α), (4.2)

where α is the center point of the TS expansion, f(α) is the current position
sk−1, and the first order derivative f ′(α)(sk−1−α) = vk−1 ·4t is the distance
between sk−1 and sk without loss of generality, we normalize 4t = 1. Then,
equation (4.1) can be rewritten as

sk ≈ sk−1 + vk−1 + wk. (4.3)

The velocity vk−1 is updated by EKF. The observation state jk is given by

jk = g(sk) + ek (4.4)
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with ek ∼ N (0, σ2
e) the observation noise. Since ek is unknown, we use the

variance of ϕk that achieves the smallest σ2
e , which can be calculated from

the CRLB [35].

4.2 Extend Kalman Filter

The objective of EKF is to find the maximum posterior probability p(sk,vk|j1:k),
where subscript 1 : k is the measurement data series from the timing 1 to k.
As in [35], the posterior probability p(sk,vk|j1:k) can be given by

p(sk,vk|j1:k) =
∑
∼sk,∼vk

p(s1:k,v1:k|j1:k), (4.5)

where∼ denotes the operator of the exclusion. According to Bayes’s theorem,
the joint distribution (4.5) can be further expressed as

p(s1:k,v1:k|j1:k) =
p(jk|s1:k,v1:k, j1:k−1)p(s1:k,v1:k, j1:k−1)

p(j1:k)
. (4.6)

Due to the fact that jk is only determined by sk and p(j1:k) is known and
common to all the time index 1 : k, and hence can be omitted, equation (4.6)
can be derived as

p(s1:k,v1:k|j1:k) ∝ p(jk|sk)p(s1:k,v1:k, j1:k−1). (4.7)

Furthermore,

p(s1:k,v1:k, j1:k−1)

= p(sk|sk−1,vk−1)p(vk|vk−1)p(s1:k−1,v1:k−1|j1:k−1)p(j1:k−1)
∝ p(sk|sk−1,vk−1)p(vk|vk−1)p(s1:k−1,v1:k−1|j1:k−1)

(4.8)

where j1:k−1 is ignored hence only sk is determined by sk−1 and vk−1. Further
more, vk is only determined by vk−1. p(s1:k−1,v1:k−1|j1:k−1) is recursively re-
lated to the state at the previous timing. Therefore, by combining equations
(4.7) and (4.8), the posterior probability p(sk,vk|j1:k) can be derived as follow

p(s1:k,v1:k|j1:k)

∝
∏
1:k

p(sk|sk−1,vk−1)p(vk|vk−1)p(jk|sk). (4.9)

where
∏

represents timing series from 1 to k.

40



Figure 4.1: Proposed FG-GE-EKF

4.3 Factor Graph-based Tracking

In this sub-chapter, the FG for tracking based on EKF illustrated in Fig.
4.1. According to equation (4.9). The EKF process can be divided into 3
parts as follow.

4.3.1 State Prediction

Based on the outputs of FG-GE-EKF at previous timing k−1, the prediction
message of the next state sk|k−1, as shown in Fig. 4.1, can be given by

µc(sk|k−1)

=
∑
sk−1

∑
vk−1

f(sk|k−1|sk−1,vk−1)µa(sk−1)µb(vk−1), (4.10)

where the messages µa(sk−1) and µb(vk−1) are from previous state at the
timing k − 1, with the function f(sk|k−1|sk−1,vk−1) = sk−1 + vk−1. It should
be noted that since the messages are assumed to be statically independent,
the covariance matrix Pk|k in equations 2.13 - 2.15 is I.

4.3.2 State Update

The current state can be obtained by using the current observation jk to refine
the state prediction sk|k−1, according to the EKF algorithm. Therefore, the
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current state sk can be given by

µe(sk) = µc(sk|k−1)µd(jk), (4.11)

where µd(jk) is the observed value obtained by the proposed position detec-
tion FG.

4.3.3 Gradient Update

Since the gradient vector vk is only determined by vk−1, we introduce the
correction term v̂k to update vk. The correction term v̂k can be obtained
by letting two adjacent locations be divided by unit time. Therefore, the
message v̂k is given by

µg(v̂k) =
∑
sk−1

∑
sk

f(v̂k|sk−1, sk)µa(sk−1)µf (sk), (4.12)

where µf (sk) is the current state message, and the function f(v̂k|sk−1, sk) =
sk − sk−1. Then, the update of the gradient vector vk can be obtained by

µh(vk) = µb(vk−1)µg(v̂k). (4.13)

4.3.4 Simulation Results in 2D scenario

In this sub-chapter, results of a series of simulations conducted to evaluate
the proposed FG-GE-EKF algorithms in the 2D, three targets scenario are
presented. The process equations used in the simulation for the three target
case are shown as below:

x1,k = x1,k−1 + cos

(
x1,k−1Φ

k

)
+ ωx,k, (4.14)

y1,k = y1,k−1 + sin

(
x1,k−1Φ

k

)
+ ωy,k, (4.15)

x2,k = x2,k−1 + cos (0.2kΦ) + ωx,k, (4.16)

y2,k = y2,k−1 + sin (0.2kΦ) + ωy,k, (4.17)

x3,k = x3,k−1 + (0.02k − 0.074) + ωx,k, (4.18)

y3,k = y3,k−1 + (0.03k − 0.074) + ωy,k, (4.19)

where Φ was set at π/10 and the timing k = {1, 2, · · · , 40}. The initial points
of three targets were set at (10, 47.5), (22.6, 41.6) and (28.2, 53.3). Three
sensors were located at (-20, -10), (45, 110) and (100, 30). At each timing,
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(a) Proposed joint DOA and TOA tracking algo-
rithm

(b) DOA only based tracking algorithm

(c) TOA only based tracking algorithm

Figure 4.2: Performance comparison between the proposed and each single
schemes

43



Table 4.1: Average RMSE comparison between the proposed and each single
schemes

Average RMSE (meter)
Prop.FG-GE DOA based FG-GE TOA based FG-GE

target1 0.28 0.87 1.15
target2 0.35 0.86 1.04
target3 0.29 0.88 1.40

Tracking with Tracking with Tracking with
Prop.FG-GE DOA based FG-GE TOA based FG-GE

target1 0.79 1.89 2.46
target2 1.73 1.99 5.02
target3 1.92 1.89 3.35

sensors obtain 60 DOA and TOA samples having standard deviation σϕ = 3◦

and σd = 15 (meter), respectively. Let the maximum iteration time J = 10
and σ2

ω = 0.05.

In the simulation, the proposed algorithm which performs the joint DOA-
TOA algorithm, was compared with the algorithm using DOA-only and
TOA-only in FG-GE and FG-GE-EKF. The estimated positions of the three
targets using FG-GE, as well as the tracking trajectories using FG-GE-EKF
are shown in Fig.4.2. Clearly, it can be observed that the proposed joint
DOA-TOA algorithm can achieve the highest accuracy in tracking and target
acquisition. The co-located targets can also be estimated based on the each
previous state from proposed FG-GE-EKF. From the simulation, even though
two targets intersect at a point, next state can be accurately estimated, by
referring to the previous state. Moreover, to evaluate the accuracy of FG-
GE and FG-GE-EKF, the average RMSE with the three algorithms was
calculated, of which results are shown in TABLE 4.1.

4.3.5 Simulation Results in 3D scenario

In the 3D tracking scenario, the process equations of three targets in the
X−Y coordinate are the same as equations 4.14 - 4.19, and only the process
equations in the Z coordinate provides additional information. The process
equations in the Z coordinate used in the simulation are shown below:

z1,k = z1,k−1 + sin

(
z1,k−1Φ

k

)
+ ωz,k, (4.20)

z2,k = z2,k−1 + cos (0.2kΦ) + ωz,k, (4.21)

z3,k = z3,k−1 + (0.03k − 0.032) + ωz,k. (4.22)
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Figure 4.3: tracking trajectories in 3D scenario

All other parameters are the same as the 3D’s geolocation case. By applying
the proposed 3D FG-GE and FG-GE-EKF algorithms, the estimated posi-
tions of the three targets and the tracking trajectories are shown in Fig. 4.3.
It is clearly seen that the estimated positions and tracking trajectories are
very close to the real paths in the 3D coordinate.

Then, to evaluate the performance of the position detection and tracking
of three targets, the RMSEs of 3D FG-GE and FG-GE-EKF versus timing
index are calculated. The results are shown in Fig. 4.4. From the simulation
results, the average RMSEs with 3D FG-GE and FG-GE-EKF are very small,
which demonstrates excellent performance of the proposed algorithms.
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(a) The RMSE 0f 3D FG-GE

(b) The RMSE 0f 3D FG-GE-EKF

Figure 4.4: Performance of position detection and tracking in 3D scenario
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Chapter 5

Information Theoretic Background

In this chapter, we provide the information theoretic background of geoloca-
tion, from the viewpoint of the relationship between Chief Executive Office
(CEO) and distributed hypothesis testing (DHT) problems.

5.1 CEO and DHT problem

Figure 5.1: CEO problem based on Geolocation

Recently, the relationship between the CEO and DHT problems has
attracted attention in the network information theory community [36, 37].
Therefore, in this chapter, we briefly describe the information theoretic
background of geolocation from the viewpoint of the relationship between
them. The fundamental difference between the CEO and DHT problems
are:

• CEO problem discusses the rate-distortion pair of each link between the
sensors and the destination, where the observations are noise corrupted,
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Figure 5.2: DHT based on Geolocation

and furthermore, distorted by the encoding and decoding processes.
The purpose of the use of lossy encoding and decoding is because
the links between sensors and the destination is not broad enough.
The destination then combines the information obtained by the joint
decoder (JD) to achieve the best-estimates of the observation target.

• DHT problem aims to estimate the parameters of the distribution of
the sensing target, for example, mean and variance of the sensing
target positions from the observations, reported to the destination. The
rates of each link between the sensors and the destination are, in the
same way as in the CEO problem, limited. Hence, lossy encoding and
decoding are needed, however, rate-distortion pair is out of the scope
for the DHT problem.

As shown in Fig. 5.1, geolocation can be seen as an example of the CEO
problem, if its objective is to estimate the DOA θ̂i and TOA τ̂i of the i-th
sensor, with the help of the reported DOA and TOA information from other
sensors. The target position (x, y) is not the objective in this case.

On the contrary, as shown in Fig. 5.2, if the objective is to estimate
the target position (x, y) from the noise-corrupted reported information of
the wireless parameters, DOA and TOA, sent from all the sensors. The
judgement at the center belongs to the DHT problem. The hypothesis is:

H0 : (x, y) = (x̂, ŷ) (5.1)
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H1 : (x, y) 6= (x̂, ŷ) (5.2)

The type I error is defined by

Error type I : H0 is correct but H1 was chosen; (5.3)

and the type II error is defined by

Error type II : H0 is incorrect but H0 was chosen. (5.4)

In this case, the objective is to minimize type II error η0 under the
constraint that the probability of type I error is smaller than or equal to
ε0, i.e.,

Minimize Prob(typeII),

subject to Prob(typeI) 6 ε0.

If the variance of the location (x, y) is not known, we set the acceptable
deviation ε of the estimation, as√

(x− x̂)2 + (y − ŷ)2 6 ε. (5.5)

Currently, deriving the error exponent of type II, or identifying the two-
dimensional curve showing the relationship between ε0 and η0 is a hot topic
in this research area. However, more detailed analysis is out of the scope of
this thesis.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we have proposed a distributed sensors-based wireless geolo-
cation technique for identifying the multiple targets positions and tracking.
The objective of this research is to provide a technique which can accurately
estimate and track the positions of multiple targets dynamically without
requiring high computation effort. Therefore, we proposed a multi-target
joint TOA-DOA based geolocation and tracking algorithm both in 2D and
3D scenarios. We also proposed a new sensor association algorithm that
makes correct matching between the observations and their corresponding
FGs. With the proposed sensor association algorithm, the matching problem
between the observations and the targets can be solved in both 2D and
3D scenarios. Furthermore, we proposed a TOA-DOA switching algorithm
to compensate each technique’s shortcomings. According to the simulation
results, the proposed joint TOA-DOA algorithm can achieve lower average
RMSEs than that with DOA-only and TOA-only techniques. The accuracy
of the estimated positions of the multiple targets is evaluated by a series
of simulations. The performances of the proposed FG-GE technique have
been compared with the CRLB. It has been shown that the gaps between
the RMSE obtained by the simulation results and the CRLB are very
small even though the initial guess points are very far away from the real
target positions. For the purpose of target tracking, FG of EKF is further
combined with FG-GE, referred to as FG-GE-EKF, which can track multi-
target dynamically both in 2D and 3D scenarios. It has been shown that the
FG-GE-EKF algorithm can improve the tracking accuracy while reducing
computational complexity. Finally, we have briefly discussed the relationship
between the CEO and DHT problems with the scope of their application to
geolocation as a theoretical basis.
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6.2 Future Work

To apply the major results of this thesis to more general and practical wireless
communications network-based geolocation, there are several issues left as
future work, which are listed as follows:

• The major problem of TOA technique is that it requires a time
reference, common to all unknown radio wave emitters, that specifies
the absolute departure time of the signal transmission. Therefore, the
use of TDOA instead of TOA, and combining it with DOA is reasonable
to eliminate the necessity of the time reference, with the aim of the
system applicability to asynchronous systems.

• In this thesis, we have only focused on estimating and tracking the
target positions with one single fusion center. Since 5G, B5G and
6G systems, positioning-based services are supposed to be widely
used, we should consider the combined use of the geolocation and
tracking techniques from more practical viewpoint towards position-
based services concept creation in wireless communication systems.

• By applying geolocation techniques in the wireless communications
networks, instead of single fusion center, multiple fusion centers may be
available in 5G, B5G and 6G systems where messages are exchanged,
with the aim of improving the accuracy of geolocation and tracking in
various practical scenarios. The common thread can be summarized as:

(1) cooperating with other fusion centers by using backhaul networks;

(2) achieving high gain beam forming steered stably to the users to
compensate the propagation loss in high frequency bands;

(3) utilizing the sensor diversity for the cooperation among multi-base
stations;

(4) avoiding vehicle-to-vehicle or vehicle-to-human collisions by using
EKF predictor through wireless communications networks.
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Appendix A

Calculation of the observation
noise

In this chapter, the observation noise σ2
e is derived for the proposed FG-GE-

EKF based on the CRLB derivation. In 2D scenario, σ2
e value can be derived

from the measured DOA variable ϕ. Moreover, in 3D scenario, based on
the proposed 3D FG-GE algorithm, the target position is projected onto the
three planes. The observation noise of each projection point can be similarly
derived from the angle information υ and γ. Due to the space limitation,
only the derivation of σ2

e on X − Y plane is provided. According to [2, 38],
the CRLB is given by

CRLB = trace[F−1(s)], (A.1)

where F is the Fisher information matrix (FIM). Given the PDF of the
variable ϕ with L samples, the FIM can be derived by

F (s) = E

[(
∂

∂s
ln p(ϕ̂)

)2
]
, (A.2)

where the PDF function p(·) is given by

p(ϕ̂) =
L∏
l=1

1√
2πσ2

ϕ

exp

[
− 1

2σ2
ϕ

(ϕ̂l − ϕ)2
]
. (A.3)

Moreover, (77) can be expressed by

E

[(
∂

∂s
ln p(ϕ̂)

)2
]

= −E
[
∂2

∂ϕ2
ln p(ϕ̂)

]
. (A.4)

According to [35],
∂2

∂ϕ2
ln p(ϕ̂) = − L

σ2
ϕ

. (A.5)

53



Then, the FIM can further be derived by

F (s) =
∂ϕ

∂s

T

E

[(
∂

∂ϕ
ln p(ϕ̂)

)T (
∂

∂ϕ
ln p(ϕ̂)

)]
∂ϕ

∂s

=
∂ϕ

∂s

T

E

[(
∂

∂ϕ
ln p(ϕ̂)

)2
]
∂ϕ

∂s

=
∂ϕ

∂s

T [ L
σ2
ϕ

]
∂ϕ

∂s
.

(A.6)

∂ϕ
∂s

denotes the Jacobin matrix, which is given by

J = ∂ϕ
∂s

=


∂ϕ1

∂x
∂ϕ1

∂y
∂ϕ2

∂x
∂ϕ2

∂y
...

...
∂ϕN
∂x

∂ϕN
∂y

, (A.7)

with
∂ϕn
∂x

=
Yn − y
d2n

, (A.8)

∂ϕn
∂y

=
−(Xn − x)

d2n
, (A.9)

where dn denotes the Euclidean distance between target and sensor n in
X − Y plane and n = {1, 2, · · · , N}. In this paper, the prediction state
xk|k−1 and yk|k−1 is used at timing k because the real position target (xk, yk)
is unknown to the system. Therefore, the Jacobin matrix can be expressed
by

Jk|k−1 =


Y1−yk|k−1

d21

−(X1−xk|k−1)

d21
Y2−yk|k−1

d22

−(X2−xk|k−1)

d22
...

...
YN−yk|k−1

d2N

−(XN−xk|k−1)

d2N

. (A.10)

Finally, the CRLB is derived by

CRLB = {diag[(JT
k|k−1

∑−1

ϕ
Jk|k−1)L]}−1. (A.11)
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