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Abstract

With the rapid spread and development of the Internet, security protocols
that guarantee safe and secure communication on the Internet are becom-
ing more and more popular. Although these security protocols have been
carefully designed by security experts, it was not uncommon for security at-
tacks such as interception, tampering and impersonation to happen, leading
to lots of serious damages. Ensuring the reliability of security protocols is
thus absolutely important. Many approaches have been proposed against the
unexpected flaws in these protocols. In formal method, some techniques for
formally verifying the correctness of security protocols have been extensively
studied.

This research focuses on formal verification of the correctness of authen-
tication protocols and We survey case studies conducted in the past as well
as to conduct new case studies. Authentication is the process of verifying the
identity of a person, an object, a computer, a program, etc. It is an indispens-
able technology for preventing unauthorized operations in network systems
(also known as access control). Protocols are communication conventions
that are necessary to communicate with each other. Thus, an authentication
protocol is a communication convention to achieve authentication. Comput-
ers, printers, and programs are used and participated in by an unspecified
number of entities, and only encoded information is exchanged. Therefore,
there is a high possibility of eavesdropping, falsification, and impersonation
of communication. There- fore, authentication protocols are intended to real-
ize authentication for secure communication in such insecure communication
channels.

This research focuses on two case studies of authentication protocols are
presented with the Identify-Friend-or-Foe-System protocol (IFF protocol or
just IFF) and the Needham-Schroeder-Lowe Public-Key protocol (NSLPK
protocol or just NSLPK). NSLPK can be regarded as an advanced au-
thentication protocol of IFF. We study the specification of two protocols
in CafeOBJ, which is a formal specification language, and understand the
”proof scores” to prove that they enjoy some desired properties. We present
two more ways of verification that IFF enjoys some properties by using
CafeInMaude Proof Assistant (CiMPA), and CafeInMaude Proof Genera-
tor (CiMPG). By achieving the objectives of this research, we will be able
to acquire techniques to mitigate the number of authentication protocol fail-
ures, which can contribute to safer and more secure shopping on e-commerce
sites and safer and more secure communication on the Internet.



Keywords : CafeOBJ, CiMPG, CiMPA, proof score, algebraic specifi-
cation language, authentication protocol
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Chapter 1

Introduction

In Chapter 1, the background and purpose of this research project and the
structure of the subsequent chapters are presented.

1.1 Overview

With the rapid spread and development of the Internet, security protocols
that guarantee safe and secure communication on the Internet are becom-
ing more and more popular. Although these security protocols have been
carefully designed by security experts, it was not uncommon for security at-
tacks such as interception, tampering and impersonation to happen, leading
to lots of serious damages. Ensuring the reliability of security protocols is
thus absolutely important. Many approaches have been proposed against the
unexpected flaws in these protocols. In formal method, some techniques for
formally verifying the correctness of security protocols have been extensively
studied.

1.2 Aims

This research focuses on formal verification of the correctness of authenti-
cation protocols and We survey case studies conducted in the past as well
as to conduct new case studies. This research focuses on two case studies
of authentication protocols are presented with the Identify-Friend-or-Foe-
System protocol (IFF protocol or just IFF) and the Needham-Schroeder-
Lowe Public-Key protocol (NSLPK protocol or just NSLPK). NSLPK can
be regarded as an advanced authentication protocol of IFF. We study the
specification of two protocols in CafeOBJ, which is a formal specification
language, and understand the ”proof scores” to prove that they enjoy some
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desired properties. We present two more ways of verification that IFF en-
joys some properties by using CafeInMaude Proof Assistant (CiMPA), and
CafeInMaude Proof Generator (CiMPG). By achieving the objectives of this
research, we will be able to acquire techniques to mitigate the number of au-
thentication protocol failures, which can contribute to safer and more secure
shopping on e-commerce sites and safer and more secure communication on
the Internet.

1.3 The structure of the subsequent chapters

The remainder of this report is organized as follows:
- Chapter 2 - Preliminaries gives some common notions and background
knowledge which are requirements for the rest of the report.
- Chapter 3 - Formal Verification of IFF Authentication Protocol with Proof
Scores presents the formal verification that IFF protocol enjoys some desired
properties by writing proof scores.
- Chapter 4 - Formal Verification of NSLPK Authentication Protocol with
Proof Scores presents the formal verification that NSLPK protocol enjoys
some desired properties by writing proof scores.
- Chapter 5 - Formal Verification of IFF Authentication Protocol with CiMPA
and CiMPG presents two more ways of the formal verification with IFF
protocol.
- Chapter 6 - Lessons Learned describes what we learned through the research
project.
- Chapter 7 - Conclusion summarizes the report and gives some pieces of our
future work.

2



Chapter 2

Preliminaries

This Chapter gives some common notions and background knowledge which
are requirements for the rest of the report.

2.1 Authentication protocol

2.1.1 What is authentication

Authentication is the process of verifying the identity of a person, an object,
a computer, a program, etc. It is an indispensable technology for preventing
unauthorized operations in network systems (also known as access control).

For example, in the authority management of a server in a network sys-
tem, after authenticating the identifiers of the users registered in the server
(who have accessed the server), a list called ACL is used to describe what
authority the subject has, and operations other than those listed in the list
are not allowed. In general, this kind of technology is used to manage com-
puter resources. In general, this technology is used to achieve secure access
control in network systems via the Internet.

2.1.2 What is Authentication protocol

Protocols are communication conventions that are necessary to communi-
cate with each other. Thus, an authentication protocol is a communication
convention to achieve authentication. Computers, printers, and programs
are used and participated in by an unspecified number of entities, and only
encoded information is exchanged. Therefore, there is a high possibility of
eavesdropping, falsification, and impersonation of communication. There-
fore, authentication protocols are intended to realize authentication for se-
cure communication in such insecure communication channels.
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2.1.3 Authentication implementation method

Authentication is the process of verifying the identity of a person, an ob-
ject, a computer, a program, etc. Mutual authentication is when two parties
authenticate each other. There are two main ways to achieve mutual authen-
tication using computers.
Method using shared information

This is a method of verification in which secret information is shared
between the verifier and the subject, and the verifier confirms whether or
not the subject possesses the secret information. Examples include password
authentication, shared key authentication, and biometric authentication.
Method using public key

It is a method of authentication using a public key and possession of the
corresponding private key. Examples include challenge-response authentica-
tion and authentication using digital signatures.

In both of these two methods, the information for authentication passes
through an insecure communication channel at least once, because the au-
thentication is ultimately done using a call from the subject to the verifier.
Therefore, the following is necessary for the implementation of these meth-
ods.
・Confidential information should not flow through the communi-
cation channel in plain text.
・That the call for authentication is different every time.
・Easy to change secret information for authentication.
・Easy to manage confidential information for authentication.

A report is an encrypted version of an identifier, key, nonce (random
number, etc., a report generated for each session), etc.

It is also necessary that the entity that is authenticating and the entity
that is using the authentication must match. Take postal service as an ex-
ample. In the postal service, when subject A sends a letter to subject B,
the flow is as shown in Figure 2.1. Subject A takes the mail to the nearest
post office (1), the mail is transferred between post offices (2), and subject B
receives the mail from the nearest post office (3). In this case, authentication
between post offices in (2) is only a secure communication in the transfer
between post offices, and does not guarantee the safety of the user. Even
if the authentication between post offices is done, if there is another person
who pretends to be Subject B, the mail that should have been sent to Subject
B may end up in the hands of another person. To ensure that the mail sent
by Subject A passes through the secure communication channel and reaches
Subject B, it is necessary to authenticate and encrypt the communication
between Subject A and B.
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Figure 2.1: Example of a post office

2.1.4 Threats in Communications

The threats that may be posed on communication paths without authenti-
cation and encryption between communicating entities are as follows
1.Interception:Unauthorized entities (attackers) intercepting calls.
2.Falsification:An attacker takes a call, falsifies it, and sends it as if it were
a legitimate call.
3.Hoax:Sending a report generated by an attacker to cause a malicious effect.
4.Masquerade:The attacker pretends to be a different entity.
5.Replay:An attacker uses the report, or a portion of it, to send it to an
unauthorized effect.

In order to achieve communication that eliminates these threats, it is
necessary to satisfy confidentiality (the property that only an appropriately
authorized entity can read the report in communication without an unin-
tended third party being able to decipher it) and integrity (the property
that the report in communication is genuine and has not been tampered
with, or can be detected if it has been tampered with) between two mutually
determined communication entities. In other words, it is enough to satisfy
the following requirements In other words, it is enough to satisfy the fol-
lowing requirements. In other words, it is necessary to prepare a tunnel-like
communication channel between two determined parties, as shown in Fig.
2.2, which is not subject to any observation by others, and to use that chan-
nel for all communication between the two parties, and the authentication
protocol must ensure such a communication channel.
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Figure 2.2: Secure communication channel

2.2 CafeOBJ

2.2.1 What is CafeOBJ

CafeOBJ is a language for verification (formal specification) and validation
of formal models, designed to support formal methods. CafeOBJ is a formal
specification language classified as an algebraic specification language, and
can be executed by interpreting the equations that make up the specification
as rewrite rules[4][5][6]. The flow of verification is as follows.
1.Understanding the problem and modeling it
2.Creating a CafeOBJ specification and formulating the properties
to be verified
3.Verification by CafeOBJ system

Each of 1 3 will be explained using a mutual exclusion protocol called
Qlock.

2.2.2 What is Qlock

When there is a resource shared by multiple processes, it is sometimes re-
quired that the resource be exclusively specified in the sense that at any
given time there is at most one process using the resource. Thus, a mutual
exclusion protocol is a mechanism for exclusive use of a shared resource, and
a mutual exclusion protocol realized by using an atomic queue is called a
Qlock. An atomic queue is a queue in which elements can be added, deleted,
etc. as indivisible operations.
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2.2.3 Understanding the problem and modeling it

Each process in Qlock behaves as follows. Each process i is in the other
region when it does not use the shared resource, and in the sensitive region
when it does. When each process i wants to specify a shared resource, it
adds the process identifier i to the end of the queue (put(queue,i)), waits
until i comes to the top of the queue (top(queue) = i), and then enters the
intervening region. When it finishes using the shared resource, it removes
the top of the queue (get(queue)) and returns to the rest of the region. Each
process i repeats this.

rm, wt, and cs are labels. When a process is in the other region, we say
it is in label rm. When it’s waiting to enter a sensitive area, say it’s on label
wt. When it is in a close region, we say it is in label cs. Initially, we assume
that all processes are in label rm and that queue is empty.

One of the properties of Qlock to be satisfied is mutual exclusivity, that
is, there is always at most one process in the intervening region, and this is
the property to be verified.

Figure 2.3: Behavior of each process

Modeling of states in observations
The behavior of Qlock is modeled by specifying the change in observable

values. The behavior of Qlock is modeled as an observation transition system
SQlock, where the state transition system represents the state by a collection
of observable values.

Since the observables that characterize the state of Qlock are the value
of queue and the position of each process, we prepare observation functions
queue and pc that take the state of SQlock as arguments and return these
values to represent their observables. That is, given the state s of SQlock and
the process identifier i, queue(s) and pc(s,i) represent the value of queue and
the position of process i in the snapshot of the execution of Qlock represented
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by the state s, respectively. The set of observation functions of SQlock is
defined as follows OQlock

OQlock{queue : Sys → Queue,
pc : Sys Pid → Label}

Sys, Queue, Pid, and Label represent the state, process identifier queue,
process identifier, and label type, respectively. OQlock is described as follows
in cafeOBJ.

op pc : Sys Pid -> Label
op queue : Sys -> Queue
op stands for operator, which declares an operation that takes the state

of the system as an argument; in the case of pc and queue, the return value
is a data type, so we declare an observation function.
Modeling of state transitions

The behavior of Qlock is represented as state transitions, and Qlock has
the following three execution units.
(1)Execution of put(queue,i)
(2)Execution of top(queue) = i
(3)Execution of get(queue)

These are represented by the transition functions want, try, and exit,
respectively. Given a state s and a process identifier i in SQlock, want(s,i),
try(s,i), and exit(s,i) represent the state after process i executes put(queue,i)
in state s, the state after repeating top(queue) = i once, and the state after
executing get(queue), respectively. and the state after executing get(queue).
The set TQlock of transition functions in SQlock is represented as follows.

TQlock{want : Sys Pid → Sys,
try : Sys Pid → Sys,
exit : Sys Pid → Sys}

TQlock is written as follows in CafeOBJ.
op want : Sys Pid -> Sys {constr}
op try : Sys Pid -> Sys {constr}
op exit : Sys Pid -> Sys {constr}
{constr} indicates that want, try, and exit are Sys terms.

Modeling the initial state
In the initial state init of SQlock, queue(init) returns the empty queue,

and for any process identifier i, pc(init,i) returns the label rm. The initial
state can be modeled as a set of states LQlock that satisfy this condition as
follows.

LQlock{init ∥ queue(init) = empty ∧
pc(init, i) = rm}

The initial state and the conditions it must satisfy are described in CafeOBJ
as follows
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op init : -> Sys {constr}
eq pc(init,I) = rs .
eq queue(init) = empty .
The two equations declared in eq declare the conditions that init must

satisfy. what I, rs, and empty are is defined elsewhere.

2.2.4 Creating a CafeOBJ specification and formulat-
ing the properties to be verified

In describing the observation transition system SQlock in CafeOBJ, we first
define the data types LABEL, PID, and QUEUE in CafeOBJ. the description
unit of CafeOBJ is a module, and the CafeOBJ specification is expressed in
modules.
Embedded Modules: BOOL

Some of the basic data types are provided as built-in modules. One of
them is the module BOOL. It declares a visible sort Bool that returns a
Boolean value, two arguments true and false that represent truth and falsity,
and basic operations on Boolean values, and defines their meanings in equa-
tions. The module BOOL is automatically imported into the user-defined
module, since it is the basis of logical computation for inference and verifi-
cation.
Specifications of Label : LABEL

mod! LABEL {
[Label]
ops rs ws cs : -> Label {constr}
eq (rs = ws) = false .
eq (rs = cs) = false .
eq (ws = cs) = false .
}
The three constants rm, ws, and cs, declared together in ops(operators),

correspond to the labels rm, ws, and cs, respectively.
process identifier : PID

mod* PID {
[ErrPid Pid < PidErr]
op none : -> ErrPid
var I : Pid
var EI : ErrPid
eq (I = EI) = false .
}
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CafeOBJ can order inclusion relations between sorts, and can handle
partial functions and error handling. pidErr is the upper sort for ErrPid and
Pid. none is a constant for ErrPid, and is provided as different from the
process identifier.
Specifications ofQueueing : QUEUE

mod! QUEUE(E :: TRIVerr) {
[EQueue NeQueue < Queue]
op empty : -> EQueue {constr}
op : Elt.E Queue -> NeQueue {constr}
op enq : Queue Elt.E -> NeQueue
op deq : Queue -> Queue
op top : EQueue -> ErrElt.E
op top : NeQueue -> Elt.E
op top : Queue -> EltErr.E
op \in : Elt Queue -> Bool
op del : Queue Elt.E -> Queue
var Q : Queue
vars X Y : Elt.E
eq enq(empty,X) = X empty .
eq enq(Y Q,X) = Y enq(Q,X) .
eq deq(empty) = empty .
eq deq(X Q) = Q .
eq top(empty) = err.E .
eq top(X Q) = X .
eq X \in empty = false .
eq X \textbackslash in (Y Q) = (if X = Y then true else X \in Q fi) .
eq del(empty,Y) = empty .
eq del(X Q,Y) = (if X = Y then Q else X del(Q,Y) fi) .
eq X \in enq(Q,Y) = (if X = Y then true else X \in Q fi) .
ceq X \in del(enq(Q,X),X) = false if not X \in Q .
ceq X \in del(enq(Q,Y),X) = X \in del(Q,X) if not X = Y .
ceq X \in del(Q,X) = false if not X \in Q .
}
E is a temporary argument of the parameterization module QUEUE,

whose requirements are specified by the temporary argument module TRIVerr.
The module TRIVerr is declared as follows: var Q: Queue declares that the
identifier Q is to be used as a variable of the sort Queue with equality to be
declared in this module.

mod* TRIVerr {
[ErrElt Elt < EltErr]
op err : -> ErrElt
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}
The module TRIVerr specifies the existence of a set, indicated by the

sort Elt, and one element that does not belong to that set, indicated by the
constant none.

The constant empty in module QUEUE indicates an empty queue, and
the operation indicates that the non-empty queue construct {constr} is a
construct attribute. Elt.E refers to the visible sort Elt of the temporary argu-
ment E. The operations enq, dep, top, and del represent the usual functions
of a queue, and their definitions are given by the equations.
Embodiment of the parameter module

The real arguments used when embodying a parameterization module
must meet the requirements specified in the temporary argument module
TRIVerr. In other words, the model of the real argument must be the model
of the temporary argument. The realization of the parameterization mod-
ule is done by mapping the elements of real arguments to the elements of
temporary arguments. The language element of CafePBJ that defines this
mapping is the view. The view for embodying a provisional argument E,
whose requirements are specified in the module TRIVerr, with the process
identifier PID is as follows.

view TRIVerr2PID from TRIVerr to PID
sort Elt -> Pid,
sort ErrElt -> ErrPid,
sort EltErr -> PidErr,
op err -> none,

CafeOBJ Specification of Observation Transition System
Now that we have created the CafeOBJ specifications for the required

data types, we can use them to write the CafeOBJ specification for SQlock

as follows
mod* QLOCK {
pr(LABEL + PID)
pr(QUEUE(E <= TRIVerr2PID))
[Sys]
op init : -> Sys {constr}
op want : Sys Pid -> Sys {constr}
op try : Sys Pid -> Sys {constr}
op exit : Sys Pid -> Sys {constr}
op pc : Sys Pid -> Label
op queue : Sys -> Queue
var S : Sys
vars I J : Pid
var Q : Queue
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eq pc(init,I) = rs .
eq queue(init) = empty .
op c-want : Sys Pid -> Bool
eq c-want(S,I) = (pc(S,I) = rs) .
ceq pc(want(S,I),J) = (if I = J then ws else pc(S,J) fi) if c-want(S,I) .
ceq queue(want(S,I)) = enq(queue(S),I) if c-want(S,I) .
ceq want(S,I) = S if not c-want(S,I) .
op c-try : Sys Pid -> Bool
eq c-try(S,I) = (pc(S,I) = ws and top(queue(S)) = I) .
ceq pc(try(S,I),J) = (if I = J then cs else pc(S,J) fi) if c-try(S,I) .
eq queue(try(S,I)) = queue(S) .
ceq try(S,I) = S if not c-try(S,I) .
op c-exit : Sys Pid -> Bool
eq c-exit(S,I) = (pc(S,I) = cs) .
ceq pc(exit(S,I),J) = (if I = J then rs else pc(S,J) fi) if c-exit(S,I) .
ceq queue(exit(S,I)) = deq(queue(S)) if c-exit(S,I) .
ceq exit(S,I) = S if not c-exit(S,I) .
op inv1 : Sys Pid Pid -> Bool
op inv2 : Sys Pid -> Bool
op inv3 : Sys Pid -> Bool
op inv4 : Sys Pid -> Bool
op inv5 : Sys Pid -> Bool
op inv6 : Sys Pid -> Bool
op inv7 : Sys Pid -> Bool
eq inv1(S,I,J) = ((pc(S,I) = cs and pc(S,J) = cs) implies I = J) .
eq inv2(S,I) = (pc(S,I) = cs implies top(queue(S)) = I) .
eq inv3(S,I) = (pc(S,I) = rs implies (not I \in queue(S))) .
eq inv4(S,I) = ((not I \in queue(S)) implies pc(S,I) = rs) .
eq inv5(S,I) = (pc(S,I) = ws or pc(S,I) = cs implies I \in queue(S)) .
eq inv6(S,I) = (I \in queue(S) implies pc(S,I) = ws or pc(S,I) = cs) .
eq inv7(S,I) = (not I \in del(queue(S),I)) .
}
pr stands for protecting, which declares the module to be imported in pro-

tected mode. Module PLOCK explicitly imports LABEL, PID, and QUEUE
(E <= TRIVerr2PID) and implicitly imports one module BOOL, where Sys
is a hidden sort and represents the state space of SQlock. . The constant init
represents an arbitrary initial state of SQlock. The operations pc and queue
correspond to pc and queue, respectively, and are called observation func-
tions. The operations try, want, and exit correspond to try, want, and exit,
respectively, and are called transition functions. After these declarations, we
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define the initial state and the transition functions. inv1 inv7 formulate the
properties that Qlock must have in order to satisfy mutual exclusivity.

2.2.5 Verification by CafeOBJ system

In order to verify that Qlock satisfies mutual exclusivity, we modeled Qlock
as an observation transition machine SQlock and created its CafeOBJ speci-
fication QLOCK. Finally, we formulate the proof methods and try to realize
them in the CafeOBJ system[7][8][9]. The proof score for inv1 is expressed
as follows.

– I) Base case
open QLOCK .
– fresh constants
ops i j : -> Pid .
– ∥−
red inv1(init,i,j) .
close
– II) Induction cases
– 1) want(s,k)
open QLOCK .
– fresh constants
op s : -> Sys .
ops i j k : -> Pid .
– IH
eq [:nonexec] : inv1(s,I:Pid,J:Pid) = true .
– assumptions
eq pc(s,k) = rs .
eq i = k .
– ∥−
red inv1(s,i,j) implies inv1(want(s,k),i,j) .
close
open QLOCK .
– fresh constants
op s : -> Sys .
ops i j k : -> Pid .
– IH
eq [:nonexec] : inv1(s,I:Pid,J:Pid) = true .
– assumptions
eq pc(s,k) = rs .
eq (i = k) = false .
eq j = k .
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– ∥−
red inv1(s,i,j) implies inv1(want(s,k),i,j) .
close
open QLOCK .
– fresh constants
op s : -> Sys .
ops i j k : -> Pid .
– IH
eq [:nonexec] : inv1(s,I:Pid,J:Pid) = true .
– assumptions
eq pc(s,k) = rs .
eq (i = k) = false .
eq (j = k) = false .
–

—-
red inv1(s,i,j) implies inv1(want(s,k),i,j) .
close
open QLOCK .
– fresh constants
op s : -> Sys .
ops i j k : -> Pid .
– IH
eq [:nonexec] : inv1(s,I:Pid,J:Pid) = true .
– assumptions
eq (pc(s,k) = rs) = false .
– ∥−
red inv1(s,i,j) implies inv1(want(s,k),i,j) .
close
– 2) try(s,k)
open QLOCK .
– fresh constants
op s : -> Sys .
ops i j k : -> Pid .
– IH
eq [:nonexec] : inv1(s,I:Pid,J:Pid) = true .
– assumptions
eq pc(s,k) = ws .
eq top(queue(s)) = k .
eq i = k .
eq j = k .
– ∥−
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red inv1(s,i,j) implies inv1(try(s,k),i,j) .
close
open QLOCK .
– fresh constants
op s : -> Sys .
ops i j k : -> Pid .
– IH
eq [:nonexec] : inv1(s,I:Pid,J:Pid) = true .
eq [:nonexec] : inv2(s,I:Pid) = true .
– assumptions
eq pc(s,k) = ws .
eq top(queue(s)) = k .
eq i = k .
eq (j = k) = false .
eq pc(s,j) = cs .
– ∥−
red inv2(s,j) implies inv1(s,i,j) implies inv1(try(s,k),i,j) .
close
open QLOCK .
– fresh constants
op s : -> Sys .
ops i j k : -> Pid
. – IH
eq [:nonexec] : inv1(s,I:Pid,J:Pid) = true .
eq [:nonexec] : inv2(s,I:Pid) = true .
– assumptions
eq pc(s,k) = ws .
eq top(queue(s)) = k .
eq i = k .
eq (j = k) = false .
eq (pc(s,j) = cs) = false .
– ∥−
red inv1(s,i,j) implies inv1(try(s,k),i,j) .
close
open QLOCK .
– fresh constants
op s : -> Sys .
ops i j k : -> Pid .
– IH
eq [:nonexec] : inv1(s,I:Pid,J:Pid) = true .
eq [:nonexec] : inv2(s,I:Pid) = true .
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– assumptions
eq pc(s,k) = ws .
eq top(queue(s)) = k .
eq (i = k) = false .
eq j = k .
eq pc(s,i) = cs .
– ∥−
red inv2(s,i) implies inv1(s,i,j) implies inv1(try(s,k),i,j) .
close
…
The CafeOBJ command open makes the module given as its argument

available; the CafeOBJ command red returns the value of the given term
converted to the simplest possible term, using all the equations defined in
the module as a left-to-right rewrite rule. The CafeOBJ command close is
a command to discard and terminate the temporary module created in this
way. through the end of the line is a comment.

Proof scores can be broadly divided into an inductive basis and an in-
ductive stage. The inductive stage is further divided corresponding to the
transition functions want, try, and exit, each of which is divided into sufficient
statements to be proved by running the proof clauses through the CafeOBJ
system.

Each proof clause in the inductive stage consists of the following four
parts
(1)Declaring a variable that represents an arbitrary value
(2)Equation declarations for assumptions
(3)Definition of post-event condition
(4)Check that the logical formula to be proved is valid under the assumption

(2).
In addition, if it is necessary to divide the case within each transition

function, the case is divided and further subdivided. If the return values of
all reds are true after these subdivisions, the proof is successful, but this does
not mean that all reds in inv1 are true. If we assume that inv2 is true, then
the return value of red will be true in all cases, which means that the proof
is successful.

If we can prove all the cases from inv1 to inv7 as described above, the
safeOBJ system has completed the verification that Qlock satisfies mutual
exclusivity.
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2.3 CiMPG and CiMPA

2.3.1 What is CiMPG and CiMPA

The method of verification using proof scores in CafeOBJ may lead to in-
correct proofs because of the addition of unnecessary equations or the wrong
way of doing case spliting. CiMPA (CafeInMaude Proof Assistant) is a proof
assistant for inductive properties of CafeOBJ specification. CiMPG (CafeIn-
Maude Proof Generator) is a proof assistant that identifies proof scores and
provides a minimal set of annotations to generate proof scripts for these proof
scores[10][11][12][13]. The advantages of using these are twofold
(1)If a proof script is successfully generated from a proof score using CiMPG,
its properties shall be preserved.
(2)If no proof scripts are generated, valuable feedback on the proofs under-
lying the proof scores can be obtained.

Both proof scores and proof scripts can be written by hand by humans,
but writing proof scripts is often more difficult than writing proof scores.
Therefore, rather than writing the proof script by hand, it is better to use
CiMPG to generate the proof script, and if the proof does not complete
correctly, to modify the proof score.

2.3.2 Proof of Qlock using CiMPG and CiMPA

Using QCiMPG and CiMPA, we will generate the proof script for Qlock
as explained earlier, and perform the proof. In the proof, we first rewrite
inv1 inv7, which formulate the properties that Qlock must have to satisfy
mutual exclusivity, as follows.

op inv1 : Sys Pid Pid -> Bool
op inv2 : Sys Pid -> Bool
eq inv1(S:Sys,I:Pid,J:Pid) = (((pc(S,I) = cs) and pc(S,J) = cs) implies I

= J) .
eq inv2(S:Sys,I:Pid) = (pc(S,I) = cs implies top(queue(S)) = I) .
op inv2-0 : Sys Pid Pid Pid -> Bool
eq inv2-0(S:Sys,I:Pid,J:Pid,K:Pid) = not((pc(S,K) = ws) and (top(queue(S))

= K) and (I = K) and (not (J = K)) and (pc(S,J) = cs)) .
Since we have rewritten the properties that Qlock must have as described

above, we also need to rewrite the proof score as follows.
– I) Base case
open QLOCK .
:id(qlock)
ops i j : -> Pid .
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red inv1(init,i,j) .
close
– II) Induction cases
– 1) want(s,k)
open QLOCK .
:id(qlock)
op s : -> Sys .
ops i j k : -> Pid .
eq [:nonexec] : inv1(s,I:Pid,J:Pid) = true .
eq pc(s,k) = rs .
eq i = k .
red inv1(s,i,j) implies inv1(want(s,k),i,j) .
close
open QLOCK .
:id(qlock)
op s : -> Sys .
ops i j k : -> Pid .
eq [:nonexec] : inv1(s,I:Pid,J:Pid) = true .
eq pc(s,k) = rs .
eq (i = k) = false .
eq j = k .
red inv1(s,i,j) implies inv1(want(s,k),i,j) .
close
open QLOCK .
:id(qlock)
op s : -> Sys .
ops i j k : -> Pid .
eq [:nonexec] : inv1(s,I:Pid,J:Pid) = true .
eq pc(s,k) = rs .
eq (i = k) = false .
eq (j = k) = false .
red inv1(s,i,j) implies inv1(want(s,k),i,j) .
close
open QLOCK .
:id(qlock)
op s : -> Sys .
ops i j k : -¿ Pid .
eq [:nonexec] : inv1(s,I:Pid,J:Pid) = true .
eq (pc(s,k) = rs) = false .
red inv1(s,i,j) implies inv1(want(s,k),i,j) .
close
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…
– I) Base case
open QLOCK .
:id(qlock)
– fresh constants
op i : -> Pid .
– —-
red inv2(init,i) .
close
–
– II) Induction cases
– 1) want(s,k)
open QLOCK .
:id(qlock)
op s : -> Sys .
ops i k : -> Pid .
eq [:nonexec] : inv1(s,I:Pid,J:Pid) = true .
eq [:nonexec] : inv2(s,I:Pid) = true .
eq pc(s,k) = rs .
eq i = k .
red inv2(s,i) implies inv2(want(s,k),i) .
close
open QLOCK .
:id(qlock)
op s : -> Sys .
ops i k : -> Pid .
eq [:nonexec] : inv1(s,I:Pid,J:Pid) = true .
eq [:nonexec] : inv2(s,I:Pid) = true .
eq pc(s,k) = rs .
eq (i = k) = false .
eq queue(s) = empty .
red inv2(s,i) implies inv2(want(s,k),i) .
close
open QLOCK .
:id(qlock)
op s : -> Sys .
ops i k j : -> Pid .
op q : -> Queue .
eq [:nonexec] : inv1(s,I:Pid,J:Pid) = true .
eq [:nonexec] : inv2(s,I:Pid) = true .
eq pc(s,k) = rs .
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eq (i = k) = false .
eq queue(s) = j — q .
red inv2(s,i) implies inv2(want(s,k),i) .
close
open QLOCK .
:id(qlock)
op s : -> Sys .
ops i k : -> Pid .
eq [:nonexec] : inv1(s,I:Pid,J:Pid) = true .
eq [:nonexec] : inv2(s,I:Pid) = true .
eq (pc(s,k) = rs) = false .
red inv2(s,i) implies inv2(want(s,k),i) .
close
…
open QLOCK .
:proof(qlock)
close
By rewriting it in this way, it becomes a statement that CiMPG can read,

and by writing :proof(qlock) at the end, it generates a proof script. If you
give CiMPG the above rewritten specification and proof score, it will return
a proof script as shown below.

open QLOCK .
:goal{
eq [qlock :nonexec] : inv2(S:Sys,P:Pid) = true .
eq [qlock1 :nonexec] : inv1(S:Sys,P:Pid,P0:Pid) = true .
}
:ind on (S:Sys)
:apply(si)
:apply(tc)
:def csb1 = :ctf {eq pc(SSys,PPid) = cs .}
:apply(csb1)
:def csb2 = :ctf {eq P@Pid = PPid .}
:apply(csb2)
:imp [qlock1] by {P0:Pid <- P0@Pid ; P:Pid <- P@Pid ;}
:apply (rd)
:def csb3 = :ctf {eq P0@Pid = PPid .}
:apply(csb3)
:imp [qlock1] by {P0:Pid <- P0@Pid ; P:Pid <- P@Pid ;}
:apply (rd)
:imp [qlock1] by {P0:Pid <- P0@Pid ; P:Pid <- P@Pid ;}
:apply (rd)
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:imp [qlock1] by {P0:Pid <- P0@Pid ; P:Pid <- P@Pid ;}
:apply (rd)
:def csb4 = :ctf {eq pc(SSys,PPid) = cs .}
:apply(csb4)
:def csb5 = :ctf {eq P@Pid = PPid .}
:apply(csb5)
:imp [qlock] by {P:Pid ¡- P@Pid ;}
:apply (rd)
:def csb6 = :ctf {eq pc(SSys,P@Pid) = cs .}
:apply(csb6)
:imp [qlock] by {P:Pid <- P@Pid ;}
:imp [qlock1] by {P0:Pid <- PPid ; P:Pid <- P@Pid ;}
:apply (rd)
:imp [qlock] by {P:Pid <- P@Pid ;}
:apply (rd)
:imp [qlock] by {P:Pid <- P@Pid ;}
:apply (rd)
:apply(tc)
:apply (rd)
:apply (rd)
:apply(tc)
:def csb7 = :ctf {eq pc(SSys,PPid) = ws .}
:apply(csb7)
:def csb8 = :ctf {eq top(queue(SSys)) = PPid .}
:apply(csb8)
:def csb9 = :ctf {eq P@Pid = PPid .}
:apply(csb9)
:def csb10 = :ctf {eq P0@Pid = PPid .}
:apply(csb10)
:imp [qlock1] by {P0:Pid <- P0@Pid ; P:Pid <- P@Pid ;}
:apply (rd)
:def csb11 = :ctf {eq pc(SSys,P0@Pid) = cs .}
:apply(csb11)
:imp [qlock1] by {P0:Pid <- P0@Pid ; P:Pid <- P@Pid ;}
:imp [qlock] by {P:Pid <- P0@Pid ;}
:apply (rd)
:imp [qlock1] by {P0:Pid <- P0@Pid ; P:Pid <- P@Pid ;}
:apply (rd)
:def csb12 = :ctf {eq P0@Pid = PPid .}
:apply(csb12)
:def csb13 = :ctf {eq pc(SSys,P@Pid) = cs .}
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:apply(csb13)
:imp [qlock1] by {P0:Pid <- P0@Pid ; P:Pid <- P@Pid ;}
:imp [qlock] by {P:Pid <- P@Pid ;}
:apply (rd)　
:imp [qlock1] by {P0:Pid <- P0@Pid ; P:Pid <- P@Pid ;}
:apply (rd)
:imp [qlock1] by {P0:Pid <- P0@Pid ; P:Pid <- P@Pid ;}
:apply (rd)
:imp [qlock1] by {P0:Pid <- P0@Pid ; P:Pid <- P@Pid ;}
:apply (rd)
:imp [qlock1] by {P0:Pid <- P0@Pid ; P:Pid <- P@Pid ;}
:apply (rd)
:def csb14 = :ctf {eq pc(SSys,PPid) = ws .}
:apply(csb14)
:def csb15 = :ctf {eq top(queue(SSys)) = PPid .}
:apply(csb15)
:def csb16 = :ctf {eq P@Pid = PPid .}　
:apply(csb16)
:imp [qlock] by {P:Pid <- P@Pid ;}
:apply (rd)
:imp [qlock] by {P:Pid <- P@Pid ;}
:apply (rd)
:imp [qlock] by {P:Pid <- P@Pid ;}
:apply (rd)
:imp [qlock] by {P:Pid <- P@Pid ;}
:apply (rd)
:apply(tc)
:def csb17 = :ctf {eq pc(SSys,PPid) = rs .}
:apply(csb17)
:def csb18 = :ctf {eq P@Pid = PPid .}
:apply(csb18)
:imp [qlock1] by {P0:Pid <- P0@Pid ; P:Pid ¡- P@Pid ;}
:apply (rd)
:def csb19 = :ctf {eq P0@Pid = PPid .}
:apply(csb19)
:imp [qlock1] by {P0:Pid <- P0@Pid ; P:Pid <- P@Pid ;}
:apply (rd)
:imp [qlock1] by {P0:Pid <- P0@Pid ; P:Pid <- P@Pid ;}
:apply (rd)
:imp [qlock1] by {P0:Pid <- P0@Pid ; P:Pid <- P@Pid ;}
:apply (rd)
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:def csb20 = :ctf {eq pc(SSys,PPid) = rs .}
:apply(csb20)
:def csb21 = :ctf {eq P@Pid = PPid .}
:apply(csb21)
:imp [qlock] by {P:Pid <- P@Pid ;}
:apply (rd)
:def csb22 = :ctf [queue(SSys) .]
:apply(csb22)
:imp [qlock] by {P:Pid <- P@Pid ;}
:apply (rd)
:imp [qlock] by {P:Pid <- P@Pid ;}
:apply (rd)
:imp [qlock] by {P:Pid <- P@Pid ;}
:apply (rd)
close
This is the proof script for Qlock generated by CiMPG, and when it is

loaded into CiMPA, it returns ture for all terms, which means the proof is
complete.
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Chapter 3

Formal Verification of IFF
Authentication Protocol with
Proof Scores

This Chapter presents the formal verification that IFF protocol enjoys some
desired properties by writing proof scores.

3.1 IFF authentication protocol

Use the Identify-Friend-or-Foe System (IFF), which is simpler than NSLPK,
to illustrate that.
・CafeOBJ
・Observation transition system
・Proof score
・Consideration of intruders when creating and verifying formal specifications
of authentication protocols.

An authentication protocol is a mechanism for entities to authenticate
each other over a network[14]. IFF authentication protocol can be described
as follows.

Msg1 P → Q : R
Msg2 Q → P : E K(R,Q)
It is assumed that the members of the group share the private key and

never leak it to a third party. R is a random number, and E K (R, Q) is
a ciphertext in which the random number R and its own ID are encrypted
with a private key.
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3.2 Assumption of the existence of an intruder

Assume the existence of an intruder pretending to be a member. The in-
truder does not know the private key shared by the group, but can obtain
all the messages flowing through the network such as random numbers and
ciphertexts.

3.3 Basic behavior of the protocol

f the subject P wants to authenticate the subject Q, which is a member of the
group, P randomly generates a number R and send it to Q. Q which receives
the random number R sends a ciphertext in which the received random num-
ber and its own ID are encrypted with the private key to P. The intruder
cannot be visually identified, and all messages flowing through the network
such as random numbers and ciphertexts can be acquired. Therefore, if the
key used in the ciphertext received by P at this time is the private key shared
by the members of the group, Q is a true member of the group and P can
authenticate Q.

3.4 Creating a model of IFF

Since IFF assumes the existence of an intruder, the model creation also as-
sumes the existence of an intruder. Create the observation transition system
Sif f as a model of IFF.

Sif f consists of the set Oif f of observation functions, the set Lif f of the
initial state, and the set Tif f of transition functions. Each is as follows.

Oif f{nw : Field→Network,
ur : Field→ URands}

Lif f{init | nw(init) = void ∧
ur(init) = empty}

Tif f{sdcm : Field Agent Agent Rand→ Field,
sdrm : Field Agent Msg→ Field,
fkcm1 : Field Agent Agent Rand→ Field,
fkrm1 : Field Agent Agent Cipher→ Field,
fkrm2 : Field Agent Agent Rand→ Field}

Field, Network, URands, Agent, Rand, Msg and Cipher are state of IFF,
type of network, type of random number multiset, type of subject, type of
random number, type of message and type of ciphertext.

The network is also modeled as a multiset of messages. Furthermore,
due to the presence of intruders, messages once sent will remain on the net-
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work.This is because a message once sent can be sent many times by an
intruder. Void represents an empty multiset for networks, and empty repre-
sents an empty multiset for random numbers.

3.5 Observation function and transition func-

tion

Given state F, the observation functions nw, ur return the random numbers
available in that state (ur (F)) and the multiset of messages sent up to that
state (nw (F)).

The transition functions sdcm and sdrm correspond to the subject sending
Msg1 and Msg2 according to the protocol, respectively. On the other hand,
the transition functions fkcm1, fkrm1, and fkrm2 correspond to spoofing
Msg1 and Msg2 using random numbers and ciphertexts collected by the
intruder, respectively.

3.6 Create CafeOBJ specification for IFF

We will create a CafeOBJ specification of Sif f f . Before that, create the
CafeOBJ specifications for Network, URands, Agent, Rand, Msg, and Cipher.
iff messages are ciphertext, so the network will be a set of multiple ciphertext.

3.6.1 Creating a CafeOBJ specification for a data type

Specifications of agent : AGENT
mod* AGENT {

[Agent]
op enemy : -> Agent
eq (P:Agent = P) = true .

}
The constant enemy represents a generic intruder.

Specifications of key : KEY
mod! KEY {

pr(AGENT)
[Key]
op k : Agent -> Key
op p : Key -> Agent
var P : Agent
vars K1 K2 : Key
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eq p(k(P)) = P .
ceq (K1 = K2) = true if not(p(K1) = enemy) and not(p(K2) = enemy) .
ceq (K1 = K2) = false if not(p(K1) = enemy) and p(K2) = enemy .

}
The operation k is a function that returns the key of a given subject

based on that subject. Similarly, the operation p is a function that returns
the subject holding the key based on the given key.
Specifications of random number : RAND
mod* RAND {

[Rand]
op = : Rand Rand -> Bool {comm}

}
The operation = is a predicate that determines whether the terms rep-

resenting two random numbers are equal.
Specifications of cipher text : CIPHER
mod! CIPHER principal-sort Cipher {

pr(AGENT + KEY + RAND)
[Cipher]
op enc : Key Rand Agent -> Cipher
op k : Cipher -> Key
op r : Cipher -> Rand
op p : Cipher -> Agent
var K : Key
var R : Rand
var P : Agent
vars C1 C2 : Cipher
eq k(enc(K,R,P)) = K .
eq r(enc(K,R,P)) = R .
eq p(enc(K,R,P)) = P .
eq (C1 = C2) = (k(C1) = k(C2) and r(C1) = r(C2) and p(C1)

= p(C2)) .
}

The operation enc is a component of the ciphertext. Given the key K, the
random number R, and the subject P, it represents the ciphertext E K (R,
P). The operations k, r, and p return the first, second, and third arguments
of the operation enc, respectively.
Specifications of message : MSG
mod! MSG principal-sort Msg {

pr(AGENT + RAND + CIPHER)
[Msg]
op cm : Agent Agent Agent Rand -> Msg
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op rm : Agent Agent Agent Cipher -> Msg
op cm? : Msg -> Bool
op rm? : Msg -> Bool
op crt : Msg -> Agent
op src : Msg -> Agent
op dst : Msg -> Agent
op r : Msg -> Rand
op c : Msg -> Cipher
vars P1 P2 P3 : Agent
var R : Rand
var C : Cipher
vars M1 M2 : Msg
eq cm?(cm(P1,P2,P3,R)) = true .
eq cm?(rm(P1,P2,P3,C)) = false .
eq rm?(cm(P1,P2,P3,R)) = false .
eq rm?(rm(P1,P2,P3,C)) = true .
eq crt(cm(P1,P2,P3,R)) = P1 .
eq crt(rm(P1,P2,P3,C)) = P1 .
eq src(cm(P1,P2,P3,R)) = P2 .
eq src(rm(P1,P2,P3,C)) = P2 .
eq dst(cm(P1,P2,P3,R)) = P3 .
eq dst(rm(P1,P2,P3,C)) = P3 .
eq r(cm(P1,P2,P3,R)) = R .
eq c(rm(P1,P2,P3,C)) = C .
ceq (M1 = M2) = (cm?(M1) and crt(M1) = crt(M2) and src(M1)

= src(M2) and dst(M1) = dst(M2) and r(M1) = r(M2)) if cm?(M2) .
ceq (M1 = M2) = (rm?(M1) and crt(M1) = crt(M2) and src(M1)

= src(M2) and dst(M1) = dst(M2) and c(M1) = c(M2)) if rm?(M2) .
}

The operation cm takes three subjects and a random number as argu-
ments and returns a message. Each of the three entities represents the true
author, sender, and recipient of the message, and this operation corresponds
to Msg1. The operation rm takes three subjects and a ciphertext as argu-
ments and returns a message. Similar to the operation cm, each of the three
entities represents the true creator, sender, and recipient of the message,
which corresponds to Msg2.

Calculation cm?, rm? is a predicate that determines whether the given
message is Msg1 or Msg2, and the operations crt, srt, and dst are predicates
that determine the true creator, sender, and recipient from the given message,
respectively.
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The operations r and s return a random number and a ciphertext from
the given message, respectively.
Specifications of general-purpose multiset for message : BAG
mod! BAG (D :: TRIV) {

[Elt.D < Bag]
op void : -> Bag
op , : Bag Bag -> Bag { assoc comm id: void }
op \in : Elt.D Bag -> Bool
var B : Bag
vars E1 E2 : Elt.D
eq E1 \in void = false .
ceq E1 \in (E2,B) = true if E1 = E2 .
ceq E1 \in (E2,B) = E1 \in B if not(E1 = E2) .

}
Specifications of general-purpose multiset for random number :
SET
mod! SET (D :: TRIV) {

[Elt.D < Set]
op empty : -> Set
op : Set Set -> Set { assoc comm idem id: empty }
op \in : Elt.D Set -> Bool
var S : Set
vars E1 E2 : Elt.D
eq E1 \in empty = false .
ceq E1 \in (E2 S) = true if E1 = E2 .
ceq E1 \in (E2 S) = E1 \in S if not(E1 = E2) .

}
Specify formal argument D : COLLECTION
mod* COLLECTION(D :: TRIV) {

[Elt.D < Col]
op \in : Elt.D Col -> Bool

}
Sort ELt.D is declared as a subsort of sort Bag and sort Col. This means

that each element of a multiset can be regarded as a multiset having only
that element. The constants void and empty represent an empty multiset,
and the operations , and are constituents of a non-empty multiset. Also,
the operations , and are declared to satisfy the commutative law (comm)
and the associative law (assoc).

The operation \in is a predicate that determines whether a given ele-
ment is included in a given multiset.
Specifications of general-purpose multiset for cipher : NETWORK

29



mod! NETWORK {
pr(BAG(MSG)*{sort Bag -> Network})
pr(COLLECTION(RAND)*{sort Col -> ColRands})
pr(COLLECTION(CIPHER)*{sort Col -> ColCiphers})
op rands : Network -> ColRands
op ciphers : Network -> ColCiphers
var NW : Network
var M : Msg
var R : Rand
var C : Cipher
eq R \in rands(void) = false .
ceq R \in rands(M,NW) = true if cm?(M) and R = r(M) .
ceq R \in rands(M,NW) = true if rm?(M) and k(enemy) = k(c(M)) and

R = r(c(M)) .
ceq R \in rands(M,NW) = R ∈ rands(NW )

if not(cm?(M) and R = r(M)) and
not(rm?(M) and k(enemy) = k(c(M)) and R = r(c(M))) .

eq C \in ciphers(void) = false .
ceq C \in ciphers(M,NW) = true if rm?(M) and C = c(M) .
ceq C \in ciphers(M,NW) = C ∈ ciphers(NW )ifnot(rm?(M)and

C = c(M)) .
}

Create a multiset of ciphertext from a general-purpose multiset. The sort
name has been changed from BAG to NETWORK and from Col to ColRands
and ColCiphers.

The operations rands and ciphers return random numbers and ciphertexts
in a given multiset, respectively.

3.6.2 Creation of CafeOBJ specifications for observa-
tion transition system

Since the CafeOBJ specification of the data type used in the observation
transition system Sif f has been created, the CafeOBJ specification of Sif f

is created next.
Specifications of observation transition system : IFF
mod* IFF {

pr(NETWORK)
pr(SET(RAND)*{sort Set -> URands})
[Field]
op init : -> Field {constr}
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op nw : Field -> Network
op ur : Field -> URands
op sdcm : Field Agent Agent Rand -> Field {constr}
op sdrm : Field Agent Msg -> Field {constr}
op fkcm1 : Field Agent Agent Rand -> Field {constr}
op fkrm1 : Field Agent Agent Cipher -> Field {constr}
op fkrm2 : Field Agent Agent Rand -> Field {constr}
var F : Field
vars P1 P2 : Agent
vars M1 M2 : Msg
var R : Rand
var C : Cipher
…

}
The constant init represents any initial state of Sif f . The operations nw

and ur correspond to the observation functions of Sif f , and the remaining
operations correspond to the transition functions. In the place of ..., the
equations that defines the initial state and behavior of Sif f declared. They
will be described below.
Definition of initial state

eq nw(init) = void .
eq ur(init) = empty .
These equations correspond to Lif f .

Definition of transition function sdcm
eq c-sdcm(F,P1,P2,R) = not(R \in ur(F)) .
ceq nw(sdcm(F,P1,P2,R)) = cm(P1,P1,P2,R) , nw(F) if

c-sdcm(F,P1,P2,R) .
ceq ur(sdcm(F,P1,P2,R)) = R ur(F) if c-sdcm(F,P1,P2,R) .
ceq sdcm(F,P1,P2,R) = F if not c-sdcm(F,P1,P2,R) .
Each transition function has an effect condition, and the effect condition

of this transition function is that R is not included in the multiset of random
numbers. When there is a message cm(P1, P1, P2, R) generated by this
transition function, the message is added to the network multiset nw(F) and
the random number is added to the random number multiset ur(F).
Definition of transition function sdrm

eq c-sdrm(F,P1,M1) = (M1 \in nw(F) and cm?(M1) and P1 = dst(M1))
ceq nw(sdrm(F,P1,M1)) = rm(P1,P1,src(M1),enc(k(P1),r(M1),P1)) ,

nw(F) if c-sdrm(F,P1,M1) .
eq ur(sdrm(F,P1,M1)) = ur(F) .
ceq sdrm(F,P1,M1) = F if not c-sdrm(F,P1,M1) .
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The validity condition of this transition function is that M1 addressed
to the subject P1 exists in the network. When there is a message rm(P1,
P1, src(M1), enc(k (P1), r(M1), P1)) generated by this transition function,
that message is put into the network multiset nw(F). In addition, a random
number is added to the multiset ur(F) of random numbers.
Definition of transition function fkcm1

eq c-fkcm1(F,P1,P2,R) = R \in rands(nw(F)) .
ceq nw(fkcm1(F,P1,P2,R)) = cm(enemy,P1,P2,R) , nw(F)

if c-fkcm1(F,P1,P2,R) .
eq ur(fkcm1(F,P1,P2,R)) = ur(F) .
ceq fkcm1(F,P1,P2,R) = F if not c-fkcm1(F,P1,P2,R) .
The validity condition of this transition function is that R is included

in the multiset of random numbers. This means that random numbers may
have been collected by the intruder. When there is a message cm(enemy,
P1, P2, R) generated by this transition function, the message is added to
the network multiset nw(F) and the random number is added to the random
number multiset ur(F).
Definition of transition function fkrm1

eq c-fkrm1(F,P1,P2,C) = C \in ciphers(nw(F)) .
ceq nw(fkrm1(F,P1,P2,C)) = rm(enemy,P1,P2,C) , nw(F)

if c-fkrm1(F,P1,P2,C) .
eq ur(fkrm1(F,P1,P2,C)) = ur(F) .
ceq fkrm1(F,P1,P2,C) = F if not c-fkrm1(F,P1,P2,C) .
The validity condition of this transition function is that C(ciphertext)

is included in the multiset of the network. This means that the ciphertext
may have been collected by an intruder. When there is a message rm(enemy,
P1, P2, C) generated by this transition function, the message is added to
the network multiset nw(F) and the random number is added to the random
number multiset ur(F).
Definition of transition function fkrm2

eq c-fkrm2(F,P1,P2,R) = R \in rands(nw(F)) .
ceq nw(fkrm2(F,P1,P2,R)) = rm(enemy,P1,P2,enc(k(enemy),R,P1)) , nw

(F) if c-fkrm2(F,P1,P2,R) .
eq ur(fkrm2(F,P1,P2,R)) = ur(F) .
ceq fkrm2(F,P1,P2,R) = F if not c-fkrm2(F,P1,P2,R) .
The validity condition of this transition function is that R is included in

the multiset of random numbers. When there is a message rm(enemy, P1, P2,
enc(k(enemy), R, P1)) generated by this transition function, that message is
added to the multiset nw(F) of the network. Add random numbers to the
multiset ur(F) of random numbers.
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3.7 Verification of IFF

IFF assumes the existence of an intruder that cannot be visually identified.
We verify that the IFF authentication protocol modeled as described above
can identify such intruders. The proof by CafeOBJ is performed below.

3.7.1 Verification of intruder identification

First, declare the following modules.
mod* INV {

pr(IFF)
ops p1 p2 p3 : -> Agent
op k : -> Key
op r : -> Rand
op inv1 : Field Agent Agent Agent Key Rand -> Bool
op inv2 : Field Key Rand -> Bool
var F : Field
vars P1 P2 P3 : Agent
var K : Key
var R : Rand
eq inv1(F,P1,P2,P3,K,R) = ((not(K = k(enemy)) and rm(P1,P2,P3,enc(K
,R,P2))\in nw(F)) implies not(P2 = enemy)) .

eq inv2(F,K,R) = (enc(K,R,enemy) ∈ ciphers(nw(F ))implies(K = k(ene
my))).

}
The operation inv1 is the property of the IFF that we want to prove.

rm(P1, P2, P3, enc(K, R, P2)) represents the cipher enc(K, R, P2) that
appears to be transmitted from P2 to P3. P1 is the true sender. In other
words, the property I want to prove is that if the message sent from P2 to
P3 exists on the network and the key of that message is the private key of
the group, P2 is a companion.

The operation inv2 is a lemma used to prove this property, and ciphers
(nw(F)) represent the ciphertext obtained by an intruder. In other words,
the meaning of this lemma is that if the ciphertext that third argument of
enc is enemy, the key used is the intruder’s key.

A module that describes the logical formula to be proved at each induction
stage is declared as follows.
mod* ISTEP {

pr(INV)
ops f f’ : -> Field
op istep1 : Agent Agent Agent Key Rand -> Bool
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op istep2 : Key Rand -> Bool
vars P1 P2 P3 : Agent
var K : Key
var R : Rand
eq istep1(P1,P2,P3,K,R) = inv1(f,P1,P2,P3,K,R) implies

inv1(f’,P1,P2,P3,K,R) .
eq istep2(K,R) = inv2(f,K,R) implies inv2(f’,K,R) .

}
The constant f represents an arbitrary state, and the constant f’ represents

the posterior state of the state f.

3.7.2 Proof of inv1

Proof clause of induction basis
open INV .

red inv1(init,p1,p2,p3,k,r) .
close

CafeOBJ returns true for this proof clause. Since there were five transition
functions this time, this proof clause is divided into five cases, and a proof
clause is created for each case where the validity condition is satisfied and
when it is not satisfied.
Proof clause about cdcm
When the validity condition is met
open ISTEP .

ops q1 q2 : -> Agent .
op r1 : -> Rand .
– eq c-sdcm(f,q1,q2,r1) = true .
eq r1 \in ur(f) = false .
–
eq f’ = sdcm(f,q1,q2,r1) .
red istep1(p1,p2,p3,k,r) .

close
When the validity condition is not met
open ISTEP .

ops q1 q2 : -> Agent .
op r1 : -> Rand .
eq c-sdcm(f,q1,q2,r1) = false .
eq f’ = sdcm(f,q1,q2,r1) .
red istep1(p1,p2,p3,k,r) .

close
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We use the assumption that c-sdcm(f, q1, q2, r1) = true and the assump-
tion that c-sdcm(f, q1, q2, r1) = false, respectively. CafeOBJ returns true
for this proof clause.
Proof clause about cdrm
When the validity condition is met
open ISTEP .

op q1 : -> Agent .
op m1 : -> Msg .
op nw1 : -> Network .
eq nw(f) = m1 , nw1 .
eq cm?(m1) = true .
eq q1 = dst(m1) .
–
eq (rm(p1,p2,p3,enc(k,r,p2)) = rm(dst(m1),dst(m1),src(m1),enc(k(dst(m1))
,r(m1),dst(m1))))= false .

eq f’ = sdrm(f,q1,m1) .
red istep1(p1,p2,p3,k,r) .

close
open ISTEP .

op q1 : -> Agent .
op m1 : -> Msg .
op nw1 : -> Network .
eq nw(f) = m1 , nw1 .
eq cm?(m1) = true .
eq q1 = dst(m1) .
–

dst(m1))) .
eq p1 = dst(m1) .
eq p3 = src(m1) .
eq k = k(dst(m1)) .
eq r = r(m1) .
eq p2 = dst(m1) .
–
eq dst(m1) = enemy .
eq f’ = sdrm(f,q1,m1) .
red istep1(p1,p2,p3,k,r) .

close
open ISTEP .

op q1 : -> Agent .
op m1 : -> Msg .
op nw1 : -> Network .
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eq nw(f) = m1 , nw1 .
eq cm?(m1) = true .
eq q1 = dst(m1) .
–

dst(m1))) .
eq p1 = dst(m1) .
eq p3 = src(m1) .
eq k = k(dst(m1)) .
eq r = r(m1) .
eq p2 = dst(m1) .
–
eq (dst(m1) = enemy) = false .
eq f’ = sdrm(f,q1,m1) .
red istep1(p1,p2,p3,k,r) .

close
When the validity condition is not met
open ISTEP .

op q1 : -> Agent .
op m1 : -> Msg .
eq c-sdrm(f,q1,m1) = false .
eq f’ = sdrm(f,q1,m1) .
red istep1(p1,p2,p3,k,r) .

close
When the validity conditions are met, three additional cases are made.

(1) c-sdrm(f, q1, m1) = true and
(rm (p1, p2, p3, enc (k, r, p2)) = rm(dst (m1), dst(m1), src(m1), enc(k(ds
t(m1)),r(m1)),dst(m1))))))) = false

(2) c-sdrm(f, q1, m1) = true and
rm(p1, p2, p3, enc (k, r, p2)) = rm(dst(m1), dst(m1), src(m1), enc(k(dst(
m1)),r(m1), dst(m1))) and dst (m1) = enemy

(3) c-sdrm(f, q1, m1) = true and
rm(p1, p2, p3, enc(k, r, p2)) = rm(dst(m1), dst(m1), src(m1), enc(k(dst(m
1)),r(m1), dst(m1))) and Assuming

(dst (m1) = enemy) = false
If the validity condition is not satisfied, the assumption that c-sdrm(f, q1,

m1) = false is used. CafeOBJ returns true for this proof clause.
Proof clause about fkcm1
When the validity condition is met
open ISTEP .

ops q1 q2 : -> Agent .
op r1 : -> Rand .
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– eq c-fkcm1(f,q1,q2,r1) = true .
eq r1 \in rands(nw(f)) = true .
–
eq f’ = fkcm1(f,q1,q2,r1) .
red istep1(p1,p2,p3,k,r) .

close
When the validity condition is not met
open ISTEP .

ops q1 q2 : -> Agent .
op r1 : -> Rand .
eq c-fkcm1(f,q1,q2,r1) = false .
eq f’ = fkcm1(f,q1,q2,r1) .
red istep1(p1,p2,p3,k,r) .

close
We use the assumption that c-fkcm1(f, q1, q2, r1) = true and the as-

sumption that c-fkcm1(f, q1, q2, r1) = false, respectively. CafeOBJ returns
true for this proof clause.
Proof clause about fkrm1
When the validity condition is met
open ISTEP .

ops q1 q2 : -> Agent .
op c : -> Cipher .
– eq c-fkrm1(f,q1,q2,c) = true .
eq c \in ciphers(nw(f)) = true .
–
eq (rm(enemy,q1,q2,c) = rm(p1,p2,p3,enc(k,r,p2))) = false .
eq f’ = fkrm1(f,q1,q2,c) .
red istep1(p1,p2,p3,k,r) .

close
open ISTEP .

ops q1 q2 : -> Agent .
op c : -> Cipher .
– eq c-fkrm1(f,q1,q2,c) = true .
– eq c \in ciphers(nw(f)) = true .
eq enc(k,r,p2) \in ciphers(nw(f)) = true .
–
– eq rm(enemy,q1,q2,c) = rm(p1,p2,p3,enc(k,r,p2)) .
eq p1 = enemy .
eq q1 = p2 .
eq q2 = p3 .
eq c = enc(k,r,p2) .
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–
eq k = k(enemy) .
eq f’ = fkrm1(f,q1,q2,c) .
red istep1(p1,p2,p3,k,r) .

close
open ISTEP .

ops q1 q2 : -> Agent .
op c : -> Cipher .
– eq c-fkrm1(f,q1,q2,c) = true .
– eq c \in ciphers(nw(f)) = true .
eq enc(k,r,p2) \in ciphers(nw(f)) = true .
–
– eq rm(enemy,q1,q2,c) = rm(p1,p2,p3,enc(k,r,p2)) .
eq p1 = enemy .
eq q1 = p2 .
eq q2 = p3 .
eq c = enc(k,r,p2) .
–
eq (k = k(enemy)) = false .
eq (p2 = enemy) = false .
eq f’ = fkrm1(f,q1,q2,c) .
red istep1(p1,p2,p3,k,r) .

close
open ISTEP .

ops q1 q2 : -> Agent .
op c : -> Cipher .
– eq c-fkrm1(f,q1,q2,c) = true .
– eq c \in ciphers(nw(f)) = true .
– eq enc(k,r,p2) \in ciphers(nw(f)) = true .
eq enc(k,r,enemy) \in ciphers(nw(f)) = true .
–
– eq rm(enemy,q1,q2,c) = rm(p1,p2,p3,enc(k,r,p2)) .
eq p1 = enemy .
eq q1 = p2 .
eq q2 = p3 .
eq c = enc(k,r,p2) .
–
eq (k = k(enemy)) = false .
eq p2 = enemy .
eq f’ = fkrm1(f,q1,q2,c) .
red inv2(f,k,r) implies istep1(p1,p2,p3,k,r) .
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close
When the validity condition is not met
　 open ISTEP .

ops q1 q2 : -> Agent .
op c : -> Cipher .
eq c-fkrm1(f,q1,q2,c) = false .
eq f’ = fkrm1(f,q1,q2,c) .
red istep1(p1,p2,p3,k,r) .

　 close
When the validity conditions are met, four additional cases are made.

(1) c-fkrm1(f, q1, q2, c) = true and
(rm(enemy, q1, q2, c) = rm(p1, p2, p3, enc(k, r, p2)))) = false

(2) c-fkrm1(f, q1, q2, c) = true and
c \in ciphers(nw(f)) = true and
rm(enemy, q1, q2, c) = rm(p1, p2, p3, enc(k, r, p2)) and k = k(enemy)

(3) c-fkrm1(f, q1, q2, c) = true and
c \in ciphers(nw (f)) = true and
rm(enemy, q1, q2, c) = rm(p1, p2, p3, enc(k, r, p2)) and (k = k(enemy))
= false and
(p2 = enemy) = false

(4) c-fkrm1(f, q1, q2, c) = true and
c \in ciphers (nw(f)) = true and
enc(k, r, p2) \in ciphers(nw(f)) = true and
rm(enemy, q1, q2, c) = rm(p1, p2, p3, enc(k, r, p2)) and (k = k(enemy))
= false and
Assuming p2 = enemy
Furthermore, as in v2(f, k, r) implies istep1(p1, p2, p3, k, r), this proof

clause uses the prepared lemmas. If the validity condition is not met, the
assumption c-fkrm1(f, q1, q2, c) = false is used. CafeOBJ returns true for
this proof clause.
Proof clause about fkrm2
When the validity condition is met
open ISTEP .

ops q1 q2 : -> Agent .
op r1 : -> Rand .
– eq c-fkrm2(f,q1,q2,r1) = true .
eq r1 \in rands(nw(f)) = true .
–
eq (rm(p1,p2,p3,enc(k,r,p2)) = rm(enemy,q1,q2,enc(k(enemy),r1,q1))) =

false .
eq f’ = fkrm2(f,q1,q2,r1) .
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red istep1(p1,p2,p3,k,r) .
close
open ISTEP .

ops q1 q2 : -> Agent .
op r1 : -> Rand .
– eq c-fkrm2(f,q1,q2,r1) = true .
eq r1 \in rands(nw(f)) = true .
–
– eq rm(p1,p2,p3,enc(k,r,p2)) = rm(enemy,q1,q2,enc(k(enemy),r1,q1)) .
eq p1 = enemy .
eq p2 = q1 .
eq p3 = q2 .
eq k = k(enemy) .
eq r = r1 .
–
eq f’ = fkrm2(f,q1,q2,r1) .
red istep1(p1,p2,p3,k,r) .

close
When the validity condition is not met
open ISTEP .

ops q1 q2 : -> Agent .
op r1 : -> Rand .
eq c-fkrm2(f,q1,q2,r1) = false .
eq f’ = fkrm2(f,q1,q2,r1) .
red istep1(p1,p2,p3,k,r) .

close
When the validity condition is met, two more cases are divided.

(1) c-fkrm2(f, q1, q2, r1) = true and
(rm(p1, p2, p3, enc(k, r, p2)) = rm(enemy, q1, q2, enc(k(enemy), r1,
q1)))) = false

(2) c-fkrm2(f, q1, q2, r1) = true and
Assuming rm(p1, p2, p3, enc(k, r, p2)) = rm(enemy, q1, q2, enc(k(enemy),
r1, q1))
If the validity condition is not met, the assumption c-fkrm2(f, q1, q2, r1)

= false is used. CafeOBJ returns true for this proof clause. From the above,
it was found that ture is returned in all the proof clauses of inv1.

3.7.3 Proof of inv2

Proof clause of induction basis
open INV .
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red inv2(init,k,r) .
close

CafeOBJ returns true for this proof clause. As in inv1, this proof clause
is divided into five cases, and a proof clause is created for each case where
the validity condition is satisfied and when it is not satisfied.
Proof clause about cdcm
When the validity condition is met
open ISTEP .

ops q1 q2 : -> Agent .
op r1 : -> Rand .
– eq c-sdcm(f,q1,q2,r1) = true .
eq r1 \in ur(f) = false .
–
eq f’ = sdcm(f,q1,q2,r1) .
red istep2(k,r) .

close
When the validity condition is not met
open ISTEP .

ops q1 q2 : -> Agent .
op r1 : -> Rand .
eq c-sdcm(f,q1,q2,r1) = false .
eq f’ = sdcm(f,q1,q2,r1) .
red istep2(k,r) .

close
We use the assumption that c-sdcm(f, q1, q2, r1) = true and the assump-

tion that c-sdcm(f, q1, q2, r1) = false, respectively. CafeOBJ returns true
for this proof clause.
Proof clause about cdrm
When the validity condition is met
open ISTEP .

op q1 : -> Agent .
op m1 : -> Msg .
op nw1 : -> Network .
– eq c-sdrm(f,q1,m1) = true .
eq nw(f) = m1 , nw1 .
eq cm?(m1) = true .
eq q1 = dst(m1) .
–
eq (enc(k,r,enemy) = enc(k(dst(m1)),r(m1),dst(m1))) = false .
eq f’ = sdrm(f,q1,m1) .
red istep2(k,r) .
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close
open ISTEP .

op q1 : -> Agent .
op m1 : -> Msg .
op nw1 : -> Network .
– eq c-sdrm(f,q1,m1) = true .
eq nw(f) = m1 , nw1 .
eq cm?(m1) = true .
eq q1 = dst(m1) .
–
– eq enc(k,r,enemy) = enc(k(dst(m1)),r(m1),dst(m1)) .
eq k = k(dst(m1)) .
eq r = r(m1) .
eq dst(m1) = enemy .
–
eq f’ = sdrm(f,q1,m1) .
red istep2(k,r) .

close
When the validity condition is not met
open ISTEP .

op q1 : -> Agent .
op m1 : -> Msg .
eq c-sdrm(f,q1,m1) = false .
eq f’ = sdrm(f,q1,m1) .
red istep2(k,r) .

close
When the validity condition is satisfied, two more cases are divided.

(1) c-sdrm(f, q1, m1) = true and
Assuming (enc (k, r, enemy) = enc(k(dst(m1)), r(m1), dst(m1))) = false

(2) c-sdrm(f, q1, m1) = true and
Assuming enc(k, r, enemy) = enc(k(dst(m1)), r(m1), dst(m1))
If the validity condition is not satisfied, the assumption that c-sdrm (f,

q1, m1) = false is used. CafeOBJ returns true for this proof clause.
Proof clause about fkcm1
When the validity condition is met
open ISTEP .

ops q1 q2 : -> Agent .
op r1 : -> Rand .
– eq c-fkcm1(f,q1,q2,r1) = true .
eq r1 \in rands(nw(f)) = true .
–
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eq f’ = fkcm1(f,q1,q2,r1) .
red istep2(k,r) .

close
When the validity condition is not met
open ISTEP .

ops q1 q2 : -> Agent .
op r1 : -> Rand .
eq c-fkcm1(f,q1,q2,r1) = false .
eq f’ = fkcm1(f,q1,q2,r1) .
red istep2(k,r) .

close
We use the assumption that c-fkcm1(f, q1, q2, r1) = true and the as-

sumption that c-fkcm1(f, q1, q2, r1) = false, respectively. CafeOBJ returns
true for this proof clause.
Proof clause about fkrm1
When the validity condition is met
open ISTEP .

ops q1 q2 : -> Agent .
op c : -> Cipher .
– eq c-fkrm1(f,q1,q2,c) = true .
eq c \in ciphers(nw(f)) = true .
–
eq (enc(k,r,enemy) = c) = false .
eq f’ = fkrm1(f,q1,q2,c) .
red istep2(k,r) .

close
open ISTEP .

ops q1 q2 : -> Agent .
op c : -> Cipher .
– eq c-fkrm1(f,q1,q2,c) = true .
eq c \in ciphers(nw(f)) = true .
–
eq enc(k,r,enemy) = c .
eq f’ = fkrm1(f,q1,q2,c) .
red istep2(k,r) .

close
When the validity condition is not met
open ISTEP .

ops q1 q2 : -> Agent .
op c : -> Cipher .
eq c-fkrm1(f,q1,q2,c) = false .
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eq f’ = fkrm1(f,q1,q2,c) .
red istep2(k,r) .

close
When the validity condition is satisfied, two more cases are divided.

(1) c-fkrm1(f, q1, q2, c) = true and
Assuming (enc (k, r, enemy) = c) = false

(2) c-fkrm1(f, q1, q2, c) = true and
Assuming enc(k, r, enemy) = c
If the validity condition is not met, the assumption c-fkrm1(f, q1, q2, c)

= false is used. CafeOBJ returns true for this proof clause.
Proof clause about fkrm2
When the validity condition is met

noindent open ISTEP .
ops q1 q2 : -> Agent .
op r1 : -> Rand .
– eq c-fkrm2(f,q1,q2,r1) = true .
eq r1 \in rands(nw(f)) = true .
–
eq (enc(k,r,enemy) = enc(k(enemy),r1,q1)) = false .
eq f’ = fkrm2(f,q1,q2,r1) .
red istep2(k,r) .

close
open ISTEP .

ops q1 q2 : -> Agent .
op r1 : -> Rand .
– eq c-fkrm2(f,q1,q2,r1) = true .
eq r1 \in rands(nw(f)) = true .
–
– eq enc(k,r,enemy) = enc(k(enemy),r1,q1) .
eq k = k(enemy) .
eq r = r1 .
eq q1 = enemy .
eq f’ = fkrm2(f,q1,q2,r1) .
red istep2(k,r) .

close
When the validity condition is not met
open ISTEP .

ops q1 q2 : -> Agent .
op r1 : -> Rand .
eq c-fkrm2(f,q1,q2,r1) = false .
eq f’ = fkrm2(f,q1,q2,r1) .
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red istep2(k,r) .
close

When the validity condition is satisfied, two more cases are divided.
(1) eq c-fkrm2(f, q1, q2, r1) = true and

Assuming (enc(k, r, enemy) = enc(k(enemy), r1, q1)) = false
(2) eq c-fkrm2(f, q1, q2, r1) = true and

Assuming enc(k, r, enemy) = enc(k(enemy), r1, q1)
If the validity condition is not met, the assumption c-fkrm2 (f, q1, q2, r1)

= false is used. CafeOBJ returns true for this proof clause. From the above,
it was found that ture is returned in all the proof clauses of inv2. Therefore,
the lemma is proved, and it can be seen that the proof of inv1 using this
lemma is also correct.

From these two proofs, it was possible to verify that the IFF authentica-
tion protocol has the property of being able to identify an intruder. By using
CafeOBJ in this way, it is possible to formal verify that the created protocol
satisfies the desired properties.

3.8 Summary of IFF

As a survey of formal verification of authentication protocols using the proof
score method, we first performed formal verification of IFF, a simpler authen-
tication protocol than NSLPK, to understand how to model the exchange of
two messages, the necessity of assuming the existence of an intruder, and
how to create a simple authentication protocol specification and proof score.
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Chapter 4

Formal Verification of NSLPK
Authentication Protocol with
Proof Scores

This Chapter presents the formal verification that NSLPK protocol enjoys
some desired properties by writing proof scores.

4.1 NSLPK authentication protocol

The NSLPK authentication protocol is a new authentication protocol pro-
posed by Lowe in 1995 by fixing a bug in the NSPK authentication protocol
based on the public key method proposed by Needham and Schroeder in 1986.
The NSLPK authentication protocol can be described as follows[1][2][3].

Msg1 p → q : ϵq(np, p)
Msg2 q → p : ϵp(np, nq, q)
Msg3 p → q : ϵq(np)
It is assumed that each entity is assigned a combination of private and

public keys. The private key is known only to the entity to which it is
assigned, and the public key is known to all the entities participating in the
protocol. ϵp(m) is a message m encrypted with the public key of subject
p. This ciphertext can be decrypted only by subject p who possesses the
corresponding private key. np is the nonce generated by subject p. A nonce
is a value that is used at most once. In this protocol, we further assume that
the nonce is not analogous. As a nonce, we use a random number.
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4.2 Assumption of intruder’s presence

As in the IFF, we assume the existence of intruders attacking the protocol.
The entities that attack the protocol are collectively modeled as a generic
intruder.

4.3 Basic protocol behavior

When a subject p wants to mutually authenticate with another subject q, it
generates a nonce np, encrypts the pair of np and the identifier p with q’s
public key, and sends ϵq(np, p) to q. When q receives a message that seems
to be of type Msg1, it first tries to decrypt it. When q receives a message
that seems to be of type Msg1, it first tries to decrypt it, and if it is able
to retrieve the nonce np and the subject’s identifier p through decryption, it
generates a new nonce np and sends a message ϵp(np, nq, q) encrypted with
the three sets of np, nq, and the identifier q using p’s public key to p. When
p receives the message, it sends a message After sending ϵq(np, p) to q, when
it receives a message that seems to be of the type Msg2, it first tries to
decrypt it. If one of the nonces is equal to np and the identifier is q, then the
communication partner of p can be verified to be q, and p is authenticated.
After this, another message ϵq(np) is sent to q, which encrypts another nonce
nq with q’s public key, and after q sends ϵp(np, nq, q), it receives a message
that seems to be of the type Msg3. When we receive a message that seems to
be of Msg3 type, we first try to decrypt it. If the decryption yields a nonce,
and it is equal to nq, then q can be sure that the communication partner of
q is p, and q is mutually authenticated by p. In this case, p and q believe
that the two nonces np and nq are secret information shared only by p and
q.

4.3.1 Confidentiality

Confidentiality is one of the properties that NSLPK must satisfy. This is the
property that ”p and q believe that this is shared only by p and q and that
the two nonces cannot be leaked to third parties other than p and q.

4.4 Creating a model of NSLPK

Since NSLPK assumes the existence of intruders, we also assume the exis-
tence of intruders in creating the model of NSLPK, the observation transition
system SNSLPK .
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The observation transition system SNSLPK consists of an observation
function ONSLPK , a set of initial states LNSLPK , and a set of transition
functions TNSLPK . ONSLPK , LNSLPK , and TNSLPK are ONSLPK , LNSLPK ,
and TNSLPK are as follows.

ONSLPK{nw : Field → Network,
ur : Field → URands}

LNSLPK{init | nw(init) = void∧
ur(init) = empty}

TNSLPK{sdm1 : System Principal Principal Random → System,
sdm2 : System Principal Random Message → System,
sdm3 : System Principal RandomMessage Message→ System,
fkm11 : System Principal Principal Principal Cipher1→ System,
fkm12 : System Principal Principal Principal Nonce→System,
fkm21 : System Principal Principal Principal Cipher2→ System,
fkm22 : System Principal Principal Principal Nonce Nonce→
System,
fkm31 : System Principal Principal Principal Cipher3→ System,
fkm32 : System Principal Principal Principal Nonce→ System}

where Field, Network, URands, Principal, Random, Message, Nonce, and
Cipher1, 2, 3 are the state, network, multiset of random numbers, subject,
random number, message, nonce, and ciphertext types of SNSLPK , respec-
tively. Nons and ciphertext types.

The network is also modeled as a multiset of messages. Furthermore, due
to the presence of intruders, we assume that once a message is sent, it stays
in the network. This is because once a message is sent, it may be sent many
times by intruders. Also, void represents an empty multiset for the network,
and empty represents an empty multiset for random numbers.

4.5 Observation function and transition func-

tion

Given a state F, the observation function nw,ur returns the random numbers
available in that state (ur(F)) and the multiset of messages sent up to that
state (nw(F)). The transition functions sdm1, sdm2, and sdm3 correspond
to the subject sending Msg1, Msg2, and Msg3, respectively, according to the
protocol. In contrast, the transition functions fkm11, fkm12, fkm21, fkm22,
fkm31, and fkm32 correspond to forging Msg1, Msg2, and Msg3 using random
numbers and ciphertext collected by the intruder, respectively.
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4.6 Create CafeOBJ specification for NSLPK

Create a CafeOBJ specification for SNSLPK . Since messages in NSLPK are
ciphertext, the network is a multiset of ciphertext as in IFF. Since messages
in NSLPK are ciphertext, the network is a multiset of ciphertext, as in IFF.

4.6.1 Creating a CafeOBJ specification for a data type

Specifications of principal : PRINCIPAL
mod* PRINCIPAL principal-sort Principal {

[Principal]
op intruder : -> Principal
var P : Principal

}
The constant intruder represents a generic intruder.

Specifications of random numbers : RANDOM
mod* RANDOM principal-sort Random {

[Random]
var R : Random

}
Specifications of nonce : NONCE
mod! NONCE principal-sort Nonce {

pr(PRINCIPAL + RANDOM)
[Nonce]
op n : Principal Principal Random -> Nonce
op creator : Nonce -> Principal
op forwhom : Nonce -> Principal
op random : Nonce -> Random
vars N1 N2 : Nonce
var C : Principal
var W : Principal
var R : Random
eq creator(n(C,W,R)) = C .
eq forwhom(n(C,W,R)) = W .
eq random(n(C,W,R)) = R .
eq (N1 = N2) = (creator(N1) = creator(N2) and forwhom(N1) = for-

whom(N2)
and random(N1) = random(N2)) .

}
The operation n is a construct of a nonce. Given two subjects C (the

creator of the nonce) and W (the recipient of the nonce), and a random

49



number R, the term n(C, W, R) represents the nonce created by subject
C to authenticate subject W. The uniqueness of that nonce depends on the
random number R. Given a term representing a nonce, the operations creator,
forwhom, and random return the first, second, and third arguments of that
term, respectively.
Specifications of cipher1 : CIPHER1
! CIPHER1 principal-sort Cipher1 {

pr(PRINCIPAL + NONCE)
[Cipher1]
op enc1 : Principal Nonce Principal -> Cipher1
op key : Cipher1 -> Principal
op nonce : Cipher1 -> Nonce
op principal : Cipher1 -> Principal
vars E11 E12 : Cipher1
var K : Principal
var N : Nonce
var P : Principal
eq key(enc1(K,N,P)) = K .
eq nonce(enc1(K,N,P)) = N .
eq principal(enc1(K,N,P)) = P .
eq (E11 = E12) = (key(E11) = key(E12) and nonce(E11) = nonce(E12)

and
principal(E11) = principal(E12)) .

}
Specifications of cipher2 :CIPHER2
mod! CIPHER2 principal-sort Cipher2 {

pr(PRINCIPAL + NONCE)
[Cipher2]
op enc2 : Principal Nonce Nonce Principal -> Cipher2
op key : Cipher2 -> Principal
op nonce1 : Cipher2 -> Nonce
op nonce2 : Cipher2 -> Nonce
op principal : Cipher2 -> Principal
vars E21 E22 : Cipher2
var K : Principal
var N1 : Nonce
var N2 : Nonce
var P : Principal
eq key(enc2(K,N1,N2,P)) = K .
eq nonce1(enc2(K,N1,N2,P)) = N1 .
eq nonce2(enc2(K,N1,N2,P)) = N2 .

50



eq principal(enc2(K,N1,N2,P)) = P .
eq (E21 = E22) = (key(E21) = key(E22) and nonce1(E21) = nonce1(E22)

and
nonce2(E21) = nonce2(E22) and principal(E21) = principal(E22)) .

}
Specifications of cipher3 : CIPHER3
mod! CIPHER3 principal-sort Cipher3 {

pr(PRINCIPAL + NONCE)
[Cipher3]
op enc3 : Principal Nonce -> Cipher3
op key : Cipher3 -> Principal
op nonce : Cipher3 -> Nonce
vars E31 E32 : Cipher3
var K : Principal
var N : Nonce
eq key(enc3(K,N)) = K .
eq nonce(enc3(K,N)) = N .
eq (E31 = E32) = (key(E31) = key(E32) and nonce(E31) = nonce(E32))

.
}

The operations enc1, enc2, and enc3 are the ciphertext constructors of
Msg1, Msg2, and Msg3, respectively. Given the subjects K and P and
the nonces N, N1, and N2, the terms enc1(K,N,P), enc2(K,N1,N2,P), and
enc3(K,N) are, respectively, the ciphertext ϵq(np, p), ϵp(np, nq, q) and ϵq(np),
respectively. Given a term representing a ciphertext, the operations Key and
nonce return the first and second arguments of the term, respectively.
Specifications of message : MESSAGE
mod! MESSAGE principal-sort Message {

pr(PRINCIPAL + CIPHER1 + CIPHER2 + CIPHER3)
[Message]
op m1 : Principal Principal Principal Cipher1 -¿ Message
op m2 : Principal Principal Principal Cipher2 -¿ Message
op m3 : Principal Principal Principal Cipher3 -¿ Message
op m1? : Message -> Bool
op m2? : Message -> Bool
op m3? : Message -> Bool
op creator : Message -> Principal
op sender : Message -> Principal
op receiver : Message -> Principal
op cipher1 : Message -> Cipher1
op cipher2 : Message -> Cipher2
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op cipher3 : Message -> Cipher3
vars M M1 M2 : Message
vars C S R : Principal
var E1 : Cipher1
var E2 : Cipher2
var E3 : Cipher3
eq m1?(m1(C,S,R,E1)) = true .
eq m1?(m2(C,S,R,E2)) = false .
eq m1?(m3(C,S,R,E3)) = false .
eq m2?(m1(C,S,R,E1)) = false .
eq m2?(m2(C,S,R,E2)) = true .
eq m2?(m3(C,S,R,E3)) = false .
eq m3?(m1(C,S,R,E1)) = false .
eq m3?(m2(C,S,R,E2)) = false .
eq m3?(m3(C,S,R,E3)) = true .
eq creator(m1(C,S,R,E1)) = C .
eq creator(m2(C,S,R,E2)) = C .
eq creator(m3(C,S,R,E3)) = C .
eq sender(m1(C,S,R,E1)) = S .
eq sender(m2(C,S,R,E2)) = S .
eq sender(m3(C,S,R,E3)) = S .
eq receiver(m1(C,S,R,E1)) = R .
eq receiver(m2(C,S,R,E2)) = R .
eq receiver(m3(C,S,R,E3)) = R .
eq cipher1(m1(C,S,R,E1)) = E1 .
eq cipher2(m2(C,S,R,E2)) = E2 .
eq cipher3(m3(C,S,R,E3)) = E3 .
ceq (M1 =M2) = (m1?(M2) and creator(M1) = creator(M2) and sender(M1)

= sender(M2) and receiver(M1) = receiver(M2) and cipher1(M1) = cipher1(M2))
if m1?(M1) .

ceq (M1 =M2) = (m2?(M2) and creator(M1) = creator(M2) and sender(M1)
= sender(M2) and receiver(M1) = receiver(M2) and cipher2(M1) = cipher2(M2))
if m2?(M1) .

ceq (M1 =M2) = (m3?(M2) and creator(M1) = creator(M2) and sender(M1)
= sender(M2) and receiver(M1) = receiver(M2) and cipher3(M1) = cipher3(M2))
if m3?(M1) .
}

The operations m1, m2, and m3 take three subjects and ciphertext 1,
2, and 3 as arguments and return a message. the three subjects represent
the true author, sender, and receiver of the message, respectively, and the
operations correspond to Msg1, Msg2, and Msg3, respectively.
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The operations m1?, m2?, and m3? are predicates that determine whether
a given message is Msg1, Msg2, or Msg3, respectively, and the operations
creator, sender, and receiver are predicates that determine the true creator,
sender, and receiver, respectively, from a given message.

The operations cipher1, cipher2, and cipher3 return ciphertext1, cipher-
text2, and ciphertext3 from the given message, respectively.
Specification of a generic multiset for messages : BAG
mod! BAG (D :: EQTRIV) principal-sort Bag {

[Elt.D < Bag]
op void : -> Bag
op , : Bag Bag -> Bag {assoc comm id: void}
op \in : Elt.D Bag -> Bool
var B : Bag
vars E1 E2 : Elt.D
eq E1 \in void = false .
ceq E1 \in (E2,B) = true if E1 = E2 .
ceq E1 \in (E2,B) = E1 \in B if not(E1 = E2) .

}
Specification of a generic multiset for random numbers : SET

noindent mod! SET (D :: EQTRIV) principal-sort Set {
[Elt.D < Set]
op empty : -> Set
op : Set Set -> Set assoc comm idem id: empty
op \in : Elt.D Set -> Bool
var S : Set
vars E1 E2 : Elt.D
eq E1 \in empty = false .
ceq E1 \in (E2 S) = true if E1 = E2 .
ceq E1 \in (E2 S) = E1 \in S if not(E1 = E2) .

}
Specify the dummy argument D
mod* COLLECTION(D :: TRIV) principal-sort Collection {

[Elt.D < Collection]
op \in : Elt.D Collection -> Bool

}
D is declared as a sub-sort of sort Bag and sort Col. D is declared as a

sub-sort of sort Bag and sort Col. This means that each element of a multiset
can be regarded as a multiset with only that element. The constants void
and empty represent the empty multiset, while the operations , and are
the constructors of the non-empty multiset. Also, the operations , and
are declared to satisfy the exchange law (comm) and the join law (assoc).
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Specification of a multiset of ciphertext : NETWORK
mod! NETWORK {
pr(PRINCIPAL + NONCE)
pr(CIPHER1 + CIPHER2 + CIPHER3)
pr(BAG(MESSAGE)*sort Bag -¿ Network)
pr(COLLECTION(NONCE)*sort Collection -> ColNonce)
pr(COLLECTION(CIPHER1)*sort Collection -> ColCipher1)
pr(COLLECTION(CIPHER2)*sort Collection -> ColCipher2)
pr(COLLECTION(CIPHER3)*sort Collection -> ColCipher3)
op cnonce : Network -> ColNonce
op cenc1 : Network -> ColCipher1
op cenc2 : Network -> ColCipher2
op cenc3 : Network -> ColCipher3
var NW : Network
var M : Message
var N : Nonce
var E1 : Cipher1
var E2 : Cipher2
var E3 : Cipher3
eq N \in cnonce(void) = (creator(N) = intruder) .
ceq N \in cnonce(M,NW) = true if m1?(M) and key(cipher1(M)) =

intruder and nonce(cipher1(M)) = N .
ceq N \in cnonce(M,NW) = true if m2?(M) and key(cipher2(M)) =

intruder and nonce1(cipher2(M)) = N .
ceq N \in cnonce(M,NW) = true if m2?(M) and key(cipher2(M)) =

intruder and nonce2(cipher2(M)) = N .
ceq N \in cnonce(M,NW) = true if m3?(M) and key(cipher3(M)) =

intruder and nonce(cipher3(M)) = N .
ceq N \in cnonce(M,NW) = N \in cnonce(NW) if not(m1?(M) and key(cip

her1(M)) = intruder and nonce(cipher1(M)) = N) and not(m2?(M)
and key(cipher2(M)) = intruder and nonce1(cipher2(M)) = N) and
not(m2?(M) and key(cipher2(M)) = intruder and nonce2(cipher2(M))
= N) and not(m3?(M) and key(cipher3(M))
= intruder and nonce(cipher3(M)) = N) .

eq E1 \in cenc1(void) = false .
ceq E1 \in cenc1(M,NW) = true if m1?(M) and not(key(cipher1(M))

= intruder) and E1 = cipher1(M) .
ceq E1 \in cenc1(M,NW) = E1 \in cenc1(NW) if not(m1?(M) and not(key

(cipher1(M)) = intruder) and E1 = cipher1(M)) .
eq E2 \in cenc2(void) = false .
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ceq E2 \in cenc2(M,NW) = true if m2?(M) and not(key(cipher2(M))
= intruder) and E2 = cipher2(M) .

ceq E2 \in cenc2(M,NW) = E2 \in cenc2(NW) if not(m2?(M) and not(key
(cipher2(M)) = intruder) and E2 = cipher2(M)) .

eq E3 \in cenc3(void) = false .
ceq E3 \in cenc3(M,NW) = true if m3?(M) and not(key(cipher3(M)) =

intruder) and E3 = cipher3(M) .
ceq E3 \in cenc3(M,NW) = E3 \in cenc3(NW) if not(m3?(M) and not(key

(cipher3(M)) = intruder) and E3 = cipher3(M)) .
}
It embodies a multiset of ciphertext from a generic multiset. Sort names

are renamed from BAG to NETWORK, and from Col to ColNonce and
ColCiphers1, ColCiphers2, and ColCiphers3.

The operations cnonce and key return the nonce and ciphertext in the
given multiset, respectively.

4.6.2 Creation of CafeOBJ specifications for observa-
tion transition system

Having created the CafeOBJ specification for the data type used in the ob-
servation transition system SNSLPK , the next step is to create the CafeOBJ
specification for SNSLPK .
Specification of the observation transition system : NSLPK
mod* NSLPK {

pr(NETWORK)
pr(SET(RANDOM)*sort Set -> URand)
[System]
op init : -> System
op ur : System -> URand
op nw : System -> Network
op sdm1 : System Principal Principal Random -> System constr
op sdm2 : System Principal Random Message -> System constr
op sdm3 : System Principal Random Message Message -> System constr
op fkm11 : System Principal Principal Cipher1 -> System constr
op fkm12 : System Principal Principal Nonce -> System constr
op fkm21 : System Principal Principal Cipher2 -> System constr
op fkm22 : System Principal Principal Nonce Nonce -> System constr
op fkm31 : System Principal Principal Cipher3 -> System constr
op fkm32 : System Principal Principal Nonce -> System constr
var S : System
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vars M M1 M2 : Message
vars P Q : Principal
var R : Random
vars N N1 N2 : Nonce
var E1 : Cipher1
var E2 : Cipher2
var E3 : Cipher3
…

}
The constant init represents an arbitrary initial state of SNSLPK . The

operations nw and ur correspond to the observation functions of SNSLPK ,
and the remaining operations correspond to the transition functions. The
equations defining the initial state and behavior of SNSLPK are declared at
the … . They are described in the following sections.
Defining the initial state :

eq nw(init) = void .
eq ur(init) = empty .
These equations correspond to LNSLPK .

Definition of the transition function : sdm1
op c-sdm1 : System Principal Principal Random -> Bool
eq c-sdm1(S,P,Q,R) = not(R \in ur(S)) .
ceq ur(sdm1(S,P,Q,R)) = R ur(S) if c-sdm1(S,P,Q,R) .
ceq nw(sdm1(S,P,Q,R)) = m1(P,P,Q,enc1(Q,n(P,Q,R),P)) , nw(S) if c-

sdm1(S,P,Q,R) .
ceq sdm1(S,P,Q,R) = S if not c-sdm1(S,P,Q,R) .
Each transition function has its own validity condition, and the validity

condition of this transition function is that R is not included in the multiset
of random numbers. Given a message m1(P,P,Q,enc1(Q,n(P,Q,R),P)) gener-
ated by this transition function, add the message to the multiset nw(S) of the
network and the random numbers to the multiset ur(S) of random numbers.
Definition of the transition function : sdm2

op c-sdm2 : System Principal Random Message -> Bool
eq c-sdm2(S,Q,R,M)　= (M \in nw(S) and m1?(M) and receiver(M) =

Q and key(cipher1(M)) = Q and principal(cipher1(M)) = sender(M)
and not(R \in ur(S))) .

ceq ur(sdm2(S,Q,R,M)) = R ur(S) if c-sdm2(S,Q,R,M) .
ceq nw(sdm2(S,Q,R,M)) = m2(Q,Q,sender(M),enc2(sender(M),nonce(ci-

pher1(M)),n(Q,sender(M),R),Q)),nw(S) if c-sdm2(S,Q,R,M) .
ceq sdm2(S,Q,R,M) = S if not c-sdm2(S,Q,R,M) .
The validity condition of this transition function is that there is a message

1 that appears to have been sent, represented by sender(M), and that the
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random number R is truly new. Given sdm2(S,Q,R,M) generated by this
transition function, we add the message to the network multiset nw(S) and
the random number to the multiset of random numbers ur(S).
Definition of the transition function : sdm3

op c-sdm3 : System Principal Random Message Message -> Bool
eq c-sdm3(S,P,R,M1,M2) = (M1 \in nw(S) and M2 \in nw(S)

and m1?(M1) and m2?(M2) and creator(M1) = P and sender(M1) =
P and receiver(M1) = sender(M2) and key(cipher1(M1)) = sender(M2)
and nonce(cipher1(M1)) = n(P,sender(M2),R) and principal(cipher1(M
1)) = P and receiver(M2) = P and key(cipher2(M2)) = P and nonce1(ciph
er2(M2)) = n(P,sender(M2),R) and principal(cipher2(M2)) = sender(M2)
) .

eq ur(sdm3(S,P,R,M1,M2)) = ur(S) .
ceq nw(sdm3(S,P,R,M1,M2)) = m3(P,P,sender(M2),enc3(sender(M2),no-
nce2(cipher2(M2)))) , nw(S) if c-sdm3(S,P,R,M1,M2) .
ceq sdm3(S,P,R,M1,M2) = S if not c-sdm3(S,P,R,M1,M2) .
The validity condition of this transition function is that the subject P

sends message 1, represented by the receiver (M1), to Q, and there is a
message 2 that appears to have been sent from Q to P in response to M1.
Given sdm3(S,P,R,M1,M2) generated by this transition function, we add the
message to the network’s multiset nw(S) and the random number to the
multiset of random numbers ur(S).
Definition of the transition function : fkm11

op c-fkm11 : System Principal Principal Cipher1 -> Bool
eq c-fkm11(S,P,Q,E1) = E1 \in cenc1(nw(S)) .
eq ur(fkm11(S,P,Q,E1)) = ur(S) .
ceq nw(fkm11(S,P,Q,E1)) = m1(intruder,P,Q,E1) , nw(S) if c-fkm11(S,P,Q

,E1)
ceq fkm11(S,P,Q,E1) = S if not c-fkm11(S,P,Q,E1) .
The validity condition of this transition function is that E1 is included

in the multiset of ciphertext 1. Given fkm11(S,P,Q,E1) generated by this
transition function, add the message to the multiset of networks nw(S) and
the random number to the multiset of random numbers ur(S).
Definition of the transition function : fkm12

op c-fkm12 : System Principal Principal Nonce -> Bool
eq c-fkm12(S,P,Q,N) = N \in cnonce(nw(S)) .
eq ur(fkm12(S,P,Q,N)) = ur(S) .
ceq nw(fkm12(S,P,Q,N)) = m1(intruder,P,Q,enc1(Q,N,P)) , nw(S) if c-

fkm12(S,P,Q,N) .
ceq fkm12(S,P,Q,N) = S if not c-fkm12(S,P,Q,N) .
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The validity condition of this transition function is that N is contained
in a multiset of nonces. Given fkm12(S,P,Q,N) generated by this transition
function, add the message to the multiset of networks nw(S) and the random
number to the multiset of random numbers ur(S).
Definition of the transition function : fkm21

op c-fkm21 : System Principal Principal Cipher2 -> Bool
eq c-fkm21(S,P,Q,E2) = E2 \in cenc2(nw(S)) .
eq ur(fkm21(S,P,Q,E2)) = ur(S) .
ceq nw(fkm21(S,P,Q,E2)) = m2(intruder,P,Q,E2) , nw(S) if c-fkm21(S,P,Q

,E2)
ceq fkm21(S,P,Q,E2) = S if not c-fkm21(S,P,Q,E2) .
The validity condition of this transition function is that E2 is included

in the multiset of ciphertext 2. Given fkm21(S,P,Q,E2) generated by this
transition function, add the message to the multiset of networks nw(S) and
the random number to the multiset of random numbers ur(S).
Definition of the transition function : fkm22

op c-fkm22 : System Principal Principal Nonce Nonce -> Bool
eq c-fkm22(S,P,Q,N1,N2) = N1 \in cnonce(nw(S)) and N2 ∈ cnonce(nw(S)).
eq ur(fkm22(S,P,Q,N1,N2)) = ur(S) .
ceq nw(fkm22(S,P,Q,N1,N2)) = m2(intruder,P,Q,enc2(Q,N1,N2,P)) , nw(S)

if c-fkm22(S,P,Q,N1,N2) .
ceq fkm22(S,P,Q,N1,N2) = S if not c-fkm22(S,P,Q,N1,N2) .
The validity condition of this transition function is that N1 and N2 are

contained in the nonce multiset. Given fkm22(S,P,Q,N1,N2) generated by
this transition function, add the message to the multiset of networks nw(S)
and the random number to the multiset of random numbers ur(S).
Definition of the transition function : fkm31

op c-fkm31 : System Principal Principal Cipher3 -> Bool
eq c-fkm31(S,P,Q,E3) = E3 \in cenc3(nw(S)) .
eq ur(fkm31(S,P,Q,E3)) = ur(S) .
ceq nw(fkm31(S,P,Q,E3)) = m3(intruder,P,Q,E3) , nw(S) if c-fkm31(S,P,Q

,E3) .
ceq fkm31(S,P,Q,E3) = S if not c-fkm31(S,P,Q,E3)
The validity condition of this transition function is that E3 is included

in the multiset of ciphertext 3. Given fkm31(S,P,Q,E3) generated by this
transition function, add the message to the multiset of networks nw(S) and
the random number to the multiset of random numbers ur(S).
Definition of the transition function : fkm32

op c-fkm32 : System Principal Principal Nonce -> Bool
eq c-fkm32(S,P,Q,N) = N \in cnonce(nw(S)) .
eq ur(fkm32(S,P,Q,N)) = ur(S) .
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ceq nw(fkm32(S,P,Q,N)) = m3(intruder,P,Q,enc3(Q,N)) , nw(S) if c-fkm32
(S,P,Q,N) .

ceq fkm32(S,P,Q,N) = S if not c-fkm32(S,P,Q,N)
The validity condition of this transition function is that N is contained

in a multiset of nonces. Given fkm32(S,P,Q,N) generated by this transition
function, add the message to the multiset of networks nw(S) and the random
number to the multiset of random numbers ur(S).

4.7 Verification of NSLPK

NSLPK assumes the existence of apparently indistinguishable intruders. We
verify that the NSLPK authentication protocol, modeled as described above,
can identify such an intruder. In the following, we provide proof using
CafeOBJ.

4.7.1 Verification of intruder identification

　mod INV {
pr(NSLPK)
op e1 : -> Cipher1
op e2 : -> Cipher2
op e3 : -> Cipher3
op r : -> Random
ops n n1 n2 : -> Nonce
ops p q p1 q1 : -> Principal
op inv100 : System Cipher1 -> Bool
op inv110 : System Cipher2 -> Bool
op inv120 : System Cipher3 -> Bool
op inv130 : System Nonce -> Bool
op inv140 : System Cipher1 -> Bool
op inv150 : System Cipher2 -> Bool
op inv160 : System Nonce -> Bool
op inv170 : System Principal Principal Principal Random Nonce -> Bool
op inv180 : System Principal Principal Principal Random Nonce -> Bool
op inv190 : System Principal Principal Random Nonce -> Bool
op inv200 : System Principal Principal Random -> Bool
op inv210 : System Principal Principal Random -> Bool
op inv220 : System Principal Principal Random Nonce -> Bool
op inv230 : System Principal Principal Random -> Bool
op inv240 : System Principal Principal Random -> Bool
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op inv250 : System Principal Principal Principal Random Nonce -> Bool
op inv260 : System Principal Principal Nonce Nonce -> Bool
var S : System
var E1 : Cipher1
var E2 : Cipher2
var E3 : Cipher3
var R : Random
vars N N1 N2 : Nonce
vars P Q P1 Q1 : Principal
eq inv100(S,E1) = (E1 in cenc1(nw(S)) implies not(key(E1) = intruder))
eq inv110(S,E2) = (E2 in cenc2(nw(S)) implies not(key(E2) = intruder))
eq inv120(S,E3) = (E3 in cenc3(nw(S)) implies not(key(E3) = intruder))
eq inv130(S,N) = (N in cnonce(nw(S)) implies (creator(N) = intruder or

forwhom(N) = intruder)) .
eq inv140(S,E1) = (E1 in cenc1(nw(S)) and principal(E1) = intruder

implies nonce(E1) in cnonce(nw(S))) .
eq inv150(S,E2) = (E2 in cenc2(nw(S)) and principal(E2) = intruder

implies nonce2(E2) ∈ cnonce(nw(S))).
eq inv160(S,N) = (creator(N) = intruder implies N in cnonce(nw(S))) .
eq inv170(S,P,Q,Q1,R,N) = (not(P = intruder) and m1(P,P,Q,enc1(Q,n(P
,Q,R),P)) in nw(S) and m2(Q1,Q,P,enc2(P,n(P,Q,R),N,Q))
in nw(S) implies m2(Q,Q,P,enc2(P,n(P,Q,R),N,Q)) in nw(S)) .

eq inv180(S,P,Q,P1,R,N) = (not(Q = intruder) and m2(Q,Q,P,enc2(P,N,n
(Q,P,R),Q)) in nw(S) and m3(P1,P,Q,enc3(Q,n(Q,P,R))) in nw(S) im
plies m3(P,P,Q,enc3(Q,n(Q,P,R))) in nw(S)) .

eq inv190(S,P,Q,R,N) = (not(P = intruder) and enc2(P,n(P,Q,R),N,Q)
in cenc2(nw(S)) implies R in ur(S)) .

eq inv200(S,P,Q,R) = (not(P = intruder) and not(Q = intruder) and
enc1(Q,n(P,Q,R),P) in cenc1(nw(S)) implies R in ur(S)) .

eq inv210(S,P,Q,R) = (not(P = intruder) and n(P,Q,R) in cnonce(nw(S))
implies R in ur(S)) .

eq inv220(S,P,Q,R,N) = (not(P = intruder) and m1(P,P,Q,enc1(Q,n(P,Q
,R),P)) in nw(S) and enc2(P,n(P,Q,R),N,Q) in cenc2(nw(S)) implies
m2(Q,Q,P,enc2 (P,n(P,Q,R),N,Q)) in nw(S)) .

eq inv230(S,P,Q,R) = (not(Q = intruder) and not(P = intruder) and
enc3(Q,n(Q,P,R)) in cenc3(nw(S)) implies m3(P,P,Q,enc3(Q,n(Q,P,R)))
in nw(S)) .

eq inv240(S,P,Q,R) = (not(Q = intruder) and enc3(Q,n(Q,P,R)) in cenc3(n
w(S)) implies R in ur(S)) .

eq inv250(S,P1,P,Q,R,N) = (not(Q = intruder) and not(P1 = intruder)
and enc2(P1,N,n(Q,P,R),Q) in cenc2(nw(S)) implies R in ur(S)) .
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eq inv260(S,P,Q,N1,N2) = (not(P = intruder) and m2(P,P,Q,enc2(Q,N1,N
2,P)) in nw(S) implies forwhom(N2) = Q) .

}
The operations inv100, inv170, and inv180 are properties of NSLPK that

we want to prove in the main. The others are supplementary problems.
The operations inv100 160 are properties related to confidentiality, and the
operations inv170 260 are properties related to mutual authentication.

We declare the module that describes the logical formula to be proved at
each induction step as follows.
mod ISTEP {

pr(INV)
ops s s’ : -> System
op istep100 : Cipher1 -> Bool
op istep110 : Cipher2 -> Bool
op istep120 : Cipher3 -> Bool
op istep130 : Nonce -> Bool
op istep140 : Cipher1 -> Bool
op istep150 : Cipher2 -> Bool
op istep160 : Nonce -> Bool
op istep170 : Principal Principal Principal Random Nonce -> Bool
op istep180 : Principal Principal Principal Random Nonce -> Bool
op istep190 : Principal Principal Random Nonce -> Bool
op istep200 : Principal Principal Random -> Bool
op istep210 : Principal Principal Random -> Bool
op istep220 : Principal Principal Random Nonce -> Bool
op istep230 : Principal Principal Random -> Bool
op istep240 : Principal Principal Random -> Bool
op istep250 : Principal Principal Principal Random Nonce -> Bool
op istep260 : Principal Principal Nonce Nonce -> Bool
var E1 : Cipher1
var E2 : Cipher2
var E3 : Cipher3
var R : Random
vars N N1 N2 : Nonce
vars P Q P1 Q1 : Principal
eq istep100(E1) = inv100(s,E1) implies inv100(s’,E1) .
eq istep110(E2) = inv110(s,E2) implies inv110(s’,E2) .
eq istep120(E3) = inv120(s,E3) implies inv120(s’,E3) .
eq istep130(N) = inv130(s,N) implies inv130(s’,N) .
eq istep140(E1) = inv140(s,E1) implies inv140(s’,E1) .
eq istep150(E2) = inv150(s,E2) implies inv150(s’,E2) .

61



eq istep160(N) = inv160(s,N) implies inv160(s’,N) .
eq istep170(P,Q,Q1,R,N) = inv170(s,P,Q,Q1,R,N) implies inv170(s’,P,Q,

Q1,R,N).
eq istep180(P,Q,P1,R,N) = inv180(s,P,Q,P1,R,N) implies inv180(s’,P,Q,P

1,R,N).
eq istep190(P,Q,R,N) = inv190(s,P,Q,R,N) implies inv190(s’,P,Q,R,N) .
eq istep200(P,Q,R) = inv200(s,P,Q,R) implies inv200(s’,P,Q,R) .
eq istep210(P,Q,R) = inv210(s,P,Q,R) implies inv210(s’,P,Q,R) .
eq istep220(P,Q,R,N) = inv220(s,P,Q,R,N) implies inv220(s’,P,Q,R,N) .
eq istep230(P,Q,R) = inv230(s,P,Q,R) implies inv230(s’,P,Q,R) .
eq istep240(P,Q,R) = inv240(s,P,Q,R) implies inv240(s’,P,Q,R) .
eq istep250(P1,P,Q,R,N) = inv250(s,P1,P,Q,R,N) implies inv250(s’,P1,P,Q

,R,N).
eq istep260(P,Q,N1,N2) = inv260(s,P,Q,N1,N2) implies inv260(s’,P,Q,N1,

N2).
}

The constant f represents an arbitrary state, and the constant f’ represents
the posterior state of state f.

4.7.2 Proof scores of inv100 through inv260

Like iff authentication protocol, NSLPK authentication protocol’s proofs are
divided into as many cases as there are transition functions. The proofs are
divided into cases where the validity condition holds and where it does not
hold for each case. If a supplementary title is needed, it is used. When
the NSLPK authentication protocol created above is executed, the program
returns true in all cases, and we can formally verify that the created protocol
satisfies the desired properties.

4.8 Summary of NSLPK

As a survey of formal verification of authentication protocols using the proof
score method, we conducted a formal verification of NSLPK, which is more
complex than IFF because it assumes the exchange of three messages. We
were able to understand that the modeling, specification, and proof scoring
are more complex than IFF because it assumes three messages are exchanged.
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Chapter 5

Formal Verification of IFF
Authentication Protocol with
CiMPA and CiMPG

This Chapter gives two more ways of the formal verification with IFF proto-
col.

5.1 Rewriting the specification of the IFF au-

thentication protocol to use CiMPG and

CiMPA

In order to formally verify the IFF authentication protocol with CiMPG/CiMPA,
we will first rewrite the specification. First, we will put the INV module cre-
ated in 3.7.1 into the IFF module as follows.

op inv1 : Field Agent Agent Agent Key Rand -> Bool
op inv2 : Field Key Rand -> Bool
var F : Field
vars P1 P2 P3 : Agent
var K : Key
var R : Rand
eq inv1(F,P1,P2,P3,K,R) = ((not(K = k(enemy)) and rm(P1,P2,P3,enc(K,R,

P2)) in nw(F)) implies not(P2 = enemy)) .
eq inv2(F,K,R) = (enc(K,R,enemy) in ciphers(nw(F)) implies (K = k(enem

y))) .
The reason for rewriting the proof script in this way is that when the proof

script is created using CiMPG, the properties and supplementary issues that
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we want to prove the need to be included in the module in which the protocol
specification is written. Then, we rewrite the proof score as follows.

open IFF .
:id(iff)
op a1 : -> Agent .
op a2 : -> Agent .
op a3 : -> Agent .
op f : -> Field .
op k : -> Key .
op r : -> Rand .
red inv1(init,a1,a2,a3,k,r) .
close
open IFF .
:id(iff)
op a1 : -> Agent .
op a2 : -> Agent .
op a3 : -> Agent .
op f : -> Field .
op k : -> Key .
op r : -> Rand .
op r1 : -> Agent .
op r2 : -> Agent .
op r3 : -> Rand .
eq (r3 in rands(nw(f))) = true .
red inv1(f,a1,a2,a3,k,r) implies inv1(fkcm1(f,r1,r2,r3),a1,a2,a3,k,r) .
close
open IFF .
:id(iff)
op a1 : -> Agent .
op a2 : -> Agent .
op a3 : -> Agent .
op f : -> Field .
op k : -> Key .
op r : -> Rand .
op r1 : -> Agent .
op r2 : -> Agent .
op r3 : -> Rand .
eq (r3 in rands(nw(f))) = false .
red inv1(f,a1,a2,a3,k,r) implies inv1(fkcm1(f,r1,r2,r3),a1,a2,a3,k,r) .
close
open IFF .
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:id(iff)
op a1 : -> Agent .
op a2 : -> Agent .
op a3 : -> Agent .
op f : -> Field .
op k : -> Key .
op r : -> Rand .
op r1 : -> Agent .
op r2 : -> Agent .
op r3 : -> Cipher .
eq r3 in ciphers(nw(f)) = true .
eq a1 = enemy .
eq r1 = a2 .
eq r2 = a3 .
eq k(r3) = k .
eq r(r3) = r .
eq p(r3) = a2 .
eq k = k(enemy) .
red inv1(f,a1,a2,a3,k,r) implies inv1(fkrm1(f,r1,r2,r3),a1,a2,a3,k,r) .
close
open IFF .
:id(iff)
op a1 : -> Agent .
op a2 : -> Agent .
op a3 : -> Agent .
op f : -> Field .
op k : -> Key .
op r : -> Rand .
op r1 : -> Agent .
op r2 : -> Agent .
op r3 : -> Cipher .
eq r3 in ciphers(nw(f)) = true .
eq a1 = enemy .
eq r1 = a2 .
eq r2 = a3 .
eq k(r3) = k .
eq r(r3) = r .
eq p(r3) = a2 .
eq (k = k(enemy)) = false .
eq a2 = enemy .
eq enc(k,r,enemy) in ciphers(nw(f)) = true .
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red inv2(f,k,r) implies inv1(f,a1,a2,a3,k,r) implies inv1(fkrm1(f,r1,r2,r3),a1
,a2,a3,k,r) .

close
…
open IFF .
:proof(iff)
close
Since we rewrote the INV module inside the IFF module, it is the IFF

module that is opened each time. Also, since we cannot use the SUCCESSOR
state as in the original proof score, we have eliminated f’.

It is also necessary to rewrite the case equation. For example, in the IFF
authentication protocol, the following equation is used in the proof score

eq r1 in rands(nw(f)) = true .
eq c-fkcm1(f,q1,q2,r1) = false .
This is because CafeOBJ has a high degree of freedom. However, CiMPG

and CiMPA will cause an error if this is not done. Therefore, we need to
rewrite it as follows.

eq (r3 in rands(nw(f))) = true .
eq (r3 in rands(nw(f))) = false .
Thus, the left expression of the equation used for case separation must

be the same. Then, every time we open a module, we execute the :id(iff)
command, and finally the :proof(iff) command. These two commands are
used to generate the proof script. After rewriting the proof as described
above and reading it into CiMPG, the proof is correct and the proof script
is returned.

5.2 Execution results of the IFF authentica-

tion protocol using CiMPG and CiMPA

Rewriting the above and reading it into CiMPG returns the result that the
proof is correct, as shown below.

In addition, part of the proof script generated by CiMPG is as follows.
open IFF .
:goal{

eq [iff :nonexec] :
inv1(F:Field,A:Agent,A1:Agent,A0:Agent,K:Key,R:Rand) = true .
}

:ind on (F:Field)
:apply(si)
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Figure 5.1: Some of the execution results

:apply(tc)
:def csb1 = :ctf [RRand in rands(nw(FField)) .]
:apply(csb1)
:imp [iff] by A0:Agent <- A0@Agent ; A1:Agent <- A1@Agent ; A:Agent

<- A@Agent ; K:Key <- K@Key ; R:Rand <- R@Rand ;
:apply (rd)
:imp [iff] by A0:Agent <- A0@Agent ; A1:Agent <- A1@Agent ; A:Agent

<- A@Agent ; K:Key <- K@Key ; R:Rand <- R@Rand ;
:apply (rd)
:apply(tc)
:def csb2 = :ctf [CCipher in ciphers(nw(FField)) .]
:apply(csb2)
:def csb3 = :ctf eq A@Agent = enemy .
:apply(csb3)
:def csb4 = :ctf eq AAgent = A1@Agent .
:apply(csb4)
:def csb5 = :ctf eq A0Agent = A0@Agent .
:apply(csb5)
:def csb6 = :ctf eq k(CCipher) = K@Key .
:apply(csb6)
:def csb7 = :ctf eq r(CCipher) = R@Rand .
:apply(csb7)
:def csb8 = :ctf eq p(CCipher) = A1@Agent .
:apply(csb8)
:def csb9 = :ctf eq K@Key = k(enemy).
:apply(csb9)
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:imp [iff] by A0:Agent <- A0@Agent ; A1:Agent <- A1@Agent ; A:Agent
<- A@Agent ; K:Key <- K@Key ; R:Rand <- R@Rand ;

:apply (rd)
:apply(tc)
…
close
The same result can be obtained for the complement used to prove the

properties of the IFF authentication protocol by rewriting it in the same way.

5.3 Summary of IFF authentication protocol

using CiMPG and CiMPA

In Chapter 3, we proved the IFF authentication protocol using the proof
score method, and in Chapter 5, we proved it using the method of generating
proof scripts using CiMPG and CiMPA. In the proof score method, there is a
possibility of making mistakes in the number of cases and methods, and using
CiMPG and CiMPA can reduce this possibility. However, to use CiMPG and
CiMPA, it is necessary to rewrite the specification and proof score, which is
difficult if you are not familiar with it. Each of these has its advantages and
disadvantages, as we found out in this study.
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Chapter 6

Lessons Learned

This Chapter gives describes what we learned through the research project.

6.1 Security

Through this research project, We were able to learn about security, which
We had never thought about in-depth before. We were able to learn what
authentication is for communication on a network where security is impor-
tant, and what threats exist in communication. By learning these things,
We were able to deepen my understanding of what secure communication is
all about. By using CafeOBJ, a programming language that We had never
touched before, We were able to deepen my understanding of the advantages
and disadvantages of CafeOBJ, how to use it, how to write specifications,
and how to write proof scores. We were able to deepen my understanding of
the advantages and disadvantages of CafeOBJ, how to use it, how to write
specifications, and how to write proof scores.

6.2 Proof Scores and Proof Scripts

CiMPG converts proof scores into proof scripts for CiMPA, but in this in-
vestigation, we found out that not any proof score can be converted. Even
if a proof score is created and the result is correct, the proof script will not
be generated correctly, using the following separation of cases.
sub case1 nw(f) = m1, nw
sub case2 m1 in nw(f) = false

In order to have CiMPG generate the proof script correctly, the following
case study must be done.
sub case1 nw(f) = m1, nw
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sub case2 (nw(f) = m1, nw) = false
In addition, there is a subtle difference between the results of formal

verification using the same proof score with CafeOBJ and with CafeInMaude.
CafeInMaude may return false even if CafeOBJ returns true. This is due to
the fact that CafeOBJ uses the equality rewrite rule (equals are considered
as arrows, and left and right are clearly distinguished). Based on these
facts, we believe that rewriting to CafeInMaude can be done smoothly by
paying attention to the case separation method and rewriting rules, not using
the SUCCESSOR state, and creating a proof score. Thus, we understand
that there are advantages and disadvantages to CafeOBJ and CafeInMaude
CiMPG and CiMPA.
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Chapter 7

Conclusion

This Chapter gives summarizes the report and gives some pieces of our future
work.

7.1 Summary of the report

With the rapid spread and development of the Internet, security protocols
that guarantee safe and secure communication on the Internet are becoming
more and more important. However, it is not uncommon for serious attacks
to exist even in security protocols that have been carefully designed by secu-
rity experts, due to misunderstandings in the operating environment or the
objectives they are trying to achieve. Furthermore, such flaws are difficult
to detect in normal operations or in traditional software testing. For this
reason, techniques for formally verifying the correctness of security protocols
have been studied and many methods have been proposed.

Against this backdrop, we undertook this research project with the aim of
acquiring techniques to reduce the number of authentication protocol failures,
which will enable us to contribute to safer and more secure shopping on e-
commerce sites and safer and more secure communications on the Internet.

In Chapter 2, we deepened our understanding of authentication, authen-
tication protocols and CafeOBJ using simple examples such as QLOCK.

In Chapter 3, we used the IFF authentication protocol to deepen our
understanding of authentication protocols and CafeOBJ.

In Chapter 4, the NSLPK authentication protocol, which is more com-
plex than the IFF authentication protocol, is used to further deepen the
understanding of the authentication protocol and CafeOBJ.

In Chapter 5, the IFF authentication protocol is verified with CiMPG
and CiMPA as a new case study.
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In Chapter 6, we summarize what we learned in this research project.

7.2 Future prospects

One of the future prospects is the formal verification of the NSLPK authenti-
cation protocol using CiMPG and CiMPA.Formal verification of the NSLPK
authentication protocol using CiMPG and CiMPA has not yet been done, and
we believe that once completed, we will be able to make more contributions
to the technology of security protocols.

Another suggestion is an easier way to rewrite CafeOBJ to CafeInMaude.
If the rewriting from CafeOBJ to CafeInMaude can be made easier, more
protocols can be formally verified using CiMPG and CiMPA, and more con-
tributions to the technology of security protocols can be made. If the rewrit-
ing from CafeOBJ to CafeInMaude can be made easier, more protocols can
be formally verified using CiMPG and CiMPA, and more contributions to
security protocol technology will be possible.
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