
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Left-normal Translation for Applicative Term

Rewriting Systems

Author(s) 鈴木, 裕佑

Citation

Issue Date 2021-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/17136

Rights

Description

Supervisor: Nao Hirokawa, Graduate School of

Advanced Science and Technology, Master of

Science (Information Science)

Master’s Thesis

Left-normal Translation for Applicative Term Rewriting Systems

1910251 Yusuke Suzuki

Supervisor Nao Hirokawa
Main Examiner Nao Hirokawa

Examiners Hajime Ishihara
Kazuhiro Ogata
Mizuhito Ogawa

Graduate School of Advanced Science and Technology
Japan Advanced Institute of Science and Technology

(Information Science)

February, 2021

Abstract

Term rewriting is a computation model based on directed equations. Sets of such
equations are called term rewriting systems (TRSs); especially, TRSs over constant
symbols and a single binary function symbol ◦, an application symbol, are called
applicative term rewriting systems (ATRSs). ATRSs underlie functional programming
languages and proof assistants and enable them to model higher-order functions.

Consider the following ATRS R that computes Fibonacci numbers.

1: + 0 x→ x

2: + (s x) y → s (+ x y)

3 : tail (: x xs)→ xs

4: nth (: x xs) 0→ x

5: nth (: x xs) (s y)→ nth xs y

6: zip f (: x xs) (: y ys)→ : (f x y) (zip f xs ys)

7 : fibs→ : 0 (: (s 0) (zip + fibs (tail fibs)))

For instance, the term nth fibs (s (s 0)) is rewritten to the second Fibonacci number.
However, a naive computation may cause an infinite rewrite sequence like:

nth fibs (s (s 0))→ nth (: 0 (: (s 0) (zip + fibs (tail fibs)))) (s (s 0))

→ nth (: 0 (: (s 0) (zip + (: 0 (: (s 0) (zip + fibs (tail fibs)))) (tail fibs)))) (s (s 0))

→ · · ·

whilst another computation yields the finite rewrite sequence:

nth fibs (s (s 0))→ nth (: 0 (: (s 0) (zip + fibs (tail fibs)))) (s (s 0))

→ nth (: (s 0) (zip + fibs (tail fibs))) (s 0)→ nth (zip + fibs (tail fibs)) 0

→ nth (zip + (: 0 (: (s 0) (zip + fibs (tail fibs)))) (tail fibs)) 0

→ nth (zip + (: 0 (: (s 0) (zip + fibs (tail fibs))))

(tail (: 0 (: (s 0) (zip + fibs (tail fibs)))))) 0

→ nth (: (+ 0 (s 0)) (zip + (: (s 0) (zip + fibs (tail fibs)))

(: (s 0) (zip + fibs (tail fibs))))) 0

→ + 0 (s 0)

→ s 0

Underlines indicate rewrite positions. Comparing the two rewrite sequences, they
rewrite the same position at their first step, whilst different positions thereafter.
In the latter, subterms are needed to be rewritten at every underlined position in
order to obtain the second Fibonacci number. On the other hand, in the former,
subterms are not needed to be rewritten at underlined positions but ones at the first
step. Such positions that are needed for results of computations are called needed
positions, and the strategy that rewrites subterms at needed positions are the needed
strategy. However, it is known that needed positions are uncomputable in general [5],
and thus we cannot use the strategy readily.

As for another strategy, O’Donnell [9] showed the Normalization Theorem: in left-
normal TRSs, the leftmost-outermost strategy always leads a term to a computational
result. Left-normality is the property that no function symbols occur on the right of
variables in a term. If every left-hand side of a TRS is left-normal, also the TRS is
called so. Recalling the ATRS R, the rules 4, 5 and 6 are not left-normal because of
the underlined subterms, neither is R.

4: nth (: x xs) 0→ x

5: nth (: x xs) (s y)→ nth xs y

6: zip f (: x xs) (: y ys)→ : (f x y) (zip f xs ys)

In this thesis, we propose left-normal translation for ATRSs, which translates non-
left-normal ATRSs into left-normal ATRSs and enables us to obtain results of com-
putations with the translated ATRSs. For example, the previous TRS R is translated
into the following left-normal ATRSs.

1: + 0 x→ x

2: + (s x) y → s (+ x y)

3 : tail (: x xs)→ xs

4: fibs→ : 0 (: (s 0) (zip + fibs (tail fibs)))

5 : nth (: x xs) y → nth1 y x xs

6: zip f xs ys → zip1 xs f ys

7: nth1 0 x xs → x

8: nth1 (s y) x xs → nth xs y

9: zip1 (: x xs) f ys → zip2 ys x xs f

10: zip2 (: y ys) x xs f → : (f x y) (zip f xs ys)

With this left-normal ATRS, we get obtain the term s 0 from nth fibs (s (s 0)) by the
leftmost-outermost strategy.

nth fibs (s (s 0))

→ nth (: 0 (: (s 0) (zip + fibs (tail fibs)))) (s (s 0))

→ nth1 (s (s 0)) 0 (: (s 0) (zip + fibs (tail fibs)))

→ nth (: (s 0) (zip + fibs (tail fibs))) (s 0)

→ nth1 (s 0) (s 0) (zip + fibs (tail fibs))

→ nth (zip + fibs (tail fibs)) 0

→ nth (zip1 fibs + (tail fibs)) 0

→ nth (zip1 (: 0 (: (s 0) (zip + fibs (tail fibs)))) + (tail fibs)) 0

→ nth (zip2 (tail fibs) 0 (: (s 0) (zip + fibs (tail fibs))) +) 0

→ nth (zip2 (tail (: 0 (: (s 0) (zip + fibs (tail fibs)))))

0 (: (s 0) (zip + fibs (tail fibs))) +) 0

→ nth (zip2 (: (s 0) (zip + fibs (tail fibs))) 0 (: (s 0) (zip + fibs (tail fibs))) +) 0

→ nth (: (+ 0 (s 0))

(zip + (: (s 0) (zip + fibs (tail fibs))) (zip + fibs (tail fibs)))) 0

→ nth1 0 (+ 0 (s 0))

(zip + (: (s 0) (zip + fibs (tail fibs))) (zip + fibs (tail fibs)))

→ + 0 (s 0)

→ s 0

Meanwhile, this translation moves needed positions to leftmost-outermost positions,
which the leftmost-outermost strategy rewrites. Hence, by the translation, we can
simulate the needed strategy by the leftmost-outermost strategy.

There is an existing work: left-normal translation was originally developed by
Hashida [4]. Hashida’s translation translates constructor systems to left-normal con-
structor systems. This is the pioneering work using an approach that simulates the
needed strategy by the leftmost-outermost strategy. Our study is aimed to extend
Hashida’s translation to ATRSs and to enlarge the class of TRSs that can be left-
normal.

Our contribution is two-fold. Firstly, we establish left-normal translation for
ATRSs, and then realise simulating the needed strategy by the leftmost-outermost
strategy in computations of applicative terms. Secondly, we show that our trans-
lation for ATRSs includes Hashida’s translation [4]: functional TRSs that can be

translated by left-normal translation for functional TRSs can be translated by left-
normal translation for ATRSs after currying, a procedure that translates functional
TRSs into ATRSs. The translation also can handle ATRSs including higher-order
function. We therefore succeed in extending the class of TRSs with which terms can
be computed by the needed strategy.

Contents

Chapter 1 Introduction 1
1.1 Motivation . 1
1.2 Existing work . 3
1.3 Subjects . 3
1.4 Outline and results . 5

Chapter 2 Preliminaries 6
2.1 Abstract rewriting systems . 6
2.2 Terms . 8
2.3 Term rewriting systems . 10
2.4 Needed strategy . 12
2.5 Strong sequentiality . 14

Chapter 3 Left-normal translation for ATRSs 21
3.1 Strong sequentiality in ATRSs . 21
3.2 Definitions . 29
3.3 Correctness . 32

Chapter 4 Currying and Left-normal translation 46
4.1 Currying . 46
4.2 Left-normal translation . 47

Chapter 5 Conclusion 65

Bibliography 67

List of Figures

4.1 Proper preredexes in TRSs . 62
4.2 Proper preredexes in TRSs . 64

List of Tables

Chapter 1

Introduction

In the beginning of this thesis, we give an overview of our study and its results.
Term rewriting is a computational model that replaces terms by directed equations,
called rewrite rules. We call the set of rewrite rules a term rewriting systems (TRS).

1.1 Motivation
Consider the TRS R with the following seven rules

1: + 0 x→ x

2: + (s x) y → s (+ x y)

3 : tail (: x xs)→ xs

4: nth (: x xs) 0→ x

5: nth (: x xs) (s y)→ nth xs y

6: zip f (: x xs) (: y ys)→ : (f x y) (zip f xs ys)

7 : fibs→ : 0 (: (s 0) (zip + fibs (tail fibs)))

and the term t = nth fibs (s (s 0)).
The TRS R computes the Fibonacci numbers and t is a term to take the second

element of the numbers, namely s 0. In these terms there exist the unique appli-
cation symbols ◦ between two subterms. For example, notation t1 t2 stands for
t1 ◦ t2, moreover it is the infix notation of ◦(t1, t2). Hence the term t equals to
◦(nth, ◦(fibs, ◦(s, ◦(s, 0)))). Such TRSs, which consists of constant symbols and the
unique binary function ◦ called the application symbol, are called applicative term
rewriting systems (ATRSs), compared with the other ones called functional term

1

rewriting systems. ATRSs are adopted by most of functional programming languages
like Haskell [11] and proof assistants like Coq [2], and have advantage of dealing with
higher-order functions as the sixth rule of the above ATRS R.

Computation of the term t is a problem of which subterms will be rewritten. To
obtain the second Fibonacci number, it is enough to look at the first two elements of
Fibonacci numbers, and the remains do not matter. This policy yields the following
rewrite sequence.

nth fibs (s (s 0))→ nth (: 0 (: (s 0) (zip + fibs (tail fibs)))) (s (s 0))

→ nth (: (s 0) (zip + fibs (tail fibs))) (s 0)→ nth (zip + fibs (tail fibs)) 0

→ nth (zip + (: 0 (: (s 0) (zip + fibs (tail fibs)))) (tail fibs)) 0

→ nth (zip + (: 0 (: (s 0) (zip + fibs (tail fibs))))

(tail (: 0 (: (s 0) (zip + fibs (tail fibs)))))) 0

→ nth (: (+ 0 (s 0)) (zip + (: (s 0) (zip + fibs (tail fibs)))

(: (s 0) (zip + fibs (tail fibs))))) 0

→ + 0 (s 0)

→ s 0

In the above example only subterms needed for reaching s 0 are evaluated. Such a
strategy is called the needed strategy.

However, not all strategies bring the result; the following strategy fails to obtain
the second Fibonacci number, which stems from repeated evaluations of subterms fibs
causing an infinite rewrite sequence.

nth fibs (s (s 0))

→ nth (: 0 (: (s 0) (zip + fibs (tail fibs)))) (s (s 0))

→ nth (: 0 (: (s 0) (zip + (: 0 (: (s 0) (zip + fibs (tail fibs)))) (tail fibs)))) (s (s 0))

→ · · ·

The needed strategy rewrites subterms only at positions where subterms need to be
evaluated in order to obtain a result of a calculation, called a normal form. We call
those positions needed positions. It is known that if a TRS has the property called
orthogonality, repeated rewriting at needed positions leads a term to a normal form
[5]. Our study is aimed to compute applicative terms by the needed strategy.

2

1.2 Existing work
Needed positions are, however, uncomputable in general. Huet and Lévy [5] defined

strong sequentiality for TRSs, and showed that needed positions are efficiently com-
putable in strongly sequential TRSs. Another study by O’Donnell showed the Nor-
malization Theorem, which claims that repeated rewriting at the leftmost-outermost
positions, called the leftmost-outermost strategy, leads a term to a normal form in or-
thogonal TRSs if the term has a normal form. This theorem requires TRSs one more
condition: left-normality, defined as the property that for every rule `→ r in a TRS,
any function symbol in ` occurs on the right of variables.

Example 1. Consider the TRS R:

1: take(:(x, xs), 0)→ nil 3: from(x)→ :(x, from(s(x)))

2 : take(:(x, xs), s(y))→ :(x, take(xs, y)) 4 : +(0, x)→ x

The TRS R is not left-normal because 0 in the first rule and s(y) in the second rule
with the underlines occur on the right of variables.

Hashida [4] introduced left-normal translation, which translates non-left-normal
TRSs into left-normal TRSs, and then enables us to apply the Normalization The-
orem and obtain normal forms by the leftmost-outermost strategy. Meanwhile, this
procedure moves needed positions from the right of variables to the leftmost-outermost
positions. That is to say, the leftmost-outermost strategy repeatedly rewrites sub-
terms at needed positions, and consequently it simulates the needed strategy.

1.3 Subjects
Unfortunately, this approach is not suitable for ATRSs. In order to explain the

reason, we need to describe a little more background on which the translation relies.
Needless to say, to move needed positions, there must be needed positions to move.
Strong sequentiality is a property that ensures existence of positions called indices,
which can be needed positions in orthogonal TRSs. Hence the translation requires
a non-left-normal TRS to be strongly sequential. Moreover, in case translation does

3

not finish at a time, the translated TRS, which has been non-left-normal, needs to
be strongly sequential. Hashida and we have recourse to a refined method by Klop
and Middeldorp [6] to show strong sequentiality, which requires orthogonal TRSs to
be constructor systems.

Function symbols in TRSs are divided into two sets: defined symbols and construc-
tor symbols. The set of defined symbols DR of a TRS R consists of function symbols
occurring on the left of left-hand sides. Such a position is called the root position.
If a function symbol is not a defined symbol, it is a constructor symbol; the set of
constructor symbols of a TRS R is denoted by CR. A TRS R is called a construc-
tor system if for every rule ` → r ∈ R, no defined symbols occur at positions in `

excepting the root position.

Example 2. Consider the TRS R:

1: take(:(x, xs), 0)→ nil 3: from(x)→ :(x, from(s(x)))

2 : take(:(x, xs), s(y))→ :(x, take(xs, y)) 4 : +(0, x)→ x

The underlined symbols are defined symbols and the remaining symbols are construc-
tor symbols. Hence DR = {take, from,+} and CR = {:, 0, s, nil}, andR is a constructor
system.

As for ATRSs, the secret is to recall that ◦ is the unique binary symbol. It is
apparent from the next example that ATRSs hardly form constructor systems.

Example 3. Consider the ATRS R:

1: ◦(◦(take, ◦(◦(:, x), xs)), 0)→ nil

2: ◦(◦(take, ◦(◦(:, x), xs)), ◦(s, y))→ ◦(◦(:, x), ◦(◦(take, xs), y))
3 : ◦(from, x)→ ◦(◦(:, x), ◦(from, ◦(s, x)))
4 : ◦(◦(+, 0), x)→ x

The underlined positions are the root positions. Hence we have DR = {◦} and
CR = {take, from,+, :, 0, s, nil}. Since the application symbols ◦ occur in positions
other than the root positions, R is not a constructor system.

Moreover, the lemma on strong sequentiality of TRSs in [6] is based on several other
lemmata. One of them, which mentions transitivity of indices of two terms, requires

4

TRSs to be constructor systems. Because the form of applicative terms is different
from the one of functional terms, index transitivity in ATRSs cannot be proved by
the lemma.

Those two reasons, (1) ATRSs are rarely constructor systems and (2) strong sequen-
tiality of ATRSs cannot be shown by existing methods, have prevented left-normal
translation for ATRSs. This thesis is an endeavour to overcome the problems and es-
tablish left-normal translation for ATRSs.

1.4 Outline and results
Out contribution is two-fold: firstly, as aforementioned, the original left-normal

translation by Hashida does not fit into ATRSs on account of constructor systems. In
order to address the problem, we introduce applicative constructor systems (ACSs).
This notion enables handling function symbols at the leftmost positions of left-hand
sides in ATRSs as if they were defined symbols in functional TRSs, regardless of the
application symbols ◦. By the concept of ACSs, we propose left-normal translation
for ATRSs, and then we realise simulation of the needed strategy by the leftmost-
outermost strategy in ATRSs.

Secondly, we show that left-normal translation for ATRSs includes the original
translation for functional TRSs through currying, a procedure to translate functional
TRSs into ATRSs. More precisely, for every functional TRS that can be translated
by left-normal translation for functional TRSs, the curried ATRS from the functional
TRS can be translated by left-normal translation for ATRSs. In addition to these
TRSs, the translation for ATRSs can deal with ACSs using higher-order functions.
That is to say, the translation for ATRSs has increases a range of TRSs with which
terms can be calculated by the needed strategy.

After this introduction, we give fundamental definitions on term rewriting in the
next chapter. An applicative version of left-normal translation is presented in Chap-
ter 3. In Chapter 4, we show that the translation for ATRS includes the original
translation by Hashida. From the arguments in the previous chapters, we conclude
our study in Chapter 5.

5

Chapter 2

Preliminaries

We shall begin by introducing fundamental definitions necessary for this thesis. In
this chapter, integers of 0 and above are called natural numbers, and we write Z, N and
N+ for the whole sets of integers, natural numbers and positive integers, respectively.
The difference set {a ∈ A | a /∈ B} for sets A and B, and the empty set are denoted
by A \B and ∅, respectively. We refer to most definitions below from [1].

2.1 Abstract rewriting systems
A binary relation on A is a subset of the Cartesian product A × A. We call the

pair (A,→) of a set A and a binary relation → over A an abstract reduction system
(ARS). For an ARS (A,→) and elements a, b ∈ A, we write a→ b for (a, b) ∈ → and
a 6→ b for (a, b) /∈ →. Let us describe a binary relation → on a set A.

Definition 4. The binary relation ← defined by ← = {(b, a) ∈ A×A | a → b} is
called the inverse of →.

Definition 5. For binary relations →1 and →2 on a set A, we define the relation
→1 · →2 as follows:

→1 · →2 = {(a, c) ∈ A×A | there exists b ∈ A such that a→1 b and b→2 c}

We call it the composition of →1 and →2.

6

Definition 6. For a natural number n, the binary relation →n is defined as follows.

→n=

{
{(x, x) | x ∈ A} if n = 0

→ · →n−1 if n ≥ 1

Definition 7. For a binary relation →, the following relations are defined.

• →= =→0 ∪ → is the reflexive closure．
• ↔ =← ∪ → is the symmetric closure．
• →+ =

⋃
n∈N+

→n is the transitive closure．
• (→=)+ is denoted by →∗．

Definition 8. Let a be an element in a set A. If there exists no element b ∈ A such
that a→ b, then the element a is called a normal form with respect to →. We write
NF(→) for the set of all normal forms with respect to →. If a →∗ b and b ∈ NF(→)

then, the normal form b is called a normal form of a with respect to →. The unique
normal form of c with respect to → is denoted by c↓.

Definition 9. The relation a→! b holds if a→+ b and b /∈ NF(→).

Definition 10. A binary relation → is called normalising if every element in a set A

has a normal form.

Definition 11. For a binary relation →, we define the binary relation ↓ by →∗ · ←∗.
We say that two elements a and b in a set A join under → if a ↓ b.

Definition 12. Let → be a binary relation.

• The binary relation → is terminating if there exists no infinite chain an →
an+1 → · · · such that an → an+1 holds for every natural number n and the
elements an, an+1 ∈ A.

• We say that → is confluent if ←∗ · →∗ ⊆ ↓.
• The binary relation → is complete if → is terminating and confluent.

7

2.2 Terms
We fix a countable finite set V and call every element in V a variable. Moreover

we fix a set F called a signature such that V ∩ F = ∅ and a mapping ar : F → N to
call every element in F a function symbol and ar(f) the arity of f for every function
symbol f in F . For a subset F0 in F and a natural number n, we define the set F (n)

0

by F (n)
0 = {f ∈ F0 | ar(f) = n}. Every element in F (0) is called a constant symbol.

Definition 13. For a subset F0 in F and a subset V0 in V, we define the set T (F0,V0)
as the minimum set satisfying the following two conditions.

• V0 ⊆ T (F0,V0), and
• letting n be a natural number, f a function symbol with an arity n, if

t1, . . . , tn ∈ T (F0,V0) then f(t1, . . . , tn) ∈ T (F0,V0).

The set T (F0,∅) is usually denoted by T (F0). Every element in T (F0,V0) is called
a term, and especially every element in T (F0) is called a ground term.

Definition 14. We write N∗ for the set of all finite sequences over N, and ε for the
sequence with length 0. A position p ∈ N∗ of a term t is recursively defined as follows.

• If p = ε, then ε is a position of t.
• If p = iq and t is denoted by f(t1, . . . , tn), then iq is a position of t if q is a

position of ti.

The position ε is called the root position.

Definition 15. We write Pos(t) for the set of all positions of t, and PosF(t) for the
set of all positions of function symbols, called function positions. The subterm of a
term t at a position p is denoted by t|p, recursively defined as follows.

t|p =

{
t if p = ε

t|p = ti|q if p = iq and t = f(t1, . . . , tn)

If a term u is a subset of a term t, it is denoted by t � u. Especially if t � u and
t 6= u, then u is a strict subterm of t, which is denoted by t� u. Given terms t, u and

8

a position p of t, the term t[u]p is recursively defined as follows.

t[u]p =

{
u if p = ε

f(t1, . . . , ti−1, ti[u]q, ti+1, . . . , tn) if p = iq and t = f(t1, . . . , tn)

Definition 16. The set Var(t) of all variables occurring in a term t is defined as
follows.

Var(t) = {x ∈ V | p ∈ Pos(t) and t|p = x}

A position p such that the term t|p is a variable is called a variable position. We write
PosV(t) for the set of all variable positions of t.

Example 17. Consider a signature F = {f, a} with f ∈ F (2) and a ∈ F (0), and a term
t = f(a, x). Firstly we have Pos(t) = {ε, 1, 2}, and thus t � a and t � x. Since t|1 = a

and t|2 = x, we have Var(t) = {x}, and then PosF(t) = {ε, 1} and PosV(t) = {2}.
The term t[a]2 is f(a, a).

Definition 18. The size of a term t is recursively defined as follows.

|t| =

{
1 + |t1|+ · · ·+ |tn| if t = f(t1, . . . , tn)

1 otherwise

The size of the function symbols in a term t is defined by:

||t|| =

0 if t is a variable
1 if t is a constant
1 + ||t1||+ · · ·+ ||tn|| if t = f(t1, . . . , tn)

Example 19. Consider a term t = f(a, x). We have:

|t| = |f(a, x)| = 1 + |a|+ |x|
= 1 + 1 + 1

= 3

||t|| = ||f(a, x)|| = 1 + ||a||+ ||x||
= 1 + 1 + 0

= 2

Definition 20. A mapping σ : V → T (F ,V) such that the set {x ∈ V | σ(x) 6= x}
is finite is called a substitution. Given a term t and a substitution σ, the term tσ is

9

recursively defined as follows.

tσ =

{
σ(t) if t is a variable
tσ = f(t1σ, . . . , tnσ) if t = f(t1, . . . , tn)

The domain of σ, denoted by Dom(σ), is defined by Dom(σ) = {x ∈ V | σ(x) /∈ x}.
The range of σ, denoted by Ran(σ). defined by Ran(σ) = {σ(x) | x ∈ Dom(σ)}. For
two substitutions σ, τ and a variable x, the composition of two substitutions στ is
defined by (στ)x = (xσ)τ . Letting V0 be a set consisting of variables, a substitution
σ is called a ground substitution over V0 if xσ is a ground term for every variable x

in V0.

Definition 21. We say that a term t is an instance of a term s if there exists a
substitution σ such that sσ = t.

Definition 22. Given two substitutions σ and τ , we say that σ is more general than
τ if there exists a substitution δ such that σδ = τ . A substitution σ is called an
unifier of two terms s and t if sσ = tσ, and especially σ is a most general unifier
(mgu) if σ is more general than any other unifiers of s and t.

2.3 Term rewriting systems
Furthermore, we prepare definitions on term rewriting systems.

Definition 23. A pair of two terms (`, r) with Var(`) ⊇ Var(r) and ` /∈ V is a
rewrite rule, denoted by `→ r. We call ` the left-hand side and r the right-hand side
of the rewrite rule. A set of rewrite rules is called a term rewriting system (TRS).
An instance of the left-hand side of a rewrite rule is a reducible expression, which is
called redex for short.

Definition 24. We denote R−1 as the TRS obtained by swapping the left-hand sides
and the right-hand sides of every rule in a TRS.

Definition 25. Given a TRS R and terms t, u, the relation t →R u holds if there
exist a rewrite rule l → r ∈ R, a position p ∈ Pos(s) and a substitution σ such that
t|p = lσ and u = t[rσ]p. We call a rewrite step for the binary relation →R and such

10

a position p a rewrite position. Especially, if every strict subterms in `σ is a normal
form, the binary relation is called an innermost rewrite step, denoted by i−→R.

Definition 26. Let R be a TRS. We write NF(R) for the set of all normal forms
with respect to →R. The unique normal form of t with respect to →R is denoted by
t↓R.

Definition 27. We say that a TRS R is terminating, confluent and complete if the
rewrite step →R is terminating, confluent and complete, respectively.

Definition 28. A term t is linear if no variable occurs twice in t. A TRS R is left-
linear if every left-hand side of the rules in R is linear.

Definition 29. Terms s and t are unifiable if there exists σ such that sσ = tσ.

Definition 30. A substitution ρ is called a renaming if every image of ρ is a variable
and it is bijective on V. For a rewrite rule `→ r and a renaming ρ, we call `ρ→ rρ a
variant of the rule ` → r. We sometimes write `1 → r1

.
= `2 → r2 for `2 → r2 being

a renamed variant of `1 → r1.

Definition 31. A TRSR is overlapping if there exist `1 → r1, `2 → r2 ∈ R, renaming
substitutions ρ1, ρ2 and p ∈ Pos(`2) such that:

• `1ρ1 and `2ρ2|p are unifiable,
• p ∈ PosF(`2), and
• if `2 → r2 is a renamed variant of `1 → r1 then p 6= ε.

Definition 32. A TRS R is orthogonal if R is left-linear and non-overlapping.

Definition 33. Let p and q be positions. The leftmost-outermost order p >lo q holds
if either of the following conditions holds.

• p 6= ε and q = ε, or
• p = ip′, q = jq′, and

– i > j or
– i = j and p′ >lo q

′

Definition 34. We say that a term t is left-normal if, for all positions p ∈ PosV(t)

11

and q ∈ Pos(t), if p <lo q then q ∈ PosV(t). A TRS is left-normal if every left-hand
side of its rules is left-normal.

2.4 Needed strategy
At the end of this chapter, we introduce definitions and properties related to the

needed strategy and the leftmost-outermost strategy in this section, and strong se-
quentiality in the next section. These topics constitute the centre of this thesis.

Definition 35. Let R be a TRS over a signature F and R• be a TRS over the
signature F] • defined by R• = R ∪ {• → •}. A position p is needed in t if there
exists no term u such that t[•]p →!

R•
u.

Example 36. Consider the TRS R

1: take(x : xs, 0)→ nil 3: from(x)→ x : from(s(x))

2 : take(x : xs, s(y))→ x : take(xs, y) 4 : 0+ x→ x

and the term t = take(from(x), 0+ 0). The positions 1 and 2 of t are needed because
we have infinite rewrite sequences

t[•]1 = take(•, 0+ 0)→ take(•, 0)→ · · ·
t[•]2 = take(from(x), •)→ take(x : from(s(x)), •)→ · · ·

whilst the position 1.1 is not needed because we have:

t[•]1.1 = take(from(•), 0+ 0)→ take(• : from(s(•)), 0+ 0)

→ take(• : from(s(•)), 0)
→ nil

Definition 37. The needed strategy N−→ is a rewrite step at a needed position.

Example 38. Consider the TRS R and the term from Example 36. The needed
strategy yields the following rewrite sequence, rewriting the underlined subterms.

t = take(from(x), 0+ 0)
N−→ take(x : from(s(x)), 0+ 0)
N−→ take(x : from(s(x)), 0)
N−→ nil ∈ NF(R)

12

We prepare two more definitions about rewrite steps.

Definition 39. A rewrite step ; is a rewrite strategy of → if ; ⊆ → and NF(;) =

NF(→) holds.

The needed strategy is not always a rewrite strategy.

Example 40. Consider the TRS R

1: or(T, y)→ T

2: or(x,T)→ T

and the term t = or(or(T,F), or(F,T)). We easily have a rewrite steps t =

or(or(T,F), or(F,T)) → or(T, or(F,T)) → T ∈ NF(R). However, the needed strategy
yields t = or(or(T,F), or(F,T)) ∈ NF(R), and thus NF(→) 6= NF(

N−→). It is because
no position of t is needed:

t[•]1 = or(•, or(F,T))→ or(•,T)→ T

t[•]2 = or(or(T,F), •)→ or(T, •)→ T

t[•]1.1 = or(or(•,F), or(F,T))→ or(or(•,F),T))→ T

t[•]1.2 = or(or(T, •), or(F,T))→ or(T, or(F,T))→ T

t[•]2.1 = or(or(T,F), or(•,T))→ or(or(T,F),T)→ T

t[•]2.2 = or(or(T,F), or(F, •))→ or(T, or(F, •))→ T

Hence we may obtain different results, depending on whether we use the needed
strategy or other strategies. However, orthogonality prevents such situations.

Theorem 41 ([5]). The needed strategy is a rewrite strategy for every orthogonal TRS.

Definition 42. A rewrite strategy ; is a normalising strategy if every rewrite step
starting from a normalising term is terminating with ;.

Theorem 43 ([5]). The needed strategy is a normalising strategy for every orthogonal
TRS.

Next, we introduce the leftmost-outermost strategy.

Definition 44. The leftmost-outermost strategy lo−→ is a rewrite step at the minimum
rewrite position with respect to >lo.

13

Example 45. Consider the TRS R and the term t from Example 36. The term t is
normalising because it has a normal form nil, and the needed strategy is a normalising
strategy. However the leftmost-outermost strategy is not:

t = take(from(x), 0+ 0)
lo−→ take(x : from(s(x)), 0+ 0)
lo−→ take(x : (s(x) : from(s(s(x)))), 0+ 0)

lo−→ · · ·

The leftmost-outermost strategy leads a term to a normal form in left-normal and
orthogonal TRSs, provided that a given term has a normal form.

Theorem 46 (The Normalization Theorem [9]). For every left-normal orthogonal
TRS R, if t has a normal form u then t

lo−→∗
R u.

2.5 Strong sequentiality
Huet and Lévy [5] showed that every term has a needed position in an orthogonal

TRS, however, and needed positions are uncomputable in general. In order to compute
needed positions, they introduced strong sequentiality. Hereafter, we see how to
show strong sequentiality of orthogonal TRSs. Firstly we refer [5] for Ω-terms, a
fundamental material on strong sequentiality.

Definition 47. Terms over the signature F] {Ω(0)} are called Ω-terms. An Ω-NF
is an Ω-term without any redexes.

Definition 48. The prefix order ≤Ω on Ω-terms is defined as follows.

• x ≤Ω x for every x ∈ V
• Ω ≤Ω t for every Ω-term t

• f(s1, . . . , sn) ≤Ω f(t1, . . . , tn) if s1 ≤Ω t1, . . . , sn ≤Ω tn

Definition 49. A position p of a term t is called an Ω-position if t|p = Ω. We write
PosΩ(t) for the set of all Ω-positions of t.

Durand and Middeldorp [3] proposed an efficient way to find indices, which are
required to show strong sequentiality, introducing an extended TRS called strong
approximation and a predicate nf s.

14

Definition 50. The strong approximation Rs of a TRS R is obtained by replacing
the right-hand sides of every rule in R by a fresh variable.

Example 51. Consider the TRS R from Example 36. The strong approximation Rs

consists of the following rules.

1: take(x : xs, 0)→ z 3: from(x)→ z

2: take(x : xs, s(y))→ z 4: 0+ x→ z

Definition 52. A predicate nf s(t) on Ω-terms holds if t→∗
Rs

u for some normal form
u ∈ T (F ,V).

Indices with respect to nf s is defined as follows.

Definition 53. An Ω-position p of an Ω-term t is an index if u|p 6= Ω for every Ω-
term u such that t ≤Ω u and nf s(u) hold.

Example 54. Consider the TRS R from Example 36, the strong approximation Rs

and the Ω-term t = take(Ω, 0 + Ω). The Ω-position 1 is an index, whilst 2.2 is not,
because we have take(x : xs, 0+Ω)→Rs take(x : xs, 0)→Rs 0.

Moreover, they defined s-sequentiality and showed that the class of s-sequential
TRSs coincides the class of strongly sequential TRSs.

Definition 55. A TRS R is s-sequential if every Ω-normal form has an index with
respect to nf s in R.

Theorem 56. An orthogonal TRS R is strongly sequential if every Ω-NF has an
index with respect to nf s.

Strong approximation enables us to indicate indices without considering the right
hand sides of TRSs, and thus we can find them easily.

Needed positions and indices look similar, but differ. Nevertheless, in orthogonal
TRSs there is an important relation between them.

Theorem 57 ([5]). Let R be a left-linear TRS. If an Ω-position p in an Ω-term t

is an index with respect to nf s, the Ω-position p is a needed position in a term u for
every term u such that t ≤Ω u and p is a rewrite position of u.

15

Indices, that is to say, can be needed positions in left-linear TRSs. This theorem
holds also in orthogonal TRSs since they are left-linear. However, it has been still
hard to show strong sequentiality because we need to find indices of every Ω-NF. Klop
and Middeldorp [6] proposed another technique to show strong sequentiality, adding
one more condition to orthogonal TRSs: being constructor system.

Definition 58. Let R be a TRS.

• The set ΣR consists of all function symbols in R.
• The set of defined symbols DR of R is defined by DR = {root(`) | `→ r ∈ R}.
• The set of constructor symbols CR of R is defined by CR = ΣR \ DR.

A term that consists of constructor symbols and variables is called a constructor term.

Definition 59. A TRS R is a constructor system if the term `|p is a constructor term
for every rule `→ r ∈ R and every position p ∈ PosF(`) \ {ε}.

Example 60. Consider the TRS R from Example 36:

1: take(x : xs, 0)→ nil 3: from(x)→ x : from(s(x))

2 : take(x : xs, s(y))→ x : take(xs, y) 4 : 0+ x→ x

We have ΣR = {take, from,+, :, 0, s, nil}, DR = {take, from,+} and CR = {:, 0, s, nil}.
No defined symbols occur at positions in every rule excepting ε, and thus R is a
constructor system.

A key feature of the technique is that we need to consider only limited Ω-terms,
which is called preredexes and obtained by a given TRS.

Definition 61.

• A redex scheme is a term that all variables occurring in the left-hand sides of
rewrite rules are replaced by Ω.

• An Ω-term t is a preredex if there exists a redex scheme u such that t ≤Ω u.
• A preredex is proper if it is neither a redex scheme nor Ω.

We refer to [6] for a little more definitions and properties about Ω-terms.

16

Definition 62. The Ω-reduction →Ω is defined as follows.

t→Ω t[Ω]p

for every redex compatible subterm u and position p of t such that t|p = u.

Definition 63 ([5]). The direct approximant ω(t) of an Ω-term t is the normal form
of t with respect to Ω-reduction. An Ω-term t is called soft if ω(t) = Ω.

Lemma 64. Let s and t be Ω-terms, and p an Ω-position of t.

• ω(t) ≤Ω t.
• ω(t) = ω(t[ω(t|p)]p).
• ω(ω(t)) = ω(t).
• If t is redex compatible then ω(t) = Ω.

Lemma 65. Let R be a TRS, t an Ω-term and p an Ω-position of t. The following
three statements are equivalent.

1. p ∈ IR(t).
2. ω(t[•]p) 6= ω(t).
3. p ∈ PosΩ(ω(t[•]p)).

Definition 66. Let t be a soft Ω-term and

t = t0 →Ω t1 →Ω . . .→Ω tn = Ω

an arbitrary Ω-reduction from t to Ω, and suppose that in step ti →Ω ti+1 the redex
compatible term at position pi is replaced by Ω. The set defined by {(pi, ti|pi) | 0 ≤
i ≤ n− 1} is called a decomposition of t.

Example 67. Consider the ATRS R

1: map f nil→ nil 5: + 0→ id

2: map f (: x xs)→ : (f x) (map f xs) 6 : + (s x) y → s (+ x y)

3 : take 0 xs → nil 7: id x→ x

4: take (s x) (: y ys)→ : y (take y xs)

and the Ω-term t = take (+ Ω (s 0)) (map id Ω). For example, we have the following
Ω-reduction sequence, in which the underlined subterms are reduced.

t = take (+ Ω (s 0)) (map id Ω)
2−→Ω take (+ Ω (s 0)) Ω

1.2−−→Ω take Ω Ω
ε−→Ω Ω

17

As ω(t) = Ω, and thus t is soft. We obtain the following decomposition D of t.

D = {(map id Ω, 2), (+ Ω (s 0), 1.2), (take Ω Ω, ε)}

Note that decompositions vary by Ω-reduction sequences which we obtain. Here are
an Ω-reduction and the decomposition D′ in another case.

t = take (+ Ω (s 0)) (map id Ω)
ε−→Ω Ω

D′ = {(take (+ Ω (s 0)) (map id Ω), ε)}

Definition 68. Let t be an Ω-term and suppose that t is soft. Procrustes cut cut(t)

and the set of positions Poscut where subterms are cut by cut(t) are defined as follows.

• cut(t) = t ∩ r1 ∩ · · · ∩ rn

• Pos(t) = {p | p ∈ Pos(t) and t|p 6= Ω}
• Poscut(t) = Pos(t) ∩ PosΩ(cut(t))

where {r1, . . . , rn} is the set of all redex schemes compatible with t.

Example 69. Consider the ATRS R from Example 67 and the Ω-term t = map id Ω.
The redex schemes of R are the following seven Ω-terms.

map Ω nil + 0

map Ω (: x Ω) + (s Ω) Ω

take 0 Ω id Ω

take (s Ω) (: Ω Ω)

The Ω-term t = map id Ω is compatible with the redex schemes map Ω nil and
map Ω (: x Ω). We obtain cut(t) = (map id Ω) ∩ (map Ω nil) ∩ (map Ω (: x Ω)) as
follows.

map id Ω
∩ map Ω nil

map Ω Ω
∩ map Ω (: x Ω)

map Ω Ω

Hence cut(t) = map Ω Ω, which yields Poscut(t) = {1.2} with Pos(t) = {1.2}.

Definition 70. Let D be a decomposition of a soft Ω-term t. Procrustes procedure
t →cut t′ holds if t′ = t[Ω]pq for some q ∈ Poscut(s) and (s, p) ∈ D such that

18

cut(s) 6= s. The set of all normal forms with respect to →cut excepting Ω is denoted
by NF cut .

Example 71. Consider the ATRS R from Example 67 and the Ω-term t =

take (+ Ω (s 0)) (map id Ω). As we have seen in Example 67, we can obtain the
following Ω-reduction sequence and the decomposition D.

t = take (+ Ω (s 0)) (map id Ω)
2−→Ω take (+ Ω (s 0)) Ω

1.2−−→Ω take Ω Ω
ε−→Ω Ω

D = {(map id Ω, 2), (+ Ω (s 0), 1.2), (take Ω Ω, ε)}

In this case, the Procrustes procedure from the decomposition D is obtained as follows.

t = take (+ Ω (s 0)) (map id Ω)

→cut take (+ Ω (s 0)) (map Ω Ω)

→cut take (+ Ω Ω) (map Ω Ω) ∈ NF cut

The next two lemmata claim that strong sequentiality of TRSs can be shown by
finding an index of every element t of NF cut and every decomposition of t is a proper
preredex of a TRS. That is, we can show existence of an index of t if every proper
preredex has an index.

Lemma 72. A TRS is strongly sequential if and only if every NF cut has index.

Lemma 73. If t ∈ NF cut and u is a decomposition of t then u is a proper preredex.

It is known that pq ∈ IR(t[u]p) does not always hold even if p ∈ IR(t) and q ∈ IR(u)

for a TRS R, and terms s and t. However, it definitely holds in constructor systems.

Lemma 74. Let R be a constructor system and s, t Ω-terms. If p ∈ IR(s) and
q ∈ IR(t) then pq ∈ IR(s[t]p).

Since decompositions of t ∈ NF cut are proper preredexes, t is a ‘composition’ of
them. By this lemma on index transitivity, they showed the following key lemma.

Lemma 75. An orthogonal constructor system is strongly sequential if and only if
every proper preredex has index.

Lemma 75 suggests that in orthogonal constructor TRSs, all we need to do is find
indices of their proper preredexes, not of every Ω-NF.

19

Furthermore, they proposed another method to find indices of Ω-terms for con-
structor systems, which is based on compatibility of Ω-terms.

Definition 76. Two Ω-terms t1 and t2 are compatible if there exists an Ω-term t such
that t1 ≤Ω t and t2 ≤Ω t. We write t1 ↑Ω t2 for such compatibility.

Definition 77. An Ω-term t is redex compatible if t ≤Ω u for some redex u.

Lemma 78. Let t be a proper preredex in a constructor system. An Ω-position p is
an index if and only if t[•]p is not redex compatible.

Therefore, in orthogonal constructor systems, we can determine whether an Ω-
position p of an proper preredex t is an index or not by checking whether t[•]p is
redex compatible. That is to say, if t[•]p is an instance of any left-hand side ` in a
TRS, which is equivalent to t[•]p ↑Ω `, the Ω-position p is an index.

Example 79. Consider the TRS R from Example 36. The proper preredex are
take(Ω : Ω,Ω), take(Ω, s(Ω)), take(Ω,Ω) and Ω+ Ω.

• In take(Ω : Ω,Ω), the Ω-position 2 is an index because take(Ω : Ω, •) is not redex
compatible. However, the Ω-positions 1.1 and 1.2 is not an index because
take(• : Ω,Ω) and take(Ω : •,Ω) can be refined to redexes take(• : Ω, 0) and
take(Ω : •, 0), respectively.

• In take(Ω, s(Ω)), the Ω-position 1 is an index.
• In take(Ω,Ω), the Ω-positions 1 and 2 are indices because take(•,Ω) and

take(Ω, •) are not redex compatible.
• In Ω+ Ω, the Ω-position 1 is index because •+Ω is not redex compatible.

Since every proper preredex has an index, R is strongly sequential.

As we have seen, even though finding indices is difficult, in orthogonal constructor
systems it is relatively easy to find indices and show strong sequentiality. It is also
notable that strong sequentiality ensures existence of indices of every proper preredex.

20

Chapter 3

Left-normal translation for ATRSs

In this chapter, we first discuss strong sequentiality in ATRSs. After, we shall
define left-normal translation for ATRSs and show its correctness, including strong
sequentiality of translated ATRSs. .

3.1 Strong sequentiality in ATRSs
Let us begin by preparing the definitions on ATRSs.

Definition 80. Applicative term is terms over a signature consisting of constants and
a single binary function symbol ◦. Applicative term rewrite system (ATRS) are TRSs
consisting of applicative terms.

TRSs other than ATRSs are called functional TRSs. The binary function symbol
◦ is usually denoted by left-associative infix notation like t1 ◦ t2 ◦ t3 for ◦(◦(t1, t2), t3).

The fact that the set of ATRSs is a subset of the set of TRSs is likely to fit Lemma
75 from [6] for determination of strong sequentiality of ATRSs. However, we cannot
use the method. It stems from the definition of constructor system.

Example 81. Consider the ATRS R.

1: map f nil→ nil 5: + 0→ id

2: map f (: x xs)→ : (f x) (map f xs) 6 : + (s x) y → s (+ x y)

3 : take 0 xs → nil 7: id x→ x

4: take (s x) (: y ys)→ : y (take y xs)

21

The set of defined symbols DR apparently consists of map, take, + and id that occur
on the ‘left’ of the left-hand sides, but it does not. Recalling the definition of defined
and constructor symbols, we have the following sets DR and CR.

DR = {◦}
CR = {map, nil, :, take, 0, s,+, id}

For example, map f nil is denoted by ◦(◦(map, f), nil) without left-associative infix
notation, and thus its root symbol is ◦. The symbol may occur at positions excepting
the root positions as we can see the subterm ◦(map, f). Therefore, the ATRS R is
not a constructor system, and also we cannot show strong sequentiality of R even if
we could find indices of every proper preredex.

In order to overcome this problem, we prepare a concept with two parts: (1) defining
a way to handle efficiently symbols in ATRSs excepting ◦ and (2) providing a method
to show strong sequentiality that fits the concept.

Firstly, we introduce an applicative version of constructor systems.

Definition 82. The head symbol of an applicative term t is defined as follows.

head(t) =

{
head(u) if t = u ◦ v
t otherwise

Example 83. Consider the applicative term t from Example 97.

head(t) = head(take (+ Ω (s 0)) (map id Ω))

= head(take (+ Ω (s 0)))

= head(take)

= take

Definition 84. Let R be an ATRS.

• The set of signatures AΣR consists of all function symbols in R.
• The set of applicative defined symbols ADR is defined by ADR = {head(`) |

`→ r ∈ R}.
• The set of applicative constructor symbols ACR is defined by ACR = AΣR \
ADR.

An applicative term t is called an applicative constructor term if t ∈ T (ACR,V).

22

Example 85. Consider the ATRS R from Example 81.

1: map f nil→ nil 5: + 0→ id

2: map f (: x xs)→ : (f x) (map f xs) 6 : + (s x) y → s (+ x y)

3 : take 0 xs → nil 7: id x→ x

4: take (s x) (: y ys)→ : y (take y xs)

For example, in the first rule we have head(map f nil) = ◦(◦(map, f), nil) = map.
Hence the symbol map is in the set of applicative defined symbols. Finally, we have
the following sets ACR and ADR.

ADR = {map, take,+, id}
ACR = {nil, :, 0, s}

Definition 86. Let R be an ATRS and t be an applicative term. The term t is called
an applicative basic term if head(t) ∈ ADR and every applicative argument of t is an
applicative constructor term.

Definition 87. A TRS R is an applicative constructor system (ACS) if ` is an ap-
plicative basic term for every rule `→ r ∈ R.

Example 88. Consider the ATRS R from Example 81. As aforementioned, we have
ADR = {map, take,+, id} and ACR = {nil, :, 0, s}. For every rule ` → r, we can see
that ` is an applicative basic term, and thus R is an ACS.

Secondly, we propose a way to show strong sequentiality of orthogonal ACSs. Our
method is basically based on [6] seen in the previous chapter. However, recalling
that Lemmata 74 and 75 assume that orthogonal TRSs are constructor systems, we
cannot say that these lemmata fit orthogonal applicative constructor systems. Hence
the mission is proposing two lemmata: applicative versions of Lemmata 74 and 75.

Lemma 89. Let R be an orthogonal ACS and s, t Ω-terms. If p ∈ IR(s), q ∈ IR(t)

and t is redex compatible, then pq ∈ IR(s[t]p).

Proof. Assume that p ∈ IR(s), q ∈ IR(t) and t is redex compatible. We show
pq ∈ IR(s[t]p) by contradiction. Assume that pq /∈ IR(s[t]p), then we have pq /∈
Pos(ω((s[t]p)[•]pq)). There exists an Ω-reduction

(s[t]p)[•]pq →∗
Ω t1 →Ω t2 →∗

Ω ω((s[t]p)[•]pq)

23

such that t1|pq = • and pq /∈ Pos(t2). Let t1|p′ be a redex compatible subterm
contracted in the step t1 →Ω t2. Clearly p′ < pq. We distinguish two cases by p′.

• If p ≤ p′ < pq, as p ∈ Pos(t2) holds, ((s[t]p)[•]pq)|p →∗
Ω t1 →Ω t2 can be

translated into

((s[t]p)[•]pq)|p = ((s[t]p)|p)[•](pq|p) →
∗
Ω t1|p →Ω t2|p

As pq /∈ Pos(t2), pq|p /∈ Pos(t2|p), we have q /∈ Pos(t2|p). By the definition of
Ω-reduction, we have:

q /∈ Pos(ω(t2|p)) = Pos(ω(((s[t]p)|p)[•](pq|p))) = Pos(ω(t[•]q))

From this it follows that q /∈ IR(t), which contradicts the assumption q ∈ IR(t).
• If p′ < p, let u be a redex scheme of R compatible with t1|p′. Firstly, as R is an

ACS, for every position r in u other than the position corresponding to head(u),
we have u|r /∈ ADR. Secondly, the assumption p′ < p implies that t1|p is redex
compatible. Let v be a redex scheme of R compatible with t and t1|p. As R
is an ACS, head(v) ∈ ADR. As R is orthogonal, there exists no u′ ∈ Arg(u)

such that head(u′) = head(v). It follows that p|p′ /∈ Pos(u) or u|(p|p′) = Ω,
and then (t1[•]p)|p′ is compatible with r. Considering that the position p is
preserved in the step s[t]p →∗

Ω t1, the Ω-reduction (s[t]p)[•]pq →∗
Ω t1 →Ω t2 can

be translated into:

(s[t]p)[•]pq →∗
Ω t1[•]pq →Ω (t1[•]pq)[Ω]p′ = t2

From p′ < p, we have p /∈ Pos(t2). Hence p /∈ Pos(ω(t2)) = Pos(ω((s[t]p)[•]p)) =
Pos(ω(s[•]p)). It therefore follows that p /∈ IR(s), which contradicts the
assumption p ∈ IR(s).

Lemma 90. An orthogonal ACS is strongly sequential if and only if every proper
preredex has index.

Proof. For the ‘if’ direction, the claim follows by Lemmata 72 and 73. For the ‘only
if’ direction, assume that every proper preredex has an index. By Lemma 72, to show
strong sequentiality of R, it suffices to show every Ω-term in NF cut has an index. Let

24

t be an arbitrary Ω-term in NF cut and D the decomposition of t. By the definition
of decomposition, there exist an Ω-reduction and Ω-terms t1, . . . , tn such that

t = t1
p1−→Ω t2

p2−→Ω t3
p3−→Ω · · ·

pn−1−−−→Ω tn
pn−→Ω Ω

and thus t can be denoted by:

t = t1 = ((Ω[tn]pn
) . . . [t2]p2

)

By Lemma 73, t1, . . . , tn are proper preredexes of R. The assumption implies that
each of them has an index. By Lemma 89, t has an index.

Together with our lemmata 89, 90 and lemmata 72, 73 by [6], a method to show
strong sequentiality of orthogonal ACSs has been set up.

Moreover, we introduce additional concepts uniquely available for ATRSs in order
to find indices more practically.

Definition 91. A term t is head-variable-free if there exist no terms t1, t2 such that
t � ◦(t1, t2) and t1 ∈ V.

Definition 92. A TRS R is left-head-variable-free if the left-hand side ` is head-
variable-free for every `→ r ∈ R.

We usually write `-ATRSs and `-ACSs for left-head-variable-free ATRSs and left-
head-variable-free ACSs, respectively.

Example 93. Consider the ATRS R from Example 81.

1: map f nil→ nil 5: from x→ : x (from (s x))

2 : map f (: x xs)→ : (f x) (map f xs) 6 : + 0 x→ x

3: take (: x xs) 0→ nil 7: id x→ x

4: take (: x xs) (s y)→ : x (take xs y)

Since the underlined subterms are not variables, R is an `-ATRS.

Definition 94. A term t is head-Ω-free if there exist no terms t1 and t2 such that
t � ◦(t1, t2) and t1 = Ω.

ATRSs yield much more non-head-Ω-free proper preredexes than head-Ω-free ones,
and then the number of indices which we need to find tends to be larger. It is because
function symbols are constants, which can be replaced by Ω.

25

Example 95. Consider the ATRS R:

1: take xs 0→ nil 3: from x→ : x (from (s x))

2 : take (: x xs) (s y)→ : x (take xs y) 4 : + 0 x→ x

The redex schemes and the proper preredexes are as follows; only underlined proper
preredexes are head-Ω-free.

redex scheme take Ω 0 take (: Ω Ω) (s Ω) from Ω + 0 Ω

proper preredex

take Ω 0 take (: Ω Ω) (s Ω) from Ω + 0 Ω

take Ω Ω take (: Ω Ω) (Ω Ω) Ω Ω + Ω Ω

Ω Ω 0 take (Ω Ω Ω) (s Ω) Ω 0 Ω

Ω (: Ω Ω) (s Ω) Ω Ω Ω

take (Ω Ω Ω) (Ω Ω)

Ω (: Ω Ω) (Ω Ω)

Ω (Ω Ω Ω) (Ω Ω)

take (: Ω Ω) Ω

take (Ω Ω Ω) Ω

Ω (: Ω Ω) Ω

Ω (Ω Ω Ω) Ω

take (Ω Ω) Ω

Ω (Ω Ω) Ω

take (Ω Ω) (s Ω)

take (Ω Ω) (Ω Ω)

Ω (Ω Ω) (s Ω)

Ω (Ω Ω) (Ω Ω)

take Ω (s Ω)

take Ω (Ω Ω)

Ω Ω (s Ω)

Ω Ω (Ω Ω)

Ω (s Ω)

Ω (Ω Ω)

Fortunately, every non-head-Ω-free proper preredex definitely has an index if an
orthogonal `-ACS satisfies one more condition: being non-variadic.

26

Definition 96. Let t be an applicative term. The set of applicative arguments Arg(t)

is defined as follows.

Arg(t) =

{
Arg(u) ∪ {v} if t = u ◦ v
∅ otherwise

Example 97. Consider the applicative term t = take (+ Ω (s 0)) (map id Ω).

Arg(t) = Arg(take (+ Ω (s 0)) (map id Ω))

= Arg(take (+ Ω (s 0))) ∪ {map id Ω}
= Arg(take) ∪ {+ Ω (s 0)} ∪ {+ 0 0}
= ∅ ∪ {+ Ω (s 0)} ∪ {+ 0 0}
= {+ Ω (s 0),+ 0 0}

Definition 98. An ATRS R is non-variadic if, for every two rules `→ r and `′ → r′

in R, if head(`) = head(`′) then ||Arg(`)|| = ||Arg(`′)||.

Example 99. Consider the ATRS R from Example 81. The rules 1 and 2, and
the rules 3 and 4 are sets of rules whose left-hand sides have a same head sym-
bol. Since ||Arg(map f nil)|| = ||Arg(map f (: x xs))|| = 2 and ||Arg(take 0 xs)|| =
||Arg(take (s x) (: y ys))|| = 2, the ATRS R is non-variadic.

In order to show that non-head-Ω-free proper preredexes have indices, we introduce
a non-variadic orthogonal `-ACS version of Lemma 78.

Lemma 100. Let t be a proper preredex in a non-variadic orthogonal `-ACS R. An
Ω-position p of t is an index if and only if t[•]p is not redex compatible.

Proof.

• For the ‘if’ direction, assume that p ∈ IR(t). We show the claim holds by
contradiction. Assuming that t[•]p is redex compatible with `Ω for some ` →
r ∈ R, we have ω(t[•]p) = Ω. Since t is a proper preredex, ω(t) = Ω. Hence
it follows that ω(t) = ω(t[•]p) = Ω. By contraposition of Lemma 65, we can
conclude that p /∈ IR(t), contradicting the assumption.

• For the ‘only if’ direction, assume that t[•]p is not redex compatible. We have
ω(t[•]p) = t[•]p. On the other hand, t is a proper preredex, and thus ω(t) = Ω.
Hence it follows that ω(t) 6= ω(t[•]p), which is equivalent to p ∈ IR(t) by
Lemma 65.

27

Furthermore, we obtain the following lemma.

Lemma 101. Let R be a non-variadic orthogonal `-ACS over F , t an Ω-term and p

an Ω-position of t. The following two statements are equivalent.

1. For every rule `→ r ∈ R, if t <Ω `Ω then p ∈ PosF(`).
2. p ∈ IR(t).

Proof. For the ‘only if’ direction, assume that for every rule `→ r ∈ R, if t <Ω `Ω then
p ∈ PosF(`). Let ` → r be an arbitrary rule in R. Assume that t <Ω `Ω. It suffices
to show that t[•]p ↑Ω `Ω does not hold. Assume to the contrary. Since p ∈ PosF(`)

and p ∈ PosF(t[•]p), the assumption t[•]p ↑Ω `Ω requires that the function of ` at p

should be •. This contradicts the assumption that • is a fresh symbol.
For the ‘if’ direction, assume that p ∈ IR(t). We show that the claim holds by

contradiction. As p ∈ IR(t), it follows that t[•]p is not redex compatible in R. Hence
t[•]p ↑Ω `Ω for no rule ` → r. Let ` → r be an arbitrary rule in R, and assume that
t <Ω `Ω. As t[•]p ↑Ω `Ω does not hold, there exists no term u such that t[•]p ≤Ω u and
`Ω ≤Ω u. Assume p ∈ PosV(`) further. Considering that t ≤Ω `Ω and p ∈ PosV(`), we
can take u such that u = (`Ω)[•]p, and then we obtain t[•]p ≤Ω u and `Ω ≤Ω u. This
contradicts the previous argument, and thus p ∈ PosF(`). Since ` → r is arbitrary,
we conclude that for every rule `→ r ∈ R, if t <Ω `Ω then p ∈ PosF(`).

We can give an constructor system version of the above lemma by Lemma 78.

Lemma 102. Let R be a constructor system over F , t an Ω-term and p an Ω-position
of t. The following two statements are equivalent.

1. For every rule `→ r ∈ R, if t <Ω `Ω then p ∈ PosF(`).
2. p ∈ IR(t).

Positions of non-head-Ω-free proper preredex are denoted like p1. The next lemma
shows that such positions always become indices in non-variadic orthogonal `-ACSs.

Lemma 103. Let R be a non-variadic orthogonal `-ACS and t a proper preredex of
R. If p1 ∈ PosΩ(t) then p1 ∈ IR(t).

28

Proof. Assume that p1 ∈ PosΩ(t). Let `→ r an arbitrary rule in R, and assume that
t <Ω `Ω. As t <Ω `Ω, we have Pos(t) ⊆ Pos(`Ω) ⊆ Pos(`), and thus p1 ∈ Pos(`).
Since R is left-head-variable-free, p1 ∈ PosF(t). As ` → r is arbitrary, by Lemma
101, it follows that p ∈ IR(t).

Owing to this property, in non-variadic orthogonal `-ACSs, actually we should
consider only head-Ω-free proper preredexes to show their strong sequentiality.

3.2 Definitions
We define left-normal translation for ATRSs.

Definition 104. Let L = {tΩ | t is a left-normal term}. We write tL for
∨
{u ∈ L |

u ≤Ω t}. An arbitrary but fixed linear term u such that uΩ = t is denoted by t0.

Lemma 105. Let u be an Ω-term. The set {t ∈ L | t ≤Ω u} is finite and totally
ordered with respect to ≤Ω.

Definition 106. Let R be a non-variadic ATRS. We define M(R) as follows.

M(R) = min
≤Ω

({`L | `→ r ∈ R and IR(`Ω
L) 6= ∅})

The ATRS A(R) is defined by

A(R) = {t0 → f(t0|p)x1 · · · xn | t ∈ M(R)}

where p = min<lo
(IR(t)), f is a fresh constant symbol, and x1, . . . , xn are the variables

in Var(t0) \ {t0|p} in a fixed order.

Example 107. Consider the ATRS R from Example 99. The rules 1, 2 and
4 are not left-normal: for example, we can see that in the 4th left-hand side
◦(◦(take, ◦(s, x)), ◦(◦(:, y), ys)), the underlined subterm is on the right of the variable
x. We obtain M(R) = {map f x1, take (s x) x1} where x1 is a fresh variable, and
A(R):

map f x1 → map1 x1 f

take (s x) x1 → take1 x1 x

Lemma 108. Let R be a non-variadic ATRS. For every two Ω-terms t and u in
M(R), head(t) 6= head(u).

29

Definition 109. LetR be a non-variadic ATRS. The one-step left-normal translation
AB(R) is defined by AB(R) = A(R)∪B(R), where B(R) = {`↓A(R) → r | ` → r ∈ R}.

Example 110. Consider the ATRS from Example 107. The original TRS R is
rewritten to be B(R) by A(R), and then we obtain AB(R) = A(R) ∪ B(R) with the
following rules.

1: map f x1 → map1 x1 f

2: take (s x) x1 → take1 x1 x

3: map1 nil f → nil

4: map1 (: x xs) f → : (f x) (map f xs)

5 : take 0 xs → nil

6: take1 (: y ys) x→ : y (take y xs)

7 : + 0→ id

8: + (s x) y → s (+ x y)

9 : id x→ x

When generating M(R), subterms in non-left-normal left-hand sides that are not
variables and on the right of variables are replaced by Ω. For every element t in
M(R), t is a proper preredex of a TRS R because there exists a rule `→ r such that
t <Ω `Ω. Hence positions of such subterms become indices of elements in M(R) by
Lemma 100.

Next, we discuss finiteness of the translation. Whenever left-normal translation
yields the same ATRS as a strongly sequential input ATRS, the input one is already
left-normal and the translation terminates at the time. In the remaining part of the
subsection, we assume that R is a finite non-variadic orthogonal `-ACS.

Lemma 111. Let t be an applicative term and σ a substitution. ||tσ|| ≥∑
x∈Var(t) ||xσ||.

Proof. By structural induction on t.

• If t ∈ V, then we have:

(lhs) = ||tσ||

(rhs) =
∑

x∈Var(t)

||xσ|| = ||tσ|| = (lhs)

30

• If t ∈ t1 ◦ t2, then we have:

(lhs) = 1 + ||t1σ||+ ||t2σ||

(rhs) =
∑

x∈Var(t)

||xσ|| =
∑

x∈Var(t1)

||xσ||+
∑

x∈Var(t2)

||xσ||

By the induction hypothesis, ||t1σ|| ≥
∑

x∈Var(t1)
||xσ|| and ||t2σ|| ≥∑

x∈Var(t2)
||xσ||. Therefore, it follows that:

(lhs) = 1 + ||t1σ||+ ||t2σ||

≥ 1 +
∑

x∈Var(t1)

||xσ||+
∑

x∈Var(t2)

||xσ||

>
∑

x∈Var(t1)

||xσ||+
∑

x∈Var(t2)

||xσ|| = (rhs)

Lemma 112. Let t be an applicative term such that t /∈ V and σ a substitution. For
every y ∈ Var(t), we have ||tσ|| > ||yσ||.

Proof. By Lemma 111, ||tσ|| >
∑

x∈Var(t) ||xσ||. As y ∈ Var(t), we have∑
x∈Var(t) ||xσ|| ≥ ||yσ||, and thus ||tσ|| > ||yσ||.

Lemma 113. ABn(R) = ABn+1(R) for some n ≥ 1.

Proof.

• If R is left-normal, then M(R) = ∅. Hence we have A(R) = ∅ and B(R) = R,
which imply R = AB(R).

• If R is not left-normal, it suffices to show that ||`|| > ||`↓A(R)|| for an ar-
bitrary non-left-normal rule ` → r ∈ R. Let ` → r be an arbitrary non-
left-normal rule in R. As ` → r is not left-normal, there exists t → t′ ∈
A(R) and σ such that ` = tσ. If `↓A(R) is not left-normal, there exists
u → u′ ∈ A(AB(R)) and τ such that `↓A(R) = uτ . By Lemma 111, we
have ||`|| − ||`↓A(R)|| = ||`σ|| − ||uτ || ≥

∑
x∈Var(t) ||xσ|| −

∑
x∈Var(u) ||xτ ||.

It suffices to show
∑

x∈Var(t) ||xσ|| >
∑

x∈Var(u) ||xτ ||. By the definition of
A(R), we have `↓A(R) = (f t|p x1 . . . xm)σ where p is an index of R and
{x1, . . . , xm} = Var(t) \ {t|p}. Hence Var(t) = t|p, x1, . . . , xm, and thus it

31

follows that: ∑
x∈Var(t)

||xσ|| = ||(t|p)σ||+ ||x1σ||+ · · ·+ ||xmσ||

By the definition of M(R), since u→ u′ ∈ A(AB(R)), the position p is an index,
we have:

`↓A(R) = fτ (t|p)σ x1σ . . . xmσ

= fτ (g s1 · · · sn)τ x1τ . . . xmτ = uτ

Hence x1σ = x1τ, . . . , xmσ = xmτ and (t|p)σ = (g s1 . . . sn)τ hold, and thus
we obtain: ∑

x∈Var(u)

||xτ || =
∑

1≤i≤m

∑
x∈Var(xi)

||xτ ||+
∑

1≤j≤n

∑
x∈Var(sj)

||xτ ||

By Lemma 111, for arbitrary 1 ≤ i ≤ m, ||xiσ|| = ||xiτ || ≥
∑

x∈Var(xi)
||xτ ||.

By Lemma 112, we have ||(t|p)σ|| = ||(g s1 · · · sn)τ || >
∑

1≤j≤n

∑
x∈Var(sj)

||xτ ||.
Consequently it follows that

∑
x∈Var(t) ||xσ|| −

∑
x∈Var(u) ||xτ || > 0.

Definition 114. We define L(R) by L(R) = ABn(R) such that ABn(R) = ABn+1(R)
for some n ≥ 1.

In the case of Example 110, we have L(R) = AB1(R); the ATRS AB1(R) is left-
normal, and thus AB1(R) = AB2(R).

3.3 Correctness
Hereafter, we show correctness of left-normal translation for ATRSs. In order to

show this, we need to proof that the translation satisfies the following properties.

1. Being an `-ACS. If an input ATRS is an `-ACS, the translated ATRS is an `-
ACS.

2. Orthogonality. If an input ATRS is orthogonal, the translated ATRS is orthog-
onal.

3. Reachability. If we can reach a term u from a term t by an input ATRS, we
can reach there also by the translated ATRS.

32

4. Strong sequentiality. If an input ATRS is strongly sequential, the translated
ATRS is strongly sequential.

In the remaining part of this section, we suppose that an ATRS R is non-variadic
orthogonal `-ACS in order to ensure orthogonality of A(R), B(R) and AB(R). Neces-
sity of being non-variadic, left-head-variable-free and ACSs is shown in the following
counterexamples lacking each property.

Example 115. Consider the variadic ATRS R = {1 : F x a → a, 2 : F x b a → b}
We have A(R) = {3 : F x y → F1 y x, 4 : F x y z → F′

1 y x z}, which is overlapping.

Example 116. Consider the non-head-variable-free ATRS R = {1 : F a → a, 2 :

F (x b)→ b}. We obtain A(R) = {3 : F (x y)→ F1 y x} and then B(R) = {1 : F a→
a, 5 : F1 b x→ b}. The rules 1 and 3 are overlapping.

Example 117. Consider the non-ACS ATRSR = {1 : F (F x a) b→ x, 2 : F a b→ x}.
We obtain A(R) = {3 : F (F x y) z → F1 y x z} and then B(R) = {2 : F a b→ x, 4 :

F1 a x b→ x}. The rules 2 and 3 are overlapping.

3.3.1 Applicative Constructor Systems

In this part, we show that if an input ATRS R is a non-variadic orthogonal `-ACS
then both of A(R) and B(R) are `-ACSs, and consequently AB(R) is so. We prepare
one more definition on ACSs.

Definition 118. A substitute σ is called an applicative constructor substitute if t is
an applicative constructor term for every mapping x 7→ t in σ.

Firstly we show that A(R) is an `-ACS.

Lemma 119. Let t an applicative basic term. tL
0 is an applicative basic term.

Proof. By structural induction on t.

• If t is a constant, then tL
0
= t, and thus t is applicatively basic.

• If t = t1 ◦ t2, then t1 is applicatively basic such that head(t1) ∈ ADR and t2 is
an applicative constructor term. If t1 contains variables, we have tL

0
= t1

L0 ◦x

33

where x is a fresh variable. By the induction hypothesis t1
L0 is applicatively

basic, so is tL0. Otherwise, tL0
= t1 ◦ t2L

0. Since t1
L0 is trivially an applicative

constructor system, t is applicatively basic.

Lemma 120. A(R) is an `-ACS.

Proof. Let `• → r• be an arbitrary rule in A(R). By the definition of A(R), there
exists t ∈ M(R) such that `• = t0. By Lemma 119, `• is an applicative basic term.

Secondly, we show that B(R) is an `-ACS.

Lemma 121. Let t be an applicative term and σ a substitution. If t is an applica-
tive constructor term and σ is an applicative constructor substitution, then tσ is an
applicative constructor term.

Proof. Let t be an arbitrary applicative constructor term and σ an arbitrary ap-
plicative constructor substitution. We show tσ is an applicative constructor term by
induction on t.

• If t ∈ V, as σ is an applicative constructor substitution, tσ = σ(t) is an ap-
plicative constructor term.

• If t ∈ F (0), tσ = t is an applicative constructor term.
• If t = u ◦ v, tσ = uσ ◦ vσ. By the I.H., uσ and vσ are applicative constructor

terms. Thus uσ ◦ vσ is an applicative constructor terms.

Lemma 122. Let t an applicative term. If t is an applicative constructor term then
t ∈ NF(R).

Proof. Let t be an arbitrary applicative constructor term. We show t ∈ NF(R) by
contradiction. Assume t /∈ NF(R). There exists ` → r ∈ R, p and σ such that
t|p = `σ. As R is an `-ACS, head(`) ∈ ADR. As t is an applicative constructor term,
head(t|p) /∈ ADR. These contradict t|p = `σ.

Lemma 123. B(R) is an `-ACS.

34

Proof. Let `◦ → r◦ be an arbitrary rule in B(R). By the definition of B(R), there
exists ` → r ∈ R such that `◦ = `↓A(R) and r◦ = r. We distinguish two cases by
`↓A(R).

• If `↓A(R) = `, as R is an `-ACS, ` is an applicative basic term, so is `◦.
• If `↓A(R) 6= `, then `

ε−→A(R) `′ holds for some `′ and there exists `• → r• ∈
A(R) and σ such that ` = `•σ and `′ = r•σ. By the definition of A(R),
head(r•) ∈ ACA(R) and every argument of r• is a variable. Thus r• is an
applicative constructor term with respect to A(R). Since ` = `•σ and ` is an
applicative basic term, σ is an applicative constructor substitution. By Lemma
121, r•σ is an applicative constructor term. By Lemma 120, as A(R) is an `-
ACS, r• ∈ NF(A(R)) by Lemma 122. Hence we have `′ = r•σ = `↓A(R) = `◦.
By the definition of A(R), head(`◦) = head(r•σ) is a fresh symbol. Therefore,
for every t ∈ Arg(`◦), we have head(t) /∈ ADB(R), and head(`◦) ∈ ADB(R).
Hence every argument of `◦ is an applicative constructor term.

We can conclude that AB(R) = A(R) ∪ B(R) is an `-ACS.

Theorem 124. AB(R) is an `-ACS.

3.3.2 Orthogonality

In this part we show that the translated ATRS AB(R) obtained from an orthog-
onal ATRS R is orthogonal. Orthogonality requires left-linearity and being non-
overlapping. Firstly, we show orthogonality of AB(R), noting the following property
on M(R).

Lemma 125. Let t ∈ M(R). The term t0 is left-normal and linear.

Lemma 126. A(R) is left-linear.

Proof. Let `• → r• be an arbitrary rule in A(R). By the definition of A(R), there
exists t ∈ M(R) such that t0 = `•. Lemma 125 entails that t0 is linear.

Lemma 127. Every non-variadic `-ACS is an overlay system.

35

Proof. Let `1 → r1 and `2 → r2 be arbitrary rules in a non-variadic `-ACS R, and
assume they are overlapping: there exist ρ1, ρ2 and p ∈ PosF(`2) such that `1ρ1

and `2ρ2 are unifiable. We show that p = ε by contradiction. Assume that p 6= ε.
Since R is an `-ACS, head(`2|p) ∈ ACR. As head(`1) ∈ ADR, `1ρ1 and `2ρ2 are not
unifiable.

Lemma 128. A(R) is non-overlapping.

Proof. We show that the claim holds by contradiction. Let `1 → r1 and `2 → r2

be arbitrary rules in A(R), and assume they are overlapping: there exist renaming
substitutions ρ1, ρ2 and p ∈ PosF(`2) such that `1ρ1 and `2ρ2|p are unifiable. By
Lemma 127, p = ε. By the definition of A(R), there exist t and u such that `1 = t0

and `2 = u0. By Lemma 108, head(t) 6= head(u), and thus head(`1) 6= head(`2). This
contradicts the assumption.

We obtain orthogonality of A(R).

Lemma 129. A(R) is orthogonal.

Moreover, we show completeness of A(R) and its inverse.

Lemma 130. A(R) is complete.

Proof. Let F = ADR. Termination of A(R) is obtained from the fact that |t|F > |u|F
whenever t→A(R) u. Confluence of A(R) is shown by Lemma 132.

Lemma 131. A(R)−1 is complete.

Proof. Let G = ADA(R)−1. Termination of A(R)−1 is obtained from the fact that
|t|G > |u|G whenever t →A(R)−1 u. As orthogonality implies confluence, we show
that A(R)−1 is left-linear and non-overlapping. The former is trivial, and then the
remaining task is to show the latter. Suppose `1σ = `2|pτ for some rules `1 → r1, `2 →
r2 ∈ A(R)−1, substitutions σ and τ , and a position p ∈ PosF(`2). By Lemma 127,
we have p = ε. As `1 and `2 are applicative basic terms,

head(`1) = head(`1σ) = head(`2τ) = head(`2)

and thus `1 → r1 and `2 → r2 are identical. Therefore a critical overlap does not
exist.

36

By the above lemmata, we further have the following lemmata.

Lemma 132. Let t and u be terms over ΣR. t = u if and only if t↓A(R) = u↓A(R).

Next, we discuss properties of B(R).

Lemma 133. B(R) is left-linear.

Proof. Let ` → r be an arbitrary rule in R. It suffices to show that `↓A(R) is linear.
As R is left-linear, ` is linear and Var(r) ⊆ Var(`). Since A(R) is linear and non-
erasing, Var(`) = Var(`↓A(R)), and thus it follows that `↓A(R) is linear.

Lemma 134. B(R) is non-overlapping.

Proof. We show that the claim holds by contradiction. Let α : `1 → r1 and β :

`2 → r2 be rules in B(R), and p ∈ PosF(`2). Assume that `1ρ1σ = `2|pρ2σ for some
substitution σ and remaining substitutions ρ1 and ρ2. By Lemma 127, p = ε, and
thus `1ρ1σ = `2|pρ2σ. Since α, β ∈ B(R), there exist `′1 → r1, `

′
2 → r2 ∈ R such that

`′1↓A(R) = `1 and `′2↓A(R) = `2. Moreover, as ρ1 and ρ2 are renaming substitutions,
and σ is an applicative constructor substitution, we have:

(`′1ρ1σ)↓A(R) = `1ρ1σ = `2ρ2σ = (`′2ρ2σ)↓A(R)

By Lemma 132, it follows that `′1ρ1σ = `′2ρ2σ, which shows that `′1 and `′2 are unifiable.
This contradicts the assumption that R is non-overlapping.

Finally, we show that AB(R) is orthogonal. Left-linearity of AB(R) is obtained by
Lemmata 126 and 133.

Lemma 135. AB(R) is left-linear.

Lemma 136. AB(R) is non-overlapping.

Proof. Let α : `1 → r1 and β : `2 → r2 be rules in AB(R), and p ∈ PosF(`2). Assume
that `1ρ1σ = `2|pρ2σ for some substitution σ and remaining substitutions ρ1 and ρ2.
By Lemma 127, we have p = ε, which implies `1ρ1σ = `2|ρ2σ. Moreover by Lemmata
128 and 134, α ∈ A(R) and β ∈ B(R). Hence we have

head(`1) = head(`1ρ1σ) = head(`2ρ2σ) = head(`2) ∈ ADR

37

and thus `2 ∈ NF(A(R)). As `1ρ1σ = `2ρ2σ, we have `1Ω ↑Ω `2Ω and thus `1Ω ↑Ω `2
L,

which implies that `1Ω ≤Ω `2
L or `1Ω >Ω `2

L. By the definition of A(R), there
exists t ∈ M(R) such that t0 = `1. By minimality of M(R), t ≤Ω `2

L, and thus
t ≤Ω `2

L ≤Ω `2Ω follows, contradicting `2 ∈ NF(A(R)).

Theorem 137. AB(R) is orthogonal.

3.3.3 Reachability

In this part, we show that if we can reach from a term t to u with a non-variadic
orthogonal `-ATRS R then we can reach there with the translated ATRS AB(R).

Lemma 138. If s→R t then s→k
AB(R) t for some k ∈ {1, 2}.

Proof. Assume that s→R t. Let `→ r be an arbitrary rule in R. It suffices to show
that there exists k ∈ {1, 2} such that s→k

AB(R) t.

• If there exists no term u ∈ M(R) such that u ≤ t, then we have `↓A(R) = `,
and thus `→B(R) r.

• Otherwise, there exists `• → r• ∈ A(R) and an applicative constructor sub-
stitution σ such that ` →A(R) `′ with ` = `•σ and `′ = r•σ. Since r• is an
applicative constructor term, by Lemma 121, `′ = r•σ is an applicative con-
structor term. By Lemma 122, `′ = NF(A(R)), and thus `′ = `↓A(R). By
the definition of B(R), we have `↓A(R) →B(R) r. Consequently, it follows that
`• →A(R) `↓A(R) →B(R) r.

Moreover, completeness of A(R)−1 shown by Lemma 131 yields the following lemma.

Remark 139. We write t ↑R for t↓R−1.

Lemma 140. Let s and t be terms. If s→A(R) t then s↑A(R) = t↑A(R).

We shall introduce two properties: (1) if s →R t then s →L(R) t↓A(R) and (2) if
s→L(R) t then s→R t↑A(R) in order to show the main theorem of this part.

Lemma 141. If s ε−→B(R) t then s↑A(R)
ε−→R t↑A(R).

38

Proof. Assume that s ε−→B(R) t. There exists `◦ → r◦ ∈ B(R) and σ such that s = `◦σ

and t = r◦σ. We show that there exist ` → r ∈ R and τ such that s↑A(R) = `τ

and t↑A(R) = rτ . Firstly, we can say that r◦ is an applicative constructor term with
respect to A(R)−1 by the definition of A(R), and thus r◦↑A(R) = r. Secondly, `◦ can
be denoted by

`◦ = f `◦1 · · · `◦n

with f ∈ ADB(R) and `◦1, . . . , `
◦
n ∈ T (ACB(R),V).

• If f /∈ ADA(R)−1, then `◦ is an applicative constructor term with respect to
A(R)−1. By Lemma 122, `◦↑A(R) = `◦. By the definition of A(R), it follows
that `◦1, . . . , `

◦
n ∈ T (ACA(R)−1,V). Hence we have

s↑A(R) = (`◦σ)↑A(R) = f `◦1σ↑A(R) . . . `◦nσ↑A(R) = `◦σ↑A(R)

and likewise t↑A(R) = (r◦σ)↑A(R) = r◦σ↑A(R). Take `→ r ∈ R such that ` = `◦

and r = r◦, and take τ = σ↑A(R).
• If f ∈ ADA(R)−1, then `◦ is an applicative basic term with respect to A(R)−1.

There exist u→ u′ ∈ A(R) and µ such that `◦↑A(R) = uµ, and also there exists
`→ r ∈ R such that ` = uµ and r = r◦. Hence we have:

s↑A(R) = (`◦σ)↑A(R) = (uµ)σ↑A(R) = `σ↑A(R)

It suffices to take τ = σ↑A(R).

Lemma 142. Let t be an applicative constructor term, u an applicative term and σ

a substitution. If t is linear and tσ →R u then there exists p ∈ PosV(t) such that
u = t({t|p 7→ u|p} ∪ {y 7→ yσ | t|p 6= y ∈ V}).

Proof. Assume that t is linear and tσ →R u. We show that the claim holds by
structural induction on t.

• If t ∈ V, take p = ε.
• If t = f t1 · · · tn for some f ∈ ACR and t1, . . . , tn ∈ T (ACR,V), then tσ =

f t1σ . . . tnσ. By linearity of t, there exists i and a tern v such that tiσ →R v.
By the induction hypothesis, there exists q ∈ PosV(ti) such that v = ti({ti|q 7→
v|q} ∪ {y 7→ yσ | ti|q 6= y ∈ V}). It suffices to take p = iq.

39

Here we refer to [1] for two lemmata in order to proof a proposition below.

Lemma 143 (Parallel moves lemma [1]). Let R and S be orthogonal TRSs such that
R and S are mutually orthogonal and S is non-erasing and linear. If tR ← s →S u

then t→S ·∗R ← u.

Lemma 144 (Critical pair lemma [1]). Let R and S be left-linear TRSs such that

R ← o →S⊆→S, and p and q positions such that p ‖ q or p ≥ q. If tR
p←− s

q−→S u

then t→S ·∗R ← u.

Lemma 145. Let s, t, u be applicative terms. If tA(R)−1
i←−s→B(R) u then t→B(R)∪R

·∗A(R)−1

i←−u.

Proof. Assume tA(R)−1
i p←−−s q−→B(R) u for some positions p and q. There exists `◦ →

r◦ ∈ B(R) and σ such that s|q = `◦σ and u = `◦[r◦σ]p. We distinguish two cases.

• If `◦ → r◦ ∈ R, by the definition of A(R) we can say that R and A(R)−1 are
mutually orthogonal, besides A(R)−1 is non-erasing and linear. By Lemma 143
(parallel moves lemma), t→B(R)∪R ·∗A(R)−1

i←−u.
• If `◦ → r◦ /∈ R, there exists `• → r• ∈ A(R) and τ such that `◦ = r•τ . Assume

p < q, and let q = pq′. As head(`◦) ∈ ADR and `◦ = r•τ , there exists no
position q′, and thus p ≥ q or p ‖ q. By Lemma 144 (critical pair lemma)
t→B(R) ·∗A(R)−1

i←−u follows. Therefore, we obtain t→B(R)∪R ·∗A(R)−1

i←−u.

Lemma 146. Let s, t, u be applicative terms. If t∗A(R)−1

i←−s→B(R) u then t→B(R)∪R

·∗A(R)−1

i←−u.

Proof. Assume that tnA(R)−1

i←−s →B(R) u for some n. We show that t →B(R)∪R

·∗A(R)−1

i←−u by induction on n.

• If n = 0, then t = s, and thus the claim holds.
• If n = n′ + 1, we have tn

′

A(R)−1

i←−t′A(R)−1
i←−s →B(R) u for some t′. By

Lemma 145, t′ →B(R)∪R u′∗
A(R)−1

i←−u for some u′. Since t′ /∈ NF(A(R)−1)

and t ∈ NF(A(R)−1), we have t′ →B(R) u
′, and thus tn

′

A(R)−1

i←−t′ →B(R) u
′. By

40

the induction hypothesis we have t →B(R)∪R ·∗A(R)−1

i←−u′, and consequently
t→B(R)∪R ·∗A(R)−1

i←−u follows.

Lemma 147. Let s, t be applicative terms. If s→B(R) t then s↑A(R) →R t↑A(R).

Proof. Assume that s →B(R) t. By Lemma 131, as A(R)−1 is complete, it follows
that s

i−→∗
A(R)−1 s↑A(R) and t

i−→∗
A(R)−1 t↑A(R)−1. Hence we have:

s↑A(R)
∗
A(R)−1

i←−s→B(R) t
i−→∗

A(R)−1 t↑A(R)−1

By Lemma 146, s↑A(R) →B(R)∪R t′∗A(R)−1

i←−t for some t′. As s↑A(R) ∈ NF(A(R)−1),
we have head(s↑A(R)) ∈ ADB(R) \ ADR, and thus s↑A(R) → t′. By the definition of
A(R), it follows that t′ ∈ NF(A(R)−1). Consequently, we have s↑A(R) →R t↑A(R).

Lemma 148. Let s, t be applicative terms. If s→AB(R) t then s↑A(R) →=
R t↑A(R).

Proof. Assume that s →AB(R) t. From AB(R) = A(R) ∪ B(R), we distinguish two
cases.

• If s →A(R) t, by Lemma 140, we have s↑A(R) = t↑A(R), and thus s↑A(R) →0
R

t↑A(R).
• If s→B(R) t, by Lemma 147, we have s↑A(R) →R t↑A(R).

Lemma 149. Let s, t, u be applicative terms. If s ∈ T (AΣR,V) ∩ NF(R) holds and
s→∗

A(R) t→AB(R) u then t→A(R) u.

Proof. Assume that s ∈ T (AΣR,V)∩NF(R) holds and s→∗
A(R) t→AB(R) u. Assume

s→∗
A(R) t→B(R) u. By Lemma 147, t↑A(R) →R u↑A(R), and thus s→∗

A(R) t→
∗
A(R)−1

t↑A(R) →R u↑A(R). As s ∈ T (AΣR,V) and A(R)−1 is complete, s = t↑A(R) follows,
and thus s = t↑A(R) →R u↑A(R). This contradicts the assumption s ∈ T (AΣR,V) ∩
NF(R).

Lemma 150. Let s, t be applicative terms. If s→∗
AB(R) t and s ∈ T (AΣR,V)∩NF(R)

then s→∗
A(R) t.

41

Proof. Assume that s →n
AB(R) t and s ∈ T (AΣR,V) ∩ NF(R) for some n. We show

that s→∗
A(R) t by induction on n.

• If n = 0, then s→0
AB(R) t, and thus s→0

A(R) t.
• If n = n′ + 1, then s →n′

AB(R) u →AB(R) t for some u. By the induction
hypothesis, s →∗

A(R) u, which yields s →∗
A(R) u →AB(R) t. By Lemma 149, we

have u→A(R) t, and thus s→∗
A(R) t.

Lemma 151. Let s be an applicative term. If s ∈ T (AΣR,V) and s →!
R t then

s→!
AB(R) t↓A(R).

Proof. Assume that s ∈ T (AΣR,V) and s →!
R t. It suffices to show that t↓A(R) ∈

NF(AB(R)). By the assumption, we have a rewrite sequence

s→R s1 →R · · · →R sn = t ∈ NF(R)

for some n > 0. By Lemma 138, we have:

s→∗
AB(R) s1 →

∗
AB(R) · · · →

∗
AB(R) sn = t

Since s →∗
R t and s ∈ T (AΣR,V), it follows that t ∈ T (AΣR,V) and thus t ∈

T (AΣR,V) ∩ NF(R). By Lemma 150, t →∗
AB(R) t↓AB(R) implies t →∗

A(R) t↓AB(R).
As A(R) ⊂ AB(R), we have t↓AB(R) = t↓A(R). Therefore, we conclude that t↓A(R) ∈
NF(AB(R)).

Lemma 152. Let s be an applicative term. If s ∈ T (AΣR,V) and s →!
AB(R) t then

s→!
R t↑A(R).

Proof. Assume that s ∈ T (AΣR,V) and s →!
AB(R) t. It suffices to show that

t↑A(R) ∈ NF(R). We show this by contradiction. By the assumption, we have a
rewrite sequence

s→AB(R) s1 →AB(R) · · · →AB(R) sn = t ∈ NF(AB(R))

for some n > 0. By Lemma 148, we have:

s↑A(R) →=
R s1↑A(R) →=

R · · · →=
R sn↑A(R) = t↑A(R)

42

Assume that t↑A(R) /∈ NF(R), then there exists u such that t↑A(R) →R u. This
entails (t↑A(R))↓A(R) →AB(R) u↓A(R). Since t ∈ NF(AB(R)) and A(R) ⊂ AB(R), we
have (t↑A(R))↓A(R) = t↓A(R) = t, and thus t→AB(R) u↓A(R) follows. This contradicts
t ∈ NF(AB(R)) in the first assumption.

Finally we obtain the following theorem by Lemmata 151 and 152.

Theorem 153. Let s, t be applicative terms such that s ∈ T (AΣR,V) and t ∈
T (AΣR,V) ∩ NF(R) hold. s→∗

R t if and only if s→∗
AB(R) t.

3.3.4 Strong sequentiality

In the end of this chapter, we show that strong sequentiality of a non-variadic `-
ACS R is preserved in the translated ATRS AB(R).

Lemma 154. Let t be a preredex of AB(R). If t is redex compatible in A(R) then t

is redex compatible in R.

Proof. It suffices to show that t ↑Ω ` for some ` → r ∈ R. Assume that t is redex
compatible in A(R). There exists `• → r• ∈ A(R) such that t ↑Ω `• and t ≤Ω `•Ω. By
the definition of M(R), there exists `→ r ∈ R such that `•Ω ≤Ω `Ω. Hence t ≤Ω `Ω,
and thus t ↑Ω `.

By this lemma and lemmata in the previous section, we can conclude the strong
sequentiality.

Theorem 155. If R is strongly sequential then AB(R) is strongly sequential.

Proof. It suffices to show that every proper preredex of AB(R) has index. Let t an
arbitrary proper preredex of AB(R). We distinguish two cases by whether t is a
proper preredex of A(R) or B(R).

1. If t is a proper preredex of A(R), there exists `• → r• ∈ A(R) such that t <Ω

`•Ω. By the definition of M(R), there exists ` → r ∈ R such that `•Ω <Ω `Ω.
Hence t <Ω `•Ω <Ω `Ω. As t 6= Ω, t is also a proper preredex of R. As R is
strongly sequential, there exists p ∈ PosΩ(t) such that p ∈ IR(t). By Lemma
101, t[•]p is not redex compatible in R. By contraposition of Lemma 154, t[•]p

43

is not redex compatible in A(R). By Lemma 101, we have p ∈ IA(R)(t), and
consequently p ∈ IAB(R)(t).

2. If t is a proper preredex of B(R), there exists `◦ → r◦ ∈ B(R) such that
t <Ω `◦Ω, and there exists `→ r ∈ R such that `◦ = `↓A(R) and r◦ = r.

• If `↓A(R) = `, we have t <Ω `◦Ω = `Ω. Hence t is a proper preredex of R.
As R is strongly sequential, there exists p ∈ PosΩ(t) such that p ∈ IR(t).
By Lemma 101, t[•]p is not redex compatible in R.
（a）If head(t) = Ω, as AB(R) is an ACS, the Ω-position of head(t) is an

index by Lemma 103.
（b）If head(t) 6= Ω, as head(t) /∈ ADA(R)−1, it follows that t[•]p is not redex

compatible in B(R) \ R. Moreover, as t[•]p is not redex compatible in
R, by contraposition of Lemma 154, t[•]p is not redex compatible in
A(R). Hence t[•]p is not redex compatible in AB(R). By Lemma 101,
p ∈ IAB(R)(t).

• If `↓A(R) 6= `, then `
ε−→A(R) `◦. There exist `• → r• ∈ A(R) and σ

such that ` = `•σ and `◦ = r•σ. By the definition of A(R), there exists
p ∈ PosΩ(`

•
Ω) such that p ∈ IR(`•Ω). Moreover, we have:

r• = f x1 x2 . . . xn

where x1 = `•|p, p ∈ min<lo
(IR(t)), f is a fresh variable and {x2, . . . , xn} =

Var(`•) \ {`•|p}.
（a）If head(t) = Ω, by Lemma 103, the Ω-position of head(t) is an index.
（b）If head(t) 6= Ω, as t ≤Ω `◦Ω = (r•σ)Ω, the Ω-term t can be denoted

by t = f t1 t2 . . . tn. Taking τ = {x1 7→ t1, . . . , xn 7→ tn}, we have
t = r•τ . Since t = r•τ is a proper preredex of B(R), `•τ is a proper
preredex of R. As R is strongly sequential, there exists q ∈ Pos(`•τ)

such that q ∈ IR(`•τ). Letting pi be a position in `• corresponding
to xi in r•, we have q = pjq

′ for some j and q′. To show the claim
holds, it suffices to show jq′ ∈ IAB(R)(t). Assume jq′ /∈ IAB(R)(t). By
Lemma 78, t[•]jq′ is redex compatible in AB(R), and by the definition
of A(R), it follows that t[•]jq′ is redex compatible in B(R) \R. Hence
there exists `′ → r′ ∈ B(R) \R with which t[•]jq′ is compatible, and `′

can be written as `′ = f u1 . . . un. By taking µ = {x1 7→ u1, . . . , xn 7→

44

un}, we have r•µ → r′ ∈ R. Since t[•]jq′ = (f x1 . . . xn)[•]jq′
and `′ = f u1 . . . un are compatible, for every i with 1 ≤ i ≤ n,
ti and ui have maximum on ≤Ω. Let vi be such maximum. Taking
ν = {x1 7→ v1, . . . , xn 7→ vn}, `•ν is the maximum of `•τ [•]q and
`•µ. Hence `•τ [•]q is redex compatible in R. By Lemma 78, we have
q /∈ IR(`•τ). This contradicts q ∈ IR(`•τ).

45

Chapter 4

Currying and Left-normal translation

Up to here, we have seen that every finite non-variadic orthogonal strongly sequen-
tial `-ACS can be translated into an left-normal one by left-normal translation for
ATRSs. In this chapter, we show that the translation for ATRSs is available also for
functional TRSs after a procedure called currying.

4.1 Currying
First of all, we introduce currying and related definitions, referring to [8]. Currying

translates functional TRSs into ATRSs with specialised TRS called a currying system.

Definition 156. Let F be a signature with ◦ /∈ F . The currying system C(F)
consists of the rewrite rules fi(x1, . . . , xi−1, xi) → fi−1(x1, . . . , xi−1) ◦ xi for every
n-ary function symbol f ∈ F and 0 < i ≤ n. Here fn = f and fi is a fresh i-ary
function symbol.

In a currying procedure, both sides in every rule of a functional TRS are rewritten
by a currying system.

Definition 157. Let R be a TRS over the signature F . The curried system R↓C(F)

is the ATRS consisting of the rules `↓C(F) → r↓C(F) for every `→ r ∈ R.

Example 158. Consider the TRS R:

1: take(:(x, xs), 0)→ nil 3: from(x)→ :(x, from(s(x)))

2 : take(:(x, xs), s(y))→ :(x, take(xs, y)) 4 : +(0, x)→ x

46

We have F = {take, from,+, :, 0, s, nil}. The currying system C(F) is obtained from
the signature F of R.

1: take(x1, x2)→ take1(x1) ◦ x2 5: +(x1, x2)→ +1(x1) ◦ x2

2: take1(x1)→ take0 ◦ x1 6: +1(x1)→ +0 ◦ x1

3: :(x1, x2)→ :1(x1) ◦ x2 7: from(x1)→ from0 ◦ x1

4: :1(x1)→ :0 ◦ x1 8: s(x1)→ s0 ◦ x1

The curried ATRS R↓C(F) obtained from R and by C(F) is:

1: take0 ◦ (:0 ◦ x ◦ xs) ◦ 0→ nil

2: take0 ◦ (:0 ◦ x ◦ xs) ◦ (s0 ◦ y)→ :0 ◦ x ◦ (take0 ◦ xs ◦ y)
3 : from0 ◦ x→ :0 ◦ x ◦ (from0 ◦ (s0 ◦ x))
4 : +0 ◦ 0 ◦ x→ x

Note that every functional TRS can be translated into an ATRS, and currying
systems are terminating and confluent [8].

4.2 Left-normal translation
Hereafter, we show that TRSs that can be translated by left-normal translation for

functional TRSs can be translated by left-normal translation for ATRSs after currying
unless the translation is not necessary. Hashida [4] introduced left-normal translation
for functional TRSs. The translation requires functional TRSs to be finite, strongly
sequential and constructor systems.

Example 159. Consider the TRS from Example 158. The rule 1 and 2 is not left-
normal, and then the TRS A(R) is generated as follows.

A(R) = {take(:(x, xs), x1)→ F(x1, x, xs)}

The TRS R is rewritten into B(R) by A(R), and finally the translated TRS L(R) is
obtained by A(R) ∪ B(R).

1: take(:(x, xs), x1)→ F(x1, x, xs)

2 : F(0, x, xs)→ nil 3: from(x)→ :(x, from(s(x)))

4 : F(s(y), x, xs)→ :(x, take(xs, y)) 5 : +(0, x)→ x

47

On the other hand, left-normal translation for ATRSs requires ATRSs to be non-
variadic, orthogonal, left-head-variable-free, ACSs and strongly sequential. Hence
curried ATRSs need to satisfy these properties to be left-normal through the trans-
lation. Moreover, we need to ensure that if a functional TRS is already left-normal,
the curried ATRS should be left-normal, and thus it cannot be translated any more.
It is trivial that curried ATRSs are non-variadic; our task is to proof the following
properties.

1. Orthogonality of R is preserved in R↓C(F).
2. R↓C(F) is left-head-variable-free for any functional TRS R.
3. If R is a constructor system, then R↓C(F) is an applicative constructor system.
4. R↓C(F) succeeds to left-normality of R.
5. If R is strongly sequential, so is R↓C(F).

4.2.1 Orthogonality

Firstly, we show that if a TRS R is left-linear then R↓C(F) is left-linear.

Lemma 160. Let R be a left-linear TRS over F and ` → r a rule in R. If there
exists `′ such that `→C(F) `

′ then `′ is linear.

Proof. Let ` → r be an arbitrary rule in R. As R is left-linear, ` is linear. Assume
that there exists `′ such that `→C(F) `

′. Since C(F) is right-linear, we conclude that
`′ is linear by Lemma 160.

Lemma 161. Let R be a left-linear TRS over F and `→ r a rule in R. If `→∗
C(F) `

′

for some `′, then `′ is linear.

Proof. By induction on n of `→n
C(F) `

′.

By Lemma 161, we have the following lemma on left-linearity.

Lemma 162. Let R be a TRS. If R is left-linear then R↓C(F) is left-linear.

Secondly, we show that if a TRS R is non-overlapping then R↓C(F) is non-
overlapping. Let us begin by showing general properties on currying and substitu-
tions.

48

Definition 163. Let σ an arbitrary substitution. We denote σ↓C(F) for the set
{(σ(x))↓C(F) | x ∈ V}.

Lemma 164. Let R be a TRS over F , and let t a term and σ a substitution.
(t↓C(F))(σ↓C(F)) = (tσ)↓C(F).

Proof. We show that the claim holds by structural induction on t.

• If t is a constant symbol, we have:

(lhs) = (t↓C(F))(σ↓C(F)) = t(σ↓C(F)) = t

(rhs) = (tσ)↓C(F) = t↓C(F) = t

= (lhs)

• If t = x ∈ V, we have:

(lhs) = (x↓C(F))(σ↓C(F)) = x(σ↓C(F)) = σ(x)↓C(F)

(rhs) = (xσ)↓C(F) = (σ(x))↓C(F) = (lhs)

• If t = f(t1, . . . , tn), we have:

(lhs) = (f(t1, . . . , tn)↓C(F))(σ↓C(F))

= (f0 ◦ t1↓C(F) ◦ · · · ◦ tn↓C(F))(σ↓C(F))

= f0(σ↓C(F)) ◦ (t1↓C(F))(σ↓C(F)) ◦ · · · ◦ (tn↓C(F))(σ↓C(F))

= f0 ◦ (t1σ)↓C(F) ◦ · · · ◦ (tnσ)↓C(F)

(rhs) = (f(t1, . . . , tn)σ)↓C(F)

= (f(t1σ, . . . , tnσ))↓C(F)

= f0 ◦ (t1σ)↓C(F) ◦ · · · ◦ (tnσ)↓C(F)

= (lhs)

Lemma 165. Let R be a TRS over F and s, t terms. If s↓C(F) = t↓C(F) then s = t.

Proof. Assume s↓C(F) = t↓C(F). We show that s = t by structural induction on s.

• If s ∈ V, then s = s↓C(F). As s↓C(F) = t↓C(F), we have s = t↓C(F) ∈ V, and
thus t = t↓C(F) ∈ V.

• If s is a constant symbol, then s = s↓C(F). As s↓C(F) = t↓C(F), it follows that
t↓C(F) is a constant symbol, and thus t = t↓C(F).

49

• If s = f(s1, . . . , sn), then s↓C(F) = f0◦s1↓C(F)◦· · ·◦sn↓C(F). As s↓C(F) = t↓C(F),
we have t↓C(F) = f0 ◦ t1↓C(F) ◦ · · · ◦ tn↓C(F). As s↓C(F) = t↓C(F), we have
s1↓C(F) = t1↓C(F), . . . , sn↓C(F) = tn↓C(F). By the induction hypotheses, we
have s1 = t1, . . . , sn = tn, and consequently s = t follows.

Lemma 166. Let R be a TRS over F , and let s, t terms and σ a substitution. sσ = tσ

if and only if (s↓C(F))(σ↓C(F)) = (t↓C(F))(σ↓C(F)).

Proof.

• For the ‘if’ direction, assume that (s↓C(F))(σ↓C(F)) = (t↓C(F))(σ↓C(F)). By
Lemma 164, (sσ)↓C(F) = (tσ)↓C(F), and then by Lemma 165 we obtain sσ = tσ.

• For the ‘only if’ direction, assume that sσ = tσ. By Lemma 165, we have
(sσ)↓C(F) = (tσ)↓C(F). By Lemma 164, it follows that:

(s↓C(F))(σ↓C(F)) = (sσ)↓C(F) = (tσ)↓C(F) = (t↓C(F))(σ↓C(F))

Next, we define a function to decide the position q of t↓C(F) such that (t|p)↓C(F) =

(t↓C(F))|q, and show a property related to this function.

Definition 167. Let t be a term, p a position in t, and root(t) ∈ F (n). We define the
function C(t, p) that indicates the position of (t|p)↓C(F) in t↓C(F).

C(t, p) =

{
ε (if p = ε)
1(n−i) · 2 · C(t|i, q) (if p = iq)

The following lemma proposes that a position q2 of a term t↓C(F) always has the
position p of the term t such that C(t, p) = q2.

Lemma 168. LetR be a TRS over F . If q2 ∈ Pos(t↓C(F)) then there exists p ∈ Pos(t)

such that C(t, p) = q2.

Proof. Assume that q2 ∈ Pos(t↓C(F)). We show that there exists p ∈ Pos(t) such
that C(t, p) = q2 by structural induction on t.

• If t is a constant, then Pos(t) = {ε}, and thus q2 /∈ Pos(t↓C(F))

50

• If t = f(t1, . . . , tn), then q2 6= ε, and thus p 6= ε. We distinguish two cases by
q.

1. If q = ε, then 2 ∈ Pos(t↓C(F)). Taking p = n, we obtain C(t, n) = 1(n−n) ·
2 · C(tn, ε) = 2.

2. If q = iq′, then iq′2 ∈ Pos(t↓C(F)). Let p = jp′ where 1 ≤ j ≤ n, then
we have C(t, p) = 1(n−j) · 2 · C(tj, p′). By the induction hypothesis, there
exists p̄ ∈ Pos(tj) such that C(tj, p̄) = q′2. Hence taking p′ = p̄ yields
C(t, p) = 1(n−j) · 2 · q′2. We shall take j such that i = 1(n−j) · 2.

Example 169. Consider the TRS from Example 158 and a term t = take(from(x), 0).
We have Pos(t) = {ε, 1, 2, 1.1} and t↓C(F) = take0 ◦ (from0 ◦ x) ◦ 0. As the following
table shows, for every position p in Pos(t) there is the position C(t, p) in Pos(t↓C(F)).

p t|p C(t, p) (t↓C(F))|C(t,p)
ε take(from(x), 0) ε take0 ◦ (from0 ◦ x) ◦ 0
1 from(x) 1.2 from0 ◦ x
2 0 2 0

1.1 x 1.2.2 x

Moreover, we prepare three lemmata on being overlapping.

Lemma 170. Let R be a TRS over F , and let t be a term such that t ∈ T (F ,V) and
ρ a renaming. (tρ)↓C(F) = t↓C(F)ρ.

Proof. By Lemma 164, (tρ)↓C(F) = (t↓C(F))(ρ↓C(F)). Since ρ is a renaming, every
image of ρ is a variable. Hence ρ↓C(F) = ρ, and thus (t↓C(F))(ρ↓C(F)) = t↓C(F)ρ.

In order to proof lemmata below, we refer to the standard inference rules for syn-
tactic unification and related lemmata from [1].

51

Eliminate {x ≈ t}] E
{x ≈ t} ∪ E{x 7→ t}

if x ∈ Var(t)

Orient {t ≈ x}] E
{x ≈ t} ∪ E

if t /∈ V

Delete {t ≈ t}] E
E

Decompose {f(s1, . . . , sn) ≈ f(t1, . . . , tn)}] E
{s1 ≈ t1, . . . , sn ≈ tn} ∪ E

We write =⇒ for a derivation by the inferences.

Lemma 171 ([1]). A derivation =⇒ is terminating.

Lemma 172 ([1]). Let E be a unification problem. E =⇒∗ S for some solved form S
if and only if E is unifiable.

Lemma 173 ([1]). Let E and E ′ be unification problems. The following two claims
are equivalent.

• If E =⇒ E ′ then E is unifiable.
• E ′ is unifiable.

Definition 174. Let S be a unification problem such that S = {s1 ≈ t1, . . . , sn ≈
tn}. The curried unification problem S↓C(F) is defined by S↓C(F) = {s1↓C(F) ≈
t1↓C(F), . . . , sn↓C(F) ≈ tn↓C(F)}.

Lemma 175. Let E be a unification problem. If E↓C(F) is a unifiable then E is a
unifiable.

Proof. By well-founded induction on E with respect to =⇒. Assume that E↓C(F) is
a unifiable. There exists a solved form S ′ such that E↓C(F) =⇒∗ · =⇒∗ S ′. We
distinguish four cases by the derivation E ′↓C(F) =⇒∗ ·.

• If the derivation is due to Delete rule, we have:

E = {t ≈ t}] E0 =⇒ E0
E↓C(F) = {t↓C(F) ≈ t↓C(F)}] E0↓C(F) =⇒ E0↓C(F)

By Lemma 173, E0↓C(F) is unifiable, which implies that E0 is unifiable by the

52

induction hypothesis. Hence by Lemma 173, E is unifiable.
• If the derivation is due to Orient rule, we have:

E = {t ≈ x}] E0 =⇒ {x ≈ t} ∪ E0
E↓C(F) = {t↓C(F) ≈ x}] E0↓C(F) =⇒ {x ≈ t↓C(F)} ∪ E0↓C(F)

By Lemma 173, {x ≈ t↓C(F)} ∪ E0↓C(F) is unifiable, so is E0 by the induction
hypothesis. By Lemma 173, E is unifiable.

• If the derivation is due to Eliminate rule, we have:

E = {x ≈ t}] E0 =⇒ {x ≈ t} ∪ E0{x 7→ t}
E↓C(F) = {x ≈ t↓C(F)}] E0↓C(F) =⇒ {x ≈ t↓C(F)} ∪ E0↓C(F){x 7→ t↓C(F)}

By Lemma 173, E0↓C(F){x 7→ t↓C(F)} = (E0{x 7→ t})↓C(F), and thus, by the
induction hypothesis {x ≈ t} ∪ E0{x 7→ t} are unifiable. By Lemma 173, so is
E .

• If the derivation is due to Decompose rule, we have

E = {f(s1, . . . , sn) ≈ f(t1, . . . , tn)}] E0
E↓C(F) = {f ◦ s1↓C(F) ◦ · · · ◦ sn↓C(F) ≈ g ◦ t1↓C(F) ◦ · · · ◦ tn↓C(F)}] E0↓C(F)

As E↓C(F) is unifiable, f = g. Hence we have

E =⇒ {s1 ≈ t1, ..., sn ≈ tn} ∪ E0

and:

E↓C(F) =⇒n {f ≈ g, s1↓C(F) ≈ t1↓C(F), . . . , sn↓C(F) ≈ tn↓C(F)} ∪ E0↓C(F)

=⇒ {s1↓C(F) ≈ t1↓C(F), . . . , sn↓C(F) ≈ tn↓C(F)} ∪ E0↓C(F)

By Lemma 173, {s1↓C(F) ≈ t1↓C(F), . . . , sn↓C(F) ≈ tn↓C(F)} ∪ E0↓C(F) is unifi-
able, and then the induction hypothesis implies that {s1 ≈ t1, ..., sn ≈ tn} ∪ E0
is unifiable. We conclude that E is unifiable by Lemma 173.

Whether two terms s and t are unifiable depends on unification of the singleton
{s ≈ t}. Hence we obtain the following lemma.

Lemma 176. Let R be a TRS over F and s, t terms such that s, t ∈ T (F ,V). If
s↓C(F) and t↓C(F) are unifiable then s and t are unifiable.

53

Lemma 177. Let R be a TRS over F and s, t terms such that s, t ∈ T (F ,V), and
let q a position of t↓C(F). If s↓C(F) and t↓C(F)|q are unifiable then q = ε or q = q′2.

Proof. Assume that s↓C(F) and t↓C(F)|q are unifiable. We show that the claim holds
by contradiction. Assume that q = q′1 further. Since t ∈ T (F ,V), it follows
that t↓C(F) is head-variable-free, which yields t↓C(F)|q /∈ V. Hence, as s↓C(F) and
t↓C(F)|q are unifiable, head(s↓C(F)) = head(t↓C(F)|q). Moreover, the assume that
q = q′1 implies |Arg(t↓C(F)|q)| < |Arg(s↓C(F))|. For any substitution σ, we have also
|Arg((t↓C(F)|q)σ)| < |Arg(s↓C(F)σ)|, and thus (t↓C(F)|q)σ 6= s↓C(F)σ. This contradicts
the assumption.

Now we are ready to show that R↓C(F) is non-overlapping. Instead of showing this,
we propose the contraposition: if R↓C(F) is overlapping then R is overlapping. We
recall the definition of being overlapping.

Definition 178. A TRS R over F is overlapping if there exist `1 → r1, `2 → r2 ∈ R,
renaming substitutions ρ1, ρ2 and a position p ∈ Pos(`2) such that:

• `1ρ1 and (`2ρ2)|p are unifiable,
• p ∈ PosF(`2), and
• if `2 → r2 is a renamed variant of `1 → r1 then p 6= ε.

We show that these conditions are satisfied.

Lemma 179. Let R be a TRS over F and s, t terms such that s, t ∈ T (F ,V), and
let ρ be a renaming. If sρ = t then s↓C(F)ρ = t↓C(F).

Proof. Assume that sρ = t. As sρ = t, we have (sρ)↓C(F) = t↓C(F). By Lemma 170,
it follows that (sρ)↓C(F) = s↓C(F)ρ, and thus s↓C(F)ρ = t↓C(F).

Lemma 180. Let R be a TRS over F and s, t terms such that s, t ∈ T (F ,V), and
let q a position Pos(t↓C(F)). If s↓C(F) and t↓C(F)|q are unifiable then s and t|p are
unifiable for some p.

Proof. Assume that s↓C(F) and t↓C(F)|q are unifiable. By Lemma 177, q = ε or q = q′2

holds. Hence there exists p such that C(t, p) = q. This implies that (t|p)↓C(F) =

(t↓C(F))|q, and thus s↓C(F) and (t|p)↓C(F) are unifiable. By Lemma 176, s and t|p are

54

unifiable.

Lemma 181. Let R be a TRS over F and s, t terms such that s, t ∈ T (F ,V), and
let q a position Pos(t↓C(F)). If the following condition holds:

• s↓C(F) and t↓C(F)|q are unifiable, and
• q ∈ PosF(t↓C(F))

then, s and t|p are unifiable for some p and p ∈ PosF(t).

Proof. Assume that s↓C(F) and t↓C(F)|q are unifiable and q ∈ PosF(t↓C(F)). As
s↓C(F) and t↓C(F)|q are unifiable, by Lemma 180, s and t|p are unifiable for some p.
Taking such a position p, we show that p ∈ PosF(t). Since q ∈ PosF(t↓C(F)), we have
(t↓C(F))|q /∈ V. This implies t|p /∈ V, and thus p ∈ PosF(t).

Lemma 182. Let R be a TRS over F and s, t terms such that s, t ∈ T (F ,V), and
let ρ be a renaming and q a position Pos(t↓C(F)). If the following condition holds:

• s↓C(F) and t↓C(F)|q are unifiable, and
• if s↓C(F)ρ = t↓C(F) then q 6= ε

then, if sρ = t then s and t|p are unifiable for some p and p 6= ε.

Proof. Assume that s↓C(F) and t↓C(F)|q are unifiable, and if s↓C(F)ρ = t↓C(F) then
q 6= ε. As s↓C(F) and t↓C(F)|q are unifiable, by Lemma 180, s and t|p are unifiable for
some p. Take such a position p. Assume that sρ = t. It suffices to show that p 6= ε.
By Lemma 179 it follows that s↓C(F)ρ = t↓C(F), which results in q 6= ε by the second
assumption that if s↓C(F)ρ = t↓C(F) then q 6= ε. Assuming further that p = ε, we
have q = C(t, ε) = ε. This contradicts q 6= ε, and consequently p 6= ε follows.

Lemma 183. Let R be a TRS over F and s1, s2, t1, t2 terms such that s1, s2, t1, t2 ∈
T (F ,V), and let ρ be a renaming and q a position Pos(t↓C(F)). If the following
condition holds:

• s1↓C(F) and t1↓C(F)|q are unifiable, and
• if s1↓C(F)ρ = t1↓C(F) and s2↓C(F)ρ = t2↓C(F) then q 6= ε

then, it follows that: if s1ρ = t1 and s2ρ = t2 then s1 and t1|p are unifiable for some

55

p and p 6= ε.

Proof. Assume that s1↓C(F) and t1↓C(F)|q are unifiable, and if s1↓C(F)ρ = t1↓C(F)

and s2↓C(F)ρ = t2↓C(F) then q 6= ε. Assume further that s1ρ = t1 and s2ρ = t2.
By Lemma 179, we have s1↓C(F)ρ = t1↓C(F) As s1↓C(F) and t1↓C(F)|q are unifiable
and by Lemma 182, we can conclude that s1 and t1|p are unifiable for some p and
p 6= ε.

From these Lemmata, we have the following lemma on overlapping.

Lemma 184. Let R be a TRS over F . If R↓C(F) is overlapping then R is overlapping.

Proof. Assume that R↓C(F) is overlapping. This implies that there exist rules `1 → r1

and `2 → r2 in R, renaming substitutions ρ1, ρ2 and a position p such that:

• `1↓C(F)ρ1 and (`2↓C(F)ρ2)|q are unifiable,
• q ∈ PosF(`2↓C(F)), and
• if (`1↓C(F) → r1↓C(F))

.
= (`2↓C(F) → r2↓C(F)) then q 6= ε.

We show that there exists p such that:

• `1ρ1 and (`2ρ2)|p are unifiable,
• p ∈ PosF(`2) and
• if (`1 → r1)

.
= (`2 → r2) then p 6= ε.

The first condition follows by Lemma 180, and thus there exists a position p such
that `1ρ1 and (`2ρ2)|p are unifiable. Take such a position p. The second and the third
condition follows by Lemma 181 and 183, respectively.

Finally by Lemmata 162 and 184, orthogonality of R↓C(F) is shown.

Theorem 185. Let R be a TRS over F . If R is orthogonal then R↓C(F) is orthogonal.

4.2.2 Left-head-variable-freeness

Clearly, any functional TRS is left-head-variable-free. We show that the left-head-
variable-freeness is preserved in ATRSs obtained by currying functional TRSs.

56

Definition 186. Let t be a term. The currying function c(t) is defined by c(t) =

t↓C(F).

Lemma 187. Let R be a TRS over F . If t is head-variable-free and t→C(F) u then
u is head-variable-free.

Proof. Assume that t is head-variable-free. There exist a rule `→ r ∈ C(F), a position
p and a substitution σ such that t|p = `σ and u = t[rσ]p. As t is head-variable-
free, so is t|p. It suffices to show that rσ is head-variable-free. Since t|p = `σ, by
the definition of C(F), it follows that σ(x) is head-variable-free for every x ∈ Var(`).
Since Var(`) = Var(r), we conclude that rσ is head-variable-free.

Lemma 188. Let R be a TRS over F . If t is head-variable-free and t→∗
C(F) u then

u is head-variable-free.

Proof. By induction on n of t→n
C(F) u.

By Lemma 188, we have the following theorem.

Theorem 189. Let R be a TRS over F . If R is left-head-variable-free then R↓C(F)

is left-head-variable-free.

Proof. Assume that R is left-head-variable-free. Let `′ → r′ be an arbitrary rule
in R↓C(F). It suffices to show that `′ → r′ is left-head-variable-free. There exists
` → r ∈ R such that c(`) = `′ and c(r) = r′. As R is left-head-variable-free, `

is head-variable-free, and by Lemma 188, c(`) is head-variable-free. Consequently,
`′ → r′ is left-head-variable-free.

4.2.3 Applicative Constructor Systems

In this part, we show that if a functional TRS R is a constructor system then
R↓C(F) is an ACS.

Lemma 190. Let R be a TRS over F and f an n-ary function symbol in ΣR. It
holds that f0 ∈ ADR↓C(F)

if and only if f ∈ DR.

Proof.

57

• For ‘if’ direction, assume f ∈ DR. Let ` → r ∈ R be an arbitrary rule such
that root(`) = f .

– If ` is a constant, then ` = `↓C(F) = f = f0. Hence head(`↓C(F)) = f0, and
thus f0 ∈ ADR↓C(F)

.
– If ` = f(t1, . . . , tn), then we have

` = f(t1, . . . , tn)→!
C(F) f0 ◦ t1↓C(F) ◦ · · · ◦ tn↓C(F) = `↓C(F)

which implies head(`↓C(F)) = f0. Since `↓C(F) → r↓C(F) ∈ R↓C(F), it
follows that f0 ∈ ADR↓C(F)

.
• For ‘only if’ direction, assume f0 ∈ ADR. Let `′ → r′ be an arbitrary rule in
R↓C(F) such that head(`′) = f0.

– If `′ is a constant, then `′ = f0. There exists `→ r ∈ R such that `↓C(F) =

`′. As `↓C(F) is a constant, so is `. Hence f = f0. Since root(`) = f and
`→ r ∈ R, it follows that f ∈ DR.

– If `′ = f0 ◦ t′1 ◦ · · · ◦ t′n, as `′ → r′ ∈ R↓C(F), there exists ` → r ∈ R such
that `↓C(F) = `′. The definition of currying entails that ` = f(t1, . . . , tn)

with t1↓C(F) = t′1, . . . , tn↓C(F) = t′n. As root(`) = f , we obtain f ∈ DR.

Lemma 191. Let R be a TRS over F and f an n-ary function symbol in ΣR. If
f ∈ CR then f ∈ ACR↓C(F)

.

Proof. Since CR = ΣR \DR and ACR↓C(F)
= AΣR↓C(F)

\ (ADR↓C(F)
] {◦}), it suffices

to show the contraposition: if f0 ∈ ADR↓C(F)
then f ∈ DR. This follows from Lemma

190.

From Lemmata 190 and 191, the following theorem follows.

Theorem 192. Let R be a TRS over F . If R is a constructor system, then R↓C(F)

is an ACS.

4.2.4 Left-normality

We show that a functional TRS R is (already) left-normal then R↓C(F) is left-
normal.

58

Lemma 193. Let R be a TRS over F and t, u terms. If every left-hand side and
right-hand side in R are left-normal, t is left-normal and t

ε−→R u then u is left-normal.

Proof. As t
ε−→R u, there exists ` → r ∈ R and σ such that t = `σ and u = rσ. As t

is left-normal, σ(x) is left-normal for every variable x ∈ Var(`). As r is left-normal,
so is rσ.

Lemma 194. Let R be a TRS and t, u terms. If every left-hand side and right-hand
side in R are left-normal, t is left-normal and t→R u then u is left-normal.

Proof. Assume t
p−→R u. We show that u is left-normal by induction on p.

• If p = ε, the claim holds by Lemma 193.
• If p = iq, then t can be denoted by t = f(t1, . . . , ti−1, ti, ti+1, . . . , tn) for 1 ≤

i ≤ n, where f ∈ F (n) and {t1, . . . , tn} is the set of its arguments. There exists
`→ r ∈ R and σ such that t|iq = `σ and u = t[rσ]iq. Hence we have:

u = f(t1, . . . , ti−1, ti[rσ]q, ti+1, . . . , tn)

By the induction hypothesis, ti[rσ]q is left-normal. Consequently, u = t[rσ]iq =

t[ti[rσ]q]i is left-normal.

Lemma 195. Let R be a TRS over F , and t, u terms. If t is left-normal t→C(F) u

then u is left-normal.

Proof. Assume that t →C(F) u and t is left-normal. By the definition of C(F), for
every rule ` ∈ r ∈ C(F), both of ` and r are left-normal. As t is left-normal, by
Lemma 194, it follows that u is left-normal.

Lemma 196. Let R be a TRS over F , and t, u terms. If t is left-normal and
t→∗

C(F) u then u is left-normal.

Proof. By induction on n of t→n
C(F) u.

Finally, we obtain the following theorem by Lemma 196.

Theorem 197. Let R be a TRS over F . If R is left-normal then R↓C(F) is left-
normal.

59

4.2.5 Strong-sequentiality

The climax of this chapter is showing strong sequentiality of R↓C(F) under the
assumption that a TRS R is strongly sequential. In order to show this we refer
to Lemma 90, which requires R↓C(F) to be an ACS and orthogonal, and then we
suppose that R is an orthogonal constructor system. Lemmata 185 and 192 ensures
that R↓C(F) is an orthogonal ACS under this supposition.

We give an overview of our plan. By Lemma 90, we need to show that every
proper preredex in R↓C(F) has an index. The set of proper preredexes in R↓C(F) can
be divided into two subsets consisting of (1) head-Ω-free proper preredexes and (2)
the others, non-head-Ω-free proper preredexes. For the latter, we have already known
existence of their indices by Lemma 103 in Chapter 3. Hence the main theme in this
part is showing indices of the former, that is, how to show indices of all head-Ω-free
proper preredexes. Firstly, we prepare fundamental lemmata on terms and currying.

Lemma 198. Let s and t be Ω-terms. If s <Ω t then c(s) <Ω c(t).

Proof. Assume that s <Ω t. We show that c(s) <Ω c(t) by structural induction on t.

• If t is a constant, then s = Ω. As s = c(s) = Ω and t = c(t) 6= Ω, it follows
that c(s) <Ω c(t).

• IF t = f(t1, . . . , tn), we distinguish two cases by s.
1. If s = Ω, then c(s) = s = Ω. As c(t) 6= Ω, we obtain c(s) <Ω c(t).
2. If s = f(s1, . . . , sn), then we have:

c(t) = f0 ◦ c(t1) ◦ · · · ◦ c(tn)
c(s) = f0 ◦ c(s1) ◦ · · · ◦ c(sn)

Since s <Ω t, there exists i such that si <Ω ti and sj ≤Ω tj for j 6= i.
By the induction hypothesis, we have c(si) <Ω c(ti), and consequently
c(s) <Ω c(t) follows.

Lemma 199. Let t a term. c(tΩ) = (c(t))Ω.

Proof. We show that the claim holds by structural induction on t.

60

• If t ∈ V, then tΩ = c(tΩ) = Ω. From c(t) = t, we have (c(t))Ω = tΩ = Ω.
• If t is a constant, then c(tΩ) = tΩ = t = c(t) = (c(t))Ω.
• If t = f(t1, . . . , tn), then tΩ = f(t1Ω, . . . , tnΩ). Hence c(tΩ) = f0 ◦ c(t1Ω) ◦ · · · ◦

c(tnΩ). We also have c(t) = f0◦c(t1)◦· · ·◦c(tn), and thus (c(t))Ω = f0◦(c(t1))Ω◦
· · · ◦ (c(tn))Ω. By the induction hypotheses c(t1Ω) = (c(t1))Ω, . . . , c(tnΩ) =

(c(tn))Ω hold, and thus c(tΩ) = (c(t))Ω follows.

Secondly, we show that a proper preredex t of a TRS R becomes a proper preredex
c(t) of the curried ATRS R↓C(F) and c(t) has an index.

Lemma 200. Let t be an Ω-term. If t is a proper preredex in R then c(t) is a proper
preredex in R↓C(F).

Proof. Assume that t is a proper preredex in R. This implies that there exists ` →
r ∈ R such that ` <Ω `Ω. As c(`) → c(r) ∈ R↓C(F), it suffices to show that c(`) <Ω

(c(`))Ω. By Lemma 198, t <Ω `Ω yields c(t) <Ω c(`Ω). By Lemma 199, we have
c(`Ω) = (c(`))Ω, and thus c(t) <Ω (c(`))Ω follows.

The above lemma says that part of proper preredexes of R↓C(F) can be obtained
from proper preredexes of R. We shall continue to show that they are in the set of
head-Ω-free proper preredexes.

Lemma 201. Let t be an Ω-term. If t is head-Ω-free then c(t) is head-Ω-free.

Proof. Assume that t is head-Ω-free. We show that c(t) is head-Ω-free by structural
induction on t.

• If t = Ω, then c(t) = t = Ω, and thus c(t) is head-Ω-free.
• If t = f(t1, . . . , tn), then c(t) = f0 ◦ c(t1) ◦ · · · c(tn). Since t is head-Ω-free,

so are its subterms t1, . . . , tn. By the induction hypotheses, c(t1), . . . , c(tn) are
head-Ω-free, and thus c(t) is head-Ω-free.

Lemma 202. Let R be a TRS over F and t be an Ω-term. If t is a proper preredex
in R then c(t) is head-Ω-free.

61

Proof. Assume that t is a proper preredex in R. There exists ` → r ∈ R such that
t ≤Ω `Ω. Since ` does not contain ◦, neither do t and `Ω. Hence t is head-Ω-free. By
Lemma 201, it follows that c(t) is head-Ω-free.

Lemma 202 suggests that (at least) part of head-Ω-free proper preredexes of R↓C(F)

originate proper preredexes of R.

R R↓C(F)

head-Ω-free

not head-Ω-free

t c(t)

Figure 4.1 Proper preredexes in TRSs

In order to show that these head-Ω-free proper preredexes have indices, we focus
on relation between an Ω-position of an proper preredex and a redex scheme.

Lemma 203. Let t be a term and p a position. If p ∈ PosF(t) then C(t, p) ∈
PosF(c(t)).

Proof. We show that the claim holds by the contraposition: if C(t, p) ∈ PosF(c(t))

then p ∈ PosF(t). Assume that C(t, p) /∈ PosF(c(t)). This is equivalent to C(t, p) ∈
PosV(c(t)), and thus c(t)|C(t,p) ∈ V. Since c(t)|C(t,p) = c(t|p), it follows that t|p ∈ V.
This yields p ∈ PosV(t), and therefore p /∈ PosF(t).

This lemma says that if a subterm of t at a position p is in T (F ,V), then the subterm
of c(t) at the corresponding position C(t, p) to p after currying is in T (F] {◦},V),
i.e. c(t)|C(t,p) cannot be a variable. Moreover, we show that an Ω-position p of a
proper preredex t is an index if r|p is not a variable for every redex scheme r such
that t <Ω r. Recall Lemma 101 and 102 from Chapter 3.

Lemma 204 (from Lemma 101). Let R be an orthogonal `-ACS over F , t an Ω-term
and p an Ω-position of t. The following two statements are equivalent.

1. For every rule `→ r ∈ R, if t <Ω `Ω then p ∈ PosF(`).

62

2. p ∈ IR(t).

From observation of PosF and indices in Lemmata 203 and 204, now we can say
that, for every proper preredex t in R and redex scheme r such that t <Ω r, if
p ∈ PosΩ(t) is an index in R then C(t, p) ∈ PosΩ(c(t)) is an index in R↓C(F). The
subterm c(r)|C(t,p) is never a variable as r|p is not a variable.

Lemma 205. Let R be a TRS over F , t be an Ω-term and p a position of t. If
p ∈ IR(t) then C(t, p) ∈ IR↓C(F)

(c(t)).

Proof. Assume that p ∈ IR(t), and let ` → r be an arbitrary rule in R. Since
c(`)→ c(r) ∈ R↓C(F), by Lemma 204, it suffices to show that if c(t) <Ω (c(`))Ω then
C(t, p) ∈ PosF(c(`)).

Assume that c(t) <Ω (c(`))Ω. Since (c(`))Ω = c(`Ω) by Lemma 199, we have
c(t) <Ω c(`Ω), and thus it follows that t <Ω `Ω by Lemma 198. As p ∈ IR(t), by
Lemma 204 for every ` → r ∈ R, if t <Ω `Ω then p ∈ PosF(`). Hence we obtain p ∈
PosF(`), which implies C(t, p) ∈ PosF(c(`)) by Lemma 203. Since p ∈ PosF(t) and
Pos(t) ⊆ Pos(`Ω) = Pos(`) from t <Ω `Ω, we have C(`, p) = C(t, p). Consequently, it
follows that C(t, p) ∈ PosF(c(`)).

Finally, we give the following lemma to show that all head-Ω-free proper preredexes
of R↓C(F) originate the proper preredexes in R.

Lemma 206. Let R be a TRS over F and t a proper preredex of R↓C(F). If t is
head-Ω-free then there exists s such that c(s) = t.

Proof. Assume that t is head-Ω-free. We show that the claim holds by structural
induction on t.

• If t = Ω, then c(t) = t. Take s = t.
• If t = f0 ◦ t1 ◦ · · · ◦ tn, since t is head-Ω-free, its subterms t1, . . . , tn are head-

Ω-free. By the induction hypotheses, there exist si such that c(si) = ti for
1 ≤ i ≤ n. Hence it suffices to take s = f(s1, . . . , sn), and then we shall obtain
c(s) = f0 ◦ c(s1) ◦ · · · ◦ c(sn) = f0 ◦ t1 ◦ · · · ◦ tn.

63

With the arguments which we have seen above, we can explain that the set of
proper preredexes ofR↓C(F) consists of head-Ω-free proper preredexes, all of which are
obtained by currying proper preredexes of R, and non-head-Ω-free proper preredexes.
Eventually, all proper preredexes have indices.

R R↓C(F)

head-Ω-free

not head-Ω-free

t c(t)

Figure 4.2 Proper preredexes in TRSs

We oversee this part with the next theorem concluding strong sequentiality of
R↓C(F).

Theorem 207. Let R an orthogonal constructor system over F . If R is strongly
sequential then R↓C(F) is strongly sequential.

Proof. Assume that R is strongly sequential. Orthogonality of R↓C(F) and being an
ACS for R↓C(F) are ensured by Theorems 185 and 192, respectively. By Lemma
90, it suffices to show that every proper preredex in R↓C(F) has an index. As R
is strongly sequential, by Lemma 75 we can say that every proper preredex t in R
has an index. For such a proper preredex t, Lemmata 200 and 205 show that c(t)

is a proper preredex in R↓C(F) and it has an index. We consider two sets of proper
preredexes of R↓C(F).

• For the set of head-Ω-free proper preredexes, Lemma 206 shows that this set
coincides the set consisting of c(t) for every proper preredex t of R. As we have
seen, every element of the set has an index.

• For the set of non-head-Ω-free proper preredexes, Lemma 103 promises exis-
tence of an index of every non-head-Ω-free proper preredex.

Therefore, every proper preredex in R↓C(F) has an index.

64

Chapter 5

Conclusion

In this thesis, we have developed a technique for left-normal translation for ATRSs.
By introducing the concepts of applicative constructor systems and left-head-variable-
freeness, we overcame the difference between the forms of terms in functional TRSs
and ATRSs. In addition, the fact that the ATRS AB(R) obtained by one-step trans-
lation has strong sequentiality mentions that repeated one-step translations of AB(R)
result in the left-normal ATRS L(R). Hence we can say that every strongly sequen-
tial and orthogonal non-variadic ACS is a preimage of some orthogonal left-normal
ACS.

In Chapter 4, we showed that left-normal translation can deal with all functional
TRSs that can be left-normal by the translation for functional TRSs. This means
that our new result includes the result of left-normal translation by Hashida [4],
and contributes to extending a class of TRSs that can be translated into left-normal
systems.

Future work

One of what we have left undone is to moderate restrictions on non-left-normal
ATRSs to be translated. Left-normal translation for ATRSs requires non-left-normal
ATRSs to be strongly sequential, orthogonal, non-variadic, left-head-variable-free and
ACSs. In spite of a number of conditions, we have already succeeded in handling
orthogonal ACSs which most functional programming languages and proof assistants
support, and including all functional TRSs with which the Hashida’s translation can

65

deal. However, in order to make the translation generalised to ATRSs further, we
need to decrease the restrictions. Strong sequentiality is considered indispensable
because there hardly exists an alternative concept to compute needed positions, whilst
necessity of the other properties is not conclusive.

Moreover, we asked currying to translate functional TRSs in order to include the
result of Hashida [4] because of different ways of showing index transitivity and strong
sequentiality between functional and applicative TRSs. Absolutely functional TRSs
are left-head-variable-free and non-variadic; if left-normal translation does not require
TRSs to be (applicative) constructor systems, such a bypass is no longer needed. We
anticipate a more general condition on which non-left normal TRSs can be translated
without the division between the two classes of TRSs.

As for another sequentiality using tree automata, various classes have been pro-
posed for TRSs. We are uncertain of whether translated ATRSs are in these classes.
Especially, the class of NV-sequentiality, which is introduced by Oyamaguchi [10], is
known to coincide the class of strong sequentiality in orthogonal constructor systems
[7]. We conclude the thesis by expecting the coincidence in orthogonal applicative
constructor systems.

Acknowledgement

At the end of this thesis, I would like to express my gratitude to my supervisor
Prof. Hirokawa for continual support and guidance. Furthermore I would like to
thank Prof. Ishihara and Prof. Ogawa who gave me a lot of advice on my study in
the mid-term defence, and colleagues at Hirokawa Laboratory in JAIST.

66

Bibliography

[1] F. Baader and T. Nipkow. Term rewriting and all that. Cambridge university
press, 1999.

[2] Y. Bertot. Coq in a hurry. arXiv preprint cs/0603118, 2006.
[3] I. Durand and A. Middeldorp. Decidable call-by-need computations in term

rewriting. Information and Computation, 196(2):95–126, 2005.
[4] A. Hashida. Transformation-based normalization analysis for term rewriting.

Master’s thesis, JAIST, 2019.
[5] G. Huet and J.-J. Lévy. Computations in orthogonal rewriting systems, II. In

Computational Logic – Essays in Honor of Alan Robinson, pages 395–414. The
MIT Press, 1991.

[6] J. W. Klop and A. Middeldorp. Sequentiality in orthogonal term rewriting sys-
tems. Journal of Symbolic Computation, 12(2):161–195, 1991.

[7] S. Lucas. Strong and NV-sequentiality of constructor systems. Information
processing letters, 89(4):191–201, 2004.

[8] A. Middeldorp N. Hirokawa and H. Zankl. Uncurrying for termination and com-
plexity. Journal of Automated Reasoning, 50(3):279–315, 2013.

[9] M. J. O’Donnell. Computing in systems described by equations. 1977.
[10] M. Oyamaguchi. NV-sequentiality: a decidable condition for call-by-need compu-

tations in term-rewriting systems. SIAM Journal on Computing, 22(1):114–135,
1993.

[11] S. P. Jones P. Hudak, J. Hughes and P. Wadler. A history of haskell: being lazy
with class. In Proceedings of the third ACM SIGPLAN conference on History of
programming languages, pages 12–1, 2007.

67

