| Title | Unsuper vi sed Wbrd Sense Di sanni guat i on based on <br> Wbr d Enbeddi ng and Col I ocat i on |
| :--- | :--- |
| Author（s） | 韓，尚壮 |
| Citation |  |
| Issue Date | Thesi s or Di ssert at i on |
| Type | aut hor |
| Text version | ht tp：／／hdl ．handl e．net／10119／17146 |
| URL | Super vi sor ：白井 清昭，先端科学技術研究科，修士 <br> （情報科学 $)$ |
| Rights |  |
| Description |  |

IAPAN
ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY

## Master's Thesis

Unsupervised Word Sense Disambiguation Based on Word Embedding and Collocation

Han Shangzhuang

Supervisor Kiyoaki Shirai

Graduate School of Advanced Science and Technology Japan Advanced Institute of Science and Technology (Information Science)

March, 2021


#### Abstract

Word Sense Disambiguation (WSD) is a long-standing problem in Natural Language Processing, which aims to determine a sense for a target word in a given context. WSD plays a important role in downstream tasks of NLP, such as Machine Translation, Named Entity Recognition (NER), and chatbot. Approaches for WSD can be grouped into two main categories: methods based on supervised machine learning (supervised methods) and knowledgebased methods (unsupervised methods). Supervised methods often train a classifier or neural network model from a sense tagged corpus. Although supervised methods tend to achieve good performance, sense tagged corpora are required for training. Obviously, they are hard to construct due to heavy manual annotation. Knowledge-based WSD methods rely on lexical resources rather than sense tagged corpora. A gloss, which defines a meaning of a word in a dictionary, is first utilized in Lesk algorithm. Given a word and its context, Lesk algorithm calculates a score of each sense by measuring the number of overlapped words in a gloss (definition) of a sense and in a context. Then, the sense with the highest score is chosen. A lot of studies follow it and propose its extended models. One of the advantages of knowledge-based WSD methods is that it can be developed with existing lexical knowledge or database. Since a sense tagged corpus is not required, it can be easily implemented with low costs. However, the performance of the WSD tends to be lower than supervised approaches.

Word embedding is abstract representation of words in a form of an $n$ dimensional vector. It can be pre-trained from a large amount of corpus, then can be used for solving various NLP tasks. With the development of word embedding, some researchers propose other methods to compute the text similarity using word embedding instead of calculating overlaps in Lesk algorithm. For example, Basile et al. propose an unsupervised WSD algorithm which extends the Lesk's WSD method. In Basile's method, the word similarity in the semantic space is regarded as gloss-context overlap. Three steps are required to determine a sense of a target word: (1) to construct a context vector $\vec{c},(2)$ to construct sense vectors $\overrightarrow{s_{i}}$, and (3) to calculate the cosine similarity of two vectors to choose the sense. The context vector is obtained by averaging vectors of all context words in a context. Pre-trained word embedding is used as word vectors $\overrightarrow{w_{k}}$. Similarly, the sense vector is constructed by averaging the word vectors in a gloss sentence. Finally, the sense whose vector is the most similar to the context vector is chosen.


The goal of this thesis is to propose a novel unsupervised WSD method. We extend the Basile's method in two directions. One is to incorporate a mechanism to determine a sense using a collocation. Rules to determine a sense, which are based on collocations, are automatically acquired from a raw corpus, then these rules are integrated to the Basile's WSD model. Two types of the collocation are considered in this study. The first one is a word collocation that is a sequence of words including the target word. The second collocation is a dependency collocation, which is defined as a pair of words under a certain syntactic dependency. In this study, we call the rule "collocation WSD rule". The other extension is that we investigate the better way to construct the context vector in the Basile's method. Our basic idea is to use not all words but only words that are highly related to the sense for the construction of the context vector. We defined an indicator called RelevantScore, which evaluates how a word is strongly related to a particular sense. In this study, RelevantScore is obtained by the cosine similarity of the word vector (word embedding) and the sense vector. Then, the new context vector is made by averaging word vectors of words with high RelevantScore. Hereafter, we call the WSD method considering RelevantScore the Highly Related Word Embedding method (HRWE).

In our method, we use the HRWE and some filtering methods to extract high-quality collocation WSD rules from a raw corpus in advance, and store them in a database. For an ambiguous word in an unlabeled sentence in a row corpus, the sense of it is determined by the HRWE. If the reliability of the chosen sense is high, candidates of the collocation WSD rules are obtained by applying the pre-defined templates. Finally, rules are filtered out if they consist of only function words, do not frequently occur, or are inaccurate for WSD.

In our proposed system, when performing WSD, the sense of a target word is determined by the collocation WSD rule if the collocation in the rule is found in the context of the target word. Otherwise, the HRWE is used to determine the sense of a target word. The several ideas to improve the WSD performance are newly introduced in it: to construct the context vector with only contextual words that are highly related to the sense (HRWE), to acquire and combine the collocation WSD rules, to use two types of collocation WSD rules (word collocation and dependency collocation), and so on. Several experiments are conducted to discuss the contribution of each component in our method through the comparison of different WSD models.

The dataset of Senseval-3 English lexical sample task is used in the experiment. In addition to the test dataset, we also need two external data, one is a lexical resource as a sense inventory, the other is a raw corpus for extraction of the collocation WSD rules. We use WordNet and Leipzig corpus
as our sense inventory and raw corpus respectively.
Comparing the precision of WSD on the dataset, the HRWE outperforms the baseline for nouns and verbs, but not for adjectives. However, the precision is improved by 3.2 point for all POSs. It indicates that our idea to select contextual words strongly associated with senses for construction of the context vector is effective. The system using only the collocation WSD rules tends to achieve the higher precision than other systems with low applicability, especially for nouns and adjectives. It is confirmed that we can obtain the disambiguation rules whose recall is low but precision is high as we aimed. The performance of the systems integrating the HRWE with the word or dependency collocation WSD rules is better than the HRWE only, which means the collocations can contribute to choose the appropriate sense. Our final system, the WSD system with the HRWE and both the word and dependency collocation WSD rules, achieves the best performance for nouns, verbs and all POSs. Its precision is 0.572 , which is 4.7 point better than the baseline.

## Contents

1 Introduction ..... 1
1.1 Research Background ..... 1
1.2 Problem Statement ..... 2
1.3 Research Goal ..... 2
1.4 Organization of this Thesis ..... 3
2 Related Work ..... 4
2.1 Word Sense Disambiguation ..... 4
2.1.1 Features for WSD ..... 5
2.1.2 Supervised WSD ..... 5
2.1.3 Unsupervised WSD ..... 7
2.2 Word Embedding ..... 8
2.3 Characteristics of this Study ..... 11
3 Proposed Method ..... 12
3.1 Overview of Method ..... 12
3.2 Highly Related Word Embedding Method ..... 12
3.2.1 Basile's Method ..... 13
3.2.2 Our Extension ..... 15
3.3 Collocation Based WSD ..... 17
3.3.1 Collocation WSD Rule ..... 17
3.3.2 Construction of Collocation WSD Rule ..... 19
3.3.3 Filtering Collocation WSD Rule ..... 21
3.3.4 Summary ..... 22
4 Evaluation ..... 24
4.1 Experimental Setting ..... 24
4.1.1 WordNet ..... 24
4.1.2 Data ..... 25
4.1.3 Evaluation criteria ..... 28
4.2 Preliminary experiment ..... 29
4.2.1 Comparison of word embedding models ..... 29
4.2.2 Evaluation of gloss expansion ..... 30
4.3 Results ..... 31
4.4 Evaluation of collocation WSD rules ..... 33
4.5 Discussion about context window size ..... 34
5 Conclusion ..... 37
5.1 Concluding Remark ..... 37
5.2 Future Work ..... 37
A Sense Inventory ..... 42

## List of Figures

2.1 Example of WSD by GlossBERT [8] ..... 6
2.2 Web-based variant of the Lesk algorithm [5] ..... 7
2.3 Excerpt of the WordNet graph where $\operatorname{drink}_{v}^{1}$ is centered [17] ..... 9
2.4 Skip-gram model [13] ..... 10
2.5 The input of BERT ..... 11
3.1 Overview of proposed WSD system ..... 13
3.2 Example of context vector and sense vector ..... 14
3.3 Relationship between synsets in WordNet ..... 15
3.4 Example of relevant word set ..... 17
3.5 Template of word collocation WSD rule ..... 18
3.6 Template of dependency collocation WSD rule ..... 18
3.7 Example of usage of collocation WSD rule ..... 19
3.8 Flowchart of acquisition of collocation WSD rule. ..... 19
3.9 Obtained rules from example sentence ..... 20
3.10 Dependency tree of example sentence ..... 21
3.11 Function word templates for filtering ..... 22
4.1 Example of Search on WordNet ..... 25
4.2 An example of test instance ..... 26
4.3 Example of acquired collocation WSD rule ..... 34
4.4 Precision of models with different context window sizes ..... 36

## List of Tables

4.1 Dataset of Senseval-3 English lexical sample task. ..... 26
4.2 List of target words ..... 26
4.3 Example of sense unification ..... 27
4.4 Average number of senses ..... 28
4.6 Comparison of word embedding. ..... 30
4.5 Probing task performance for each BERT layer [9] ..... 30
4.7 Evaluation of gloss expansion on Senseval-3 ..... 31
4.8 Comparison of Baseline and HRWE method ..... 31
4.9 Results of the system using the collocation WSD rule only ..... 32
4.10 Comparison of systems with or without collocation WSD rule ..... 32
4.11 Comparison of WSD methods ..... 33
4.12 Parameters for acquisition of collocation WSD rule ..... 33
4.13 Number of rules mined from raw corpus ..... 34
A. 1 Original and unified senses of verb (1) ..... 42
A. 2 Original and unified senses of verb (2) ..... 43
A. 3 Original and unified senses of verb (3) ..... 44
A. 4 Original and unified senses of verb (4) ..... 45
A. 5 Original and unified senses of verb (5) ..... 46
A. 6 Original and unified senses of verb (6) ..... 47
A. 7 Original and unified senses of noun (1) ..... 48
A. 8 Original and unified senses of noun (2) ..... 49
A. 9 Original and unified senses of noun (3) ..... 50
A. 10 Original and unified senses of noun (4) ..... 51
A. 11 Original and unified senses of noun (5) ..... 52
A. 12 Original and unified senses of adjective (1) ..... 52
A. 13 Original and unified senses of adjective (2) ..... 53
A. 14 Original and unified senses of adjective (3) ..... 54

## Chapter 1

## Introduction

### 1.1 Research Background

Word Sense Disambiguation (WSD) is a fundamental task and long-standing challenge in Natural Language Processing (NLP), which aims to determine a sense of an ambiguous word in a particular context [16]. WSD plays a important role in downstream tasks of NLP, such as Machine Translation, Named Entity Recognition (NER), and chat-bot. The WSD approaches can be grouped into two main categories: methods based on supervised machine learning (supervised methods) and knowledge-based methods (unsupervised methods).

Supervised methods often train a classifier or neural network model from a sense tagged corpus. SemCor corpus [15] is one of the sense tagged corpora often used in the research area of WSD. In the early days, Support Vector Machine (SVM) was often used for WSD. In recent years, Bidirectional Encoder Representations from Transformers (BERT) [4] has often achieved the state-of-the-art performance in many NLP tasks. As we will discuss in Subsection 2.2, BERT was also applied for WSD. Although these supervised methods tend to achieve good performance, sense tagged corpora are required for training. Obviously, they are hard to construct due to heavy manual annotation.

Knowledge-based WSD methods rely on lexical resources like a dictionary or WordNet [14] rather than sense tagged corpora. A gloss, which defines a meaning of a word in a dictionary, is first utilized in Lesk algorithm [11]. Given a word and its context, Lesk algorithm calculates a score of each sense by measuring the number of overlapped words in a gloss (definition) of a sense of a target word and that of words in a context. Then, the sense with the highest score is chosen. A lot of studies follow it and propose its ex-
tended models. In addition to methods using gloss sentences, a graph-based WSD method is also investigated. In this approach, graph nodes correspond to word senses, whereas edges represent dependencies between senses (e.g. synonymy and antonymy). Sense disambiguation process is done by finding the most "important" node in the graph. One of the advantages of knowledge-based WSD methods is that it can be developed with existing lexical knowledge or database. Since a sense tagged corpus is not required, it can be easily implemented with low costs. However, the performance of the WSD tends to be lower than supervised approaches.

Although the supervised and knowledge-based WSD have different characteristics, both are worth to be investigated. This thesis focuses on the knowledge-based WSD using a dictionary as lexical knowledge.

### 1.2 Problem Statement

In the dictionary-based WSD methods based on Lesk algorithm and its variants, we think there are two major problems.

First, it only relies on words in a context of a target word. However, it is well-known that a collocation is another useful feature for WSD. Collocation is a series of words or terms that frequently co-occur more than expected by chance. Words in a collocation usually have a special and fixed meaning. For example, the collocation "hot spring" indicates that the sense of "spring" is FOUNTAIN, not SEASON. Therefore, it is a major problem that the collocation is not considered in the dictionary-based WSD.

Second, there is much room to improve the way how to measure the similarity between a gloss and a context. In recent study, both a gloss and a context are represented by vectors, then similarity between two vectors, e.g. cosine similarity, is calculated. In the construction of the vector of the context, all words in the context are often taken into account. However, not all words are related to a sense of a target word. Some words may be not related to the sense and even give bad influence to WSD. Generally, in the algorithm based on a similarity between sentence pairs, high-quality vector representation is essential.

### 1.3 Research Goal

The objective of this research is to develop a stable and high-precision WSD system using unsupervised method based on word embedding and collocation feature. The word embedding is a vector of a word, which represents an
abstract meaning of the word. It is used to make a vector of a gloss and a context in this study. To achieve this goal, we set the following two sub-goals.

1. While past studies only consider words in a context for WSD, our method also takes collocations into account to determine a sense of a given word. In addition to the ordinary collocation (adjacent words that often appear together), we also define a dependency collocation, which is a syntactic dependency relation between a target word and another word in a sentence.
2. We also propose a better way how to make a context vector. Our method only considers words that are highly related to the sense when the context vector is built using the word embedding.

The effectiveness of collocation features and the new context vector construction method will be empirically evaluated via several experiments.

### 1.4 Organization of this Thesis

The rest of the thesis is organized as follows. Chapter 2 introduces related work and clarifies characteristics of this study. Chapter 3 describes the details of our proposed method, including a refined method to build a context vector and a procedure to extract high quality WSD rules using collocations from a raw corpus. Chapter 4 reports several experiments to evaluate our method. Finally, Chapter 5 concludes this thesis.

## Chapter 2

## Related Work

This chapter introduces previous studies that are related to our study. Section 2.1 presents the Word Sense Disambiguation task and related work for it. Section 2.2 introduces three kinds of word embeddings. Finally, Section 2.3 discusses the characteristics of our method.

### 2.1 Word Sense Disambiguation

In many natural languages, a meaning of a word is ambiguous. It means that words can be interpreted as different meanings (senses) depending on contexts. Here are examples:
(a) The spring was broken. $\quad \rightarrow$ a metal elastic device
(b) Spring is the best season of the year. $\rightarrow$ the season of growth

Obviously, the word "spring" has different senses in these two sentences as indicated in right of the arrow. Humans can easily distinguish these differences, however, it is difficult for a computer to determine a correct sense. Recognizing a correct sense of a word in a context with computational method is called Word Sense Disambiguation (WSD). Actually, WSD is considered an AI-complete problem [12], which means computers can solve these problems when they are as smart as humans. Researchers have made a lot of attempts in this field. At present, there are mainly two types of methods to solve this task: one is based on supervised learning, the other is based on knowledge resources. Both types of methods rely on several high-quality features. Commonly used features for WSD are firstly introduced in Subsection 2.1.1. Then, the previous work of the supervised and knowledge-based WSD methods are introduced in Subsection 2.1.2 and 2.1.3, respectively.

### 2.1.1 Features for WSD

There are three commonly used features in WSD. The first one is words in the surroundings of the target word. It is a bag of disordered words, which can determine the topic of the context. Since words that appear in the similar context tend to have the same meaning, it is considered an effective feature. The second feature is Part-of-speech (POS). The POS tags of the neighboring words are widely used. POS of an ambiguous word itself is also an effective feature, since a word has different senses under different POSs. The third feature is local collocations, which represent another standard feature that captures the ordered sequence of words which tend to appear around the target word [2].

### 2.1.2 Supervised WSD

Training a machine learning classifier or neural network model is a common way to solve WSD problem. It is called supervised WSD, since it is based on the supervised machine learning using the labeled data (i.e. a sense tagged corpus in the case of WSD). Le and Shimazu propose a method based on Naive Bayes [10]. A context of an ambiguous word is represented as a feature vector $\vec{F}=\left(f_{1}, f_{2}, \ldots, f_{n}\right)^{T}$ and the senses of the ambiguous word is represented as $\left(s_{1}, s_{2}, \ldots, s_{k}\right)$. Choosing the correct sense is finding the sense $s_{i}$ that maximizes the conditional probability $P\left(s_{i} \mid \vec{F}\right)$ as shown in Equation (2.1).

$$
\begin{equation*}
s^{\prime}=\arg \max _{s_{i}} P\left(s_{i} \mid \vec{F}\right) \tag{2.1}
\end{equation*}
$$

SVM is another machine learning algorithm that is widely used in WSD. The SVM finds a hyperplane with the greatest margin separating the training samples into two classes in a space of feature vectors of the samples. The instances in the same side of the hyperplane have the same class label. The features of test instances decide which side of the hyperplane the instance is located. Although SVM is a binary classification algorithm, it can be extended to tackle multi-class problems. Guo et al. try to utilize SVM algorithm to WSD [6]. Their system consists of two parts, feature extraction and classification. In the first step, four features (surrounding words, POS, collocation and syntactic relation) are extracted from instances. In the second step, an SVM classifier is trained from a set of feature vectors extracted in the first step.

Neural network model can be regarded as another type of a classifier. It has extraordinary feature extraction capabilities, although a number of
parameters is quit huge. Correspondingly, the neural network model requires a lot of annotated data to ensure the quality of the model. A solution to this problem is a pre-trained language model. From a huge amounts of texts, characteristics of a language are learnt to a certain extent in advance. Then the pre-trained language model is applied to downstream tasks with a few labeled data. It can achieve good results even without a lot of labeled data.

BERT [4] is a popular language model in recent years because it has achieved the state-of-the-art performance in many NLP tasks, such as question answering and language inference. Since the training process of BERT is based on two unsupervised tasks, Masked Language Model and Next Sentence Prediction, BERT can identify the relation between two sentences. Based on this idea, Huang et al. propose the GlossBERT, which constructs context-gloss pairs from all possible senses of the target word in WordNet, then treats the WSD task as a sentence-pair classification problem [8]. Figure 2.1 shows how the GlossBERT works. In this example, the target word is

| Sentence with four targets: |  |  |
| :---: | :---: | :---: |
| Your research stopped when a convenient assertion could be made. |  |  |
| Context-Gloss Pairs of the target word [research] | Label | Sense Key |
| [CLS ] Your research ... [SEP ] systematic investigation to ... [SEP ] | Yes | research\%1:04:00:: |
| [CLS ] Your research ... [SEP ] a search for knowledge [SEP ] | No | research\%1:09:00:: |
| [CLS ] Your research ... [SEP ] inquire into [SEP ] | No | research\%2:31:00:: |
| [CLS ] Your research ... [SEP ] attempt to find out in a ... [SEP ] | No | research\%2:32:00:: |
| Context-Gloss Pairs with weak supervision of the target word [research] | Label | Sense Key |
| [CLS ] Your "research" ... [SEP] research: systematic investigation to ... [SEP ] | Yes | research\%1:04:00:: |
| [CLS ] Your "research"... [SEP] research: a search for knowledge [SEP ] | No | research\%1:09:00:: |
| [CLS] Your "research" ... [SEP ] research: inquire into [SEP ] | No | research\%2:31:00:: |
| [CLS ] Your "research"... [SEP ] research: attempt to find out in a ... [SEP ] | No | research\%2:32:00:: |

Figure 2.1: Example of WSD by GlossBERT [8]
"research" and the context is "Your research stopped when ..." at the top in the table. For each target word, $N$ possible sense glosses are extracted from WordNet. In this case, four senses of "research" are obtained. Then, a pair of the context sentence and the gloss sentence of each sense forms "ContextGloss" pair with special tokens [CLS] and [SEP]. In BERT, [CLS] is used to get abstract representation of two sentences, while [SEP] is a separator of two sentences. Next, the label "Yes" is assigned to the correct sense and "No" to the other senses. This data is used as the training data for fine-tuning of the BERT. When testing, the system outputs the probability of label $=$ yes of each "Context-Gloss" pair and choose the sense with the highest probability as the correct label of the target word.

### 2.1.3 Unsupervised WSD

The unsupervised WSD can be used in practice because it does not require annotated data. Unsupervised WSD methods often rely on lexical resources like a dictionary or WordNet [14]. The former is based on textual similarity, while the latter is based on a graph.

Lesk proposes a method which can determine the sense of target word using only the context and the gloss [11]. As already introduced in Section 1.1, Lesk algorithm calculates a score of each sense by measuring the number of overlapped words in a gloss (definition) of a sense of a target word and that of words in a context. Then, the sense with the highest score is chosen. A lot of studies follow it and propose its extended models.

Gaona et al. propose a variant algorithm of the Lesk approach, which is based on the hypothesis that the gloss of a sense and the context are highly related [5]. It measures the relationship of them by calculating the frequencies of co-occurrence words between the gloss and the context using Web. Figure 2.2 shows the pseudo code of this method. They use a query to a search engine to get a hit number of a set of words, called "web frequency". " d " means a set of words in a gloss and example sentences of a sense, "c" means a set of words in a context, and "dc" means a set of words in either " d " or "c". The weight means the probability of seeing the gloss of a sense in the given context. The sense which maximizes the weight is regarded as the answer.

```
For each word w to be tagged
    For each sense s of w
        g = gloss of sense s (bag of words)
        e = example of sense s (bag of words)
        d = g}\cup
        dc}=d\cup
        fg}= web frequency of d
        f
        weight(s) = ffgc
s = argmax weight (s)
```

Figure 2.2: Web-based variant of the Lesk algorithm [5]

With the development of word embedding, some researchers began to use other methods to compute the text similarity instead of calculating overlaps of words. For example, Basile et al. propose an unsupervised WSD algorithm which extends the Lesk's WSD method [1]. The most important
contribution of this research is a distributional semantic space is introduced to Lesk algorithm. The word similarity in the semantic space is regarded as gloss-context overlap. The semantic space is geometrical space of words where vectors express concepts of words, and proximity in the space is used to measure semantic relatedness between two words or two sentences. The semantic space is formed by word embedding pre-trained from a large amount of texts. For a given target word and its context, a context vector and gloss vector are constructed, then the similarity between them is calculated to determine the correct sense of the target word in the context. The details of Basile's algorithm will be introduced in Subsection 2.2. Actually, the idea of semantic spaces is inspired by the distributional hypothesis that was put forward very early [7]. The hypothesis supposes that words are semantically similar if they share contexts (surrounding words).

In addition to text similarity based methods, a graph-based WSD method is also investigated [17]. It consists of two stages. First, building a graph from a lexical resource representing all possible interpretations (senses) of the target word. In the graph, nodes correspond to senses, whereas edges represent relationship between senses (e.g., synonymy and antonotmy). Second, the graph structure is assessed to calculate the significance (or importance) of each node. WSD is performed by finding the most "significant" node for each word. Figure 2.3 shows an excerpt of the WordNet graph where $d r i n k_{v}^{1}$ is centered. In this graph, the node of $d r i n k_{v}^{1}$, the first sense of the verb "drink", is shown in black with dark gray background, and its adjacent nodes (senses) are in black. Senses which are not directly connected to $d r i n k k_{v}^{1}$ but reachable through other edges are shown in light gray. Two senses are connected if a relation is defined in WordNet. The correct sense is selected by ranking each vertex in the graph according its significance.

### 2.2 Word Embedding

Word embedding is abstract representation of words in a form of an $n$ dimensional vector. It can be pre-trained form a large amount of corpus, then can be used for solving various NLP tasks. Since word embedding plays an important role in our proposed WSD method, the overview of it is introduced in this section. Skip-gram [13] and Glove [18] are two typical models of training word embeddings.

Figure 2.4 shows the structure of the Skip-gram. The model is a simple feed-forward neural network that contains one input layer, one hidden layer (projection) and one output layer. $w(t)$ is a target word and $w(t-2), w(t-$ $1), w(t+1), w(t+2)$ are context words of the target word. $t$ stands for


Figure 2.3: Excerpt of the WordNet graph where $\operatorname{drink}_{v}^{1}$ is centered [17]
a position of a word. The objective of Skip-gram model is to maximize the probability of appearance of surrounding words when the target word is given. During training, an input word $w(t)$ is represented as a one-hot vector. This vector has N dimensions ( N is the size of the vocabulary). A value of the vector is set to 1 at the position corresponding to the word $w(t)$, and 0 at all of the other positions. Hidden layer is a $N * M$ matrix ( M is the specified word vector dimension). The output of the network is also a N-dimensional vector, that represents surrounding words. This neural network can be trained from a raw corpus that is a collection of a target word (input) and its surrounding words (output). After the training, word embedding (M-dimensional vector of a word) is obtained from the signals of the hidden layer.

We can see that this training procedure only takes into account the local information of the text. Glove overcomes this shortcoming. It leverages statistical information by training only on the non-zero elements in a wordword co-occurrence matrix, rather than on individual context windows in a large corpus.

Both Skip-gram and Glove can only generate a vector for a word, not a sense. That is, word embedding cannot distinguish different senses of a word. Only one vector is obtained for one word even when it has two or more senses.

Different from the previous two methods, language models trained based on Deep Neural Network Models can generate contextually dependent word vectors. BERT is one of the such language models. Its architecture is a multi-layer bidirectional Transformer encoder. Figure 2.5 shows an input of BERT. It is composed of three type of embeddings. "Token Embeddings" are


Figure 2.4: Skip-gram model [13]
the vector representations of words, which are similar to word embeddings. "Segment Embeddings" are vector representations to help BERT distinguish between paired input sequences. BERT can classify either a single sentence (e.g. polarity classification) or a pair of sentences (e.g. textual entailment). The segment embeddings works in the latter case. "Position Embeddings" lets BERT know that the inputs have a temporal property as the input is often regarded as a time sequence.


Figure 2.5: The input of BERT
The training of the BERT consists of two steps. The first step is pretraining of a language model. It is performed on a large corpus by conducting two novel unsupervised prediction tasks, the masked language model task and next sentence prediction task. The second step is fine-tuning of the model. The parameters of BERT are updated on a relatively small amount of annotated data for a downstream task. It is known that a pre-trained BERT can produce appropriate embedding of a sentence or a word. As Skipgram and Glove, word embedding of the pre-trained BERT can also be used for WSD. Note that the fine-tuning requires a labeled data, but pre-training can be done using unlabeled data. Thus a system using pre-trained BERT is also an unsupervised WSD model.

### 2.3 Characteristics of this Study

Our method is unsupervised and text similarity based method, which is an improved version of Basile's method. This paper extends the Basile's method in two directions. One is to incorporate a mechanism to determine a sense using a collocation. Rules to determine a sense, which are based on collocations, are automatically acquired from a raw corpus, then these rules are integrated to the Basile's WSD model. The other is to propose a better way to construct the context vector, which can ignore noisy words in the context.

## Chapter 3

## Proposed Method

### 3.1 Overview of Method

Figure 3.1 shows an overview of the proposed system. It accepts a sentence including a target word as an input and chooses a sense of it as an output.

Our system consists of two modules: one is a rule based WSD system, the other is WSD system based on Highly Related Word Embedding. Hereafter, the latter is denoted as "HRWE method" in short. The first module uses the database of collocation WSD rules, which determine the sense by a collocation (word sequence). Briefly, these rules determine the sense by a collocation as collocation $\rightarrow$ sense. If a rule is hit for a collocation in a given sentence, the sense is chosen by the rule, otherwise the next module is applied. The second module is similar to the Basile's method [1]. It measures the similarity between gloss sentences in a dictionary and a context of a target word in a given sentence, then choose the sense whose gloss is the most similar to the context of the target word. Since the rule-based module is designed to achieve high precision in compensation for low recall, it is applied first.

In the following sections, the HRWE method will be introduced first, since it is also used to construct the sets of the collocation WSD rules. Then, the rule based WSD system is described, especially how to acquire WSD rules automatically.

### 3.2 Highly Related Word Embedding Method

Our algorithm is extended based on the Basile's method. In the next subsection, we introduce the Basile's method, and in the Subsection 3.2.2, we introduce the proposed method.


Figure 3.1: Overview of proposed WSD system

### 3.2.1 Basile's Method

In Basile's method [1], three steps are required to determine a sense of a target word: (1) to construct a context vector $\vec{c}$, (2) to construct sense vectors $\overrightarrow{s_{i}}$, and (3) to calculate the cosine similarity of two vectors to choose the sense. The context vector is obtained by averaging vectors of all context words in a context as Equation (3.1),

$$
\begin{equation*}
\vec{c}=\frac{1}{|W|} \sum_{w_{k} \in W} \overrightarrow{w_{k}} \tag{3.1}
\end{equation*}
$$

where $W$ stands for a set of words in the context. Pre-trained word embedding is used as word vectors $\vec{w}_{k}$. Similarly, the sense vector is constructed by averaging the word vectors in a gloss sentence as Equation (3.2).

$$
\begin{equation*}
\overrightarrow{s_{i}}=\frac{1}{\left|G_{i}\right|} \sum_{w_{k} \in G_{i}} \overrightarrow{w_{k}} \tag{3.2}
\end{equation*}
$$

$G_{i}$ is a set of words in a gloss sentence of the $i$-th sense.
Finally, as show in Equation (3.3), the sense whose vector is the most similar to the context vector is chosen.

$$
\begin{equation*}
s=\underset{s_{i}}{\arg \max } \cos \left(\vec{c}, \overrightarrow{s_{i}}\right) \tag{3.3}
\end{equation*}
$$

An important parameter in this method is the context window size, $C W S$. When constructing the context vector, the most nearest $C W S$ words appearing before and after the target word are taken into account. Note that function words are ignored. That is, a content word is used to make a context vector if it is one of the most closest $C W S$ content words, even when the distance between it and a target word is greater than $C W S$. On the other hand, $C W S$ is not considered in the construction of the sense vector. That is, all words in a gloss is used. This is because that gloss sentences in WordNet, which is used as a dictionary in Basile's and our study, are rather short and concise.

Figure 3.2 shows examples of the context vector $\vec{c}$ and sense vector $\overrightarrow{s_{i}}$. Here we suppose the $C W S$ is 3 . In the context, the underlined word "bank" is the target word, and words in bold are the content words in the context window whose size is 3 . Then, $\vec{c}$ is obtained by the average of word embeddings of these words. Similarly, the sense vector of the first sense $\vec{s}$ is the average of word embeddings of the words in the gloss sentence Gloss. In this case, all contents words are taken into account.

Figure 3.2: Example of context vector and sense vector

> | Context: | The Consumer Federation claims $\underline{\text { banks are ripping }}$ |
| ---: | :--- |
|  | you off by not passing along savings on interest rates. |
| $\vec{c}:$ | $\frac{1}{6} *(\overrightarrow{\text { consumer }}+\overrightarrow{\text { federation }}+\overrightarrow{\text { claim }}+\overrightarrow{\text { rip }}+\overrightarrow{\text { pass }}+\overrightarrow{\text { along }})$ |
| Gloss $_{1}:$ | an arrangement of similar objects in a row |
| $\overrightarrow{s_{1}}:$ | $\frac{1}{4} *(\overrightarrow{\text { arrangement }}+\overrightarrow{\text { similar }}+\overrightarrow{\text { objects }}+\overrightarrow{\text { row }})$ |

As already explained, gloss sentences in WordNet are used in the Basile's study, but they are rather concise. To enrich sense vectors, Basile expanded the gloss using an API provided by BabelNet, which can extract all senses related to a particular sense. In this study, we expand the sense information with the gloss of the hypernyms, hyponyms and synonyms, and empirically evaluate its effectiveness in the experiment. Figure 3.3 shows an example of expansion of the gloss for a target word bank when it is a noun and its sense id is "bank.n.02". The sense definition in WordNet for "bank.n.02" is a financial
institution that accepts deposits and channels the money into lending activities. In addition to this sentence, the hypernyms (financial_institution.n.01) and hyponyms (acquirer.n.02, agent_bank.n.02, credit_union.n.01, and state_ bank.n.01) are obtained by the BabelNet API, then gloss sentences of these senses are used to construct the sense vector of "bank.n.02".


Figure 3.3: Relationship between synsets in WordNet

### 3.2.2 Our Extension

We investigate a better way to construct the context vector in Basile's method. Our basic idea is to use not all words but only words that are highly related to the sense for the construction of the context vector.

When constructing a text vector, averaging the word vector of each word under the unit window is a common method. An important issue is how to determine an appropriate window size, since there are pros and cons of a large or small window. When the window size is too small, it is likely that not enough information is obtained in the context vector. However, when the window size is too large, many unrelated words are added to the context vector. It may decrease the quality of it. Our Highly Related Word

Embedding method can ensure that words with close meanings to the target word are selected even in a large window size.

For each sense $s_{i}$, a different context vector, denoted as $c^{(\vec{i})}$, is made from contextual words relevant to $s_{i}$. First, for each word $w_{k}$ in a context, the relevance score in terms of the $i$-th sense is defined as Equation (3.4).

$$
\begin{equation*}
\text { RelevantScore }\left(w_{k}^{(i)}\right)=\cos \left(\overrightarrow{w_{k}}, \overrightarrow{s_{i}}\right) \tag{3.4}
\end{equation*}
$$

We assume that the word with high RelevantScore is strongly related to the particular sense, thus it is effective feature for WSD. The relevant word set, $W R^{(i)}$, is made by selecting the top $T_{r}$ words with the highest RelevantScore for each sense $s_{i}$. Then the new sense-dependent context vector is made by averaging word vectors of words in $W R^{(i)}$ as Equation (3.5).

$$
\begin{equation*}
c^{(\vec{i})}=\frac{1}{\left|W R^{(i)}\right|} \sum_{w_{k} \in W R^{(i)}} \overrightarrow{w_{k}} \tag{3.5}
\end{equation*}
$$

Finally, the sense is chosen following Equation (3.6).

$$
\begin{equation*}
s=\underset{s_{i}}{\arg \max } \cos \left(\vec{c}^{(i)}, \overrightarrow{s_{i}}\right) \tag{3.6}
\end{equation*}
$$

Note that the context vector is changed according to individual senses when the similarity between the context and sense is measured.

Figure 3.4 shows an example to obtain a relevant word set $W R^{(i)}$. In this example, the target word is "argument" that have four senses, and CWS and $T_{r}$ are set to 5 and 3, respectively. The bottom table shows the cosine similarity between the word vector of each word in a context and the sense vector of each sense. The values in bold indicate the three highest RelevantScore for each sense, and these words are chosen as the relevant word set, shown in the bottom of Figure 3.4.

Sentence:
While using those methods, values passed to those variables are called arguments.

Sense of argument:
$s_{1}$ a fact or assertion offered as evidence that something is true.
$s_{2}$ a reference or value that is passed to a function, procedure, subroutine, command, or program.
$s_{3}$ a summary of the subject or plot of a literary work or play or movie.
$s_{4}$ a contentious speech act; a dispute where there is strong disagreement.

Relevance score:

|  | method | value | pass | variable | call |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $s_{1}$ | $\mathbf{0 . 7}$ | 0.1 | $\mathbf{0 . 5}$ | $\mathbf{0 . 6}$ | 0.3 |
| $s_{2}$ | 0.5 | $\mathbf{0 . 5}$ | $\mathbf{0 . 8}$ | $\mathbf{0 . 9}$ | 0.4 |
| $s_{3}$ | 0.3 | $\mathbf{0 . 5}$ | 0.2 | $\mathbf{0 . 4}$ | $\mathbf{0 . 4}$ |
| $s_{4}$ | $\mathbf{0 . 5}$ | $\mathbf{0 . 8}$ | $\mathbf{0 . 6}$ | 0.3 | 0.4 |

$W R^{(1)}=\{$ method, pass, variable $\}$
$W R^{(2)}=\{$ value, pass, variable $\}$
$W R^{(3)}=\{$ value, variable, call $\}$
$W R^{(4)}=\{$ method, value, pass $\}$
Figure 3.4: Example of relevant word set

### 3.3 Collocation Based WSD

Unlike the HRWE method, this method determines the sense by only looking at a collocation, i.e. idiomatic phrase including a target word.

### 3.3.1 Collocation WSD Rule

Collocation WSD rule is defined in the following form:

$$
\begin{equation*}
\text { collocation } \rightarrow \text { sense }=s_{i} \tag{3.7}
\end{equation*}
$$

It means: when collocation appears in an input sentence, $s_{i}$ is chosen as the sense of the target word.

Two types of the collocation are considered in this study. The first one is a word collocation that is a sequence of words including the target word.

$$
\begin{array}{ccc}
w_{i-2} w_{i-1} \mathbf{~} \mathbf{~} & \rightarrow & \text { sense }=s_{i} \\
w_{i-1} \mathbf{w} & \rightarrow & \text { sense }=s_{i} \\
w_{i-1} \mathbf{w} w_{i+1} & \rightarrow & \text { sense }=s_{i} \\
\mathbf{w} w_{i+1} & \rightarrow & \text { sense }=s_{i} \\
\mathbf{w} w_{i+1} w_{i+2} & \rightarrow & \text { sense }=s_{i}
\end{array}
$$

Figure 3.5: Template of word collocation WSD rule

$$
\begin{array}{ccc}
\mathbf{w}-r e l-w_{c} & \rightarrow & \text { sense }=s_{i} \\
w_{c}-r e l-\mathbf{w} & \rightarrow & \text { sense }=s_{i}
\end{array}
$$

Figure 3.6: Template of dependency collocation WSD rule

Five types of word collocation rule are defined as in Figure 3.5. w stands for the target word, while $w_{i-2}, w_{i-1}, w_{i+1}$, and $w_{i+2}$ stand for words just before or after the target word. The suffix denotes a relative position of a word.

The second collocation is a dependency collocation, which is defined as a pair of words under a certain syntactic dependency. A syntactic dependency is a relation between two components in a sentence with one word being the governor and the other being the dependent of the relation ${ }^{1}$. Examples of the relation are "subject", "object", "modifier" and so on. Figure 3.6 shows the precise definition of the rule. $\mathbf{w}$ is the target word, while $w_{c}$ is a word in a context that is under the dependency relation rel with $\mathbf{w}$. It is well-known that a sense of a target word is strongly dependent to another word that has a dependency relation with the target word. That is the reason why the dependency collocation WSD rule is introduced in our system.

The use of the collocation WSD rule is quite simple. Figure 3.7 shows some usages of the collocation rules. In the example (a), the rule means that it chooses the sense $s_{1}$ when the target word "bank" appears in the collocation "bank robbery". When the context in (a) is given, the collocation in the rule is found or hit. Therefore, the rule determines the sense of the "bank" as $s_{1}$. Similarly, in the example (b), the sense of the target word "air" is chosen by simple matching of the collocation.

[^0]| (a) |  |
| :--- | :--- |
| collocation WSD rule: | bank robbery $\rightarrow$ sense $=s_{1}$ (Financial institutions) <br> context: |
| during a bank robbery if robber has taken the <br> bait money |  |
| chosen sense: | $s_{1}$ |$\quad$| (b) |  |
| :--- | :--- |
| collocation WSD rule: | earth's atmosphere $\rightarrow$ sense $=s_{2}$ (Air) |
| context: | the spacecraft disintegrated as it entered the <br> chosen sense: |

Figure 3.7: Example of usage of collocation WSD rule

### 3.3.2 Construction of Collocation WSD Rule

Collocation WSD rules are automatically acquired from a raw corpus. Figure 3.8 shows overall procedures.


Figure 3.8: Flowchart of acquisition of collocation WSD rule.
First, for each sentence in an unlabeled corpus, the HRWE method determines a sense of a target word. If the chosen sense is reliable enough, the
sentence is used to obtain candidates of collocation WSD rules. The reliability of the disambiguated sense $s_{i}$ is defined as the cosine similarity between the context vector and sense vector as shown in Equation (3.8).

$$
\begin{equation*}
\text { reliability }=\cos \left(c^{(\vec{i})}, \overrightarrow{s_{i}}\right) \tag{3.8}
\end{equation*}
$$

If it is less than the threshold $T_{w s d}$, the sentence is just ignored.
Next, candidates of collocation WSD rules are generated by applying rule templates shown in Figure 3.5 and 3.6. For example, from the sentence "they were always getting into arguments about politics", where the HRWE determines the sense of "argument" as $s_{1}$, the candidates of the rules in Figure 3.9 are obtained. The first five rules are word collocation WSD rules, while the rest are dependency collocation WSD rules, which are derived from the dependency tree shown in Figure 3.10. Stanford Parser ${ }^{2}$ is used to analyze dependency relations in this study.
[Sentence] they were always getting into arguments about politics

| getting into argument | $\rightarrow$ | sense $=s_{1}$ |
| :--- | :--- | :--- |
| into argument | $\rightarrow$ | sense $=s_{1}$ |
| into argument about | $\rightarrow$ | sense $=s_{1}$ |
| argument about | $\rightarrow$ | sense $=s_{1}$ |
| argument about politics | $\rightarrow$ | sense $=s_{1}$ |
| getting - obj - arugment | $\rightarrow$ | sense $=s_{1}$ |
| argument - case - into | $\rightarrow$ | sense $=s_{1}$ |
| argument - nmod - politics | $\rightarrow$ | sense $=s_{1}$ |

Figure 3.9: Obtained rules from example sentence

[^1]

Figure 3.10: Dependency tree of example sentence

### 3.3.3 Filtering Collocation WSD Rule

After obtaining the candidates of the collocation WSD rules, inaccurate ones are filtered out. We apply the following three filtering procedures.

## - Stop word

The collocation consisting of only the target word and function words may not strongly associate with any senses. For example, the following rules determine a sense of the target word "play" or "argument" by looking up the collocation "play a" or "the argument". However, any senses of the target word can be appeared in such the collocation.

$$
\begin{array}{ll}
\text { play a } & \rightarrow \text { sense }=s_{2} \\
\text { the argument } & \rightarrow \text { sense }=s_{1}
\end{array}
$$

Therefore, rules including collocations consisting of only function words (except for a target word) are discarded. We have prepared 28 function
word templates for this filtering. Figure 3.11 shows the list of them. In each template, w stands for a target word.

| a $\mathbf{w}$ | $\mathbf{w}$ a | an $\mathbf{w}$ | any $\mathbf{w}$ | at $\mathbf{w}$ | $\mathbf{w}$ at |
| :--- | :--- | :--- | :--- | :--- | :--- |
| be $\mathbf{w}$ | $\mathbf{w}$ be | $\mathbf{w}$ but | for $\mathbf{w}$ | $\mathbf{w}$ for | $\mathbf{w}$ he |
| $\mathbf{w}$ his | $\mathbf{w}$ i | i $\mathbf{w}$ | in $\mathbf{w}$ | $\mathbf{w}$ in | it $\mathbf{w}$ |
| $\mathbf{w}$ it | or $\mathbf{w}$ | $\mathbf{w}$ or | that $\mathbf{w}$ | $\mathbf{w}$ that | the $\mathbf{w}$ |
| $\mathbf{w}$ the | the $\mathbf{w}$ the | this $\mathbf{w}$ | $\mathbf{w}$ this | $\mathbf{w}$ would |  |

Figure 3.11: Function word templates for filtering

## - Infrequent collocation

If the frequency of a collocation in a corpus is small, a rule might be unreliable. Therefore, rules are removed if the number of the collocation is less than the threshold $T_{\text {fre }}$.

## - Reliability

Obviously, not all rules are effective to choose a correct sense. Several rules are even inconsistent when the same collocation determines different senses such as "col $\rightarrow$ sense $=s_{1}$ " and "col $\rightarrow$ sense $=s_{2}$ ". Therefore, the reliability score of the rule is defined as

$$
\begin{equation*}
\operatorname{score}\left(\mathrm{col} \rightarrow s_{i}\right)=\frac{f\left(\mathrm{col}, s_{i}\right)}{\sum_{i} f\left(\mathrm{col}, s_{i}\right)} \tag{3.9}
\end{equation*}
$$

, where $f\left(\mathrm{col}, s_{i}\right)$ is the frequency of sentences including the collocation col and the sense $s_{i}$. Basically, this score means the precision of WSD when the sense is determined by the rule. If $\operatorname{score}\left(\operatorname{col} \rightarrow s_{i}\right)$ is less than $T_{s c o}$, the rules are removed.

After applying these three filtering modules, the final set of collocation WSD rules is obtained.

The filtering process involves three parameters: $T_{\text {wsd }}$ (the reliability of WSD), $T_{\text {fre }}$ (the frequency of the collocation) and $T_{s c o}$ (the score of the rule). These parameters are empirically determined in our preliminary experiment. That is, the parameters are changed and the best ones are chosen by the evaluation of experimental results. $T_{\text {wsd }}$ and $T_{\text {sco }}$ are changed from 0.4 to 0.8 by a step of $0.05 . T_{\text {fre }}$ is changed from 2 to 6 by a step of 1 .

### 3.3.4 Summary

The characteristics of our proposed method can be summarized as follows.

## - Fully unsupervised WSD

Both the collocation WSD rule and the HRWE method are completely unsupervised methods. The implementation of this algorithm does not rely on any sense annotated corpora.

- Use of both collocation feature and contextual feature In the Basile's method, only contextual feature are used. On the other hand, in the method in this paper, both contextual feature and collocation feature are used. We believe that it is important to use different types of features for WSD to improve the performance.


## - Improvement of the context vector

The advanced approach to create the context vector is presented. It can filter out the information of noisy words from the context vector, causing the improvement of the quality of it.

## Chapter 4

## Evaluation

This chapter reports the experiments to evaluate our proposed method. Section 4.1 explains experimental setting, such as a dataset, evaluation criteria and so on. Section 4.2 reports preliminary experiments, that investigate the choice of the pre-training word embedding and the effectiveness of the gloss expansion. We present our experimental results in Section 4.3 to verify the effectiveness of our proposed method. Section 4.4 focuses on the experimental results of collocation WSD rules. Finally, Section 4.5 discusses influence of the context window size on WSD performance.

### 4.1 Experimental Setting

### 4.1.1 WordNet

As already explained, WordNet is used as a dictionary or a sense inventory in this study. WordNet is a commonly used lexical resource in NLP, which is a large lexical database of English. Nouns, verbs, adjectives and adverbs are grouped into sets of cognitive synonyms (synsets), each expressing a distinct concept. Synsets are interlinked by means of conceptual-semantic and lexical relations ${ }^{1}$. Figure 4.1 shows a user interface of WordNet on Web ${ }^{2}$. Each sense entry includes a synset (set of synonyms), definition of a sense, and short example sentences. In this figure, we search for the word "drink" in the user interface of WordNet, and the system returned 5 senses of a noun and 5 senses of a verb. The text in brackets is the definition or gloss of a sense. Italics represent an example sentence of a corresponding sense. The underlined words represent words that belong to the same synset.

[^2]Word to search for: drink

| Search WordNet |  |
| :--- | :--- |
| Display Options: (Select option to change) $\quad$ V | Change |
| Key: "S:" = Show Synset (semantic) relations, "W:" $=$ Show Word (lexical) relations |  |
| Display options for sense: (gloss) "an example sentence" |  |

## Noun

- S: (n) drink (a single serving of a beverage) "I asked for a hot drink"; "likes a drink before dinner"
- $\underline{\text { S: }}$ ( $n$ ) drink, drinking, boozing, drunkenness, crapulence (the act of drinking alcoholic beverages to excess) "drink was his downfall"
- S: ( $n$ ) beverage, drink, drinkable, potable (any liquid suitable for drinking) "may I take your beverage order?"
- S: ( n ) drink (any large deep body of water) "he jumped into the drink and had to be rescued"
- S: (n) swallow, drink, deglutition (the act of swallowing) "one swallow of the liquid was enough"; "he took a drink of his beer and smacked his lips"


## Verb

- S: (v) drink, imbibe (take in liquids) "The patient must drink several liters each day"; "The children like to drink soda"
 night"
- S: (v) toast, drink, pledge, salute, wassail (propose a toast to) "Let us toast the birthday girl!"; "Let's drink to the New Year"
- S: (v) drink in, drink (be fascinated or spell-bound by; pay close attention to) "The mother drinks in every word of her son on the stage"
- S: (v) drink, tope (drink excessive amounts of alcohol; be an alcoholic) "The husband drinks and beats his wife"

Figure 4.1: Example of Search on WordNet

### 4.1.2 Data

The dataset of Senseval-3 English lexical sample task is used to evaluate the performance of WSD of the proposed systems. It consists of instances (sentences or paragraphs including the target word) annotated with gold senses for several target verbs, nouns, and adjectives. The statistics of the dataset is shown in Table 4.1.

Table 4.2 shows all target words in the test data.

Table 4.1: Dataset of Senseval-3 English lexical sample task.

| POS | \# of words | ave.\# of instances |
| :---: | :---: | :---: |
| Verb | 27 | 53.1 |
| Noun | 17 | 78.5 |
| Adjective | 4 | 28.2 |
| Total | 48 | 59.8 |

Table 4.2: List of target words

| Verb | activate, add, appear, ask, begin, climb, eat, en- <br> counter, hear, lose, mean, miss, play, produce, pro- <br> vide, receive, remain, rule, smell, suspend, talk, treat, <br> use, wash, watch, win, write |
| :--- | :--- |
| Noun | argument, arm, bank, degree, difference, difficulty, <br> disc, image, interest, judgment, paper, party, perfor- <br> mance, plan, shelter, sort, source |
| Adjective | different, hot, important, solid |

Figure 4.2 shows an example of a test instance. In this instance, the target word is "activating" (activate) in bold. "Context" means a paragraph including the target word. A system is required to determine a sense of the target word in this given context. "Sense tag" means the gold sense (correct sense) of the target word.

As preprocessing, lemmatization is performed for the sentences in the context. It converts words in a conjugated form to a base form. We use NLTK (Natural Language Tool Kit) [3] as a lemmatizer.

```
Context
and continue to have an important role in activating laity for what
are judged to be religious goals both personally and socially.
Sense_tag
activate.v 38201
```

Figure 4.2: An example of test instance
In the Senseval-3 data, the senses are defined by WordNet [14]. As for the sense inventory, glosses in WordNet 1.7.1 are used for nouns and adjectives,
while definition sentences in Wordsmyth ${ }^{3}$ are used for verbs. Since the senses in WordNet are fine-grained and differences of some senses are too subtle, we define a set of coarse-grained senses by manually merging similar senses. Table 4.3 shows examples of original senses and merged senses. Since the sense "bank\%1:21:00" and "bank\%1:21:01" are very similar, they are merged. A new ID "bank-c" is used to represent the unified sense. Similarly, "banka" and "bank-b" indicate the coarse-grained senses made by unifying several senses. The column "Unified sense ID" is left blank when an original sense is not unified with others such as "bank\%1:04:00". The original and unified senses with their gloss sentences for all target words are reported in Appendix A.

Our WSD system is still developed to choose one of original (fine-grained) senses for a given target word, then the chosen sense is mapped to the corresponding unified (coarse-grained) sense. For example, when the system chooses either "bank\%1:21:00" or "bank\%1:21:01", it is converted to the new sense ID "bank-c". The performance of WSD is measured by comparing the predicted and gold coarse-grained senses.

Table 4.3: Example of sense unification

| Target word | Original sense ID | Unified sense ID | Gloss sentence |
| :---: | :---: | :---: | :---: |
| bank | bank\%1:04:00:: |  | a flight maneuver; aircraft tips laterally about its longitudinal axis (especially in turning) |
|  | bank\%1:06:00:: | bank-a | a building in which commercial banking is transacted |
|  | bank\%1:06:01:: | bank-a | a container (usually with a slot in the top) for keeping money at home |
|  | bank\%1:14:00:: | bank-a | a financial institution that accepts deposits and channels the money into lending activities |
|  | bank\%1:14:01: | bank-a | an arrangement of similar objects in a row or in tiers |
|  | $\begin{aligned} & \text { bank\%1:17:00:: } \\ & \text { bank\%1:17:01:: } \end{aligned}$ | bank-b bank-b | a long ridge or pile sloping land (especially the slope beside a body of water) |
|  | bank\%1:17:02:: | bank-b | a slope in the turn of a road or track; the outside is higher than the inside in order to reduce the effects of centrifugal force |
|  |  |  | a supply or stock held in reserve for future use (especially in emergencies) |
|  | bank\%1:21:01: | bank-c | the funds held by a gambling house or the dealer in some gambling games |

The average numbers of the senses per word in the original WordNet and

[^3]our coarse sense set are shown in Table 4.4.

Table 4.4: Average number of senses

| POS | WordNet | Our coarse sense |
| :---: | :---: | :---: |
| Verb | 6.78 | 4.07 |
| Noun | 5.71 | 3.65 |
| Adjective | 11.5 | 3.00 |

A large unlabeled corpus is required to mine the collocation WSD rules. We suppose that a news corpus might be better than an online corpus, since news sentences are written in a firm style and grammatically correct. On the other hand, there are a lot of grammatically incorrect sentences on Web. In this experiment, 200,000 English news sentences from the Leipzig corpus ${ }^{4}$ are used. Some preprocessing are performed on the corpus, such as lemmatization, and punctuation removal.

### 4.1.3 Evaluation criteria

Accuracy is a common evaluation criteria to evaluate WSD performance. It is defined a proportion of the correct judgement to the total number of a test data as shown in Equation (4.1). Precision is another criteria, which is defined as a proportion of the correct judgement to the cases where a WSD system can choose a (correct or incorrect) sense as in Equation (4.2).

$$
\begin{equation*}
\text { Accuracy }=\frac{\text { Number of data where a correct sense is chosen }}{\text { Number of all data }} \tag{4.1}
\end{equation*}
$$

$$
\begin{aligned}
& \text { Precision }= \\
& \frac{\text { Number of data that a system can determine a correct sense }}{\text { Number of data that a system can determine a sense }}
\end{aligned}
$$

If a WSD system can always choose a senese for a given target instances, the accuracy and precision are the same. Our proposed method and Basile's method are such WSD systems. However, we also evaluate a WSD system using only collocation WSD rules. It fails to determine a sense when no rule is hit for a given test data. The precision is an appropriate evaluation criteria for such a system. As a result, we choose the precision as a major evaluation criteria in this experiment.

[^4]
### 4.2 Preliminary experiment

Two preliminary experiments are conducted. The first one is to compare word embedding models to be used in our proposed model. The results will be reported in Subsection 4.2.1. The second one is to verify the effectiveness of the gloss expansion, which will be discussed in Subsection 4.2.2.

### 4.2.1 Comparison of word embedding models

To construct the context and sense vectors, three pre-trained word embeddings are used: word embedding pre-trained by the Skip-gram model from Google News corpus ${ }^{5}$, Glove $^{6}[18]$, and BERT $^{7}[4]$. Since word embedding in BERT is dynamic, i.e. sentence-dependent, we expect that it is good to produce abstract vector representation of a context and sense. In our method, word embedding is used to construct the context vector and the gloss vector. They are formed by averaging word vectors in a context or a gloss sentence. That is, words are treated as a bag-of-words, where an order of words in a sentence is ignored. Therefore, the Skip-gram and Glove can be straightforwardly used in our method. When using BERT, the situation is a slightly different. BERT accepts a sentence, i.e. ordered word sequence, as an input. In this study, a textual fragment containing a target word is treated as a sentence in creation of the context vector, while a gloss sentence is given to BERT in creation of the gloss vector. The pre-trained BERT produces vectors for each word in a given sentence, and these vectors are used to construct the context and gloss vectors. In this experiment, we use BERT-Base from the google research repository ${ }^{8}$.

Another issue on BERT is what layers should be used as word embedding. BERT are based on stacked transformers, multiple layers of transformers in other words. The BERT-Base model we use has 12 hidden layers. Each layer can produce word embedding. Therefore, there are several choices what layers to be used. Jawahar et al. discussed the difference between every layer for several NLP tasks [9]. Table 4.5 shows the performance of 10 NLP tasks when each of 12 BERT layer is used. Ten tasks are divided into three groups: surface task, syntactic task, and semantic task. Surface tasks are sentence length (SentLen) and the presence of words in the sentence (WC). Syntactic tasks are sensitivity to word order (BShift), the depth of the syntactic tree (TreeDepth) and the sequence of top-level constituents in the

[^5]Table 4.6: Comparison of word embedding.

| Type | Precision |  |  |
| :--- | :---: | :---: | :---: |
|  | Verb | Noun | Adjective |
| Skip-gram | $\mathbf{0 . 5 4 4}$ | $\mathbf{0 . 5 0 6}$ | $\mathbf{0 . 5 6 0}$ |
| Glove | 0.529 | 0.484 | 0.468 |
| BERT | 0.424 | 0.495 | 0.504 |

syntax tree (TopConst). Semantic tasks are the tense (Tense), the subject and direct object number in the main clause (SubjNum and ObjNum), the sensitivity to random replacement of a noun/verb (SOMO) and the random swapping of coordinated clausal conjuncts (CoordInv). The value within the parentheses corresponds to the difference in performance of fine-tuned vs. not fine-tuned (only pre-trained) BERT. The result shows deep hidden layers perform better on semantic tasks, while shallow hidden layers learn more syntactic information. Since WSD is a semantic-related task, the output of last layer is used in our research.

| Layer | SentLen (Surface) | wC <br> (Surface) | TreeDepth (Syntactic) | TopConst (Syntactic) | BShift <br> (Syntactic) | Tense <br> (Semantic) | SubjNum (Semantic) | ObjNum (Semantic) | SOMO <br> (Semantic) | CoordInv <br> (Semantic) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 93.9 (2.0) | 24.9 (24.8) | 35.9 (6.1) | 63.6 (9.0) | 50.3 (0.3) | 82.2 (18.4) | 77.6 (10.2) | 76.7 (26.3) | 49.9 (-0.1) | 53.9 (3.9) |
| 2 | 95.9 (3.4) | 65.0 (64.8) | 40.6 (11.3) | 71.3 (16.1) | 55.8 (5.8) | 85.9 (23.5) | 82.5 (15.3) | 80.6 (17.1) | 53.8 (4.4) | 58.5 (8.5) |
| 3 | 96.2 (3.9) | 66.5 (66.0) | 39.7 (10.4) | 71.5 (18.5) | 64.9 (14.9) | 86.6 (23.8) | 82.0 (14.6) | 80.3 (16.6) | 55.8 (5.9) | 59.3 (9.3) |
| 4 | 94.2 (2.3) | 69.8 (69.6) | 39.4 (10.8) | 71.3 (18.3) | 74.4 (24.5) | 87.6 (25.2) | 81.9 (15.0) | 81.4 (19.1) | 59.0 (8.5) | 58.1 (8.1) |
| 5 | 92.0 (0.5) | 69.2 (69.0) | 40.6 (11.8) | 81.3 (30.8) | 81.4 (31.4) | 89.5 (26.7) | 85.8 (19.4) | 81.2 (18.6) | 60.2 (10.3) | 64.1 (14.1) |
| 6 | 88.4 (-3.0) | 63.5 (63.4) | 41.3 (13.0) | 83.3 (36.6) | 82.9 (32.9) | 89.8 (27.6) | 88.1 (21.9) | 82.0 (20.1) | 60.7 (10.2) | 71.1 (21.2) |
| 7 | 83.7 (-7.7) | 56.9 (56.7) | 40.1 (12.0) | 84.1 (39.5) | 83.0 (32.9) | 89.9 (27.5) | 87.4 (22.2) | 82.2 (21.1) | 61.6 (11.7) | 74.8 (24.9) |
| 8 | 82.9 (-8.1) | 51.1 (51.0) | 39.2 (10.3) | 84.0 (39.5) | 83.9 (33.9) | 89.9 (27.6) | 87.5 (22.2) | 81.2 (19.7) | 62.1 (12.2) | 76.4 (26.4) |
| 9 | 80.1 (-11.1) | 47.9 (47.8) | 38.5 (10.8) | 83.1 (39.8) | 87.0 (37.1) | 90.0 (28.0) | 87.6 (22.9) | 81.8 (20.5) | 63.4 (13.4) | 78.7 (28.9) |
| 10 | 77.0 (-14.0) | 43.4 (43.2) | 38.1 (9.9) | 81.7 (39.8) | 86.7 (36.7) | 89.7 (27.6) | 87.1 (22.6) | 80.5 (19.9) | 63.3 (12.7) | 78.4 (28.1) |
| 11 | 73.9 (-17.0) | 42.8 (42.7) | 36.3 (7.9) | 80.3 (39.1) | 86.8 (36.8) | 89.9 (27.8) | 85.7 (21.9) | 78.9 (18.6) | 64.4 (14.5) | 77.6 (27.9) |
| 12 | 69.5 (-21.4) | 49.1 (49.0) | 34.7 (6.9) | 76.5 (37.2) | 86.4 (36.4) | 89.5 (27.7) | 84.0 (20.2) | 78.7 (18.4) | 65.2 (15.3) | 74.9 (25.4) |

Table 4.5: Probing task performance for each BERT layer [9]
Table 4.6 shows the average precision for disambiguation of the test data using the Basile's method with different word embedding models. Here the context window size $C W S$ is set to 10 . Although BERT can generate contextual embedding, it is found that the performance of the BERT is not the best. It indicates that pre-trained BERT model may not be appropriate for WSD. Since the result of this experiment indicates that the Skip-gram model is the best, only the Skip-gram model is used in our experiments.

### 4.2.2 Evaluation of gloss expansion

A preliminary experiment is carried out to confirm the effectiveness of the gloss expansion. As explained in Subsection 3.2.1, in Basile's method, not
only gloss sentences but also glosses of its related words (hypernym, hyponym, and synonym) are used to make a sense vector. Table 4.7 shows the precision of WSD for nouns to compare the original Basile's method with and without the gloss expansion. Although Basile et al. reported that gloss expansion was effective [1], it is not true in our experiment using Senseval3 dataset. Therefore, the gloss expansion is not performed in the rest of experiments.

Table 4.7: Evaluation of gloss expansion on Senseval-3

| Model | Precision |  |  |
| :--- | :---: | :---: | :---: |
|  | Noun | Verb | Adjective |
| w/o expansion | 0.505 | 0.542 | 0.560 |
| with expansion | 0.457 | 0.517 | 0.447 |

### 4.3 Results

The several ideas to improve the WSD performance are newly introduced in our proposed method: to construct the context vector with only contextual words that are highly related to the sense (HRWE), to acquire and combine the collocation WSD rules, to use two types of collocation WSD rules (word collocation and dependency collocation), and so on. In this section, the contribution of each component in our method is discussed through the comparison of different WSD models.

First, the HRWE method is evaluated. Table 4.8 reports the results of two WSD methods, the baseline that is equivalent to [1], and the WSD system using our proposed HRWE method only. Note that the collocation WSD rules are not used. The table shows the average precision for verbs, nouns, and adjective as well as the average precision of all POSs in the "All" column. The HRWE outperforms the baseline for nouns and verbs, but not for adjectives. However, the precision is improved by 3.2 point for all POSs. It indicates that our idea to select contextual words strongly associated with senses for the context embedding is effective.

Table 4.8: Comparison of Baseline and HRWE method

| Method | Precision |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
|  | Verb | Noun | Adj | All |
| Baseline | 0.542 | 0.506 | $\mathbf{0 . 5 6 0}$ | 0.525 |
| HRWE only | $\mathbf{0 . 5 8 3}$ | $\mathbf{0 . 5 3 4}$ | 0.511 | $\mathbf{0 . 5 5 7}$ |

Table 4.9 shows the precision and applicability of the system using the collocation WSD rules only. The applicability is a proportion of test instances that can be disambiguated by a WSD system (by the collocation WSD rules in this case). Equation (4.3) shows the definition of it.

$$
\begin{equation*}
\text { Applicability }=\frac{\text { Number of data that a system can determine a sense }}{\text { Number of all data }} \tag{4.3}
\end{equation*}
$$

The applicability of the rules is low, i.e. senses in many sentences cannot be determined. However, the rules tend to achieve the higher precision than the previous two systems, the baseline and HRWE only in Table 4.8, especially for nouns and adjectives. It is confirmed that we can obtain the disambiguation rules whose recall is low but precision is high as we aimed. Note that the applicability of all other WSD systems is 1 , that is, senses of all target instances are determined.

Table 4.9: Results of the system using the collocation WSD rule only

| Index | Verb | Noun | Adj | All |
| :---: | :---: | :---: | :---: | :---: |
| Precision | 0.573 | 0.631 | 0.625 | 0.591 |
| Applicability | $36.4 \%$ | $17.8 \%$ | $11.3 \%$ | $26.8 \%$ |

Table 4.10 shows the performance of the systems integrating the baseline or HRWE with the word or dependency collocation WSD rules. The use of two different WSD systems can increase the precision. Therefore, it is confirmed that both words in a context (considered in the baseline or HRWE) and collocations (considered in the rules) can contribute to choose the appropriate sense. Comparing 4 -th and 5 -th or 7 -th and 8 -th rows, the contribution of two types of collocation WSD rules (word vs. dependency) are almost equivalent.

Table 4.10: Comparison of systems with or without collocation WSD rule

| Method | Precision |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
|  | Verb | Noun | Adj | All |
| Baseline | 0.542 | 0.506 | $\mathbf{0 . 5 6 0}$ | 0.525 |
| Baseline + word collocation | 0.553 | 0.516 | 0.553 | 0.536 |
| Baseline + dep. collocation | 0.547 | 0.510 | 0.546 | 0.530 |
| HRWE only | 0.583 | 0.534 | 0.511 | 0.557 |
| HRWE + word collocation | 0.588 | $\mathbf{0 . 5 4 5}$ | 0.511 | $\mathbf{0 . 5 6 5}$ |
| HRWE + dep. collocation | $\mathbf{0 . 5 8 9}$ | 0.540 | 0.525 | 0.564 |

Finally, Table 4.11 shows the precision of three WSD systems: Baseline, HRWE only, and the HRWE and both word and dependency collocation WSD rules. The last one is our final system. It achieves the best performance for nouns, verbs and all POSs as indicated in bold. Its precision is 0.572 , which is 4.7 point better than the baseline.

It is found that our HRWE and collocation WSD rules poorly perform for the disambiguation of adjectives. However, the number of target adjectives in the test data is rather small, i.e. only 4 . We will evaluate our proposed method for more adjectives and investigate how our system can improve sense disambiguation of adjectives in future.

Table 4.11: Comparison of WSD methods

| Method | Precision |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
|  | Verb | Noun | Adj | All |
| Baseline | 0.542 | 0.506 | $\mathbf{0 . 5 6 0}$ | 0.525 |
| HRWE only | 0.583 | 0.534 | 0.511 | 0.557 |
| HRWE + word \& dep. collocation | $\mathbf{0 . 5 9 4}$ | $\mathbf{0 . 5 5 2}$ | 0.525 | $\mathbf{0 . 5 7 2}$ |

### 4.4 Evaluation of collocation WSD rules

The details of the acquisition of the collocation WSD rules are reported in this subsection.

Recall that there are three thresholds for rule acquisition: $T_{w s d}$ (the reliability of WSD), $T_{\text {fre }}$ (the frequency of the collocation), and $T_{\text {sco }}$ (the score of the rule). As described in Subsection 3.3.3, these parameters are empirically determined for individual POSs by trial and error in test data. Table 4.12 shows the chosen values of three parameters for individual POSs.

Table 4.12: Parameters for acquisition of collocation WSD rule

|  | $T_{\text {wsd }}$ | $T_{f r e}$ | $T_{s c o}$ |
| :--- | :---: | :---: | :---: |
| Verb | 0.75 | 4 | 0.7 |
| Noun | 0.7 | 5 | 0.7 |
| Adjective | 0.7 | 4 | 0.7 |

Table 4.13 shows the number of candidates of rules and rules after the filtering. Around five hundred word collocation WSD rules and nine hundred dependency collocation WSD rules are finally obtained. It is found that most of the candidates are inaccurate and discarded by our filtering methods.

Table 4.13: Number of rules mined from raw corpus

|  | candidates | after filtering |
| :---: | :---: | :---: |
| word collocation rule | 132,300 | 528 |
| dependency collocation rule | 120,170 | 379 |

Many rules are intuitively right to choose the correct sense. Figure 4.3 shows the examples of acquired rules.

```
bank robber }->\mathrm{ sense=}=\mp@subsup{s}{3}{}\mathrm{ (financial institute)
running arguments }->\mathrm{ sense }=\mp@subsup{s}{2}{}\mathrm{ (parameter)
talk - advmod - speechify }->\mathrm{ sense = s
refute - obj- argument }->\mathrm{ sense = s1(assertion)
```

Figure 4.3: Example of acquired collocation WSD rule

For example, the first rule shows the meaning of "bank" in the collocation "bank robber" is "financial institue". The second rule shows the meaning of "arguments" in collocation "running arguments" is "parameter". The third and fourth are dependency collocations, which including a dependency relationship between words. The third rule indicates that when "speechify" modifies the verb "talk", the sense of "talk" is $s_{1}$ (speech). The fourth rule indicates that when "argument" is an object of the verb "refute", its meaning is $s_{1}$ (assertion). ${ }^{9}$

In addition to improvement of the precision, another minor advantage of incorporating collocation based WSD method is to shorten the computational time of disambiguation process. Since the collocation WSD rules can be retrieved and stored beforehand, the sense can be determined by simple pattern matching in a test phase. Although no experiment is conducted to compare the processing time of our method and the baseline method, we believe that our method is faster because a part of instances in the test data can be determined by the rules instead of heavy calculation of the context and sense vectors. Empirical comparison of computational costs remains to be carried out in future work.

### 4.5 Discussion about context window size

Next, influence of the context window size $C W S$ on the WSD performance is investigated. $C W S$ is changed to 5,8 , and 10 in the baseline and HRWE

[^6]method, then the WSD precision of these models are compared. Note that collocation WSD rules are not used in this experiment. Figure 4.4 (a) and (b) show the results for verb and noun, respectively. ${ }^{10}$ The precision of our HRWE method is improved when $C W S$ is increased, while that of the baseline is declined for both verbs and nouns. In the baseline method, when more context words are added to the context vector, words irrelevant to the correct sense are also added more. It results in spoiling the quality of the context vector. On the other hand, in the HRWE, not all but fixed number of highly related words are used to make the context vector. When the context window size is increased, words that are far from a target word but effective for WSD can be taken into account.

[^7](a) Verb

(b) Noun


Figure 4.4: Precision of models with different context window sizes

## Chapter 5

## Conclusion

### 5.1 Concluding Remark

This paper proposed the novel unsupervised WSD system consisting of two methods. The first method was the method to determine the sense by looking up the collocation that strongly indicated the sense of the target word. Two types of the collocation WSD rules were acquired from a raw corpus, one is word collocation and the other is dependency collocation. The second method was the HRWE method that measured the similarity between the context and the gloss sentences, where noisy words were ignored in the construction of the context vector. The experimental results on Senseval-3 English lexical sample task dataset showed that our proposed method outperformed the previous work [1] by 4.7 point.

The contribution of the paper was summarized as follows. First, the collocation was newly integrated as another useful feature into the existing word embedding based method, which only considered words in the context. Ensemble of collocation based and word embedding based methods was effective to improve the precision of WSD. Another contribution was to refine how to make the context vector, where only highly related words were chosen to get better representation of the context.

### 5.2 Future Work

Due to the complexity of the task, WSD field has many directions worth exploring in the future. In our plan, more sophisticated methods to make the context and sense vectors will be explored. For example, it is worth investigating a method to use Sentence BERT [19] to obtain the vector representation of the sentences. We will explore the reason of the contextual
word embeddings generated by Deep Neural Networks (i.e. BERT) do not perform as well as traditional word embeddings like Skip-gram model on our method. Next, there is much room to improve the quality of collocation WSD rules. We need to explore more filtering methods to choose really good rules from candidates. In the experiment, we found that the collocation WSD rules of some target words are very effective but some are poor. It indicates that there exists two kinds of words: one is a word whose senses can be often determined by the collocation, the other is a word whose senses are independent to the collocation. If two types of the target words can be automatically distinguished and the WSD system based on the collocation WSD rules is used only for the former type, the overall performance of WSD will be improved. Another important line is to combine other unsupervised methods such as graph based ones with our HRWE method and collocation WSD rules. In addition, we need to assess why the gloss expansion was ineffective in our experiment.

## Bibliography

[1] Pierpaolo Basile, Annalina Caputo, and Giovanni Semeraro. An enhanced Lesk word sense disambiguation algorithm through a distributional semantic model. In Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers, pages 1591-1600, 2014.
[2] CE Bazell. Studies in linguistic analysis. special volume of the philological society, vii, 205 pp., 5 plates. oxford: Basil blackwell, 1957. 70s. Bulletin of the School of Oriental and African Studies, 22(1):182-184, 1959.
[3] Steven Bird, Ewan Klein, and Edward Loper. Natural language processing with Python: analyzing text with the natural language toolkit. "O'Reilly Media, Inc.", 2009.
[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.
[5] Miguel Ángel Ríos Gaona, Alexander Gelbukh, and Sivaji Bandyopadhyay. Web-based variant of the lesk approach to word sense disambiguation. In 2009 Eighth Mexican International Conference on Artificial Intelligence, pages 103-107, 2009.
[6] Yuhang Guo, Wanxiang Che, Yuxuan Hu, Wei Zhang, and Ting Liu. Hit-ir-wsd: A wsd system for english lexical sample task. In Proceedings of the Fourth International Workshop on Semantic Evaluations (SemEval-2007), pages 165-168, 2007.
[7] Zellig Harris. Mathematical structures of language. Interscience tracts in pure and applied mathematics, 1968.
[8] Luyao Huang, Chi Sun, Xipeng Qiu, and Xuanjing Huang. GlossBERT: BERT for word sense disambiguation with gloss knowledge. arXiv preprint arXiv:1908.07245, 2019.
[9] Ganesh Jawahar, Benoît Sagot, and Djamé Seddah. What does bert learn about the structure of language? In Proceedings of the 57 th Annual Meeting of the Association for Computational Linguistics, page 3651-3657, 2019.
[10] Cuong Anh Le and Akira Shimazu. High wsd accuracy using naive bayesian classifier with rich features. In Proceedings of the 18th Pacific Asia Conference on Language, Information and Computation, pages 105-114, 2004.
[11] Michael Lesk. Automatic sense disambiguation using machine readable dictionaries: how to tell a pine cone from an ice cream cone. In Proceedings of the 5th annual international conference on Systems documentation, pages 24-26, 1986.
[12] John C Mallery. Thinking about foreign policy: Finding an appropriate role for artificially intelligent computers. In Master's thesis, MIT Political Science Department, 1988.
[13] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems, 26:3111-3119, 2013.
[14] George A Miller. WordNet: a lexical database for english. Communications of the ACM, 38(11):39-41, 1995.
[15] George A Miller, Claudia Leacock, Randee Tengi, and Ross T Bunker. A semantic concordance. In HUMAN LANGUAGE TECHNOLOGY: Proceedings of a Workshop Held at Plainsboro, New Jersey, March 2124, 1993, 1993.
[16] Roberto Navigli. Word sense disambiguation: A survey. ACM computing surveys (CSUR), 41(2):1-69, 2009.
[17] Roberto Navigli and Mirella Lapata. An experimental study of graph connectivity for unsupervised word sense disambiguation. IEEE transactions on pattern analysis and machine intelligence, 32(4):678-692, 2009.
[18] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pages 1532-1543, 2014.
[19] Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence embeddings using siamese BERT-networks. arXiv preprint arXiv:1908.10084, 2019.

## Appendix A

## Sense Inventory

The following tables show the sense inventory of the target words used in the experiment. Each table shows the original senses and the unified senses (coarse-grained senses defined by us) in the same format of Table 4.3. Table A.1-A.6, Table A.7-A.11, and Table A.12-A. 14 show the senses of the verbs, nouns, and adjective, respectively. Note that the formats of the original sense ID are different for verbs (numerical ID such as "38201") and nouns/adjectives (ID such as "argument\%1:09:00"), since the former is excerpted from Wordsmyth and the latter is excerpted from WordNet.

Table A.1: Original and unified senses of verb (1)

| Target word | Original sense ID | Unified sense ID | Gloss sentence |
| :---: | :---: | :---: | :---: |
| activate | 38201 |  | to initiate action in; make active |
|  | 38202 |  | in chemistry, to make more reactive, as by heating |
|  | 38203 |  | to assign (a military unit) to active status |
|  | 38204 |  | in physics, to cause radioactive properties in (a substance) |
|  | 38205 |  | to cause decomposition in (sewage) by aerating |
| add | 42601 |  | to combine (something) with something else, often to increase the amount or number of the latter |
|  | $\begin{aligned} & 42602 \\ & 42605 \end{aligned}$ | $\begin{aligned} & \text { add-a } \\ & \text { add-a } \end{aligned}$ | to find the total of (often fol. by up) to make the correct total or expected result (fol. by up) |
|  | 42603 |  | to say or write beyond what has been said or written |
|  | 42604 |  | to perform the mathematical operation of addition |
|  | 42606 |  | to increase (fol. by to) |

Table A.2: Original and unified senses of verb (2)

| Target word | Original sense ID | Unified sense ID | Gloss sentence |
| :---: | :---: | :---: | :---: |
| appear | 190901 |  | to come into view; become visible |
|  | 190902 |  | to seem |
|  | 190903 |  | to come before the public, as a book or performer |
| ask | $\begin{aligned} & 238101 \\ & 238105 \end{aligned}$ | ask-a <br> ask-a | to put a question to to question; inquire |
|  | $\begin{aligned} & \hline 238102 \\ & 238104 \\ & 238106 \end{aligned}$ | ask-b ask-b ask-b | to request of to invite to request or seek (usu. fol. by for) |
|  | 238103 |  | to demand or expect |
| begin | 369201 |  | to perform the first step in a process; start |
|  | 369202 |  | to come into being |
|  | 369203 |  | to perform the first step of (something); start |
|  | 369204 |  | to cause to come into being |
| climb | $\begin{aligned} & 770001 \\ & 770002 \\ & 770005 \end{aligned}$ |  | to move upward; go towards the top; ascend to slope upward to go up; ascend |
|  | 770003 |  | to twist around and up a tall support |
|  | 770004 |  | to strive to become more important, wealthier, or more successful, or to become so |
| eat | $\begin{aligned} & 1297001 \\ & 1297006 \end{aligned}$ | $\begin{aligned} & \text { eat-a } \\ & \text { eat-a } \end{aligned}$ | to consume (food) through the mouth to partake of food |
|  | $\begin{aligned} & 1297002 \\ & 1297007 \end{aligned}$ | $\begin{aligned} & \text { eat-b } \\ & \text { eat-b } \end{aligned}$ | to destroy through wearing away; corrode to corrode |
|  | 1297003 |  | to ravage or consume in the manner of eating |
|  | 1297004 |  | to bother or disturb |
|  | 1297005 |  | (informal) to bear the cost of |
| encounter | $\begin{aligned} & 1353101 \\ & 1353103 \end{aligned}$ | encounter-a <br> encounter-a | to meet or come upon, esp. suddenly or by chance <br> to meet with, or come up against, esp. unexpectedly |
|  | 1353102 |  | to meet or confront in battle or conflict |
|  | 1353104 |  | to meet, esp. in conflict or unexpectedly |
| hear | $\begin{aligned} & \hline 1892101 \\ & 1892103 \\ & 1892105 \\ & \hline \end{aligned}$ | hear-a <br> hear-a <br> hear-a | to perceive with the ears <br> to listen to carefully <br> to have the ability to perceive sound |
|  | $\begin{aligned} & \hline 1892102 \\ & 1892104 \\ & 1892106 \\ & 1892107 \end{aligned}$ | hear-b <br> hear-b <br> hear-b <br> hear-b | to be informed about; learn to give formal audience to, esp. in a court of law to receive information or greetings from another to listen with agreement or consent (usu. fol. by of) |

Table A.3: Original and unified senses of verb (3)

| Target word | Original sense ID | Unified sense ID | Gloss sentence |
| :---: | :---: | :---: | :---: |
| lose | $\begin{aligned} & \hline 2439901 \\ & 2439902 \\ & 2439904 \\ & 2439905 \end{aligned}$ | lose-a <br> lose-a <br> lose-a <br> lose-a | to no longer possess; be unable to find; misplace to fail to keep possession of to fail to maintain; be unable to keep to suffer the loss of through death |
|  | $\begin{aligned} & \hline 2439903 \\ & 2439906 \\ & 2439908 \end{aligned}$ | lose-b <br> lose-b <br> lose-b | to fail to win <br> to fail to use or take advantage of; waste to experience defeat or loss |
|  | 2439907 |  | to go astray from |
|  | 2439909 |  | to diminish the effectiveness in a particular way |
| mean | $\begin{aligned} & 2555501 \\ & 2555502 \\ & 2555507 \end{aligned}$ |  | to have as a goal or purpose; intend to intend to denote or express to have intentions or be disposed |
|  | 2555503 |  | of words, to signify |
|  | $\begin{aligned} & \hline 2555504 \\ & 2555505 \\ & 2555506 \end{aligned}$ | mean-b <br> mean-b <br> mean-b | to intend for a particular purpose or end to cause as a result to have a specified degree of significance or importance |
| miss | $\begin{aligned} & \hline 2644301 \\ & 2644302 \\ & 2644303 \\ & 2644307 \end{aligned}$ | miss-a miss-a <br> miss-a <br> miss-a | to fail to hit, catch, reach, cross, or in any way touch or contact (a particular object) <br> to fail to see, hear, understand, or otherwise acknowledge <br> to fail to perform, attend, or otherwise experience to fail to hit, catch, or otherwise touch something such as a target, ball, or other object |
|  | 2644304 |  | to fail to achieve or attain |
|  | 2644305 |  | to avoid, escape, or evade |
|  | 2644306 |  | to feel sad or lonely in the absence of |
|  | 2644308 |  | to fail; not succeed |
| play | 3165210 |  | to act the part of in a drama |
|  | 3165211 |  | to act (a role) in real life |
|  | 3165212 |  | to perform in (a place or places) |
|  | $\begin{aligned} & 3165213 \\ & 3165217 \\ & 3165218 \end{aligned}$ | play-a <br> play-a <br> play-a | to take part in (a game or contest) to engage in recreation; have fun to engage in a sport or game |
|  | $\begin{aligned} & 3165214 \\ & 3165220 \end{aligned}$ | $\begin{aligned} & \text { play-b } \\ & \text { play-b } \end{aligned}$ | to make music with (an instrument) to make music with an instrument |
|  | 3165215 |  | to manipulate for one's advantage (usu. fol. by off) |
|  | 3165216 |  | to control (a hooked fish) |
|  | 3165219 |  | to behave in a specified way |
|  | 3165221 |  | to make a toy of another; use another without due regard for his or her feelings |

Table A.4: Original and unified senses of verb (4)

| Target word | Original sense ID | Unified sense ID | Gloss sentence |
| :---: | :---: | :---: | :---: |
| produce | $\begin{aligned} & 3288301 \\ & 3288306 \end{aligned}$ | produce-a produce-a | to bring into being; yield <br> to cause, create, or yield results, esp. the usual or expected results |
|  | $\begin{aligned} & 3288302 \\ & 3288305 \end{aligned}$ | produce-b <br> produce-b | to manufacture <br> to organize and present (a film, play, concert, or the like) for public entertainment |
|  | 3288303 |  | to give birth to |
|  | 3288304 |  | to bring forward into view or notice; present |
| provide | $\begin{aligned} & \hline 3313901 \\ & 3313906 \\ & \hline \end{aligned}$ | provide-a provide-a | to supply; furnish to make an arrangement, agreement, or condition |
|  | $\begin{aligned} & 3313902 \\ & 3313905 \end{aligned}$ | provide-b provide-b | to make available for use; afford to supply necessities such as money (often fol. by for) |
|  | 3313903 |  | to arrange or specify beforehand |
|  | 3313904 |  | to take precautionary action (usu. fol. by for or against) |
| receive | $\begin{aligned} & 3434801 \\ & 3434806 \end{aligned}$ | receive-a receive-a | to get or take (something) that has been sent or offered <br> to accept or get something |
|  | 3434802 |  | to accept (something) that has been bestowed |
|  | $\begin{aligned} & 3434803 \\ & 3434807 \end{aligned}$ | receive-b receive-b | to welcome to extend hospitality to guests |
|  | 3434804 |  | to undergo; experience |
|  | 3434805 |  | to find out about |
|  | 3434808 |  | to pick up signals, as on a radio or television |
|  | 3434809 |  | in football, to play in the position of one designated to catch a forward pass |
| remain | $\begin{aligned} & 3477801 \\ & 3477803 \end{aligned}$ | remain-a remain-a | to continue without a change in quality or state to be left, as still to be done |
|  | 3477802 |  | to stay or be left in the same place after others have gone |
| rule | $\begin{aligned} & 3597906 \\ & 3597907 \\ & 3597911 \\ & \hline \end{aligned}$ | rule-a <br> rule-a <br> rule-a | to exert authority over; govern to have superiority over, within a particular field or area <br> to be pervasive or dominant |
|  | 3597908 |  | to make evenly spaced parallel lines on (a piece of paper or other surface) |
|  | 3597910 |  | to make a specific decision or ruling, as in a court of law |

Table A.5: Original and unified senses of verb (5)

| Target word | $\begin{aligned} & \text { Original } \\ & \text { sense ID } \end{aligned}$ | Unified sense ID | Gloss sentence |
| :---: | :---: | :---: | :---: |
| smell | $\begin{aligned} & \hline 3893501 \\ & 3893505 \\ & 3893507 \\ & 3893508 \end{aligned}$ | smell-a <br> smell-a <br> smell-a <br> smell-a | to perceive the odor of by means of the nose to have or give off an odor or fragrance to have or give off an unpleasant odor; stink to have a lingering trace (usu. fol. by of) |
|  | $\begin{aligned} & \hline 3893502 \\ & 3893503 \\ & 3893509 \\ & \hline \end{aligned}$ | smell-b <br> smell-b <br> smell-b | to examine by using the sense of smell to detect; discern to investigate (usu. fol. by about or around) |
| suspend | 4155301 |  | to hang (something) from a higher position |
|  | 4155302 4155303 4155304 4155307 | suspend-a <br> suspend-a <br> suspend-a <br> suspend-a | to cause to stop for a period of time to put off till later; defer to cause to be temporarily ineffective to cease activity for a period of time |
|  | 4155305 |  | to exclude for disciplinary reasons |
|  | 4155306 |  | to cause to remain motionless, undissolved, or unattached in a fluid medium such as air or water |
| talk | $\begin{aligned} & \hline 4198501 \\ & 4198502 \\ & 4198503 \\ & 4198506 \\ & 4198507 \end{aligned}$ | talk-a <br> talk-a <br> talk-a <br> talk-a <br> talk-a | to communicate through spoken words; discuss <br> to gossip <br> to chatter idly or incessantly <br> to articulate in words <br> to speak (a particular language or dialect) |
|  | 4198504 |  | to give a speech; lecture |
|  | 4198505 |  | to disclose confidential or secret information |
|  | 4198508 |  | to discuss |
|  | 4198509 |  | to influence; convince |
| treat | $\begin{aligned} & \hline 4380101 \\ & 4380102 \\ & 4380103 \\ & \hline \end{aligned}$ | treat-a treat-a treat-a | to behave toward (someone) in a particular way to deal with or represent in a particular way to discuss in speech or writing |
|  | $\begin{aligned} & 4380104 \\ & 4380105 \end{aligned}$ | treat-b <br> treat-b | to relieve or cure (a disease or illness) to give medical attention to |
|  | $\begin{aligned} & 4380106 \\ & 4380109 \end{aligned}$ | treat-c treat-c | to offer (food, drink, or entertainment) to at one's own expense <br> to take responsibility for the cost of providing food, drink, or entertainment to another |
|  | 4380107 |  | to act upon in order to achieve a desired result |
|  | 4380108 |  | to deal with a subject, topic, or theme in speech or writing (often fol. by of) |
| use | 4530701 |  | to bring into service; employ, esp. habitually |
|  | $\begin{aligned} & 4530702 \\ & 4530704 \end{aligned}$ | $\begin{aligned} & \text { use-a } \\ & \text { use-a } \end{aligned}$ | to expend; consume to partake of (drugs) |
|  | 4530703 |  | to employ for selfish motives; exploit |
|  | 4530705 |  | used in the past tense in order to show a former habitual practice or state (fol. by to) |

Table A.6: Original and unified senses of verb (6)

| Target word | Original sense ID | Unified sense ID | Gloss sentence |
| :---: | :---: | :---: | :---: |
| wash | $\begin{aligned} & 4636101 \\ & 4636102 \\ & \\ & 4636107 \\ & 4636108 \end{aligned}$ | wash-a <br> wash-a <br> wash-a <br> wash-a | to make clean by immersing in or applying water or other liquid, esp. if soap is also used to remove (dirt or other matter) by immersing in water or other liquid, esp. if soap is also used to clean or bathe oneself to clean something in or with water or other liquid |
|  | 4636103 4636104 4636110 4636111 4636112 | wash-b <br> wash-b <br> wash-b <br> wash-b <br> wash-b | to transport by means of a moving liquid, esp. water to erode or destroy by the action of moving water to be carried by the action of moving water to be removed or worn down by the action of moving water (often fol. by away) to flow over; rush against |
|  | 4636105 |  | to make wet; moisten; drench |
|  | 4636106 |  | to rid of guilt or impurity |
|  | 4636109 |  | to be capable of being cleaned in or with water without shrinking or fading |
| watch | $\begin{aligned} & 4640501 \\ & 4640502 \\ & 4640507 \end{aligned}$ | watch-a <br> watch-a <br> watch-a | to look closely or with uninterrupted attention <br> to look or wait in alert expectation (usu. fol. by for) to look at closely or with uninterrupted attention |
|  | $\begin{aligned} & 4640503 \\ & 4640508 \\ & 4640509 \end{aligned}$ | watch-b <br> watch-b <br> watch-b | to keep a vigil, esp. through the night to guard or tend attentively to stay informed about or aware of |
|  | 4640504 |  | to be careful or alert |
| win | $\begin{aligned} & \hline 4711401 \\ & 4711403 \\ & 4711405 \\ & \hline \end{aligned}$ | win-a win-a win-a | to be victorious in a competition to gain victory in to capture in battle |
|  | 4711402 |  | to gain success through effort or struggle |
|  | $\begin{aligned} & 4711404 \\ & 4711406 \end{aligned}$ | $\begin{aligned} & \text { win-b } \\ & \text { win-b } \end{aligned}$ | to obtain through effort to gain (loyalty, sympathy, affection, or the like) |
|  | 4711407 |  | to succeed in obtaining the support of |
| write | $\begin{aligned} & 4753401 \\ & \\ & 4753404 \\ & 4753406 \end{aligned}$ | write-a <br> write-a <br> write-a | to form (letters, words, symbols, or characters) on a surface with a pen, pencil, typewriter, or other instrument <br> to fill in the spaces of or cover with writing <br> to form letters, words, symbols, or characters on a surface with a pen, pencil, typewriter, or other instrument |
|  | 4753402 |  | to express or record by writing |
|  | $\begin{aligned} & 4753403 \\ & 4753407 \end{aligned}$ | write-b <br> write-b | to author or compose to create written material as a job or profession |
|  | $\begin{aligned} & 4753405 \\ & 4753408 \end{aligned}$ | write-c write-c | to leave the evidence or signs of to communicate by sending letters |

Table A.7: Original and unified senses of noun (1)

| Target word | Original sense ID | Unified sense ID | Gloss sentence |
| :---: | :---: | :---: | :---: |
| argument | argument\%1:09:00:: |  | a variable in a logical or mathematical expression whose value determines the dependent variable; if $f(x)=y$, $x$ is the independent variable |
|  | argument\%1:10:00:: |  | a discussion in which reasons are advanced for and against some proposition or proposal |
|  | argument\%1:10:01:: |  | a summary of the subject or plot of a literary work or play or movie |
|  | argument\%1:10:02:: |  | a fact or assertion offered as evidence that something is true |
|  | argument\%1:10:03:: |  | a dispute where there is strong disagreement |
| arm | arm\%1:06:00:: |  | the part of a garment that is attached at armhole and provides a cloth covering for the arm |
|  | arm\%1:06:01:: |  | instrument used in fighting or hunting |
|  | arm\%1:06:02:: |  | the part of an armchair or sofa that supports the elbow and forearm of a seated person |
|  | arm\%1:06:03:: |  | any projection that is thought to resemble an arm |
|  | arm\%1:08:00:: |  | a human limb; technically the part of the superior limb between the shoulder and the elbow but commonly used to refer to the whole superior limb |
|  | arm\%1:14:00:: |  | an administrative division of some larger or more complex organization |
| bank | bank\%1:04:00:: |  | a flight maneuver; aircraft tips laterally about its longitudinal axis (especially in turning) |
|  | bank\%1:06:00:: bank\%1:06:01:: bank\%1:14:00:: <br> bank\%1:14:01:: | bank-a <br> bank-a <br> bank-a <br> bank-a | a building in which commercial banking is transacted <br> a container (usually with a slot in the top) for keeping money at home <br> a financial institution that accepts deposits and channels the money into lending activities <br> an arrangement of similar objects in a row or in tiers |
|  | bank\%1:17:00:: <br> bank\%1:17:01:: <br> bank\%1:17:02:: | bank-b bank-b <br> bank-b | a long ridge or pile <br> sloping land (especially the slope beside <br> a body of water) <br> a slope in the turn of a road or track; the outside is higher than the inside in order to reduce the effects of centrifugal force |
|  | $\begin{aligned} & \text { bank\%1:21:00:: } \\ & \text { bank\%1:21:01:: } \end{aligned}$ | bank-c <br> bank-c | a supply or stock held in reserve for future use (especially in emergencies) the funds held by a gambling house or the dealer in some gambling games |

Table A.8: Original and unified senses of noun (2)

| Target word | Original sense ID | Unified sense ID | Gloss sentence |
| :---: | :---: | :---: | :---: |
| degree | degree\%1:07:00:: <br> degree\%1:07:01:: <br> degree\%1:26:01:: | degree-a <br> degree-a <br> degree-a | a position on a scale of intensity or amount or quality <br> the seriousness of something (e.g., a burn or crime) <br> a specific identifiable position in a continuum or series or especially in a process |
|  | degree\%1:09:00:: |  | the highest power of a term or variable |
|  | degree\%1:10:00:: |  | an award conferred by a college or university signifying that the recipient has satisfactorily completed a course of study |
|  | degree\%1:23:00:: |  | a measure for arcs and angles |
|  | degree\%1:23:03:: |  | a unit of temperature on a specified scale |
| difference | difference\%1:07:00:: |  | the quality of being unlike or dissimilar |
|  | difference\%1:10:00:: |  | a disagreement or argument about something important |
|  | difference\%1:11:00:: |  | a variation that deviates from the standard or norm |
|  | difference\%1:23:00:: |  | the number that remains after subtraction; the number that when added to the subtrahend gives the minuend |
|  | difference\%1:24:00:: |  | a significant change |
| difficulty | difficulty\%1:04:00:: |  | an effort that is inconvenient |
|  | difficulty\%1:07:00:: |  | the quality of being difficult |
|  | difficulty\%1:09:02:: |  | a factor causing trouble in achieving a positive result or tending to produce a negative result |
|  | difficulty\%1:26:00:: |  | a situation or condition almost beyond one's ability to deal with and requiring great effort to bear or overcome |
| disc | disc\%1:06:00:: |  | a thin flat circular plate |
|  | disc\%1:06:01:: |  | sound recording consisting of a disc with continuous grooves; formerly used to reproduce music by rotating while a phonograph needle tracked in the grooves |
|  | disc\%1:06:03:: |  | (computer science) a memory device consisting of a flat disk covered with a magnetic coating on which information is stored |
|  | disc\%1:25:00:: |  | something with a round shape like a flat circular plate |

Table A.9: Original and unified senses of noun (3)

| Target word | Original sense ID | Unified sense ID | Gloss sentence |
| :---: | :---: | :---: | :---: |
| image | image\%1:06:00:: <br> image\%1:06:01:: | image-a <br> image-a | a visual representation of an object or scene or person produced on a surface a representation of a person (especially in the form of sculpture) |
|  | image\%1:07:00:: <br> image\%1:09:00:: <br> image\%1:09:02:: | image-b <br> image-b <br> image-b | (Jungian psychology) a personal facade one presents to the world an iconic mental representation a standard or typical example |
|  | image\%1:10:00:: |  | language used in a figurative or nonliteral sense |
|  | image\%1:18:00:: |  | someone who closely resembles a famous person (especially an actor) |
| interest | interest\%1:04:01:: <br> interest\%1:07:01:: <br> interest\%1:07:02:: <br> interest\%1:09:00:: <br> interest\%1:14:00:: | interest-a <br> interest-a <br> interest-a <br> interest-a <br> interest-a | a subject or pursuit that occupies one's time and thoughts (usually pleasantly) <br> a reason for wanting something done the power of attracting or holding one's interest (because it is unusual or exciting etc.) <br> a sense of concern with and curiosity about someone or something (usually plural) a social group whose members control some field of activity and who have common aims |
|  | interest\%1:21:00:: <br> interest\%1:21:03:: | interest-b <br> interest-b | a fixed charge for borrowing money; usually a percentage of the amount borrowed <br> a right or legal share of something; a financial involvement with something |
| judgment | judgment\%1:04:00:: <br> judgment\%1:04:02:: <br> judgment\%1:10:00:: | judgment-a <br> judgment-a <br> judgment-a | (law) the determination by a court of competent jurisdiction on matters submitted to it <br> the act of judging or assessing a person or situation or event <br> the legal document stating the reasons for a judicial decision |
|  | judgment\%1:07:00:: <br> judgment\%1:09:00:: <br> judgment\%1:09:01:: <br> judgment\%1:09:04:: | judgment-b <br> judgment-b <br> judgment-b <br> judgment-b | the capacity to assess situations or circumstances shrewdly and to draw sound conclusions <br> the cognitive process of reaching a decision or drawing conclusions ability to make good judgments an opinion formed by judging something |

Table A.10: Original and unified senses of noun (4)

| Target word | Original sense ID | Unified sense ID | Gloss sentence |
| :---: | :---: | :---: | :---: |
| paper | paper\%1:06:00:: <br> paper\%1:10:03:: <br> paper\%1:14:00:: | paper-a <br> paper-a <br> paper-a | a newspaper as a physical object <br> a daily or weekly publication on folded sheets; contains news and articles and advertisements <br> a business firm that publishes newspapers |
|  | paper\%1:10:00:: paper\%1:27:00:: | paper-b paper-b | medium for written communication <br> a material made of cellulose pulp derived mainly from wood or rags or certain grasses |
|  | paper\%1:10:01:: <br> paper\%1:10:02:: | paper-c <br> paper-c | an essay (especially one written as an assignment) a scholarly article describing the results of observations or stating hypotheses |
| party | party\%1:11:00:: <br> party\%1:14:02:: <br> party\%1:18:00:: | party-a <br> party-a <br> party-a | an occasion on which people can assemble for social interaction and entertainment <br> a band of people associated temporarily in some activity a person involved in legal proceedings |
|  | party\%1:14:00:: |  | a group of people gathered together for pleasure |
|  | party\%1:14:01:: |  | an organization to gain political power |
| performance | performance\%1:04:00:: <br> performance\%1:04:01:: <br> performance\%1:10:00:: | performance-a <br> performance-a <br> performance-a | the act of performing; of doing something successfully; using knowledge as distinguished from merely possessing it <br> the act of presenting a play or a piece of music or other entertainment <br> a dramatic or musical entertainment |
|  | performance\%1:04:03:: <br> performance\%1:22:00:: | performance-b <br> performance-b | any recognized accomplishment <br> process or manner of functioning or operating |
| plan | plan\%1:06:00:: |  | scale drawing of a structure |
|  | plan\%1:09:00:: plan\%1:09:01:: | plan-a <br> plan-a | a series of steps to be carried out or goals to be accomplished <br> an arrangement scheme |

Table A.11: Original and unified senses of noun (5)

| Target word | Original sense ID | Unified sense ID | Gloss sentence |
| :---: | :---: | :---: | :---: |
| shelter | shelter\%1:06:00:: <br> shelter\%1:06:01:: | shelter-a <br> shelter-a | a structure that provides privacy and protection from danger <br> protective covering that provides protection from the weather |
|  | shelter\%1:21:00:: <br> shelter\%1:26:00:: | shelter-b <br> shelter-b | a way of organizing business to reduce the taxes it must pay the condition of being protected |
| sort | sort\%1:07:00:: |  | an approximate definition or example |
|  | sort\%1:09:00:: |  | a category of things distinguished by some common characteristic or quality |
|  | sort\%1:18:00:: |  | a person of a particular character or nature |
|  | sort\%1:22:00:: |  | an operation that segregates items into groups according to a specified criterion |
| source | source\%1:06:00:: |  | a facility where something is available |
|  | source\%1:09:00:: |  | anything that provides inspiration for later work |
|  | source\%1:10:00:: source\%1:10:01:: source\%1:18:00:: | source-a <br> source-a <br> source-a | a document (or organization) from which information is obtained <br> a publication (or a passage from a publication) that is referred to <br> someone who originates or causes or initiates something |
|  | source\%1:15:00:: |  | the place where something begins, where it springs into being |
|  | source\%1:18:01:: |  | a person who supplies information |

Table A.12: Original and unified senses of adjective (1)

| Target <br> word | Original <br> sense ID | Unified <br> sense ID | Gloss sentence |
| :--- | :--- | :--- | :--- |
| different | different\%3:00:00:: |  | unlike in nature or quality or <br> form or degree |
|  | different\%3:00:02:: |  | not like; marked by dissimilarity |
|  | different\%5:00:00:other:00 |  | distinctly separate from the first |
|  | different\%5:00:00:unusual:00 |  | differing from all others; not or- <br> dinary |
|  | different\%5:00:01:other:00 |  | distinct or separate |

Table A.13: Original and unified senses of adjective (2)

| Target word | Original sense ID | Unified sense ID | Gloss sentence |
| :---: | :---: | :---: | :---: |
| hot | hot\%3:00:01:: hot\%3:00:02:: | hot-a | used of physical heat; having a high or higher than desirable temperature or giving off heat or feeling or causing a sensation of heat or burning extended meanings; especially of psychological heat; marked by intensity or vehemence especially of passion or enthusiasm |
|  | hot\%5:00:00:active:01 | hot-b | (informal) marked by excited activity |
|  | hot\%5:00:00:charged:00 | hot-b | (electricity) charged or energized with electricity |
|  | hot\%5:00:00:fast:01 | hot-b | very fast |
|  | hot\%5:00:00:fresh:01 | hot-b | newly made |
|  | hot\%5:00:00:good:01 | hot-b | very good; often used in the negative |
|  | hot\%5:00:00:illegal:00 | hot-b | (informal) recently stolen or smuggled |
|  | hot\%5:00:00:lucky:00 | hot-b | having or bringing unusually good luck |
|  | hot\%5:00:00:near:00 | hot-b | of a seeker; near to the object sought |
|  | hot\%5:00:00:new:00 | hot-b | newest or most recent |
|  | hot\%5:00:00:popular:00 | hot-b | (informal) very popular or successful |
|  | hot\%5:00:00:pungent:00 | hot-b | having a piquant burning taste of spices or peppers |
|  | hot\%5:00:00:radioactive:00 | hot-b | having or dealing with dangerously high levels of radioactivity |
|  | hot\%5:00:00:sexy:00 | hot-b | sexually excited or exciting |
|  | hot\%5:00:00:skilled:00 | hot-b | (informal) performed or performing with unusually great skill and daring and energy |
|  | hot\%5:00:00:unpleasant:00 | hot-b | very unpleasant or even dangerous |
|  | hot\%5:00:00:violent:00 | hot-b | characterized by violent and forceful activity or movement; very intense |
|  | hot\%5:00:00:wanted:00 | hot-b | wanted by the police |
|  | hot\%5:00:00:warm:03 | hot-b | (color) bold and intense |
|  | hot\%5:00:02:fast:01 | hot-b | capable of quick response and great speed |
|  | hot\%5:00:00:eager:00 |  | having or showing great eagerness or enthusiasm |

Table A.14: Original and unified senses of adjective (3)

| Target word | Original sense ID | Unified sense ID | Gloss sentence |
| :---: | :---: | :---: | :---: |
| important | important\%3:00:00:: important\%3:00:02:: <br> important\%3:00:04:: | important-a <br> important-a <br> important-a | of great significance or value <br> of extreme importance; vital to the resolution of a crisis <br> important in effect or meaning |
|  | important\%5:00:00:immodest:02 <br> important\%5:00:00:influential:00 | important-b <br> important-b | having or suggesting a consciousness of high position <br> having authority or ascendancy or influence |
| solid | solid\%3:00:01:: <br> solid\%3:00:02:: | solid-a <br> solid-a | of definite shape and volume; firm; neither liquid nor gaseous entirely of one substance with no holes inside |
|  |  | solid-b | having three dimensions |
|  | solid\%5:00:00:frozen:00 | solid-b | turned into or covered with thick ice |
|  | solid\%5:00:00:good:01 | solid-b | of good substantial quality |
|  | solid\%5:00:00:hard:01 | solid-b | not soft or yielding to pressure |
|  | solid\%5:00:00:homogeneous:00 | solid-b | of one substance or character throughout |
|  | solid\%5:00:00:honorable:00 | solid-b | having high moral qualities |
|  | solid\%5:00:00:opaque:00 | solid-b | incapable of being seen through |
|  | solid\%5:00:00:plain:02 | solid-b | entirely of a single color throughout |
|  | solid\%5:00:00:sound:01 | solid-b | of good quality and condition; solidly built |
|  | solid\%5:00:00:unbroken:02 | solid-b | uninterrupted in space; having no gaps or breaks |
|  | solid\%5:00:00:undiversified:00 | solid-b | acting together as a single undiversified whole |
|  | solid\%5:00:00:wholesome:00 | solid-b | providing abundant nourishment |


[^0]:    ${ }^{1}$ This sentence is quoted from https://webanno.github.io/webanno/use-case-gallery/dependency-parsing/

[^1]:    ${ }^{2}$ https://nlp.stanford.edu/software/lex-parser.shtml

[^2]:    ${ }^{1}$ Explanation of WordNet is quoted from https://wordnet.princeton.edu/
    ${ }^{2}$ http://wordnetweb.princeton.edu/perl/webwn

[^3]:    ${ }^{3}$ http://www.wordsmyth.net/

[^4]:    ${ }^{4}$ https://wortschatz.uni-leipzig.de/en/download/english

[^5]:    ${ }^{5}$ https://code.google.com/archive/p/word2vec/
    ${ }^{6} \mathrm{https}: / / \mathrm{nlp}$. stanford.edu/projects/glove/
    ${ }^{7}$ https://github.com/google-research/bert
    ${ }^{8}$ https://github.com/google-research/bert

[^6]:    ${ }^{9}$ See also the sense definition in Figure 3.4.

[^7]:    ${ }^{10} \mathrm{~A}$ result of adjective is omitted since the number of target words in the test data is small.

