
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
A Study on Optimization of Residual Binarized

Neural Network

Author(s) 陳, 炎

Citation

Issue Date 2021-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/17137

Rights

Description
Supervisor:田中　清史, 先端科学技術研究科, 修士

（情報科学）

Master’s Thesis

A Study on Optimization of

Residual Binarized Neural Network

1910260 CHEN Yan

Supervisor Tanaka Kiyofumi

Main Examiner Tanaka Kiyofumi

Examiners Inoguchi Yasushi

Kaneko Mineo

Lim Yuto

Graduate School of Advanced Science and Technology

Japan Advanced Institute of Science and Technology

(Information Science)

February 2021

Abstract

Convolutional Neural Networks (CNNs) show their high ability in image

classification and are widely used in many fields in recent years. Modern

CNNs models contain millions of parameters and require billions of floating-

point operations to infer an image. Lightweight CNNs models such as

MobileNet [1] and ShuffleNet [2] were proposed to enable CNNs to run on

mobile devices. On the other hand, Binarized Neural Networks (BNNs)

for hardware with higher speed and lower power consumption was also

introduced. BNN is a technology that realizes speedup and weight reduction

by converting the conventional CNN floating-point matrix operation to a

binary (−1 and +1) bit XNOR operation at the expense of some accuracy. It

is suitable for BNNs to run inference on specific hardware accelerators in, for

example, FPGA devices. Residual Binarized Neural Network (ReBNet) [3]

greatly improves accuracy by introducing binarize factor and performing

multi-level binarization. Since the binarize factors in ReBNet are decimals,

it is necessary to multiply the fixed-point numbers by DSP in the FPGAs.

DSPs are a scarce resource in today’s FPGAs, so their degree of parallelism

is limited.

In this thesis, we introduce the basic knowledge of CNNs and BNNs and

recent related work. And we propose a state-of-the-art method to accelerate

and optimize the ReBNet by replacing fixed-point number multiplication

with logical shift operation. We designed an end-to-end framework for

training Binarized Neural Networks, on which the conversion to logical-shift-

based multiplication on software and hardware accelerators implemented on

FPGA is performed. We propose Isometric Residual-Binarization, which

reduces the elements of binarize factor from the number of levels to 1, and

reuses the single element to express binarize factor vector of multiple levels.

Like ReBNet, this binarize factor can be determined through training. Then,

we show how to transform the parameters in the convolutional layer, fully

connected layer, and batch normalization layer, so that the binarize factors

become integers. Benefiting from this, no more DSPs are required to multiply

the binarize factors, and a large quantity of hardware recourse can be saved.

We redesign processing elements (PEs):

I

• only 1 DSP and 1 accumulator are required per PE,

• encoder becomes much simpler than that in ReBNet,

• it can compute multiple levels at the same time but requires more

popcount modules.

We also apply throughput optimization which makes Initiation Interval from

the number of levels to 1 in our design. However, this optimization causes

the data stream to become wider and logic between layers to become larger.

We propose Adaptive Bit Width to resolve these problems without any

performance degradation.

We implement our design and compare it with baseline research in

different settings. First, we train BNNs models with Isometric Residual-

Binarization we proposed on multiple datasets in 3 neutral network archi-

tectures. Compared with the original work, ours has fewer parameters but

reaches similar accuracy. Then, we transform parameters in models and

evaluate the accuracy changes. The accuracy does not change obviously.

Next, we make the testbenches and simulate the behavior of hardware

accelerators, and start implementation . We try to find the possibly highest

degree of parallelism for 2 levels and 3 levels on the resource-limited device

for architectures of small datasets, and our design achieves 8 times higher

throughput than ReBNet on average. We also implement the maximum

parallelism of architectures of small datasets on the large device to find out

the hardware resource usage in highly parallel. For the model of the large

dataset which requires a huge amount of on-chip memory, we implement

it on the Virtex UltraScale device. After that, we measure the scenario

of the resource-limited device on the development kit. We design the

software evaluation programs and measure the accuracy, throughput, and

power usage. All of the results are the same with software models, and the

throughput is very close to the theoretical values. We compare these with

GPU implementations. At last, we analyze the effect of each optimization

quantitatively. Hardware resource usage of each PE is much lower than

ReBNet when input data width is less than or equal to 32. Our Data Stream

with Adaptive Bit Width can reduce up to 7
8

Block RAMs in the buffer of

sampling modules of convolutional layers.

Finally, we conclude this thesis and describe the future works.

Keywords: Binarized Neural Networks, FPGA, Convolutional Neural

Networks.

II

Acknowledgment

Firstly, I would like to express my sincere gratitude to my supervisor, Pro-

fessor Tanaka Kiyofumi, who helped me finish this research. My supervisor

provided great support for my research and writing my master’s thesis.

Secondly, I would like to thank my second supervisor, Inoguchi Yasushi, who

gave good suggestions and comments about my research in the presentation.

Thirdly, I would like to thank my graduate school, JAIST, which provided

computation resources to run training programs and synthesis tools. JAIST

also gave me a scholarship that exempted all tuition fees in the second year.

And I would like to thank Japan Student Services Organization (JASSO)

which gave me the honors scholarship. Finally, I would like to thank my

family who has been supported me both physically and mentally.

III

List of Abbreviations

AXI Advanced eXtensible Interface

BN Batch Normalization

BNNs Binarized Neural Networks

CNNs Convolutional Neural Networks

FPGA Field Programmable Gate Array

GPUs Graphics Processing Units

HLS High Level Synthesis

II Initiation Interval

ILSVRC ImageNet Large Scale Visual Recognition Competition

IoT Internet of Things

LUT Look-Up-Table

MVTU Matrix Vector Threshold Unit

PEs Processing Elements

ReLU Rectified Linear Units

SGD Stochastic gradient descent

SWU Sliding Window Unit

IV

Contents

Abstract I

Acknowledgment III

List of Abbreviations IV

Contents V

List of Figures VII

List of Tables IX

Chapter 1 Introduction 1

1.1 Background . 1

1.2 Objective . 3

1.3 Outline . 3

Chapter 2 Related Works 4

2.1 Convolutional Neural Networks 4

2.1.1 Fully Connected Layers(Dense) 6

2.1.2 Convolutional Layers(Conv) 6

2.1.3 Pooling Layers . 8

2.1.4 Batch Normalization(BN) 9

2.1.5 Activation Functions 10

2.1.6 Dropout . 11

2.2 Binarized Neural Networks . 12

2.2.1 Binarization Activation 12

2.2.2 Residual-Binarization Activation 13

2.2.3 XNOR-based dot product 14

2.2.4 Threshold-based Batch Normalization 16

V

2.2.5 MaxPooling . 16

2.2.6 Hardware Accelerator Architecture 17

Chapter 3 Improvement of ReBNet 21

3.1 Isometric Residual-Binarization 21

3.2 Integer scaling of binarize factor 22

3.3 Processing Element . 23

3.4 Data Stream with Adaptive Bit Width 26

Chapter 4 Experiments 29

4.1 Training models . 32

4.1.1 Small Datasets . 32

4.1.2 Large Dataset . 37

4.2 Convert Models to Binary Weight 38

4.3 Simulation . 40

4.4 Implementation . 43

4.4.1 Resource-limited Device 43

4.4.2 Maximum parallelism on 7z100 47

4.4.3 Implement Arch3 on vu095 50

4.5 Measurement on Development Kit 52

4.6 Analysing on usage of MVTU 57

4.7 Analysing on optimization of SWU 59

Chapter 5 Conclusion and Future Work 61

5.1 Conclusion . 61

5.2 Future Work . 62

Bibliography 63

VI

List of Figures

2.1 A typical CNNs model . 5

2.2 convolution operation . 7

2.3 Pooling operation . 9

2.4 Activation functions . 11

2.5 Dropout [4] . 12

2.6 Activation functions in BNNs 13

2.7 Encoding multiple-level residual-binarized bits. 14

2.8 Relationship between x and e 14

2.9 Dot-Product and XnorPopcount 15

2.10 Problems in MaxPooling of ReBNet 17

2.11 Overview of Accelerator and dataflow 18

2.12 MVTU . 19

2.13 Processing Element in ReBNet 20

3.1 relationship between x and e 21

3.2 Processing Element in our design. 23

3.3 Valid bits for encoder . 25

3.4 Throughput optimization . 25

3.5 Data Stream . 27

3.6 Data in inter FIFO . 28

4.1 Example of MNIST dataset [5] 29

4.2 Example of CIFAR-10 dataset [6] 30

4.3 Example of SVHN dataset [7] 30

4.4 Example of ImageNet dataset [8] 31

4.5 Neural Network Architectures 33

4.6 Learning Curves . 36

4.7 Learning Curves of ImageNet 38

4.8 Conversion of Weights . 38

4.9 Simulation . 41

VII

4.10 Waveform from ”C/RTL cosimulation” 42

4.11 Normalized hardware utilization on 7z020 45

4.12 Normalized hardware utilization on 7z100 49

4.13 Normalized hardware utilization of Arch3 51

4.14 ZedBoard . 53

4.15 Processing System . 54

4.16 Utilization of one MVTU with one PE 58

4.17 Utilization of one MVTU contains 16 PEs 59

VIII

List of Tables

4.1 Target FPGA devices. 32

4.2 Accuracy Comparison of small datqasets 37

4.3 Accuracy Comparison of ImageNet 37

4.4 Accuracy changing . 39

4.5 PE court, SIMD widht and Fold for 7z020 44

4.6 Frequency, throughput and power usage for 7z020 46

4.7 PE court, SIMD widht and Fold for 7z100 47

4.8 Frequency, throughput and power usage for 7z100 50

4.9 PE court, SIMD widht and Flod of Arch3 51

4.10 Frequency, throughput and power usage of Arch3 52

4.11 Hardware accelerators run on ZedBoard 56

4.12 NVIDIA Tesla P100 . 56

4.13 Comparison on Data Stream Optimization 59

4.14 Utilization of one SWU . 60

IX

Chapter 1

Introduction

1.1 Background

With the computing ability of GPU improving, Convolutional Neural Net-

works (CNNs) can be trained in a reasonable time. CNNs show their high

classification ability and are widely used in many fields in recent years.

The problems to be solved by CNNs are becoming much more complex,

and it is difficult for low-power devices, especially Internet of Things (IoT)

devices, to run CNNs locally. For some hard real-time tasks, such as semantic

segmentation of autopilot, the CNNs have to finish in several microseconds.

Computing on a remote server requires high bandwidth, low latency and high

network connection quality. They are really difficult problems. Therefore,

this type of task needs to be processed locally.

Modern CNNs’ architecture has become larger and more complex to per-

form difficult tasks, and it usually needs millions of parameters and billions of

floating-point operations to run one picture. For instance, the winner of the

ImageNet Large Scale Visual Recognition Competition (ILSVRC) in 2015

was ResNet [9], and ResNet-50 has 25.5 millions of parameters and needs

3.8 billion floating-point operations to infer one picture. The winner of the

ILSVRC in 2014 was Inception [10], which has 7.0 million parameters and

needs 1.6 billion floating-point operations to infer one picture.

So many parameters and floating-point operations make it difficult for

even high-end Graphics Processing Units (GPUs) to run the modern CNNs

in real-time, and GPUs need to inference multiple pictures at one time

which is called ”mini-batch” to maximum the throughput. The batch-based

acceleration of GPUs results in high average latency. Or inferring only one

picture at one time, it will make throughput significantly lower.

Several ways have been proposed to reduce operations or parameters in

CNNs, such as reducing operations by using depth-wise convolution [1, 2],

1

Binarized Neural Networks (BNNs) [11,12], parameter quantization [13,14],

and Pruning [15,16] and sparse convolution [17,18].

CNNs’ models should be trained with 32-bit floating-point precision or 32-

bit/16-bit mixed floating-point precision [19], while the inference process does

not require such high precision. 8-bit integer quantization [13] is popular for

inference in CNNs on embedded or mobile devices. Even 1-bit binarization

can achieve high accuracy.

In BinaryNet [11], Courbariaux et al. convert almost all floating-point

operations to binary operations where floating-point number multiplication

becomes logical XNOR. In a Field Programmable Gate Array (FPGA), a

logical XNOR gate can be implemented as Look-Up-Table (LUT). LUT is

one of main resources in a modern FPGA. Today’s representative LUT has

6 inputs and 2 outputs. The two outputs can share several inputs by rules,

so one LUT can be configured as 2 XNOR gates. With those LUTs, even

small FPGA devices can perform up to trillions of XNOR operations in one

second. In addition, compared with floating-point or quantized CNNs, binary

weights in BNNs spend less memory space to store them. This means that

binary weights can be stored in Block RAM or Distributed Memory on FPGA

devices, and it takes a few clock cycles to load them. Compare with GPUs,

FPGA devices can process data in pipeline and latencies for each input data

are identical, and the latency can be calculated by by taking the running

clock frequency into account, so they are more suitable to do inference in

CNNs.

In Xnor-Net [12], Rastegari et al. added scaling factor to weight, which

makes their design get higher accuracy in the ImageNet dataset. FINN [20] is

a BNNs’ framework which provides the fastest processing, and it is flexible so

that it can be configured to adapt to various FPGA devices of different sizes

by changing the degree of parallelism. FINN also uses threshold comparison

to avoid multiplications in Batch Normalization (BN) [21].

BNNs with 1-bit activation and 1-bit weights lead to very limited accu-

racy. On the other hand, Residual Binarized Neural Network (ReBNet) [3]

which has multiple-bit activation and 1-bit weights gets much better accu-

racy, and is comparable with floating-point precision. ReBNet introduces

multiple-bit activation in FINN’s framework by getting the sign of the

difference between the residuals and the binarize factors. When bit width of

activation is supposed to be M , this is called M levels of residual binarization,

and M binarize factors for activation are required. Here, the scaling factors

2

which are fixed-point values need to be multiplied with accumulated values

in the next layer. Multiplication of fixed-point numbers is basically mapped

to DSP48 resources which are embedded multiply-accumulate calculators in

Xilinx FPGA families. However, since the number of DSP48 resources in a

device is limited, this results in that ReBNet easily runs out of DSP48s, and

therefore needs a great amount of LUTs to make up for the lack of DSP48s.

This imbalance limits the maximum degree of parallelism, makes place-and-

route processes hard in implementing the whole design, and degrades the

maximum clock frequency.

1.2 Objective

In this thesis, we try to resolve the problems in ReBNet [3] mentioned above.

ReBNet [3] takes too many DSP48s, and we try to reduce the utilization

of DSP48s by redesigning the binarization algorithm. The new binarization

algorithm would achieve similar accuracy to ReBNet [3], and the hardware

implementation of this algorithm does not run out of DSP48s and saves many

LUTs so that we can apply throughput optimization and increase the degree

of parallelism. Besides, the buffering method of Sliding Window Unit (SWU)

in ReBNet wastes too many BRAMs, and we try to resolve this problem in our

design. We implement hardware accelerators for several CNNs’ architectures

on FPGA devices and compare them with the baseline design, ReBNet, in

different ways.

1.3 Outline

The rest of this thesis is organized as follows:

• Chapter 2 shows the techniques used in CNNs and BNNs.

• Chapter 3 proposes our accelerator which improves ReBNet.

• Chapter 4 shows implementation of our design and compares it with

baseline research in different settings.

• Chapter 5 concludes this thesis.

3

Chapter 2

Related Works

In this section, we introduce the CNNs and BNNs, and show the techniques

used in BNNs and explain residual binarization in ReBNet [3] in particular.

In addition, we present how the FINN framework [20] implements BNNs in

parallel on FPGA efficiently. For more details, refer to the original papers.

2.1 Convolutional Neural Networks

In 1962, David Hubel and Torsten Wiesel published a research [22] on

the functional architecture in the cat’s visual cortex, and firstly proposed

”receptive fields” which is a very important notion in CNNs. In 1980,

Kunihiko Fukushima proposed Neocognitron [23], which made a neural net-

work model running on the computer and suggested step-by-step convolution

filter, Rectified Linear Units (ReLU) and average pooling. His work also

achieved Sparse Interaction and Translation Invariant. In 1990, Y. Le Cun

proposed back-propagation for CNNs, and it absorbed the advantages from

Neocognitron [23] and added Parameter Sharing to reduce parameters. This

improvement makes the model run or be trained faster and reduce the risk of

overfitting. Back-propagation based supervised learning makes CNNs easier

to be applied to various fields.

The first modern CNNs as known as LeNet-5 [24] was announced in 1998.

LeNet-5 includes 7 layers, which are 2 convolutional layers, 2 pooling layers, 2

fully connected layers and a special output layer. And its basic architecture,

convolutional layer −→ pooling layer −→ fully connected layer, is the same as

CNNs widely used today. However, CNNs stopped growing in the next over

ten years, because it needs too much calculation and takes too much time to

train a model.

AlexNet [25] won the ImageNet Large Scale Visual Recognition Com-

petition 2012, and it got 84.7% of Top-5 accuracy (sorting all outputs and

4

getting the highest 5 classes, Top-5 accuracy means the rate of ground true

in that 5 classes). This accuracy was 10.8% higher than the runner-up.

AlexNet uses ReLU as activation function, and imports Data Augmentation

(Performing translation, rotation, zoom and other operations on the input

image, to augment the data set. [26]). Gradient descent algorithm used

in AlexNet is mini-batch Stochastic gradient descent (SGD). It also uses

dropout to avoid overfitting. AlexNet made CNNs evolve in the next several

years, and much more powerful architecture like Inception, VGG, ResNet,

etc. was introduced.

Modern CNNs usually contain conventional layers, pooling layers, batch

normalization, activation function and fully connected layers. A typical

CNNs model is shown in Figure 2.1 We need to define a loss function when we

train a model. The loss function is often the error between the output of the

model and the ground true in supervised learning. We can calculate gradient

matrices of all trainable parameters in each layer via chain rule. Then we

need a Gradient Descent Optimization Algorithm to update parameters. We

introduce these techniques in the following subsections.

Figure 2.1: A typical CNNs model

5

2.1.1 Fully Connected Layers(Dense)

The fundamental of Neural Networks is affine transformation: calculate the

dot product of the input vector and weight matrix, then add bias vector

optionally. Assume 2× 2 matrix x is input, the 1st row is the vector of mini-

batch 1 and 2nd row is the vector of mini-batch 2. Matrix W is weight, each

column is the parameter for each output node, and the vector b is the bias

for each output node. We can get[
x1,1 x1,2
x2,1 x2,2

]
·
[
W1 W2 W3

W4 W5 W6

]
+

[
b1 b2 b3
b1 b2 b3

]
=

[
x1,1W1 + x1,2W4 + b1 x1,1W2 + x1,2W5 + b2 x1,1W3 + x1,2W6 + b3
x2,1W1 + x2,2W4 + b1 x2,1W2 + x2,2W5 + b2 x2,1W3 + x2,2W6 + b3

]
,

(2.1)

where the axis definition of output is the same as input.

2.1.2 Convolutional Layers(Conv)

As mentioned before, a fully connected layer needs to calculate dot product

of the input and weight, but if we input an image, it is difficult to get dot

product, because the amount of the pixels and the Weight matrix is really

huge. It is a low efficiency. We can use convolution operation in picture

processing to instead of calculating the dot product of the whole input

picture. Convolution operation usually needs a filter, but in convolutional

layers, it will be a set of filters. These filters slide across the input picture and

calculate the dot product of the small picture sampled and kernel (Weights

in convolutional layers). So, convolutional layers can share the parameters

and the connection to the input is sparse. Input ”pictures” of hidden layers

is the feature map. Assume that the input feature map is 3×3×2 in Height,

Width and the number of Channels, the kernel size of filters is 2 × 2, and

the number of output channels is 2, the output of this convolutional layer is

illustrated in Figure 2.2.

6

Figure 2.2: convolution operation

7

As same as fully connected layers, convolutional layers can add bias

to each output and add an axis to process multiple data in a mini-batch.

Besides, convolutional layers have extra hyperparameters such as stride

(sampling step), padding (fill data in the border), dilation (sample data with

spacing).

2.1.3 Pooling Layers

Pooling layers can reduce the size of the feature map (downsampling) while

keeping the Translation Invariant. As same as convolutional layers, pooling

layers also use ”filters” which have no kernel parameters to slide across the

input feature map. Pooling layers’ filters output one value for each channel

of input feature map in a sampling window by a specific rule. The rules can

be average, maximum and others. Assume input feature map has a size of

4 × 4 × 2 (in Height, Width and the number of Channels). The stride is

assumed to be 2. In Figure 2.3, the output size is 2× 2, and func() can be

max(), avg() or others.

8

Figure 2.3: Pooling operation

2.1.4 Batch Normalization(BN)

When training a deep neural network model, the distribution of the input

feature map will change along with parameters in the previous layer being

updated. So it requires to slow down the learning rate and initialize the

parameters carefully, and takes too much time to train a model. Batch

Normalization(BN) [21] was proposed to resolve this problem. Adding BN

to CNNs makes it take less training steps to achieve the same accuracy, and

get a bit higher final accuracy. There are typically four parameters in batch

normalization layers: moving-mean µ, moving-variance σ2, γ and β. Moving-

mean µ and moving-variance σ2 are updated by feeding data when the model

is being trained. they will be average values over multiple mini-batch to

represent the whole dataset. γ and β are parameters of affine transformation

and are updated by back propagation during learning. Processing in batch

9

normalization is:

output =
x− µ√
σ2 + ε

· γ + β, (2.2)

where ε is a fixed value which is close to 0 to avoid 0 to be divisor, and x

is the input value. After training finished, the moving parameters also are

fixed.

2.1.5 Activation Functions

CNNs need to use activation functions to resolve nontrivial problems via

a small number of nodes. Activation functions make the output of each

layer to be nonlinear. The commonly used activation functions, Rectified

Linear Units (ReLU), hyperbolic tangent(tanh) and sigmoid, are shown in

Figure 2.4, and softmax is often used as the last layer of CNNs. The output

of softmax is the probability distribution on the categories.

10

0

1

2

1 2-1-2

(a) ReLU

0

1

-1

1 2-1-2

(b) tanh

0

1

1 2-1-2

(c) sigmoid

Figure 2.4: Activation functions

2.1.6 Dropout

Dropout [4] is a technique to reduce overfitting. It randomly disables output

in specific ratios of nodes/filters during training. (shown in Figure 2.5)

11

(a) Without dropout (b) With dropout

Figure 2.5: Dropout [4]

2.2 Binarized Neural Networks

As mentioned in Charter 1, even if parameters and output products of hidden

layers in CNNs reduce from 32-bit floating-point numbers to 1-bit binary

numbers, the accuracy does not become much lower. And Binarized Neural

Networks (BNNs) can run quickly within a low power budget. We introduce

techniques used in BNNs and RebNet in the following subsections.

2.2.1 Binarization Activation

Compare with activation functions in CNNs which can output floating-point

numbers, activation functions in BNNs can only output binary numbers(−1

as false, +1 as true). The function to convert floating-point numbers to

binary numbers is sign(shown in Figure 2.6a). sign function outputs the

sign of a floating-point number, where input 0 will output 0, however, there

is a very low probability for a floating-point number to be an integer after

back propagation update or dot product. sign function is not continuous

and does not have a derivative. Hence, the error cannot be back-propagated

through a sign function in backpropagation. According to the literature of

BinaryNet [11], sign function should be approximated to clip(x,−1,+1) in

backpropagation, meaning that if the absolute value of input x is over 1, it

12

should be cut off. The derived function of clip is:

clip′(x,−1,+1) = 1|x|≤1 =

{
1 |x| ≤ 1

0 otherwise
(2.3)

0

1

-1

1 2-1-2

(a) sign function

0

1

-1

1 2-1-2

(b) clip function

Figure 2.6: Activation functions in BNNs

2.2.2 Residual-Binarization Activation

ReBNet proposed a multiple-level binarize activation function. To binarize an

input in multiple levels, binarize factor γe = {γe1 , γe2 , · · · , γei} is necessary.

Figure 2.7 shows how to convert a fixed-point input x to an approximate

binary value ei and encode it to a binary output bi. First, we get the sign

of the input r1(= x) as the Level 1’s encoded bit b1. If the sign is positive,

b1 is 1, otherwise 0. Next, r1 is added by γe1 when the sign is negative or

subtracted by γe1 when the sign is positive. The residual result r2 is the

input to the Level 2. Repeating this process, we obtain the results in Levels

2, . . . ,M . Consequently, e =
∑M

i=1 γei × sign(ri) is the approximate binary

13

value for input x, and the relationship between input x and approximate

binary value e when M=2 is illustrated in Figure 2.8. γe is learned during

the training phase.

Figure 2.7: Encoding multiple-level residual-binarized bits.

Figure 2.8: Relationship between x and e

2.2.3 XNOR-based dot product

The main calculation in the neural network is the dot product in the fully-

connected layers and convolution layers. In a fully-connected layer, it

calculates dot products between input vector ~x and weight vector ~w. In

a convolution layer, it calculates dot products between input feature map

vector ~x and kernel vector ~w. These dot products operations are as follows.

dot(~x, ~w) =
∑

~xi × ~wi (2.4)

In BNNs, {~x, ~w} are restricted to binary values which are {±γx,±γw},
where {γx, γw} are scalar values. According to [11], dot products of bina-

14

rlized {~bx,~bw} can be calculated via XNOR popcount (XnorPopcount). In

XnorPopcount, after XNOR operation, the number of positive bits is doubled

and then subtracted by the bit width, N (Figure2.9), where p is the number

of positive bits and N is the bit width of input. Let ~x = γx~sx and ~w = γw~sw,

and {~sx, ~sw} are sign vectors which only contain ±1. We replace −1 values

in sign vectors {~sx, ~sw} by 0s and then obtain {~bx,~bw}. We can get:

dot(~x, ~w) = γxγwdot(~sx, ~sw)

= γxγwXnorPopcount(~bx,~bw).
(2.5)

Figure 2.9: Dot-Product and XnorPopcount

In ReBNet [3], dot products between an M-level residual-binarized feature

vector ~e and weight vector ~w are calculated in M subprocesses, and the result

is the summation of the subprocesses. When i is the level number, The dot

product in ReBNet becomes:

dot(~e, ~w) =
M∑
i=1

γeiγwdot(~sei , ~sw)

=
M∑
i=1

γeiγwXnorPopcount(
~bei ,

~bw),

(2.6)

where ~sei is the binarize factor vector of ~e and ~bei is the vector of binary

encoded ~e.

15

2.2.4 Threshold-based Batch Normalization

CNNs generally include a batch normalization layer between fully-connected

layer or convolution layer and activation function. As mentioned before,

software implementation of the batch normalization needs multiplication

twice. According to FINN, we can find a threshold τ such that if the input

is lager than τ , the output is 1, otherwise, the output is 0, when batch

normalization runs on a hardware accelerator. FINN shows that we can

calculate

τ = µ− (β ×
√
σ2 + ε)

γ
. (2.7)

RebNet uses τ to get a difference D with input x, and then uses this difference

D to multiply a scaling factor

α =
γ√
σ2 + ε

, (2.8)

and put the product to residual-binarization activation function.

2.2.5 MaxPooling

FINN proposed efficient OR-based MaxPooling in their framework. ReBNet

cannot calculate MaxPooling correctly by this method since multiple levels’

data need to be processed. Instead, ReBNet buffers concatenated levels’ bit,

from low-level bit to high bit and high-level bit to low bit, and outputs the

maximum number in each sampling window. The input data of maxpooling

e is encoded by γei , and multiplied by γ in batch normalization. So the

value of γei and γ can make the max pooling result wrong in low probability.

Figure 2.10 shows those problems when M = 2. Figure 2.10a is the normal

case, and the maxpooling in ReBNet will output correct maximum valuse

in this case. Figure 2.10b is the case when γe1 < γe2 , and 01 is larger than

10 in this case, so the maxpooling in ReBNet will outout the wrong result

when comparing 01 and 10. Figure 2.10c shows the case when γ in batch

normalization is negative, where we can see that the maxpooling in ReBNet

will output a totally reverse result in this case.

16

(a) Normal case

(b) γe1 < γe2 case

(c) γ < 0 case

Figure 2.10: Problems in MaxPooling of ReBNet

2.2.6 Hardware Accelerator Architecture

Since ReBNet inherited the design of FINN, it maps each layer of neural

network to ”compute array” modules in hardware accelerator. They can run

17

in a large ”pipeline” (dataflow of High Level Synthesis (HLS) , Figure 2.11),

where, after compute 1 starts generating outputs, compute 2 starts com-

putation and compute 1 starts computation of the next data after finished.

Running in this way will maximize the throughput, but parameter must be

restored on-chip. Accelerator needs a Advanced eXtensible Interface (AXI)

master device (such as CPU) to feed images and receive classification results.

Figure 2.11: Overview of Accelerator and dataflow

The main module in compute array is Matrix Vector Threshold Unit

(MVTU) depicted in Figure 2.12, A fully-connected layer uses a MVTU, and

a convolution layer uses a Sliding Window Unit (SWU) and an MVTU. SWU

is for sampling the input to convolution layers. There are several Processing

18

Elements (PEs) (Figure 2.13) in an MVTU, and each PE can process multiple

1-bit data in parallel, and the number of data pairs is “SIMD width”. The

number of PEs and the SIMD width decide the degree of parallelism.

Figure 2.12: MVTU

The processing in each PE before encoding is:

∑
(
M∑
i

(γei · γw ·XnorPopcount(~bei ,~bw))) · α− τ · α, (2.9)

where the outer summation is to process all neurons which are divided to

SIMDs, and the inner summation is to process multiple levels input. γei · γw
and τ · α are calculated in advance and stored as constant in memory.

The PE in ReBNet is illustrated in Figure 2.13. While index1 is PE index,

index2 is layer index. S is data width of input (SIMD width), P is data width

of popcount accumulator, T is data width of all of the fixed-point values, and

M is the number of residual-binarization levels. Each PE contains M XNOR

modules, a popcout module, M accumulators to store popcounted values in

M levels, a MAC module, and an encode module. A MAC module contains

M + 2 DSP48s, M of which are for accumulated values to multiply γei and

2 of which are for multiplying α and difference D. The encoding module

consists of M comparators, M − 1 adders, and subtractors.

19

Figure 2.13: Processing Element in ReBNet

20

Chapter 3

Improvement of ReBNet

In this section, we discuss how we resolve the problems in ReBNet. First,

we show the difference in the computation processes. Then we explain

the modifications to the hardware accelerator and how to optimize the

performance and reduce resource usage.

3.1 Isometric Residual-Binarization

We found that most elements of γe in the hidden layers of models which have

been well-trained form a geometric sequence with a common ratio of 1
2

, and

the relationship between x and e is illustrated in Figure 3.1.

Figure 3.1: relationship between x and e

Then we tried to fix the gamma in the pattern corresponding to this

relationship, e.g., γe = {4, 2, 1} when M = 3, to train the model so that

we can use logical shift for the multiplications. However, we failed to get

adequate accuracy. After considering it carefully, we concluded that training

in this way would destroy the feature that γe can be trained, and fixed values

could not express the feature of the input. Therefore, we redesigned the

21

Residual-Binarization activation function, reduced the elements of binarize

factor γe from M to 1, and decided to reuse the γe to express binarize factor

vector γei = 1
2i−1γe of multiple levels, where the γe could be decided via

training, and approximate binary value becomes

e =
M∑
i=1

1

2i−1
γe × sign(ri). (3.1)

Assumme that L is loss function, that it uses full-precision in backpropa-

gation, and that sign function causes vanishing gradient. As described in

Section 2.1.5, it should be replaced as clip(x,−1,+1) in backpropagation as

follows:

e =
M∑
i=1

1

2i−1
γe × clip(ri,−1,+1). (3.2)

The derivatives of cost function L with respect to γe is computed by chain

rule as:
∂L
∂γe

=
∂L
∂e

∂e

∂γe
=

M∑
i=1

1

2i−1
clip(ri,−1,+1), (3.3)

and for input x:

∂L
∂x

=
∂L
∂e

∂e

∂x
=

M∑
i=1

1

2i−1
γe × 1|ri|≤1. (3.4)

We can update the parameters in the Isometric Residual-Binarization acti-

vation function and pass the gradient to the previous layer on a full-precision

system.

3.2 Integer scaling of binarize factor

Since we use single trainable γe, we need to scale almost all of the parameters

and make it easier for hardware to run it. In ReBNet or FINN, there are two

ways to input data: 1) For simple datasets in monochrome like MNIST, data

is inputted as binary bits(sign(2× x− 255)). 2) For datasets like CIFAR-10

or SVHN, data is inputted as 8 bits fixed-point number(2×x−255
255

), where the

first bit is sign, and the remaining 7 bits are decimal part. For case 1), we

do not change the input format, while, for case 2), we use RAW RGB values

as input and process 2× x− 255 in the first layer, so as to project the RGB

22

value x ∈ [0, 255] to x ∈ [−255, 255]. This makes software simulation and

hardware output the same values, so that we can predict the behavior of the

hardware easily. We need a scaling factor γr = 2M−1

γe
. In case 1), γrprev in the

previous layer is initialized with 1, and in case 2), it is initialized with 255.

First, we have to correct γ which has a negative value in the batch

normalization, which makes residual-binarization in inversely proportional.

The weights in the previous layers, moving-means µ, and γ are element-wise-

multiplied with the sign vectors of the γ. Then, after calculating the current

γrcur , the parameters in batch normalization are updated as:

γ′ = γ · γrcur
β′ = β · γrcur
µ′ = µ · γrprev
σ′ =

√
(σ2 + ε) · γ2rprev ,

(3.5)

where {γ, β} are multiplied by the current scaling factor, {σ, µ} are depen-

dent on the previous layer’s output, and thus they are multiplied by the

previous scaling factor. Finally, τ and α are calculated by the scaled param-

eters, and we can use the integer γe(= 2M−1) in hardware implementation.

3.3 Processing Element

Figure 3.2: Processing Element in our design.

As mentioned above, we reduced the components in PE in Figure 3.2. While

index1 is PE index, S is data width of input (SIMD width), P is data width of

23

popcount accumulator, T is data width of all of the fixed-point values, and M

is the number of residual-binarization levels. Before adding the popcounted

value to the accumulator, we process the logical left shift simply by wire

connections and use adder-tree to sum different levels’ shifted values. We

not only remove the M − 1 DSP48s for γe and popcounted values, but also

reduce the amount of DSP48s for α. ReBNet needs two DSP48s to multiply

T -bit fixed-point value which is the output of the MAC module and T -bit

fixed-point α. Our design, on the other hand, only requires a DSP48 to

multiply P -bit integer accumulated value and T -bit fixed-point α, where T

is supposed to be 24, and P is the width of the integer part of T , i.e., 16. In

most cases, since α is a small value, it is desirable to allocate more bits to

the decimal part, e.g., 12 bits for the integer part and 12 bits for the decimal

part. Then, the calculated, temporary value is subtracted by τ ·α which can

be pre-calculated. The computation so far is shown as:

∑
(
M∑
i=1

(XnorPopcount(~bei , ~w) << (M − i))) · α− τ · α. (3.6)

Then we deliver the result of Formula (3.6) to the encoder. Different from

ReBNet which needs to input all of the bits for getting the correct result from

comparing the very close values, we only need M + 2 bits, which are a sign

bit, the least significant M bits in the integer part, and 1-bit decimal part, to

encode correctly. If there is valid information in not-selected (or higher) bits

in the integer part, we need to set the maximum or minimum value to the

least significant M bits: 1) When the sign is positive, the least significant M

bits are to be the maximum if there is at least 1 in the unselected (higher)

bits in the integer part. We can check it by element-wised OR gate; 2) When

the sign is negative, the least significant M bits are the minimum if there is at

least 0 in the unselected integer part. We can check it by element-wised AND

gate. The fractional part has a constant value of 1, which is 0.5 in decimal

since this is always ”1” in the fractional part after threshold subtraction.

We use constant 0.5 to represent all of the fractional part and it can avoid

comparison between the same values with γe.(Figure 3.3)

24

Figure 3.3: Valid bits for encoder

In addition, we apply throughput optimization in the processing element

so that the Initiation Interval (II) of each PE decreases from M to 1. This

means that the throughput of the design increases by M . In ReBNet, they

input the data in the interleaved manner, while, in our design, data are

inputted in parallel. This brings overhead of M − 1 more popcount modules

and larger dataflow control logic between layers.

Figure 3.4: Throughput optimization

Figure 3.4 is a simple example when M = 2. The top is the original

25

ReBNet and the bottom is our design. We can see that, our design processes

4 SIMDs in 4 clock cycles, and ReBNet only processed 2 SIMDs. However,

our design needs 2× bit width, it will require more Block RAM to provide

so wide port, and each Block RAM will use less capacity, especially for the

input buffer in SWU. We propose how to mitigate this problem in the next

section.

3.4 Data Stream with Adaptive Bit Width

In SWU, it needs to buffer at leastK+1 lines of input feature map(K is kernel

size of Convolutional Layers). K lines are for sampling and the extra 1 line

is for inputting new data in parallel. The total capacity required is fixed, but

the wider stream makes data be divided into more Block RAMs. For example,

when the size of input feature map is 20× 20× 256, K is 3, and M is 2, the

required buffer capacity is (3 + 1)× 20× 256× 2 = 20480. The Block RAM

of Xilinx modern device is RAMB36E1/RAMB36E2, which has a capacity of

32+4Kbit, and 2 ports with the width of 32+4 bit(the extra 4-bit width and

4Kbit capacity can be used in 9/18/36/72 bits word mode only). ReBNet

partitions SWU buffer into (K + 1) ×M smaller buffers. We can calculate

the required Block RAM amount of ReBNet as 256÷ 64× (3 + 1)× 2 = 32,

where each Block RAM only uses the capacity of 640bit, 1.74% of all. In

our throughput optimized design, there is no need to multiply M but the

required port width will be M times. So, the required Block RAM amount

is 512 ÷ 64 × (3 + 1) = 32. It is the same as ReBNet, but there are more

hardware recourse required in interFIFOs and Bit-Width Converters.

We propose Data Stream with Adaptive Bit Width to overcome it.

Figure 3.5 illustrates the data stream from MVTU of the previous layer to

MVTU of the next layer, and the MaxPooling is optional. We can see that

ReBNet resumes the width of the data stream to the number of channels,

and divides it to SIMD width of the next MVTU at last. So the MaxPooling

and SWU are required to process the wide data. Our optimized design is

shown in Figure 3.5b, where we change the width of the data stream to the

SIMD width of the next layer very early. All of the dataflow control logic

will be smaller and the second Bit-Width Converter only needs to bypass the

input. Because the bit width will be changed when SIMD width changed(the

degree of parallelism changed), this optimization will not slow down the

26

(a) ReBNet (b) Our optimized design

* should be multiplied by level number M .

Figure 3.5: Data Stream

27

whole system. Figure 3.6 shows the data in inter FIFO when the number

of channels is 256 and the SIMD width of the next layer is 64, where POS

means the position of the feature map. The bit width decreased to 25% of

the unoptimized case and less than ReBNet.

The SWU does not load or write all of the lines at the same time, so

the throughput will not decrease when disabling the buffer partition. In the

example above, it only needs 2 Block RAMs after optimization when the

SIMD width of the next layer is 64. If the SIMD width of the next layer is

32, the required Block RAM will decrease to 1.

(a) ReBNet (b) Before Opt. (c) Post Opt.

Figure 3.6: Data in inter FIFO

28

Chapter 4

Experiments

We use Keras [27] with TensorFlow [28] backend to train our models with

methods in BinaryNet. We apply our method to the open-sourced library of

ReBNet and use Vivado HLS in Vivado Design Suite [29] to perform high-

level-synthesis for the IP core of the accelerator we designed. Then, logic

synthesis, implementation, and bitstream generation are done on Vivado.

We implemented different accelerators for several small data sets: MNIST

[5], CIFAR-10 [6] and SVHN [7], and a large data set: ImageNet (ILSVRC2012)

[8], and compare them with ReBNet for the same data sets. There are typical

2 parts in a dataset: train dataset and test dataset, where train dataset is

for training the model, and the test dataset is for evaluating the accuracy

and data elements are different from train dataset.

Figure 4.1: Example of MNIST dataset [5]

MNIST [5] is a database of handwritten digits, and there are 60,000

training images and 10,000 test images. The images have a size of 28 × 28.

The example of the MNIST dataset is shown in Figure 4.1.

29

Figure 4.2: Example of CIFAR-10 dataset [6]

CIFAR-10 [6] is a database of objects in 10 classes, and there are 50,000

training images and 10,000 test images. The size of images is 32 × 32, and

each class contains 6,000 images. The example of the CIFAR-10 dataset is

shown in Figure 4.2.

Figure 4.3: Example of SVHN dataset [7]

30

The Street View House Numbers (SVHN) [7] is a database of digits

images, and there are 73,257 training images, 26,032 test images and 531,131

extra images for training. The size of images is 32× 32. The example of the

SVHN dataset is shown in Figure 4.3.

Figure 4.4: Example of ImageNet dataset [8]

ILSVRC 2012 [8], also known as ”ImageNet”, is a database of images

which illustrate ”synonym net” in 1,000 classes. There are 1,281,167 training

images and 100,000 test images. Images are in different sizes. The example

of the ImageNet dataset is shown in Figure 4.4.

We target several FPGA devices with different sizes in implementation

comparison. The resources of the target devices are presented in Table 4.1

where 7z020 is a resource-limited device and 7z100 is a large device which

provides a large amount of DSP48s. vu095 is large which provides a large

amount of Block RAMs to implement ImageNet. The highest degree of

parallelism described in FINN for CNNs architecture of small data sets can

be implemented on the large device 7z100. However, the same degree is

impossible on the resource-limited device 7z020. Instead, we tried to find the

31

possibly highest degree of parallelism for M = 2 and M = 3 on the resource-

limited device 7z020. On the other hand, the large data set, ImageNet, can

only be implemented with a fixed degree of parallelism on the vu095.

To check the effect of each optimization, we also design several scenarios

to compare with the original ReBNet and unoptimized design.

At last, we show the throughput on the real development kit and compare

it with the theoretical value.

Table 4.1: Target FPGA devices.

FPGA device LUT FF DSP48 BRAM

xc7z020-clg484-1 53,200 106,400 220 140

xc7z100-ffg1156-2 277,400 554,800 2,020 755

xcvu095-ffva2104-2 537,600 1,075,200 768 1,728

4.1 Training models

We adopt neural network architectures similar to ReBNet [3] as those in

Figure 4.5. There are 3 neural network architectures; Arch1 is for MNIST,

Arch2 is for CIFAR-10 and SVHN, and Arch3 is for ImageNet. BN represents

batch normalization, Dense(A) represents Fully connected layer with A neu-

rons (nodes), Conv(C,K, S) represents Convolutional Layer with C output

channels, K ×K kernel size and Stride is S × S, and MP (K,S) represents

MaxPooling with K × K sampling window and S × S Stride. Activation

Functions depend on scenarios; in our optimized case, it will be Isometric

Residual-Binarization, in the original case of ReBNet, it will be Residual-

Binarization, and in floating-point case, it will be tanh. The number on each

block of a convolutional layer or fully connected layer will be used at hardware

implementation to describe the degree of parallelism. Dropout is added after

some of the Activation Functions with a low probability to reduce overfitting

during training. The gradient descent optimization algorithm used during

training is Adam [30].

4.1.1 Small Datasets

MNIST was trained on Arch 1 which only contains fully-connected layers.

CIFAR-10 and SVHN are trained on Arch 2, in which all of the convolutional

32

(a) Arch1 (b) Arch2 (c) Arch3

Figure 4.5: Neural Network Architectures

33

layers have a kernel size of 3 × 3 and stride of 1, and maxpooling layers

have a kernel size of 2 × 2 and stride of 2. While the training in ReBNet

performs batch normalization after the last fully-connected layer, our training

method cuts the batch normalization, since after this batch normalization,

there is no binarize activation function and it cannot be implemented as a

threshold subtraction. In fact, this batch normalization does not help the

model to get higher accuracy but has effects of speeding up the accuracy

improvement in the early training stages. As for inference by hardware,

the hardware implementation of ReBNet skips this batch normalization,

causing the accuracy to be undulated. Considering this problem, we use the

architectures without this batch normalization in both training and inference.

Before feeding the dataset to a neural network model, the images should be

preprocessed. The images of MNIST are monochrome, We change them to 2

colors: lower than 127.5 to black and upper than 127.5 to white. The images

of CIFAR-10 are in color. We do not change the color values, but randomly

apply shift, horizontal flip to them for Data Augmentation. For SVHN, the

images contain numbers. We only apply random shift.

34

(a) MNIST

(b) CIFAR-10

35

(c) SVHN

Figure 4.6: Learning Curves

The accuracy of a neural network is dependent on architecture and

training epochs. We fix the training epochs to 200 for all of the small datasets.

During model training, we evaluate the accuracy of the test dataset after each

epoch and show it as learning curves in Figure.4.6.

The average accuracy of M = 3 is higher than M = 2 in the CIFAR-

10 and SVNH dataset, but there is no significant advance in the MNIST

dataset. M = 2 is enough to get high enough accuracy in MNIST. Table 4.2

summarizes the highest accuracy for each dataset in different residual-

binarize levels. The accuracy of FINN is quoted from the paper of ReBNet. It

is found that our method of isometric residual-binarization achieves accuracy

similar to ReBNet, and much higher than FINN, but there is still a gap with

the floating-point case.

36

Table 4.2: Accuracy Comparison of small datqasets

FP32 FINN M ReBNet This Work

MNIST 0.9822 0.9583
2 0.9799 0.9801

3 0.9799 0.9792

CIFAR-10 0.8903 0.801
2 0.8469 0.8501

3 0.8618 0.8616

SVHN 0.9765 0.949
2 0.9677 0.9654

3 0.969 0.9665

4.1.2 Large Dataset

Large Dataset, ImageNet, was trained on Arch3. As same as small datasets,

we also cut the output batch normalization to make the accuracy of hardware

implementation predictable. The preprocessing we used in the training of

ImageNet is a fast mode of preprocessing from inception [10] which is widely

used in training models for complex datasets. The training epochs are fixed

to 200, and Table 4.3 summarizes the highest accuracy for each method,

where residual-binarize levels are fixed to 2 in our design and ReBNet. Top-

1 means the rate of the class with the highest output value was equal to the

ground true, and sorting all output and getting the highest 5 classes, Top-5

accuracy means the rate of ground true in those 5 classes. Learning curves

are shown in Figure.4.7. Our design gets higher accuracy than ReBNet, but

compared with the floating-point case, the binarized method still gets much

lower accuracy.

Table 4.3: Accuracy Comparison of ImageNet

FP32 FINN ReBNet This Work

ImageNet
Top-1 0.5151 0.279 0.3771 0.3913

Top-5 0.7483 - 0.6194 0.6374

37

Figure 4.7: Learning Curves of ImageNet

4.2 Convert Models to Binary Weight

The format of output models of Keras is HDF5. They only can be loaded by

software neural network frameworks. The parameters in them are floating-

point numbers, and we need to convert them to binary values and calculate

the threshold for the binary batch normalization. Then, it is necessary to

generate binary weight files from them, and binary weight files can be loaded

by hardware. The process flow is shown in Figure 4.8.

Figure 4.8: Conversion of Weights

The ”Binary Converter” converts the weights of fully connected layers

and convolutional layers to binary values, and fixes the problem when γ in

batch normalization is negative by inverting the moving-average and weight

in that block. Then it calculates the threshold τ and α from γe integer scaled

parameters, and stores τ ·α and α with limited precision in HDF5 files, where

38

τ ·α has 24-bit precision with 8 bit fractional part and α has 24-bit precision

with 12 bit fractional part. The ”Binary HDF5” files can be loaded by Binary

Evaluator with ”mirror models” which have the same architectures as in

Figure 4.5, but Batch Normalization is implemented as threshold subtraction

and γe is integer number. The behavior of those mirror models is completely

the same as the hardware accelerator we proposed. Because limiting the

precision will slightly change the result of classification. we can use those

mirror models to evaluate the accuracy after binary conversion. Table 4.4

shows the accuracy change from Table 4.2. Some of them become higher but

some of them become lower. We will use these detailed classification results

to check if hardware accelerators run correctly.

Table 4.4: Accuracy changing

dataset M before after ∆

MNIST
2 0.9801 0.9803 0.0002

3 0.9792 0.9793 0.0001

CIFAR
2 0.8501 0.8497 -0.0004

3 0.8616 0.8632 0.0016

SVNH
2 0.9654 0.9645 -0.0009

3 0.9665 0.9670 0.0005

The ”Generator” builds binary weight files for hardware accelerators. We

modified an open-sourced generating script from the FINN framework to

generate the binary weight files we need. The ”Generator” splits neurons of

weights to PEs and synapses of weights to SIMD lanes. So the number of

neurons in the previous layer must be an integer multiple of SIMD width, and

the number of neurons in the current layer must be an integer multiple of PE

count. To relax this limitation, we make ”Generator” insert ”bubble data”,

and change threshold values to process correctly. However, it works well with

fully connected layers only at the present time. With this modification, we

can implement hardware accelerators with high flexibility of the degree of

parallelism.

39

4.3 Simulation

There are many types of simulation in hardware accelerator design: be-

havioral simulation, pre-synthesis simulation, post-synthesis simulation, pre-

implementation simulation, and post-implementation. But in HLS, only ”C

simulation” and ”C/RTL cosimulation” are required, where ”C simulation”

is a special type of simulation only in HLS project to test and verify the

correctness of the design, and ”C/RTL cosimulation” is composed of C

simulation with data port record and behavioral simulation. It is used to

make sure RTL codes generated by HLS have the same behavior as that

with C codes, and check timing, data path, etc.

In the simulation, we used binary weights generated through the conver-

sion process described in the previous section. Figure 4.9 shows the output

of simulation and mirror model Binary Evaluator, where the parameter of

MNIST(M=3) for Arch1 and parameter of CIFAR-10(M=3) for Arch2. The

output index larger than 10 will be ignored in the next stage of processing.

In the simulation of Arch1, the input image is ”3”, and the 4th output

(from 0 to 9) has the maximum value, so the classification result is 3.

However, the derailed result of Arch1 simulation is different from Binary

Evaluator because we insert bubble data to get 0.5× speed up. It results in

a bias valued 8 from the output of the Binary Evaluator.

In the simulation of Arch2, the input image is a deer, and the 5th output

has the maximum value. According to Figure 4.2, the 5th class is deer.

Therefore, the result is correct. Because we did not insert bubble data into

Arch2 simulation, the result is as same as Binary Evaluator.

Figure 4.10 is waveform from ”C/RTL cosimulation” of Arch2. We did

not initialize weight memory because it will make the waveform too large.

We input 10 images in this simulation. The waveform of single-bit signal

in the upper part is full signal of interFIFOs(active low), and we can see

that the interFIFO in the red frame is full after 1 image is processed. The

waveform of bus in the lower part is the value of accumulator in the first

PE in each MVTU. When the value is hold, it means that this MVTU

is in waiting state. In the blue frame, the waiting time becomes longer

obviously when processing the last 3 images. It makes the accelerator unable

to reach theoretical throughput. We should adjust FIFO depth to make the

accelerator close to theoretical throughput.

40

(a) Arch 1

(b) Arch 2

Figure 4.9: Simulation

41

F
ig

u
re

4.
10

:
W

av
ef

or
m

fr
om

”C
/R

T
L

co
si

m
u
la

ti
on

”

42

4.4 Implementation

We implement the hardware accelerator module for different FPGA devices,

where there is no Processing System, I/O constraints or AXI interconnect.

The ”repeat” argument that allows the hardware accelerator to process

multiple images in the pipeline is disabled, which makes it easy and clear

to analyze throughput and iteration. Enabling the ”repeat” parameter will

slightly increase the use of hardware resources to implement additional logic

to count data frames and calculate loop cycles.

4.4.1 Resource-limited Device

In this subsection, we try to find the possibly highest degree of parallelism

for M = 2 and M = 3 on the resource-limited device 7z020 for Arch1

and Arch2, and compare the frequency, throughput, and power efficiency.

According to FINN [20], we use Fold to describe the degree of parallelism,

where Fold means the number of iterations of an MVTU process for one

picture. Fold is determined by SIMD width and PE count. Larger SIMD

width makes synapse iteration smaller, and larger PE count makes neuron

iteration smaller. On the other hand, in ReBNet, Initiation Interval(II) of

PE is M , which takes Fold×M iterations to process one picture. The layer

with the largest Fold can be the bottleneck of the dataflow. Table 4.5 shows

the Fold, SIMD width and PE count configuration with which our design

and ReBNet can be implemented on 7z020 for each architecture.

As mentioned before, the MaxPooling in ReBNet runs out of Block

RAMs (or Distributed RAMs) in 7z020, and cannot be implemented in any

parallelism setting. Thus, we disabled the parallel processing in MaxPooling

for ReBNet on 7z020. However, this change does not become the bottleneck

in implementations on small devices.

Figure 4.11 shows the resource usages on each degree of parallelism and

Table 4.6 includes maximum frequency, power usage of chip, and maximum

throughout calculated via the maximum frequency according to FINN [20].

The maximum throughput can be calculated by frequency
MAX(Fold)·InitiationInterval . All of

the results are from reports of Vivado HLS or Vivado with a target frequency

of 200MHz.

Our design reaches much higher degrees of parallelism in resource-limited

device, 7z020, and each PE consumes fewer resources on average because of

43

Table 4.5: PE court, SIMD widht and Fold for 7z020

(a) Arch 1

Layer
ours ReBNet

PE SIMD Fold PE SIMD Fold

1 48 64 78 20 64 169

2 32 24 96 16 20 208

3 24 32 88 20 16 208

4 4 12 88 4 20 208

(b) Arch 2

Layer
ours ReBNet

PE SIMD Fold PE SIMD Fold

1 16 3 32400 8 3 64800

2 32 32 28224 16 32 56448

3 16 32 20736 8 32 41472

4 16 32 28800 8 32 57600

5 4 32 20736 2 32 41472

6 1 32 18432 1 16 36864

7 1 4 32768 1 2 65536

8 1 8 32768 1 4 65536

9 1 1 8192 1 1 8192

44

(a) Arch 1

(b) Arch 2

Figure 4.11: Normalized hardware utilization on 7z020

45

our efficient design and optimization. Since our design does not run out of the

DSP48, extra LUTs are not necessary to implement multipliers, which leads

to higher maximum frequency, especially compared with RebNet in Arch 2

when M = 3. Because of the higher degree of parallelism and partitioned

weights, our design uses more BRAMs in Arch 1. In contrast, in Arch 2, our

design uses fewer BRAMs as a result of optimization on the buffering method

in SWUs and MaxPooling, even though the design is implemented with two-

fold degree of parallelism. Our design achieves 8 times higher throughput

than ReBNet on average with 7z020.

Table 4.6: Frequency, throughput and power usage for 7z020

(a) Arch 1

This Work ReBNet

M 2 3 2 3

LUT 36172 39333 29097 44670

FF 48780 53584 31052 42613

DSP48 106 106 217 217

BRAM36 82 82 46.5 46.5

power(W) 1.353 1.529 1.052 1.994

freq(MHz) 145.31 143.74 106.85 99.52

thr.put(kFPS) 1513.61 1497.29 256.85 159.49

(b) Arch 2

This Work ReBNet

M 2 3 2 3

LUT 34261 40883 31727 41471

FF 43865 50875 50164 68509

DSP48 87 87 166 204

BRAM36 120 128.5 139 136.5

power(W) 1.41 1.473 1.188 1.61

freq(MHz) 134.28 129.03 136.44 53.70

thr.put(kFPS) 4.10 3.94 1.04 0.27

46

4.4.2 Maximum parallelism on 7z100

We implement the maximum degree of parallelism described in FINN on

7z100, and the settings are shown in Table 4.7. Large SIMD width is

considered to use less hardware resource than large PE count, but the

maximum SIMD width of FINN framework is 64 due to 64-bit AXI data bus

and no 128-bit integer type in ARM CPU environment and python numpy

module which is used to generate binary weight file.

Table 4.7: PE court, SIMD widht and Fold for 7z100

(a) Arch 1

Layer
Maximum

PE SIMD Fold

1 256 64 13

2 64 64 16

3 64 64 16

4 4 64 16

(b) Arch 2

Layer
Maximum

PE SIMD Fold

1 64 3 8100

2 64 64 7056

3 32 64 5184

4 32 64 7200

5 8 64 5184

6 2 64 4608

7 1 16 8192

8 1 32 8192

9 1 1 8192

Figure 4.12 shows the resource usages and Table 4.8 includes maximum

frequency, maximum throughout calculated via the maximum frequency, and

power usage of the chip, where a red results with frame are post-placement

results due to routing failure. All of the results are from reports of Vivado

47

HLS or Vivado with a target frequency of 200MHz.

In the usage of Arch2, our design uses more LUTs than ReBNet in both

M=2 and M=3. The reason for this situation is the advantages of our design

will become smaller with larger SIMD width since more LUTs are used for

adder trees. We will analyze this in the following sections. In the usage

of Arch1, ReBNet uses much more hardware resources because it does not

include a special MVTU for the first layer which inputs 1 level data and

outputs M levels data. And the PE count of the first layer is quite large to

make Fold to be minimum, which causes a large overhead for ReBNet.

48

(a) Arch 1 on 7z100

(b) Arch 2 on 7z100

Figure 4.12: Normalized hardware utilization on 7z100

In implementations on the large device, 7z100, Arch 1 of ReBNet with

M = 3 fails to complete Initial Routing due to high congestion. Instead,

we use post-placement utilization information, which is depicted with a red

frame in Figure 4.12. No frequency or throughput information is obtained

for this scenario. Although ReBNet does not exhaust DSP48s in 7z100, the

scenario with the highest usage of 99% requires 2,001 out of the total 2,020

DSP48s in 7z100. We can see that, as mentioned before, our design uses

around 1
M+2

DSP48s of ReBNet, and usage of the other components is also

49

lower. The throughput of our design is M times higher than ReBNet in each

residual-binarization level. In addition, the usages between resource types

are well balanced in our method and the power usage in our design is much

lower than ReBNet.

Table 4.8: Frequency, throughput and power usage for 7z100

(a) Arch 1

This Work ReBNet

M 2 3 2 3

LUT 141509 157939 187041 226320

FF 171064 199415 218616 284579

DSP48 385 385 1601 2001

BRAM36 136 158 156 156

power(W) 5.083 4.905 8.121 -

freq(MHz) 200.92 193.91 124.30 -

thr.put(kFPS) 12557.77 12119.45 3884.40 -

(b) Arch 2

This Work ReBNet

M 2 3 2 3

LUT 82126 104627 76562 102914

FF 102480 133779 107922 140622

DSP48 204 204 690 831

BRAM36 165.5 181 229.5 269.5

power(W) 2.912 3.88 3.493 4.247

freq(MHz) 200.24 202.10 200.44 201.01

thr.put(kFPS) 24.44 24.67 12.23 8.18

4.4.3 Implement Arch3 on vu095

We implemented Arch3 which is for ImageNet on vu095. Model of Arch3

contains 34,056,224 weights, and vu095 has a large amount of Block RAMs

so that all the weights can be stored on-chip. The PE count and SIMD width

settings are shown in Table 4.9, and the settings provide the minimum Fold

50

of the FINN framework. The loop cycle of SWU in the first layer is 379456,

which limited the minimum Fold.

Table 4.9: PE court, SIMD widht and Flod of Arch3

Layer PE SIMD Fold

1 16 33 206976

2 32 32 345600

3 8 32 345600

4 8 32 331776

5 4 32 248832

6 1 32 294912

7 2 32 262144

8 1 16 256000

We only implemented Arch3 with M = 2. The utilization is illustrated in

Figure 4.13 and the detailed results are shown in Table 4.10. Over 1000 Block

RAMs are used to store weights, and our design uses less than half of the

hardware resources than ReBNet overall except Block RAM. The throughput

is calculated by 379456(loop cycle of SWU in the first layer) instead of the

maximum Fold.

Figure 4.13: Normalized hardware utilization of Arch3

51

Table 4.10: Frequency, throughput and power usage of Arch3

This Work ReBNet

LUT 31938 73403

FF 31975 77785

DSP48 71 255

BRAM36 1148 1165

power(W) 2.872 4.144

freq(MHz) 162.1 155.84

thr.put(FPS) 427.19 205.34

4.5 Measurement on Development Kit

In this section, we run Arch1 and Arch2 on ZedBoard(Figure 4.14). ZedBoard

is a development kit based on Xilinx xc7z020clg484-1 with 512MB 32bit

DDR3 1066MHz SDRAM.

52

Figure 4.14: ZedBoard

To run the hardware accelerator, we need to add ZYNQ Processing

System, AXI Interconnect and Processor System Reset to our design so that

we can control it via ARM Cortex-A9 CPU in ZYNQ Processing System.

There are two types of buses that connect ZYNQ Processing System with

hardware accelerator, AXI 4 and AXI 4 Lite. AXI 4 Lite is for initializing

weight memory, setting base address, sending start command and getting

current state, and ARM CPU is the master device. AXI 4 is for feeding

the input images and receiving the classification results, and the hardware

accelerator is the master device, so the hardware accelerator can access the

DDR memory controller directly via AMBA Switches. We use the degree

of parallelism describe in Section 4.4.1, and to make the timing constraints

pass easily, we used a safe frequency of 100MHz during implementation.

53

F
ig

u
re

4.
15

:
P

ro
ce

ss
in

g
S
y
st

em

54

We wrote a simple control program running on ARM CPU to make

hardware accelerator run, get the running time, and check the result if it

is the same as Binary Evaluator. Since CIFAR-10 and SVNH share the

neural network architecture, we only packed the test datasets of MNIST

and CIFAR-10, and the ground true, and Binary Evaluator results of them.

MNIST and CIFAR-10 each have 10,000 images in the test dataset. The

ARM CPU will output log via uart during running. The log is shown in

Code 4.1.

Code 4.1: Log from ARM CPU

1 //Arch1 MNIST M=2

2 s t a r t !

3 Output took 9614.34 us .

4 done !

5 OK: 9803 Fa i l ed : 197 Same with SW: 10000

6

7 //Arch2 CIFAR−10 M=2

8 s t a r t !

9 Output took 3281570.75 us .

10 done !

11 OK: 8497 Fa i l ed : 1503 Same with SW: 10000

12

13 //Arch1 MNIST M=3

14 s t a r t !

15 Output took 9614.39 us .

16 done !

17 OK: 9793 Fa i l ed : 207 Same with SW: 10000

18

19 //Arch2 CIFAR−10 M=3

20 s t a r t !

21 Output took 3281570.69 us .

22 done !

23 OK: 8632 Fa i l ed : 1368 Same with SW: 10000

All of the scenarios got completely the same result with Binary Evaluator,

and the running time, throughput, theoretical achievement rate and power

usage are shown in Table 4.11. The power usage was measured by a

meter, and it is the power usage of the whole ZedBoard when the hardware

accelerator is running, while the idle power usage is 3.68W. To measure the

power usage of MNIST which only runs for about 9ms, we duplicated the

train dataset of MNIST 40 times, from 60,000 to 2400,000, and it took about

2.3 seconds to infer them.

55

Table 4.11: Hardware accelerators run on ZedBoard

M time(us) thr.put(FPS) achi.rate power(W)

Arch1 2 9614.34 1040113 99.85% 4.48

(MNIST) 3 9614.39 1040108 99.85% 4.80

Arch2 2 3281570.75 3047 99.85% 4.31

(CIFAR-10) 3 3281570.69 3047 99.85% 4.62

We compare this result with NVIDIA Tesla P100 PCIe 16 GB which

runs floating-point models with the same architectures in Figure 4.5. GPU

runs fast in batch mode, but the latency of batch mode is quite large, which

consists of time of inputting batch-size pictures plus the time of computing

a batch. In our hardware accelerator, the latency is nearly around the time

of inputting one picture multiplied by layer numbers. Table 4.12 shows the

throughput and power usage of Tesla P100 on each architecture. We warmed

up GPU before measuring the throughput and power usage was reported by

the NVIDIA driver with a sampling rate of 1ms. The power usage when idle

is about 25W, and we run each scenario twice after warming up, and the

result is the average value.

Table 4.12: NVIDIA Tesla P100

batch thr.put(FPS) power(W)

Arch1 100 84151 32.93

(MNIST) 1 1224 32.86

Arch2 100 17361 95.06

(CIFAR-10) 1 664 42.79

Arch3 100 1844 96.69

(ImageNet) 1 307 93.00

The high-end GPU in unbatch mode which has a low latency was slower

than low-cost FPGA, and the power usage is quite higher than FPGA.

56

4.6 Analysing on usage of MVTU

In Section 4.4.2, we found our design uses more hardware resources in Arch2

under the same Fold settings. We discuss it in this section. To find the

impact of SIMD width on the growth of utilization, we design a small

accelerator that only contains one MVTU, and there is only one PE in that

MVTU. The input synapses and output neurons are fixed to 1024, and these

parameters only take effects on loop cycles and the size of weight memory,

but we only measure the utilization of the MVTU, so it will not significantly

change results. Figure 4.16 shows the utilization of that MVTU implemented

with different SIMD Width, and the target device in use is 7z020.

57

(a) M = 2

(b) M = 3

Figure 4.16: Utilization of one MVTU with one PE

We can see that our designs use much fewer LUTs and Flip-Flops than

ReBNet per PE when the SIMD width is lower than 16, but when it is 32,

the advantages are reduced. When it is 64, our design uses almost the same

level of resource with ReBNet in M = 2 and significantly uses more LUTs in

M = 3. Since there are common parts for PEs such as I/O buffer and loop

counter in an MVTU, we implement 16 PEs in one MVTU to check if this

conclusion can be generalized, and the usage is shown in Figure 4.17. The

proportional relationship did not change from Figure 4.16.

58

Figure 4.17: Utilization of one MVTU contains 16 PEs

Since more Popcount modules are required in our design, and there are

shift-registers in Popcount that only can be implemented by SLICEM, this

may cause spending large area in some FPGAs which have less SLICEM.

4.7 Analysing on optimization of SWU

We described our optimization, Data Stream with Adaptive Bit Width, in

Section 3.4. This optimization directly affects the utilization of SWU. In

this section, we make a comparison of SWU with this optimization, SWU

without this optimization, and SWU in ReBNet. First, we implemented Fold

settings from Table 4.5(Arch2, This Work, M=2) onto 7z100, and the results

are shown in Table 4.13.

Table 4.13: Comparison on Data Stream Optimization

ReBNet without opt. with opt.

LUT 34324 33459 29265

FF 49586 50322 41155

DSP 318 87 87

BRAM 387 418 241

The scenario without optimization spends more Block RAMs and Flip-

59

Flops than ReBNet, and the usage of LUT is close to ReBNet. After

optimizing, our design uses much fewer hardware resources overall.

Then, we implemented SWU only to determine the effect of optimization

in detail as we did in Section 4.6. The kernel size is set to 3 × 3, and the

width and height of the input feature map are set to 64. These values only

affect loop cycles but not significantly change utilization. The number of

input feature map channels is 128 and 256. The utilization of SWU module

when M = 2 is shown in Table 4.14, where SIMD width only affects our

optimized design, and DSP48 will not be used in SWU module.

Table 4.14: Utilization of one SWU

(a) Channels = 128

SIMD ReBNet without opt. 64 32

LUT 518 519 322 433

FF 590 373 828 969

BRAM 16 16 2 2

(b) Channels = 256

SIMD ReBNet without opt. 64 32

LUT 820 787 440 513

FF 589 549 1033 946

BRAM 32 30 4 4

The require buffer capacity of SWU is

Channels× (KernelSize + 1)× FeaturemapWidth×M
= 128× 4× 64× 2 = 65536

(4.1)

when the number of channels is 128. The necessary amount of Block RAMs

is 2. It will be doubled when the number of channels is 256. From Table 4.14,

our optimized designs save up to 7
8

Block RAMs, and the capacity in use is

32Kbit for each Block RAM. It is very efficient.

60

Chapter 5

Conclusion and Future Work

5.1 Conclusion

This thesis described our method, isometric residual-binarization, and corre-

sponding hardware design. Thanks to our efficient design, other optimization

which makes accelerator M times faster can be applied. Less Initiation

Interval requires wider dataflow which causes overhead, and we showed our

method to resolve this problem. We also proposed a smaller encoder in PE

to save hardware recourse.

Our isometric residual-binarization obtains similar accuracy to the base-

line work, ReBNet, in small datasets, and a bit higher accuracy in ImageNet,

but the obtained accuracy is still lower than full-precision models. We

evaluated the accuracy change after binary conversion by a software ”Binary

Evaluator”.

Our hardware design reaches higher degree of parallelism in resource-

limited devices and gets higher through-put than ReBNet. In large device

7z100, our design gets much lower hardware resource usage in Arch1, but

similar level of hardware resource usage in Arch2. In both Arch1 and Arch2,

our designs only use about 1
M+2

DSP48s. This makes usages between resource

types are well balanced in our method. We also implemented Arch3 which

is for large dataset ImageNet on vu095.

Then we measured Arch1 and Arch2 on development kit, Zedboard. The

classification results were completely the same as the output of software

”Binary Evaluator” and the throughput on the development kit was close to

theoretical value where the achievement rate was up to 99.85%. Then we

compared it with floating-point device.

In addition, we analysed the impact of SIMD width on the growth of

hardware resource usage. When SIMD width is less than or equal to 32, our

design uses less hardware resource per PE than baseline work.

61

Finally, we analysed the effect of our optimizations which reduce the

hardware usage, especially on Block RAMs. our optimization makes SWU

in our design save up to 7
8

Block RAMs.

5.2 Future Work

In the future, we will try to improve the accuracy on ImageNet with more

efficient backbone, and implement it on FPGAs. In addition, we will try

to use our method in difficult tasks such as object detection and semantic

segmentation.

62

Bibliography

[1] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,

T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient

convolutional neural networks for mobile vision applications,” CoRR,

vol. abs/1704.04861, 2017. [Online]. Available: http://arxiv.org/abs/

1704.04861

[2] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely

efficient convolutional neural network for mobile devices,” CoRR, vol.

abs/1707.01083, 2017. [Online]. Available: http://arxiv.org/abs/1707.

01083

[3] M. Ghasemzadeh, M. Samragh, and F. Koushanfar, “Rebnet: Resid-

ual binarized neural network,” in 2018 IEEE 26th Annual Interna-

tional Symposium on Field-Programmable Custom Computing Machines

(FCCM), 2018, pp. 57–64.

[4] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-

dinov, “Dropout: A simple way to prevent neural networks from over-

fitting,” J. Mach. Learn. Res., vol. 15, no. 1, p. 1929–1958, Jan. 2014.

[5] Y. LeCun, C. Cortes, and C. Burges, “Mnist hand-

written digit database,” ATT Labs [Online]. Available:

http://yann.lecun.com/exdb/mnist, vol. 2, 2010.

[6] A. Krizhevsky, “Learning multiple layers of features from tiny images,”

Tech. Rep., 2009.

[7] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,

“Reading digits in natural images with unsupervised feature learning,”

2011.

[8] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,

Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and

63

http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1707.01083
http://arxiv.org/abs/1707.01083

L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,” In-

ternational Journal of Computer Vision (IJCV), vol. 115, no. 3, pp.

211–252, 2015.

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” CoRR, vol. abs/1512.03385, 2015. [Online]. Available:

http://arxiv.org/abs/1512.03385

[10] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov,

D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with

convolutions,” CoRR, vol. abs/1409.4842, 2014. [Online]. Available:

http://arxiv.org/abs/1409.4842

[11] M. Courbariaux and Y. Bengio, “Binarynet: Training deep

neural networks with weights and activations constrained to +1

or -1,” CoRR, vol. abs/1602.02830, 2016. [Online]. Available:

http://arxiv.org/abs/1602.02830

[12] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-

net: Imagenet classification using binary convolutional neural

networks,” CoRR, vol. abs/1603.05279, 2016. [Online]. Available:

http://arxiv.org/abs/1603.05279

[13] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. G. Howard, H. Adam,

and D. Kalenichenko, “Quantization and training of neural networks for

efficient integer-arithmetic-only inference,” CoRR, vol. abs/1712.05877,

2017. [Online]. Available: http://arxiv.org/abs/1712.05877

[14] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,

“Quantized neural networks: Training neural networks with low

precision weights and activations,” CoRR, vol. abs/1609.07061, 2016.

[Online]. Available: http://arxiv.org/abs/1609.07061

[15] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and

connections for efficient neural networks,” CoRR, vol. abs/1506.02626,

2015. [Online]. Available: http://arxiv.org/abs/1506.02626

[16] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf,

“Pruning filters for efficient convnets,” CoRR, vol. abs/1608.08710,

2016. [Online]. Available: http://arxiv.org/abs/1608.08710

64

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1602.02830
http://arxiv.org/abs/1603.05279
http://arxiv.org/abs/1712.05877
http://arxiv.org/abs/1609.07061
http://arxiv.org/abs/1506.02626
http://arxiv.org/abs/1608.08710

[17] Baoyuan Liu, Min Wang, H. Foroosh, M. Tappen, and M. Penksy,

“Sparse convolutional neural networks,” in 2015 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2015, pp. 806–814.

[18] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured

sparsity in deep neural networks,” in Advances in Neural Information

Processing Systems, D. Lee, M. Sugiyama, U. Luxburg, I. Guyon,

and R. Garnett, Eds., vol. 29. Curran Associates, Inc., 2016, pp.

2074–2082. [Online]. Available: https://proceedings.neurips.cc/paper/

2016/file/41bfd20a38bb1b0bec75acf0845530a7-Paper.pdf

[19] P. Micikevicius, S. Narang, J. Alben, G. F. Diamos, E. Elsen, D. Garćıa,

B. Ginsburg, M. Houston, O. Kuchaiev, G. Venkatesh, and H. Wu,

“Mixed precision training,” CoRR, vol. abs/1710.03740, 2017. [Online].

Available: http://arxiv.org/abs/1710.03740

[20] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong,

M. Jahre, and K. Vissers, “Finn: A framework for fast, scalable bina-

rized neural network inference,” in Proceedings of the 2017 ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays, ser.

FPGA ’17. ACM, 2017, pp. 65–74.

[21] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep

network training by reducing internal covariate shift,” CoRR, vol.

abs/1502.03167, 2015. [Online]. Available: http://arxiv.org/abs/1502.

03167

[22] D. Hubel and T. Wiesel, “Receptive fields, binocular interaction, and

functional architecture in the cat’s visual cortex,” Journal of Physiology,

vol. 160, pp. 106–154, 1962.

[23] K. Fukushima, “Neocognitron: A self-organizing neural network model

for a mechanism of pattern recognition unaffected by shift in position,”

Biological Cybernetics, vol. 36, pp. 193–202, 1980.

[24] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based

learning applied to document recognition,” Proceedings of the IEEE,

vol. 86, no. 11, pp. 2278–2324, 1998.

65

https://proceedings.neurips.cc/paper/2016/file/41bfd20a38bb1b0bec75acf0845530a7-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/41bfd20a38bb1b0bec75acf0845530a7-Paper.pdf
http://arxiv.org/abs/1710.03740
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167

[25] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification

with deep convolutional neural networks,” in Proceedings of the 25th

International Conference on Neural Information Processing Systems -

Volume 1, ser. NIPS’12. Red Hook, NY, USA: Curran Associates Inc.,

2012, p. 1097–1105.

[26] J. Weng, N. Ahuja, and T. S. Huang, “Cresceptron: a self-organizing

neural network which grows adaptively,” in International Joint Confer-

ence on Neural Networks (IJCNN), vol. 1. IEEE, 1992, pp. 576–581.

[27] F. Chollet et al., “Keras,” https://keras.io, 2015.

[28] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,

A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,

M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,

C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,

P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,

P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,

“TensorFlow: Large-scale machine learning on heterogeneous systems,”

2015, software available from tensorflow.org. [Online]. Available:

https://www.tensorflow.org/

[29] Xilinx, “Vivado design suite,” https://www.xilinx.com/products/

design-tools/vivado.html.

[30] D. P. Kingma and J. Ba, “Adam: A method for stochastic

optimization,” CoRR, vol. abs/1412.6980, 2014. [Online]. Available:

http://arxiv.org/abs/1412.6980

66

https://keras.io
https://www.tensorflow.org/
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
http://arxiv.org/abs/1412.6980

	Abstract
	Acknowledgment
	List of Abbreviations
	Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction
	1.1 Background
	1.2 Objective
	1.3 Outline

	Chapter 2 Related Works
	2.1 Convolutional Neural Networks
	2.1.1 Fully Connected Layers(Dense)
	2.1.2 Convolutional Layers(Conv)
	2.1.3 Pooling Layers
	2.1.4 Batch Normalization(BN)
	2.1.5 Activation Functions
	2.1.6 Dropout

	2.2 Binarized Neural Networks
	2.2.1 Binarization Activation
	2.2.2 Residual-Binarization Activation
	2.2.3 XNOR-based dot product
	2.2.4 Threshold-based Batch Normalization
	2.2.5 MaxPooling
	2.2.6 Hardware Accelerator Architecture

	Chapter 3 Improvement of ReBNet
	3.1 Isometric Residual-Binarization
	3.2 Integer scaling of binarize factor
	3.3 Processing Element
	3.4 Data Stream with Adaptive Bit Width

	Chapter 4 Experiments
	4.1 Training models
	4.1.1 Small Datasets
	4.1.2 Large Dataset

	4.2 Convert Models to Binary Weight
	4.3 Simulation
	4.4 Implementation
	4.4.1 Resource-limited Device
	4.4.2 Maximum parallelism on 7z100
	4.4.3 Implement Arch3 on vu095

	4.5 Measurement on Development Kit
	4.6 Analysing on usage of MVTU
	4.7 Analysing on optimization of SWU

	Chapter 5 Conclusion and Future Work
	5.1 Conclusion
	5.2 Future Work

	Bibliography

