
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Evaluating Performance and Productivity of OpenCL

on HiFP2.0 Algorithm

Author(s) Nguyen, Minh Tien

Citation

Issue Date 2021-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/17150

Rights

Description
Supervisor:井口　寧, 先端科学技術研究科, 修士（情

報科学）



Master’s Thesis

Evaluating Performance and Productivity of OpenCL
on HiFP2.0 Algorithm

1810445 Minh Tien Nguyen

Supervisor: Professor Yasushi Inoguchi

Graduate School of Advanced Science and Technology
Japan Advanced Institute of Science and Technology

(Information Science)

March 2021



Abstract

OpenCL (Open Computing Language) is a high-level synthesis & cross-
platform standard for building high-performance computing programs and
be able to distribute to various processors and hardware accelerators, which
contains central processing units (CPUs), graphics processing units (GPUs),
digital signal processors (DSPs), field-programmable gate arrays (FPGAs).
OpenCL was born to help software developers accelerating their algorithms
on hardware with eases. Since the first release in 2008, many large firms
have supported and developed OpenCL (such as Intel, AMD, Nvidia, Xilinx).
Now, it is being maintained by Khronos Group.

Audio fingerprinting is an efficient technique to represent the characteris-
tics of an audio file. It is lightweight in representation, then requires a small
memory capacity and computational cost for management.

HiFP2.0 is an audio fingerprinting algorithm. By just requiring a small
computational cost, it can acquire high throughput and then take advantage
of a high-speed network, which is 40Gbps Ethernet or 100Gbps Ethernet.

In the previous works, Araki succeeded in developing HiFP2.0 executed
on CPU and had good results in throughput and accuracy [1]. However, it is
not sure about the ability when applying the algorithm on other platforms.

In this study, we implement HiFP2.0 in OpenCL executing on Intel FPGA
Arria 10, which contains two types of programming models: task-based and
data-based parallelism. We tend to provide an insight into how well the
OpenCL works on HiFP2.0 algorithm. We investigate the performance and
productivity aspects.

To summarize our results, some main points can be listed by the following:

1. The number of code lines can be reduced from 5 - 5.54 times when
using OpenCL (a high-level synthesis language) instead of VHDL (a
register-transfer level programming language) on an FPGA.

2. The optimized algorithm of OpenCL can achieve more 17.4% perfor-
mance than the origin, which is intensionally designed for CPUs.

3. The data-based method has the best throughput when applying 512
work-items per work-group and 50 work-groups per execution.

Keywords: OpenCL, HiFP2.0, High-level synthesis, FPGA, Arria 10.



Contents

List of Figures 6

List of Tables 8

1 Introduction 0
1.1 Motivation and Problem Statement . . . . . . . . . . . . . . . 0

1.1.1 The tough of FPGA programming . . . . . . . . . . . . 0
1.1.2 The raise of audio content in social networks and stream-

ing platforms . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Audio Fingerprinting 6
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.1 Robust Hash Extraction Algorithm . . . . . . . . . . . 9
2.4.2 HiFP2.0 Algorithm . . . . . . . . . . . . . . . . . . . . 9

2.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . 10

3 OpenCL - High-level synthesis & cross-platform standard 13
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 OpenCL Architecture . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.1 Platform Model . . . . . . . . . . . . . . . . . . . . . . 13
3.2.2 Execution Model . . . . . . . . . . . . . . . . . . . . . 14
3.2.3 Memory Model . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Optimization Strategy . . . . . . . . . . . . . . . . . . . . . . 17
3.3.1 Loop-unrolling . . . . . . . . . . . . . . . . . . . . . . 17
3.3.2 Data-preserving . . . . . . . . . . . . . . . . . . . . . . 18

3



3.4 Productivity improvement . . . . . . . . . . . . . . . . . . . . 18
3.4.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4.2 Related works . . . . . . . . . . . . . . . . . . . . . . . 18

3.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Implementation of HiFP2.0 using OpenCL 20
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Processing Flow . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 3-Stages of Development Process . . . . . . . . . . . . . . . . 22
4.4 Kernel Implementation . . . . . . . . . . . . . . . . . . . . . . 24

4.4.1 Single-task Kernel . . . . . . . . . . . . . . . . . . . . . 24
4.4.2 ND-range Kernel . . . . . . . . . . . . . . . . . . . . . 25

4.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Evaluation 32
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2 Productivity comparison with VHDL . . . . . . . . . . . . . . 32
5.3 Theoretical Performance Analysis . . . . . . . . . . . . . . . . 33

5.3.1 Theoretical speedup of an optimal HiFP2.0 implemen-
tation on an FPGA . . . . . . . . . . . . . . . . . . . . 33

5.3.2 Theoretical speedup of our HiFP2.0 implementation
using OpenCL ND-range kernel . . . . . . . . . . . . . 34

5.4 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.4.1 Experimental settings . . . . . . . . . . . . . . . . . . . 35
5.4.2 Experiment design . . . . . . . . . . . . . . . . . . . . 36
5.4.3 Total-time Decomposition . . . . . . . . . . . . . . . . 38
5.4.4 Resource Usage . . . . . . . . . . . . . . . . . . . . . . 40

5.5 Speed up by OpenCL ND-range kernel . . . . . . . . . . . . . 40
5.6 Performance comparison with previous work . . . . . . . . . . 42
5.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . 42

6 Conclusion, Limitation & Future work 43
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Bibliography 47

This dissertation was prepared according to the curriculum for the collab-
orative education program organized by Japan Advanced Institute of Science



and Technology and University of Engineering and Technology, Vietnam Na-
tional University.

5



List of Figures

1.1 Supports from organizations using OpenCL, reprinted from
Khronos Group . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Spotify reports fourth quarter and full-year 2019 earnings,
reprinted from Spotify . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Content-based Audio Identification Framework, proposed by
Haitsma [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 A human fingerprint . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 An audio fingerprint extracted by HiFP2.0 algorithm (4096 bits) 7
2.3 Overview of Robush Hash Extraction Algorithm, cited from [7] 9
2.4 HiFP2.0 framework, cited from [1] . . . . . . . . . . . . . . . . 10
2.5 Imagination of how HiFP2.0 works . . . . . . . . . . . . . . . 10
2.6 HiFP2.0 framework, originally developed by Araki, cited from

[1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.7 HiFP2.0 framework, originally developed by Araki, cited from

[1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 OpenCL’s platform model . . . . . . . . . . . . . . . . . . . . 14
3.2 OpenCL’s memory model . . . . . . . . . . . . . . . . . . . . 17
3.3 An example of using Loop-Unrolling . . . . . . . . . . . . . . 17

4.1 Processing flow of HiFP2.0 program using OpenCL . . . . . . 21
4.2 3-Stages of Development process . . . . . . . . . . . . . . . . . 23
4.3 Processing one song using Single-task kernel . . . . . . . . . . 23
4.4 3-stages wavelet transform . . . . . . . . . . . . . . . . . . . . 24
4.5 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . 25
4.6 Processing one song per work-group using ND-range kernel . . 27
4.7 Processing multiple-songs with multiple work-groups . . . . . 30

6



5.1 Throughput and work-group size when conducting experiment
with one song per kernel execution. Maximum throughput is
archieved when the number of work-items per work-group is
512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2 Throughput and number of work-groups (songs) per kernel
execution when conducting experiment with the number of
work-items per work-group is 512. Maximum throughput is
archieved when the number of work-groups (songs) per kernel
execution is 50 . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3 Speedup comparison between our experiment and theory. Ex-
pected speedup line (red) is regressed on the first-7 data points.
Experimental speedup stops increasing when number of work-
items is set on 64 . . . . . . . . . . . . . . . . . . . . . . . . . 41



List of Tables

4.1 Relation between work-group size and the number of wave
samples be assigned to one work-item . . . . . . . . . . . . . . 28

5.1 Number of code lines in our implementation.
* : Archive version has neither line breaks nor comments . . . 33

5.2 Number of clock cycles for HiFP2.0 executed by CPU & FPGA 34
5.3 OpenCL supports on Intel PAC Arria 10 . . . . . . . . . . . . 36
5.4 Total-time decomposition of our implementation . . . . . . . . 40
5.5 Resource usage for our implementation

Note: ALUT: Adaptive Look-Up Table, FF: Flip-Flop, RAM:
Random-Access Memory, DSP: Digital Signal Processing . . . 41

5.6 Throughput comparison among ours and previous work . . . . 42



List of Abbreviations

FPID Fingerprint Identification

HLS High-Level Synthesis

RTL Register-Transfer Level

9



Chapter 1

Introduction

1.1 Motivation and Problem Statement

1.1.1 The tough of FPGA programming
In the Information Technology (IT) industry, software and hardware are
essential parts that must be developed to deliver better services to clients.
Through the flow of the IT development, components of IT are constructed
level by level, and the new ones are depended and based on the previous
blocks. Since 1946 - when the first computer ENIAC was invented at the
University of Pennsylvania, Human has developed and improved computer
more and more useful.

Nowadays, a computer becomes more and more complex. One person
cannot understand all the parts of a computer system. Software engineers
can develop and apply algorithms into programs. The hardware designer can
develop high-performance architectures for circuits. Because of the differ-
ences between the two platforms they work at, the one cannot do the job of
the other one.

FPGAs were born in the 1980s, but they are not popularly used until now.
In the past, FPGAs stayed in research, development, and prototyping chips.
FPGAs have explored their potential ability in High-performance computing.
FPGAs can beat GP-GPU in some jobs, and it can be seen in [14].

However, like a knife, FPGAs also have a bad side. In the past, by just
supporting the Register-transfer level (RTL) on FPGAs, the productivity of
development programs on FPGAs is very low, it is pointed out in [10].

High-level synthesis was born to reduce the tough of FPGA programming.
By taking advantage of High-level languages like C/C++, software engineers
can quickly implement their algorithms to run on dedicated devices, which
had been done previously by hardware designers.

0



OpenCL (Open Computing Language) is a high-level synthesis & cross-
platform standard for building high-performance computing programs and
be able to distribute to various processors and hardware accelerators, which
contains central processing units (CPUs), graphics processing units (GPUs),
digital signal processors (DSPs), field-programmable gate arrays (FPGAs).
Since the first release in 2008, OpenCL has been maintained and operated
by Khronos Group with support from many large firms, such as Apple, Intel,
AMD, Nvidia, Samsung, Xilinx, Qualcomm. An overview of the OpenCL
community is shown in figure 1.1 1. By 2020, the latest version of OpenCL
is 3.0.

Figure 1.1: Supports from organizations using OpenCL, reprinted from
Khronos Group

1.1.2 The raise of audio content in social networks and
streaming platforms

In modern life, people listen to music every day. At the end of 2019, Spotify
has more than double users, compared to 2016, by their report shown in
Figure 1.2.

Music has been one of the most popular types of information globally,
and there are hundreds of music streaming platforms and related services
available on the Internet now. The music data is accumulated day by day
and becomes big data in several companies. Some of the music collections

1https://www.khronos.org/opencl

1



available on the server have reached a scale of ten million tracks. By 2020,
there exist about 60 million songs in Apple Music’s database 2 and 50 million
songs in Spotify’s database 3.

The vast audio database has opened many issues in retrieving, searching,
and organizing the music content.

Figure 1.2: Spotify reports fourth quarter and full-year 2019 earnings,
reprinted from Spotify

To cope with the searching audio problem, Jaap Haistma proposed a Content-
based Audio Identification framework with two fundamental processes: Fin-
gerprint extraction & Database Searching. An overview of Haistma’s pro-
posed framework is shown in Figure 1.3.

Figure 1.3: Content-based Audio Identification Framework, proposed by
Haitsma [2]

2https://www.apple.com/apple-music
3https://newsroom.spotify.com/2020-02-05/spotify-reports-fourth-quarter-and-full-

year-2019-earnings

2



A good audio fingerprint system should acquire the following require-
ments:

• Robust: The origin audio file can be transformed into many formats
to serve many purposes. For example, the raw format is for high-end
devices, presenting the best quality of sound. However, the archived
versions (have distortion) like mp3 are suitable for lower-quality de-
vices, which requires more transfer speed and less in quality. The two
audio files’ waveforms are different but have the same content that
should be identified as 1.

• Reliable: The system should discriminate among many different audio
contents with high accuracy.

• Portable: The size of an audio fingerprint should be small. The num-
ber of audio files in a real database is enormous (maybe more than
60 million), and the searching procedure is often conducted on RAM
(random-access memory). The size of an audio fingerprint has to be
small enough to fit the database on RAM.

• Fast: The most crucial feature of a searching system is speed. Users
do not want to wait too long for a searching session on a server. In
a high workload system, the long searching time may lead to declined
service, affecting badly other parts of the system.

• Scalable: The number of music songs is increasing day by day, then
the audio fingerprint system has to comfort adding more items after
the first initiation.

All five requirements are essential and depend on each other. For example,
the robustness can affect reliability because when the system can discriminate
among different songs well, it may be more sensitive to distortion. Due to
the accuracy aspect increasing, the speed may decrease because the algorithm
may use more data for processing.

In this study, we focus on the first process - Fingerprint Extraction, which
is mainly to generate a fingerprint of an audio file. We hope that, by do-
ing this study, more information to improve an audio fingerprint system is
discovered.

1.2 Methodology
Two questions we try to answer are:

3



1. How well is the performance OpenCL can give?

2. How much effort is different in using high-level synthesis versus register-
transfer level?

To answer the first question, we implement an algorithm initially devel-
oped for CPUs (a sequential algorithm) by OpenCL. The algorithm we choose
is HiFP2.0, which is designed for generating audio fingerprinting. OpenCL
offers two programming models, which are: Single-task kernel and ND-range
kernel. By modifying many kernels and applying optimizations, we try to
find the best implementation of the HiFP2.0 algorithm. Finally, we examine
the speedup of OpenCL on our implementations. We increase the utilization
of resources by OpenCL, which are related to the number of work-items and
work-groups, then we measure how well the performance changes.

To answer the second question, we make a comparison between an im-
plementation using OpenCL and VHDL. The method used in OpenCL is
Single-task kernel. The measurement we use is the number of code lines. A
program contains many types of code for many purposes, such as configu-
ration, data loading, data transfering, data processing, communication, so
on. A lot of them are similar to other programs, which is almost template.
The programming effort spend on template code is not too much. Our study
focuses on the core part of the program, which is different from others, to
implement it using OpenCL and VHDL, then compare the number of code
lines.

1.3 Contribution
The research field about FPID generation is wide, and impossible to cover it
all in one work. In this study, we choose to implement the HiFP2.0 algorithm
on an FPGA by using OpenCL (a high-level synthesis) and investigate its
performability and productivity. We expect a little performance lost to gain
better productivity—the easier in approach, the more chances for FPGAs
coming to users and life.

Our contributions are summarized as below:
• Develop a program to realize the HiFP2.0 algorithm on an FPGA by

High-level synthesis. Although this thesis is all about FPGAs’ tech-
nologies, the main idea can be used for applying HiFP2.0 on GPGPU.
Because the main structure of OpenCL (the framework used in our
implementation) is almost the same as CUDA (the framework used to
implement GPGPU application).

4



• Improve the perfomance of HiFP2.0 algorithm. HiFP2.0 algorithm is
originally designed for C language, which is run on a CPU. In our study,
we try to modify the original algorithm and find a best way to execute
HiFP2.0 on an FPGA by OpenCL. Our result show that, the optimized
HiFP2.0 implementation can be achieved by using ND-range kernel.

• Evaluate the productivity of OpenCL. OpenCL is a High-level synthe-
sis technology, it was born to reduce the tough of FPGA application
development. In our study, we implement the core part of HiFP2.0 in
both OpenCL and VHDL and then make a comparison of number of
code lines on them.

1.4 Thesis Structure
This thesis is constructed as follows:

• Chapter 1 - Introduction shows purposes and contributions for our
study.

• Chapter 2 - Audio Fingerprinting provides a big picture in this
research field, which is related to FPID generation techniques.

• Chapter 3 - OpenCL, High-level synthesis & cross-platform
standard introduces the basic concepts of OpenCL - a standard for
HLS development on FPGAs.

• Chapter 4 - Implementation of HiFP2.0 using OpenCL shows
our approaches to implement HiFP2.0 in OpenCL. Some optimization
strategies also are shown.

• Chapter 5 - Evaluation presents experimental results.

• Chapter 6 - Conclusion, Limitation & Future work summarizes
our works, the OpenCL’s and our implementation’s limitation, and the
possible works in the future.

5



Chapter 2

Audio Fingerprinting

2.1 Introduction
Since 100 years ago, the human fingerprint research field has discovered that
every person has their unique fingerprint, which benefited many other fields,
such as forensic science. All nations around the world use fingerprints to
identify people. The ”fingerprint” means to unique thing used for discrimi-
nating one thing from other things. Hence, audio fingerprinting is a method
for extracting a feature from an audio file used to discriminate with other
audio files. An audio fingerprint is extracted from an audio file and gotten
all characteristics of that audio file. Figure 2.1 is an example of a human
fingerprint, and figure 2.2 is an audio fingerprint extracted from a random
song using the HiFP2.0 algorithm.

Figure 2.1: A human fingerprint

In figure 2.2, the black dots are represented for bit 1 and the whites for
bit 0. The top part contains all whites; it means the first part of the target
song is quiet.

6



Figure 2.2: An audio fingerprint extracted by HiFP2.0 algorithm (4096 bits)

2.2 Definition
Recall that an audio fingerprint is a feature that represents the characteristics
of an audio file. Hence, the size of an audio fingerprint is less than the
song/audio file’s size. We use a fingerprint function F to map the audio file
X to its audio fingerprint F(X). The threshold T for deciding whether the
two fingerprints are made from the same audio/song file or not.

Then, we have:

• ||F (X)− F (Y )|| < T , X and Y are similar

• ||F (X)− F (Y )|| >= T , X and Y are dissimilar

There is another way to define an audio fingerprint by a cryptographic
hash function H(). However, it has known that not suitable because of the
strict (sensitive) of the cryptographic hash function. The two songs’ similar-
ity is a perceptual similarity, realizable by the human auditory system, but
may be completely different from a mathematical comparison. It happens
due to the difference in the file format or the distortion of an audio/song. For
example, people cannot hear/realize the differences between a song in raw
format and a compressed format (mp3), but their waveforms may differ. The
difference of waveform leads to feature made by cryptographic hash function
become different, although the input has a 1-bit difference. There is also a
study that explained this problem [6].

7



2.3 Applications
The social network and online entertainment have been developing. Going
with it is the use of audio content increased, then they need an efficient
way to manage the audio content database. Some researchers point out the
applications in [3, 4, 9, 16] .Audio fingerprint plays an important role in their
systems. The uses of them may be transparent to end-users. Some examples
of real-life application can be told are:

• Filtering illegal audio content
Nowadays, people use social network platforms for uploading personal
songs or videos to share with their friends, family. Some parts of their
audio/video may contain illegal content produced by a singer or or-
ganization for commercial purposes and be licensed by social network
platforms. Each licensed music uploaded in the provider’s system gen-
erates an audio fingerprint for searching/comparing with the one user
uploaded. If the user’s audio/video were known as containing licensed
audio, the system would refuse to upload.

• Organizing music library
The record of a song may exist in many types of format and distribute
in any place on the Internet. For example, a human can download a
raw format of “Let it be - The Beatles” from website A and have an
mp3 format from website B. When building the playlist, the song may
be played two times due to redundancy. Although humans can hear
the content of 2 audio files as the same content, the two audio files’
waveforms are different, leading to the player not discriminating. In
this problem, an audio fingerprint can be used to identify songs and
remove redundant songs in a playlist.

• Detecting unknown songs/rythm
Do you remember when you randomly hear a song or rhyme but cannot
precisely remember its name? Then this is a problem the audio finger-
print can help. An audio fingerprint application could be installed on a
mobile phone. When users need to find the name of any songs hearing,
open an application when they can keep the radio. The application
may send the record to an audio fingerprint server to identify the song
and then give back the information needed.

8



2.4 Related works

2.4.1 Robust Hash Extraction Algorithm
Haitsma’s research pointed out the valuable information of audio content
is hidden in the frequency domain [7]. Then on each chosen frame of audio
content, one Fourier Transform calculating is conducted. After that, an FPID
is generated by comparing the energy differences.

Because this algorithm uses Fourier Transform, it requires a floating-point
operation, which consumes enormous computational cost.

Figure 2.3 is an overview of the Robust Hash Extraction Algorithm.

Figure 2.3: Overview of Robush Hash Extraction Algorithm, cited from [7]

2.4.2 HiFP2.0 Algorithm
HiFP2.0 algorithm is proposed by Araki [1], which stands for High-speed
Audio FingerPrinting. As the name the algorithm has, HiFP2.0 can reduce
the time for generating the fingerprint by using only integer operation. The
overview of HiFP2.0 can be seen in Figure 2.4.

HiFP2.0 algorithm has 2 main processes:

• Multi-level subband decomposition using Haar wavelet transform

• Feature extraction/ FPID generation

The central idea of HiFP2.0 is to extract the orientation of the low band
of an input audio signal. Figure 2.5 shows the imagination of how HiFP2.0
works. For each 4-samples, if the orientation from the first sample to the last

9



sample increases, we have bit 1 in the FPID. If the orientation decreases, we
have a 0-bit in the FPID. Because the HiFP2.0 algorithm uses integer cal-
culation instead of floating-point calculation, it is faster than other methods
used Fourier Transform [1]. The algorithm of HiFP2.0 can be seen in Figure
2.6 and 2.7.

1. MHWT(wav[]← Input signal,
2.　　　　 n← Number of samples of input signal,
3.　　　　 m← Number of output samples){
4.　 for ( ; n > m ; n/ = 2 ) then
5.　　 for ( i = 0 ; i < n/2 ; i + + ) then
6.　　　 Hi[i] = (wav[2× i]− wav[2× i + 1])/2;
7.　　　 Lo[i] = (wav[2× i] + wav[2× i + 1])/2;
8.　　 end for
9.　　 wav[]← Lo[];
10.　 end for
11.　 return (Hi, Lo);}

Figure 2: Algorithm of multi-level subband decomposition
using Haar wavelet transform

tion to fulfill the faster FPID generation with a CPU. The
number of arithmetic operations in the the 3-level subband
decomposition is much fewer than that of the 5-level subband
decomposition. We evaluate not only the robustness and the
accuracy of the music identification but also the speed of the
FPID generation.

3. HiFP2.0

3.1. Multi-Level Subband Decomposition using Haar
Wavelet Transform

Haar wavelet transform decomposes a signal to a high fre-
quency and a low frequency which are half of nyquist cri-
terion with a high pass filter, a low pass filter and a down-
sampling. Multi-level subband decomposition obtains any
time-frequency domain by repeatedly decomposing the low
frequency of the previous decomposition.

Figure 2 shows the algorithm of the multi-level subband
decomposition using the Haar wavelet transform (MHWT).
Lines 6 and 7 in the algorithm are the high pass filter and the
low pass filter, respectively. Also, the lines contain the down-
sampling. n which means the number of the input samples
has to be2k. The number of times for executing the Haar
wavelet transform is decided bylog2 n− log2 m, wherem is
the number of the output samples. In this paper, we describe
the number of times for executing the Haar wavelet transform
as level. For instance, if the Haar wavelet transform is per-
formedt times, we describet-level subband decomposition.

3.2. Framework, Algorithm and FPID

The HiFP2.0 framework consists of the MHWT and the
feature extraction (FE), shown in Figure3. The input of the
HiFP2.0 framework is PCM data (2.97sec, 131,072 samples)
of left channel in the WAVE format (44.1kHz-16bit-Stereo).

Figure 3:HiFP2.0 framework

1. HiFP2.0(wav[]← PCM data){
2.　 n← 131,072; /*Number of samples of PCM data*/
3.　 m← 16,384; /*Number of output samples*/
4.　 Hi[], Lo[]←MHWT(wav[], n, m);
5.　 j ← 0;
6.　 for (i = 0 ; i < m− 4 ; i+ = 4 ) then
7.　　 tmp = Lo[i]− Lo[i + 4];
8.　　 if tmp > 0 then
9.　　　 FPID[j] = 1;
10.　　 else
11.　　　 FPID[j] = 0;
12.　　 end if
13.　　 j + +;
14.　 end for
15.　 FPID[m− 1] = 0;
16.　 return FPID; }

Figure 4:Algorithm for generating the FPID of the HiFP2.0

Using the PCM data as input, the MHWT function decom-
poses the time-frequency domain (0.00Hz- 2,756.25Hz) in-
cluding the most relative frequency (300-2,000Hz) for Hu-
man Auditory System (HAS). After that, the FE extracts per-
ceptual features from the time-frequency domain and finally
creates the 4,192 bits FPID.

Figure 4 shows the FPID generation algorithm. The
HiFP2.0 performs the MHWT by receiving the PCM data
of 131,072 samples (lines 1-4). The MHWT gets the time-
frequency domain from the PCM data. Since the frequency of
the WAVE format is 44.1kHz, nyquist frequency is 22.05kHz.
Therefore, the low samples at 3-level subband decomposition
lie in the frequency band (0.00Hz- 2,756.25Hz).

To extract the perceptual features from the time-frequency
domain, the HiFP2.0 calculates difference between two dif-
ferent points in the low samples at 3-level subband decompo-
sition (line 7). One bit in the FPID is determined by compar-
ing whether the differential is greater than 0 or not (lines 8-
12). Since the number of the low samples is 16,384 samples,
only the FPID of 4.095 bits are determined by 6-14 lines. We
note that in view of computer system, 4,096th bits is always 0
so that the size of the FPID is 4,096 bit (line 15). As a result,
we obtain the 4 Kbit FPID.

Because we assume that the database in the AFT system
model has FPIDs generated from music CDs, the input of the
HiFP2.0 employs the 44.1kHz-16bit-Stereo format as well as
the music CD format. If a music file identified by the HiFP2.0

Figure 2.4: HiFP2.0 framework, cited from [1]

0 0 1 1 1 1 0 0

Figure 2.5: Imagination of how HiFP2.0 works

2.5 Chapter Summary
This chapter presents the necessary information on an audio fingerprint.
We know that there are two ways to increase a program’s speed: Do fewer
software instructions or equip more hardware resources. HiFP2.0 algorithm
chooses the first approach. By using integer calculation, the computational
cost of HiFP2.0 is small compared to other methods using floating-point
operations but still does the discrimination well.

10



Figure 2.6: HiFP2.0 framework, originally developed by Araki, cited from [1]

Figure 2.7: HiFP2.0 framework, originally developed by Araki, cited from [1]

11



In this study, we use the HiFP2.0 algorithm for implementation on FPGA
using OpenCL.

12



Chapter 3

OpenCL - High-level synthesis
& cross-platform standard

3.1 Introduction
In this chapter, we discuss the main points of the OpenCL platform, which
are used to understand our implementation in the next chapter better.

3.2 OpenCL Architecture
The OpenCL architecture is defined by 3 concepts:

• Platform model

• Execution model

• Memory model

3.2.1 Platform Model
OpenCL’s platform model contains two parts, which are host and OpenCL
devices. One host is connected to one or many devices. A host is a com-
puter with a CPU running an operating system (Windows, Linux, macOS,
...). A device may be CPU, GPU, DSP, or FPGA. This model supports
both task-based and data-based parallelism. One OpenCL device contains
many compute units (CUs), and one compute unit contains many processing
elements (PEs). The overview of OpenCL’s platform can be seen in figure
3.1.

13



...
...

......
...

......
...

......
...

...

Host

Compute	Unit
Compute	Device

Processing
Element

Figure 3.1: OpenCL’s platform model

The processing elements execute instructions as SIMD (Single Instruction,
Multiple Data) or SPMD (Single Program, Multiple Data). One of OpenCL’s
advantages is running on many different device types, likes Java (write once,
run everywhere). While a device’s hardware is different from others among
many providers, the standard concepts are not changed.

The number of CUs or PEs is different among different devices, and then
engineers have to construct their programs to process data with many sizes of
CUs or PEs. The information of a device can only be determined at runtime,
then the decision of dividing data should be made at the runtime.

The ATI Radeon HD 5870 GPU has 20 SIMD units mapped to 20 compute
units in OpenCL.

3.2.2 Execution Model
The OpenCL’s execution model has two components: A host program and
kernels. Kernels contain executable instructions that can be run on many
devices. In the SIMD mode, the kernel’s instructions are executed by each
processing element of devices.

Host program

The host program is executed by the host side and programmed in high-level
languages like C/C++, Java, and Python using SDK (Software Development
Kit) from hardware providers. For example, Intel provides OPAE (Open
Programmable Acceleration Engine) - a software framework for managing

14



and accessing programable accelerators (FPGAs). The OPAE contains SDK,
drivers, libraries.

The host can create a context to manage the execution of kernels by the
following resources:

• Devices: The OpenCL’s devices for executing kernels.

• Program Objects: The program compiled by the hardware provider’s
compiler is transferred to the device side when a kernel call is made
from a host. One program can contain many kernels.

• Kernels: OpenCL functions contains instructions for executing in de-
vice side.

• Memory Objects: A collection of memory is used by devices.

A command queue is used for two sides’ communication. A host can send
a message to a device through a queue. If there are many devices, each device
uses one queue for communication. The content of the communication of a
queue is isolated from the others. Three types of commands that can be
called within a queue are:

• Kernel execution command: To indicate which kernel in a program
object to be used.

• Memmory command: For transferring data from host to device or
from device to host.

• Synchronization command: In the default, all commands in a queue
are executed concurrently. The synchronization command uses events
to force them from executing sequentially.

Main actions have to be made in Host side are:

• Query platforms

• Query devices

• Create contexts

• Create/built programs

• Create command-queues

• Create kernels

15



• Create buffers

• Write data to buffers

• Enqueue tasks into command-queues

• Release resources

3.2.3 Memory Model
OpenCL has a hierarchical memory model, which consists of 4 regions:

• Host memory: The memory is placed on the host side of OpenCL’s
platform model but visible to both sides. Typically the memory is a
DDR type. The problem data has to be loaded and prepared on the
host side, then transferred to Global memory on the device side.

• Global memory and Constant memory: The memory is placed
on the device side of OpenCL’s platform model. Like the Host mem-
ory, Global and Constant memory are visible to both sides. Constant
memory use for storing kernel parameters. Because they are designed
at the top of the memory model’s hierarchical structure, they are visi-
ble to all lower components of the device: compute unit and processing
elements.

• Local memory: The memory is placed on the device side of OpenCL’s
platform model. This type of memory can be visible to all processing
elements in each compute unit. The access scope is located only in a
Compute unit.

• Private memory: This memory type has a smaller scope than Local
memory and only be visible to one processing element that is pair with
it.

The overview of OpenCL’s memory model is shown in figure 3.2.
A host and a device always use Host memory and Global memory to

transfer data in and out. The first time transfer is for loading data to the
device to prepare for after execution. The last time transfer is for returning
the result from the device back to the host.

On the device side, the Global memory is the most extensive capacity
memory, follows local memory, and the last is Private memory. By consider-
ing the speed, Private memory is the fastest, the Local memory is the 2nd,
and the lowest memory is Global memory.

16



Host	memory

Host

Global	and	Constant	memory

Device

Work-group

Local	memory

Work-item

Private
memory

Private
memory

Work-group

Local	memory

Private
memory

Private
memory

Work-item Work-item Work-item

Figure 3.2: OpenCL’s memory model

3.3 Optimization Strategy

3.3.1 Loop-unrolling
Loop-unrolling is an OpenCL optimization technique. The applied program
uses more memory resources in order to reduce the total of clock circles used.

Figure 3.3 shows an example of using this technique. The number of clock
cycles reduces from 4 to 1.

Loop-unrolling is triggered when the OpenCL’s compiler meets the #pragma
unroll before the for-loop.

for	i:=0	to	4	step	1	do:
A[i]	=	B[i]	+	C[i];

A[0]	=	B[0]	+	C[0];
A[1]	=	B[1]	+	C[1];
A[2]	=	B[2]	+	C[2];
A[3]	=	B[3]	+	C[3];

Unroll	4

Figure 3.3: An example of using Loop-Unrolling

17



3.3.2 Data-preserving
By using Data-preserving, we can reduce the loading time between work-item
and memory.

To implement this technique, we need to load data from Global Memory
into the Private Memory, then conduct processing on the new data, instead
of using Global data like normal.

3.4 Productivity improvement
In the past, the Register-transfer level had been the only technology for
developing FPGA applications. Because the resource is specific for each
device, such as the number of ALUTS, FFs, so on, and RTL design of an
algorithm highly depends on the hardware architecture. It is not easy to
reuse the same RTL design for many FPGA devices effectively. The high-
level synthesis was born to reduce the tough of developing FPGA applications
and generalize using the same program for many FPGA devices.

3.4.1 Definition
Productivity can be measured in time spend and the number of code lines.
Some studies used the whole source code of a program to make a comparison
on the number of code lines. We know that a program is constructed by
many types of source code, which can be the same among software. The most
important part of a program that made a difference is the core algorithm. In
our study, we use the number of code lines of the core part of an algorithm
to make a productivity comparison between HLS and RTL language. We
expect the less number of code lines the better productivity.

3.4.2 Related works
In this section, we list several studies that investigate in performability and
productivity aspect of OpenCL:

• Fäerber et al. [5], by using OpenCL instead of Verilog, their imple-
mentation of the Cherenkov Angle Reconstruction algorithm can be
reduced nearly 13.6 times.

• Hill et al. [8], by observing the whole design flow of both VHDL and
OpenCL, the author states that 6 times increment in productivity is
possible.

18



• Memeti et al. [12] compare the productivity among OpenCL, OpenMP,
OpenACC, and CUDA. They use CodeStat for measurement and quan-
tifying the parallelization effort. By investigating many algorithms,
they find that the parallelization effort (of the number of code lines of
OpenCL in a total of code lines of a program) is 2.8% - 9.63%.

3.5 Chapter Summary
This chapter presented the main concepts and information about OpenCL.
Although the standard was born in 2008, OpenCL applications are not so
popular compared to NVIDIA’s CUDA. One of the reasons is that OpenCL
is an open standard, which is developed by many companies. Then many
features of OpenCL are not implemented and stable yet.

There are not so many studies that investigated in performability and
productivity aspect of the OpenCL. It is a considerable downside affecting
the standard’s development.

19



Chapter 4

Implementation of HiFP2.0
using OpenCL

4.1 Introduction
OpenCL standard defines two types of kernels, which are Single-task kernel
and ND-range kernel. Due to the uncertainty about which one is better than
the other, especially when the device we used in our study is an FPGA, imple-
menting two types of the kernel is needed to see the differences between the
two. The implementation using a Single-task kernel may be fully extracted
parallel capability into hardware. However, on the other side, the imple-
mentation using an ND-range kernel may take advantage of an engineer’s
heuristic experience.

This chapter presents two approaches to implement HiFP2.0 using High-
level synthesis: ND-range kernel & Single-task kernel.

The complete source code is published at https://github.com/m-inh/hifp.

4.2 Processing Flow
The HiFP2.0 program gives an audio file; after processed in 2 modules, an
FPID is generated.

The two modules of processing flow are listed below:

• Pre-processing: This module is to extract the wave data in the given
audio file. After extracting the audio file’s header (in RIFF format),
the appropriate wave data is read. After all, 131,072 wave samples are
loaded into Host memory.

20



Execution

Read	&	Extract	
wave	header
(RIFF	format)

Read	&	Extract	
wave	data

FPID	Generating HAAR-wavelet
Transform

Feature	Extraction

Read	path	to
	an	audio	file

Transfer	FPID	
to	Host

(4096	bits)

Pre-processing

Return	
wave	data

(131,072	samples)				

					Transfer	wave	data	
to	Device

(131,072	samples)				

Device

Host

Data	transfer

Figure 4.1: Processing flow of HiFP2.0 program using OpenCL

21



• FPID Generating: In this module, the wave samples given from the
previous step are transferred to the device side, then be processed at
the Execution phase. After the kernel execution, an FPID containing
4096-frames is transferred back to the host. FPID is the outcome we
need.

The overview of the entire process is shown in Figure 4.1.

4.3 3-Stages of Development Process
Figure 4.2 shows the complete stages of the development process.

Starting development with C or C++ version is a usual way to develop
an OpenCL program. C was born in 1972. Until now, there are many stable
libraries, frameworks built-in, and based on C/C++ ecosystems. Starting
with C/C++, in the 1st stage, the first version of the algorithm can build
and take advantage of libraries and frameworks’ diversity. We can apply any
appropriate testing frameworks to guarantee the result as correct. In the first
step, we need a runnable and correct program, at least.

After the C/C++ version is done, the 2nd stage is to implement the
Single-task Kernel (OpenCL) algorithm. We have to use FPGA vendors’ re-
sources (like libraries or frameworks, simulation tools) and modify the source
code to make it executable on both the Host and Device sides. The ven-
dor’s compiler conducts optimization on our program automatically, then
the source code from C/C++ is not changed so much. OpenCL’s language
is mainly based on C, so the transformation should be straightforward.

Finally, the 3rd stage is to implement the algorithm in the ND-range
kernel style. In this implementation, more insight and a deep understanding
of the algorithm have to be used. Unlike the Single-task kernel version, we
have to divide the input data and distribute them into many work-items and
work-groups in this work. The performance and resource depend on how
we design the data partition and the parameter choices. In this part, the
Host side’s work is almost untouched, and we focus on the Device side (or
kernels). The procedure of modifying Single-task kernel to ND-range kernel
seems popular to other studies [17].

22



Implement	in	C/C++

Implement	in	Single-task
Kernel	(OpenCL)

Implement	in	ND-range
Kernel	(OpenCL)

Algorithm's	description,	
Software	testing

Vendor's	libs,	
Source	code	modification,	
Vendor's	Simulation	tools

Kernel	modification,	
Data	partition,	

Parameter	choices

Figure 4.2: 3-Stages of Development process

...

...

...

...

...

...

1st chunk 2nd chunk nth chunk...

1st FPID chunk 2nd FPID chunk nth FPID chunk...

...

...

...

...

...

...

...

...

...

...

...

...

3-stages 
HHAR 

wavelet 
transform

Feature 
extraction

...

1 song (131,072 wave samples)

FPID for 1 song (4,096 frames)

an extra wave
sample,

always be 0

: Global memory : Private memory

chunk size chunk size chunk size

Figure 4.3: Processing one song using Single-task kernel

23



4.4 Kernel Implementation

4.4.1 Single-task Kernel
With the Single-task kernel style, the code we wrote is the same as the original
code, which is initially designed for CPU programs. OpenCL’s compiler
optimizes the kernel code automatically, and the optimization is mainly about
pipelining the data in the program. The overview of the implementation
using a Single-task kernel can be seen in figure 4.3.

Firstly, we need to implement the algorithm in C or C++, then break the
part of the code, which can be accelerated, to let it be executed in a device.
This part of the code is organized in one OpenCL kernel.

According to Figure 4.1, the Single-task kernel contains two processes in
the Execution phase: HAAR-wavelet Transform & Feature Extraction.

Figure 4.4 show the idea for 3-stages wavelet transform of HiFP2.0. When
conducting the HAAR-wavelet transform in the CPUs, the execution is se-
quential. The 3-stages wavelet transform needs 7 instructions to complete,
and then the CPU version needs 7 clock cycles. However, for FPGAs, the
dedicated circuit for the program is built, then 3 cycles are enough.

Figure 4.5 shows the idea for the Feature Extraction stage. In this stage,
we compare the value of each 2-adjacent samples. If a wave sample’s value is
higher than the previous one, a 0-value bit is returned; otherwise, a 1-value
bit is produced. In order to simplify the source code, an input array has 4097
wave samples given. The last wave sample has 0 in value. As a result, the
last frame of output FPID always has a 1-value bit.

8	wave	samples

1st-stage	

2nd-stage	

3rd-stage	

Figure 4.4: 3-stages wavelet transform

24



4097	wave	samples

/ / / /

...

...

/ / /

4096	FPID	frames

4096
Comparators

Figure 4.5: Feature extraction

Algorithm 1 shows the complete implementation of HiFP2.0 using a
Single-task kernel. The input is an array stored 131,072 wave samples. The
output is an array stored Fingerprint ID, which has 4,096 frames. To store
all wave samples after the HAAR-wavelet transform process, we use an array
declared in line 1 as dwt wave. After the HAAR-wavelet transform process,
4096 wave samples are returned. To simplify the source code in the later pro-
cess, we add one more 0-value sample at the last position of dwt wave array.
In the ideal situation, 4096 work-items are chosen to execute this kernel, and
then they are nice fit into the data we have. 131,072 wave samples in the 1st
process are assigned to 4096 work-items, and 4097 DWT wave samples in the
2nd process are assigned to 4096 work-items. It opens a chance for us to im-
plement an efficient FPGA algorithm because the task is divided into many
independent sub-tasks. From line 3 to line 19, the 1st stage of HiFP2.0 is con-
ducted. We use an array to store the 8-first samples on each 32 wave samples
of the input wave samples, and it is called wave tmp[8]. The for loop in part
between line 11 to line 16 is to conduct 3-stages HAAR-wavelet transform.
The imagination of the 3-stages HAAR-wavelet transform is shown in figure
4.4. After the for-loop of the HAAR-wavelet transform, the wave sample we
need is at the 1st position of wave tmp array. In the line 22, we assign the
last value of dwt wave to 0. From line 25 to line 31, the Feature Extraction
process is conducted. The last frame of output FPID is 1, due to the last
wave sample in dwt wave always be 0.

4.4.2 ND-range Kernel
In the Single-task kernel implementation, optimization is conducted automat-
ically by the vendor’s compiler. If the compiler works well in every situation,

25



Algorithm 1: Single-task kernel implementation
Input : Wave data array: WAVE SAMPLES (131,072 samples)
Output: Fingerprint ID: FPID (4096 frames)

1 dwt wave[4097];
2

3 /* 1st stage of HiFP2.0: HAAR-wavelet transform */
4 for i:=0 to 4096 step 1 do
5 wave tmp[8] ← Load 8 wave samples from WAVE SAMPLES;
6

7 /* Conduct HAAR-wavelet transform on 8-samples */
8 for k:=8 to 1 step k/=2 do
9 for l:=0 to k/2 step 1 do

10 wave tmp[l] := (wave tmp[l*2] + wave tmp[l*2 + 1]) / 2;
11 end
12 end
13

14 dwt wave[i] := wave tmp[0];
15 end
16

17 /* The last wave sample is 0 */
18 dwt wave[4097] := 0;
19

20 /* 2nd stage of HiFP2.0: Feature extraction */
21 for i:=0 to 4096 step 1 do
22 if dwt wave[i] > dwt wave[i+1] then
23 FPID[i] := 1;
24 else
25 FPID[i] := 0;
26 end
27 end

26



the ND-range kernel is not needed. However, in practice, we know that the
idea environment may not work. Many conditions affect the compiler deci-
sions, which should do and do not. One of the possible reason is memory
architecture. The OpenCL has 3 memory types, which are: Global memory,
Local memory, Private memory. It is hard for the compiler to decide on
what memory type should be used in many situations. The memory model
is tightly related to what work-items and work-groups to be used, so in some
situations, the algorithm has to be changed to adapt. In the ND-range kernel
style, heuristic experience may improve the algorithms, which are originally
designed to be run by a CPU.

Processing one song per execution using one work-group

...

...

...

...

...

...

1st chunk 2nd chunk nth chunk...

1st FPID chunk 2nd FPID chunk nth FPID chunk...

1st work-item

...

...

...

...

...

...

2nd work-item

...

...

...

...

...

...

barrier

nth work-item

3-stages 
HHAR 

wavelet 
transform

Feature 
extraction

...

work-group

1 song (131,072 wave samples)

FPID for 1 song (4,096 frames)

an extra wave
sample,

always be 0

: Global memory : Local memory : Private memory

chunk size chunk sizechunk size

group size

Figure 4.6: Processing one song per work-group using ND-range kernel

We need to complete the Single-task kernel version to implement an al-
gorithm in the ND-range kernel style. The ND-range kernel is based on
previous work, and the main changes are mostly conducted in the kernel
code, which is run by the device side. A way for distributing the input data
into many work-items and work-groups has to be investigated. The overview
of the implementation is shown in figure 4.6.

27



Algorithm 2 shows the complete pseudo kernel code for HiFP2.0 using
the ND-range kernel style. Due to the 1st-stage of HiFP2.0 (HAAR-wavelet
transform) has to be done before going next, we have 2 options to implement
the kernel. The first option is to use 2 kernels, one for HAAR-wavelet trans-
form, one for Feature Extraction. The second option is to use one kernel
with a Local memory type in OpenCL. The more kernels used, the more
Global memory is hit. Global memory is the lowest memory type of OpenCL
standard, so the first option is not optimal. To use the second option, we con-
struct the kernel to process one song per work-group using the Local memory.
To synchronize 2-stages of HiFP2.0, we use barrier() function between them.

The first input of this kernel is an array called WAVE SAMPLES, which
stores 131,072 wave samples. The second input is the number of work-items
per work-groups called GROUP SIZE; by using this parameter, the workload
per work-item can be specified within the kernel. Table 4.1 shows the relation
between work-group size and the number of wave samples assigned to one
work-item (called chunk size). We have chunk size = 4096

GROUP SIZE
. The

more work-items are used, the fewer number of wave samples be assigned to
each work-item.

Work-group size Number of wave samples
per work-item

4096 1
2048 2
1024 4
512 8
256 16
128 32
64 64
32 128

Table 4.1: Relation between work-group size and the
number of wave samples be assigned to one work-item

Processing multiple-songs per execution using multiple work-groups

It is straightforward for changing from processing one song per execution
to processing multiple songs per execution. Instead of loading one song per
execution, the host is changed to load multiple songs and save them into the
host’s memory until they reach the designated number of songs and then
transfer them to the device at once. The size of global work is changed from

28



Algorithm 2: ND-range kernel implementation (one-song)
Input : Wave data array: WAVE SAMPLES (131,072 samples)

Work-group size: GROUP SIZE
Output: Fingerprint ID: FPID (4096 frames)

1 lid := get local id();
2 chunk size := 4096 / GROUP SIZE;
3 fpid offset := lid * chunk size;
4

5 local dwt wave[4097];
6

7 /* 1st stage of HiFP2.0: HAAR-wavelet transform, run in parallel */
8 for i:=0 to chunk size step 1 do
9 wave offset := (fpid offset + i) * 32;

10 wave tmp[8] ← Load 8 wave samples from WAVE SAMPLES;
11

12 /* Conduct HAAR-wavelet transform on 8-samples */
13 for k:=8 to 1 step k/=2 do
14 for l:=0 to k/2 step 1 do
15 wave tmp[l] := (wave tmp[l*2] + wave tmp[l*2 + 1]) / 2;
16 end
17 end
18 dwt wave[fpid offset+i] := wave tmp[0];
19 end
20

21 /* The last wave sample always be 0 */
22 dwt wave[4097] := 0;
23

24 barrier();
25

26 /* 2nd stage of HiFP2.0: Feature extraction, run in parallel */
27 for i:=0 to chunk size step 1 do
28 if dwt wave[fpid offset+i] > dwt wave[fpid offset+i+1] then
29 FPID[fpid offset+i] := 1;
30 else
31 FPID[fpid offset+i] := 0;
32 end
33 end
34

35 return FPID;

29



131,072 to 131, 072 ∗N , with N is the number of songs per one execution.
Figure 4.7 shows how multiple songs be assigned to multiple work-groups.
Algorithm 3 shows the whole idea for the kernel code written for the device

side. Due to the global memory being changed for storing multiple songs,
then the work-group has to indicate the data it needs. The work-group’s
input wave samples is located by wave global offset, which is calculated by:
wave global offset = group id ∗ 131, 072. The work-group’s ID presented
by group id is retrieved from OpenCL API. The output FPID is also located
by the same way, calculated by fpid global offset = group id ∗ 4096.

...

1st song 2nd	song nth	song...

1st	FPID 2nd	FPID nth	FPID...

1st	work-group

:	Global	memory :	Local	memory

1st FPID

...

2nd	work-group

2nd FPID

...

nth	work-group

nth FPID

...

Figure 4.7: Processing multiple-songs with multiple work-groups

4.5 Chapter Summary
In this chapter, we show two approaches to implement HiFP2.0 by using
High-level synthesis.

The Single-task kernel seems to be more comfortable in development be-
cause most parts are the same as typical programs executed in a host by
CPU.

The ND-range kernel style is almost the same as the CUDA programming
model; they all use the Single Instruction and Multiple Data model (SIMD)
to solve a problem. This model seems to be more challenging than the Single-
task because the algorithm’s code-base must be changed and required a deep
understanding of the original algorithm.

30



Algorithm 3: ND-range kernel implementation (multiple songs)
Define : N is the number of songs
Input : Wave data array: WAVE SAMPLES (131,072*N samples)

Work-group size: GROUP SIZE
Output: Fingerprint ID: FPID (4096*N frames)

1 lid := get local id();
2 group id := get group id();
3 chunk size := 4096 / GROUP SIZE;
4 fpid offset := lid * chunk size;
5

6 wave global offset := group id * 131072;
7 fpid global offset := group id * 4096;
8

9 local dwt wave[4097];
10 local sub fpid[4096];
11

12 for i:=0 to chunk size step 1 do
13 /* Run in parallel */
14 dwt wave ← Conduct HAAR-wavelet transform for one song

corresponding to wave global offset;
15 end
16

17 /* The last wave sample always be 0 */
18 dwt wave[4097] := 0;
19

20 barrier();
21

22 for i:=0 to chunk size step 1 do
23 /* Run in parallel */
24 sub fpid ← Conduct Feature extraction on dwt wave

corresponding to fpid global offset;
25 end
26

27 FPID ← Merge sub fpid into global FPID corresponding to
fpid global offset;

28

29 return FPID;

31



Chapter 5

Evaluation

5.1 Introduction
This chapter tends to present the experimental results of our proposed meth-
ods. Firstly, we show the productivity comparison between VHDL and
OpenCL in term of number of code lines. Secondly, we show the performance
of OpenCL, the kernel we optimize and use for evaluation is ND-range kernel.
Performance aspects will be shown are:

• Execution-time & Throughput

• Total-time

• Speedup ratio

• Resource Usage

The comparison between our method and the original method will also
be discussed.

5.2 Productivity comparison with VHDL
To study the productivity aspect of OpenCL, we implement the core part
of a VHDL program to run HiFP2.0 and simulate it with ModelSim1 (from
Mentor Graphics) and then compare the number of code lines between them,
VHDL program and OpenCL kernel. The OpenCL implementation used for
the comparison is Single-task kernel. The Single-task kernel implementa-
tion and the VHDL implementation all have the same procedures to execute

1https://www.mentor.com/company/higher_ed/modelsim-student-edition

32



HiFP2.0 algorithm. A source file contains the code for logical instructions
and the comments and break lines that make the code understandable.

In this case, we use two versions of source file:

1. Original source file that contains: logical instructions, comments, line
breaks.

2. Archival source file that contains only logical instructions.

The result of our comparison is shown in table 5.1. The detailed source
code for the comparison is shown in the Listing section.

To make sure our VHDL implementation works well, some test benches
are developed and tested. Our result shows that by using OpenCL, the
number of code lines can be reduced from 5 to 5.54 times.

No. File name Number of code lines
normal archive*

1 dwt.vhd 39 30
2 dwt all.vhd 37 31
3 feature extraction.vhd 22 18
4 hifp.vhd 52 43

VHDL total 150 122

1 single task hifp.cl 30 22

Table 5.1: Number of code lines in our implementation.
* : Archive version has neither line breaks nor comments

5.3 Theoretical Performance Analysis

5.3.1 Theoretical speedup of an optimal HiFP2.0 im-
plementation on an FPGA

Table 5.2 shows the comparison between CPU & FPGA in a specific number
of cycles used when conducting the HiFP2.0 algorithm.

In the HAAR-wavelet transform process, each 8-wave samples is reduced
into a 1-wave sample, the CPU-version needs 7 cycles to complete, and the
FPGA-version needs 3 cycles to complete. Expanding to 4,096 workloads,
we have 28,672 (equal to 7*4,096) cycles for CPU-version and 3 cycles for
FPGA-version.

We can measure the speedup in latency by the formula 5.1:

33



S = C1

C2
∗ F2

F1
(5.1)

Where:

• S is the speedup in latency of architecture 2 concerning architecture 1

• C1 is the number of cycles of the architecture 1

• F1 is the clock frequency of the device corresponding to architecture 1

• C2 is the number of cycles of the architecture 2

• F2 is the clock frequency of the device corresponding to architecture 2

By applying to the above formula, we have the speedup in latency of
FPGA architecture concerning CPU architecture of 32,768/4=8,192. For
example, in an ideal environment, where the clock frequency is equal, and
the compiler of OpenCL works well, the FPGA implementation should get
8,192 times faster in throughput than the CPU implementation.

Number of cycles
CPU FPGA

HAAR-wavelet transform 28,672 3
Feature extraction 4,096 1

Total 32,768 4
Table 5.2: Number of clock cycles for HiFP2.0 executed
by CPU & FPGA

5.3.2 Theoretical speedup of our HiFP2.0 implemen-
tation using OpenCL ND-range kernel

In the previous chapter, algorithm 2 presented ND-range kernel implementa-
tion is explained. The algorithm gives 2 parameters as input: WAVE SAMPLES
and GROUP SIZE. The number of wave samples is constant, then the loop
over WAVE SAMPLES has O(1) complexity. In the first for-loop, it has a
range of 0 to chunk size. Because the chunk size is calculated by 4096/GROUP SIZE
and the HAAR-wavelet transform for one song always has a constant num-
ber of instructions, then the for loop has O( 4096

GROUP SIZE
) complexity. In

the second for loop, the feature extraction also has a constant number of

34



instructions, then the outer for loop has O( 4096
GROUP SIZE

) complexity. In to-
tal, we have O = O1( 4096

GROUP SIZE
) + O2( 4096

GROUP SIZE
), which can be literally

rewritten as O(GROUP SIZE−1).
Then, the time complexity of algorithm 2 can be stated by following

formula:

O(n−1) with 0 < n < 4096 (5.2)

Where:

• n: Number of work-items per work-group (GROUP SIZE)

For n = 1, algorithm 2 becomes a sequential algorithm, which acts the
same as the origin.

By applying formula 5.2, we can calculate the theoretical speedup by
following formula:

Speedup = O(n−1
1 )

O(n−1
2 )

= O(n−1
1

n−1
2

) = O(n2

n1
) (5.3)

Where:

• n1, n2: Number of work-items per work-group.

When n1 = 1, the formular 5.3 becomes O(n2), which is a linear speedup.

5.4 Experiment

5.4.1 Experimental settings
We use a computer installed with an FPGA and a chip from Intel to conduct
experiments.

The execution time of the algorithm running on Device (FPGA) is mea-
sured by the profiling API called clGetEventProfilingInfo, which is provided
along with the acceleration stack from Intel. To calculate the execution time,
the starting time and finishing time have to be measured; two tags used are
CL PROFILING COMMAND START and CL PROFILING COMMAND END,
respectively.

The built-in function in C measures the execution time of the algorithm
running on Host (CPU) called clock gettime with the tag CLOCK MONOTONIC,
this function measures the CPU time when running the algorithm.

The detail information of experimental computer is shown in below:

35



• FPGA: Intel PAC Arria 10 (DK-ACB-10AX1152AES), max clock fre-
quency: 1000 MHz

• CPU: Intel Core i7-9700K, max clock frequency: 3.6GHz

• Operating system: CentOS 7

• Language/Framework: C, OpenCL 1.0 by Intel (Version 17.1.1)

The detailed information of Intel FPGA Arria 10 is shown in Table 5.3

Parameter name Value
Device name PAC Arria 10 Platform
Vendor Intel Corp
Driver version 17.1
Type Accelerator device
Max compute units 1
Max work-item dimentions 3
Max work-item size 2147483647 / 2147483647 / 2147483647
Max work-group size 2147483647
Max clock frequency 1000 MHz
Address bits 64
Max memory allocated size 8191 MByte
Global memory size 8192 MByte
Error correction support no
Local memory type local
Local memory size 16 KByte
Max constant buffer size 2097152 KByte
Queue properties Profiling enable
Image support 1
Max read image arguments 128
Max write image arguments 128

Table 5.3: OpenCL supports on Intel PAC Arria 10

5.4.2 Experiment design
We design some experiments in order to know the speedup in throughput
of our implementation. The main question we intend to answer is how the
speedup of OpenCL can give. We have two implementations, which are
deeply described in the previous chapter: Single-task kernel & ND-range
kernel.

36



For the implementation in ND-range kernel style, the experiment has two
processes:

• First process: Conduct an experiment with one work-group per ker-
nel execution and keep changing the size of the work-group (number
of work-items per work-group) to find appropriate work-group size pa-
rameter in order to achieve the highest throughput.

• Second process: Use the work-group size parameter from the previous
step and keep changing the number of work-groups per kernel execution
until achieving the highest throughput. Our implementation assigns
one song to one work-group, then the number of work-groups per kernel
execution is equal to the number of songs per kernel execution.

Throughput is calculated by following formula:

Throughput (Gbps) = n ∗ b ∗ s ∗ 1, 000
e

(5.4)

Where:

• n: Number of songs (or work-groups) per kernel execution

• b: Number of bits per wave sample

• s: Number of samples

• e: Execution time (ms)

In our experiment, the number of songs per kernel execution is defined
on the host side and changed many times to find the best parameter for
the highest throughput. In the previous study, Araki used 16 bits per wave
sample, and the number of samples is 131,072. To be fair with the previous
work, we use the number of bits per wave samples, and the number of samples
per execution is the same as they used. The execution time is retrieved from
the provider’s API and measured in milliseconds.

To find an appropriate number of work-items per work-group

In the first process of our experiment design, we process one song per kernel
execution and keep increasing the number of work-items per work-group to
find the appropriate number to give the best throughput. Figure 5.1 shows
the throughput changes when changing the number of work-items per work-
group. The throughput of the system increases fast when we set the number

37



of work-items in range 1 to 64, and archives peak when we set the number
to 512. Then the appropriate number of work-items per work-group is 512.
We will use this value for the second process.

number of work-items per work-group (GROUP_SIZE )

th
ro

ug
hp

ut
 (G

bp
s)

0

5

10

15

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

Figure 5.1: Throughput and work-group size when conducting experiment
with one song per kernel execution. Maximum throughput is archieved when
the number of work-items per work-group is 512

To find an appropriate number of work-groups per kernel execution

In the second process, we use the number of work-items per work-group found
in the first process, 512. The algorithm 3 is used for this experiment.

Unlike the number of work-items defined by the kernel’s code, the number
of work-groups is defined in the host’s code and changes anytime after the
kernel’s compilation. We keep changing the number of work-groups utils the
throughput is maximized. The result can be seen in figure 5.2. The number
of work-groups per kernel execution leads to the highest throughput of 50,
then the appropriate number we choose is 50.

5.4.3 Total-time Decomposition
Our implementation’s total time and component time can be viewed in table
5.4. The transfer time oriented to the device is bigger than the host due to

38



number of work-groups (song) per kernel execution

th
ro

ug
hp

ut
(G

bp
s)

0

20

40

60

80

1 10 50 100 1000 2000 3000 4000 5000 6000 7000

Figure 5.2: Throughput and number of work-groups (songs) per kernel ex-
ecution when conducting experiment with the number of work-items per
work-group is 512. Maximum throughput is archieved when the number of
work-groups (songs) per kernel execution is 50

39



the difference in input data and the output data of kernel execution. The
input data is 131,072 wave samples (16 bits per sample), and the output
is 4096 FPID frames (16 bits per frame). The execution time is the time
for kernel execution in the device. The total time is measure by the host
side using function clockgettime with tag CLOCK MONOTONIC. The other
time is retrieved by calculating the margin between time measured by host
and time measured by device, which is: other = total − transfer to Host −
transfer to Device− execution.

Method transfer to transfer to execution other total
Device Host

(ms) (ms) (ms) (ms) (ms)
Single-task kernel 0.069 0.0080 0.1196 0.016 0.21
ND-range kernel 0.068 0.0078 0.1670 0.015 0.26
(512 work-items,

1 work-group)
ND-range kernel 2.379 0.095 1.505 0.037 4.016
(512 work-items,
50 work-groups)

Table 5.4: Total-time decomposition of our implementation

5.4.4 Resource Usage
Table 5.5 shows the resource usage for our implementations. HiFP2.0 algo-
rithm uses only integer operators; then, it is not needed to use any digital
signal processing (DSP) blocks.

5.5 Speed up by OpenCL ND-range kernel
Figure 5.3 shows the speedup comparison between our experiment and theory
when changing the number of work-items per work-group in ND-range kernel
implementation. The expected speedup line (red) is regressed on the first-
7 data points. Experimental speedup stops increasing when the number of
work-items is set on 64. Overhead arises because shared memory is used for
communication and synchronization among processing elements.

40



Method ALUTs FFs RAMs DSPs Frequency
(%) (%) (%) (%) (MHz)

Single-task kernel 17 16 20 0 156-312
ND-range kernel 17 16 21 0 156-312
(512 work-items,

1 work-group)
ND-range kernel 17 17 25 0 156-312
(512 work-items,
50 work-groups)

Table 5.5: Resource usage for our implementation
Note: ALUT: Adaptive Look-Up Table, FF: Flip-Flop, RAM: Random-Access
Memory, DSP: Digital Signal Processing

number of work-items per work-group (GROUP_SIZE)

sp
ee

du
p

0

10

20

30

40

50

1 10 100 1000

our experiment expectation

(log scale)

Figure 5.3: Speedup comparison between our experiment and theory. Ex-
pected speedup line (red) is regressed on the first-7 data points. Experimental
speedup stops increasing when number of work-items is set on 64

41



5.6 Performance comparison with previous work
We implement the original HiFP2.0 algorithm, which is designed purposely
for CPU. In unoptimized implementations, single-task kernel implementa-
tion and ND-range kernel implementation (512 work-items, 1 work-group)
have lower throughput than the original algorithm by 3.38-5.14 times. The
OpenCL implementation’s throughput is improved when advanced techniques
are applied, which is multiple songs implementation. The throughput of im-
proved implementation is higher than origin by 17.4%.

Method Throughput
(Gbps)

C (original algorithm) 59.32
Single-task kernel 17.53
ND-range kernel
(512 work-items,
1 work-groups)

11.52

ND-range kernel
(512 work-items,
50 work-groups)

69.67

Table 5.6: Throughput comparison among ours and previous work

5.7 Chapter Summary
In this chapter, we discussed our implementations and their performance. To
be conclusion, we summarize our results by following:

• By using OpenCL instead of VHDL, the number of code lines can be
reduced from 5 to 5.54 times.

• For our implementation, the best parameters led to the highest through-
put are 512 work-items per work-group, 50 work-groups per kernel ex-
ecution.

• The optimized algorithm of OpenCL can achieve more 17.4% perfor-
mance than the origin, which is intensionally designed for CPUs.

42



Chapter 6

Conclusion, Limitation &
Future work

6.1 Conclusion
In this study, we present the implementation of the HiFP2.0 algorithm on
Intel Arria 10 FPGA using OpenCL as a high-level synthesis. Two program-
ming models discussed are Single task kernel and ND-range kernel. Each
implementation of the two models has advantages and disadvantages. The
decision about which the best kernel to be used is not apparent and requires
studying optimization and measurement steps.

To summarize our results, some main points are listed as follows:

• High-level synthesis technology, especially OpenCL, improves produc-
tivity of FPGA program development. The number of code lines can
be reduced 5 to 5.54 times by using OpenCL instead of VHDL - a
register-transfer level language.

• For our implementation, the best parameters led to the highest through-
put are 512 work-items per work-group, 50 work-groups per kernel ex-
ecution.

• The optimized algorithm of OpenCL can achieve more 17.4% perfor-
mance than the origin, which is intensionally designed for CPUs.

In our experience, to develop an OpenCL kernel efficiently, some appro-
priate actions can be made are:

• Avoid using more than one kernel, which may lead to low performance:
In our first approach to use ND-range kernel, to synchronize two pro-
cesses of HiFP2.0, two kernels were made. The problem with this

43



method is the global memory is hit many times. Due to global memory
is the lowest memory tier in the OpenCL device, the execution time
increases; it is also discussed in our previous work [13]. The prob-
lem may be improved by using advanced optimization techniques like
pipes/channels between kernels. Liu et al. proposed a source-to-source
compiler framework, mainly focused on optimizing the OpenCL appli-
cation used multiple kernels [11].

• Try to use more than one work-group per kernel execution: An OpenCL
device contains many compute units responsible for executing work-
groups concurrently and dependently. Depending on the hardware
resource, there is a limited number of concurrent compute units ex-
ecuting one kernel call. By dividing a problem to be executed in many
work-groups, the program may use full hardware resources.

• Find the best kernel led to the highest performance by “try and error”:
By using high-level synthesis, software engineer treats compiler as a
black box. It is uncertain about the best way to achieve the highest
performance from an implementation. The speedup of an implementa-
tion always has limitations because of overhead. It is also told by other
researchers in [15]. The solution is to share data with other devices.

The future of heterogeneous computing is clear. A program may contain
both task-parallel and data-parallel code. The execution of the program can
be shared among many devices, based on their ability and availability.

6.2 Limitation
In the time developing OpenCL application, we realize some limitations of
OpenCL and our implementations, which may be deeply thought before used:

• For OpenCL application’s development, the compile time is very long.
Although the functional verification has been speeding up by simulation
tools, which is consumed few seconds for compiling, the performance
measurement has to be executed in a real device that costs some hours.
In our experience, the time costs for compiling kernels usually be 2-
3 hours. The time for compiling so long leads to lower productivity
of FPGA development compared to other programming models. In
CUDA, the time cost for compiling is measured in seconds.

• For our implementation of HiFP2.0, the data transfer is huge and al-
most not for processing. HiFP2.0 exploits each 4-adjacent wave sam-
ples into orientations - or the FPID frames. Because the comparison

44



is between the first wave sample and the fourth wave sample, it is not
needed to use three-wave samples in the middle. By transferring all
wave samples of a song, the transfer time increases wastefully.

6.3 Future work
The work for improving an algorithm is huge that impossibly be done in a
short time. Some future works listed below are produced from our view and
the problems we have:

• To reduce the transfer time: In the first process of our implementation,
instead of loading all 131,072 wave samples to memory, we need to load
the first wave sample for each four-wave samples. This solution may
reduce the number of wave samples by 75%, hence increase the time
for pre-processing and transfer time. One disadvantage of this solution
is that the loading process needs logical instructions executed by CPU,
then the overall execution time may not increase too much. Some
parallel loading methods may be investigated to tackle these problems.

• To examine the performance of single-task kernel implementation: In
this study, we use single-task kernel implementation for comparison
with VHDL implementation in terms of the number of code lines. It
is not sure about the performance of single-task kernel compared to
ND-range kernel processing multiple songs in one kernel call.

• To compare the performance, device utilization of VHDL and OpenCL
executed on an FPGA device: In this study, we implement the core part
of HiFP2.0 in VHDL and verify it by a simulation software. To have a
bigger picture of comparison between High-level synthesis and Register-
transfer level, we should investigate how well a VHDL implementation
performs on an FPGA device.

45



Research Achievements

Conference Proceedings
• M. T. Nguyen, R. Kawano, and Y. Inoguchi. An approach to use high-

level synthesis on HiFP2.0: ND-range kernel & Single-task kernel. In
Joint conference of Hokuriku chapters of Electrical and information
Societies 2020, 2020.

Awards
• Excellent presentation award at Joint conference of Hokuriku chapters

of Electrical and information Societies 2020 by IEICE Hokuriku.

46



Bibliography

[1] K. Araki, Y. Sato, V. K. Jain, and Y. Inoguchi. Performance evalua-
tion of audio fingerprint generation using haar wavelet transform. In
Proceedings of the International Workshop on Nonlinear Circuits, Com-
munications and Signal Processing, Tianjin, China, pages 1–3, 2011.

[2] P. Cano, E. Batle, T. Kalker, and J. Haitsma. A review of algorithms
for audio fingerprinting. In 2002 IEEE Workshop on Multimedia Signal
Processing., pages 169–173. IEEE, 2002.

[3] P. Cano, E. Batlle, T. Kalker, and J. Haitsma. A review of audio fin-
gerprinting. Journal of VLSI signal processing systems for signal, image
and video technology, 41(3):271–284, 2005.

[4] V. Chandrasekhar, M. Sharifi, and D. Ross. Survey and evaluation of au-
dio fingerprinting schemes for mobile query-by-example applications. In
12th International Society for Music Information Retrieval Conference
(ISMIR), 2011.

[5] C. Fäerber, R. Schwemmer, J. Machen, and N. Neufeld. Particle identi-
fication on an fpga accelerated compute platform for the lhcb upgrade.
IEEE Transactions on Nuclear Science, 64(7):1994–1999, 2017.

[6] J. Haitsma and T. Kalker. A highly robust audio fingerprinting system.
In Ismir, volume 2002, pages 107–115, 2002.

[7] J. Haitsma, T. Kalker, and J. Oostveen. Robust audio hashing for con-
tent identification. In International Workshop on Content-Based Multi-
media Indexing, volume 4, pages 117–124. Citeseer, 2001.

[8] K. Hill, S. Craciun, A. George, and H. Lam. Comparative analysis
of opencl vs. hdl with image-processing kernels on stratix-v fpga. In
2015 IEEE 26th International Conference on Application-specific Sys-
tems, Architectures and Processors (ASAP), pages 189–193, 2015.

47



[9] F. Holm and W. T. Hicken. Audio fingerprinting system and method,
Mar. 14 2006. US Patent 7,013,301.

[10] D. H. Jones, A. Powell, C. Bouganis, and P. Y. K. Cheung. Gpu versus
fpga for high productivity computing. In 2010 International Conference
on Field Programmable Logic and Applications, pages 119–124, 2010.

[11] J. Liu, A.-A. Kafi, X. Shen, and H. Zhou. Mkpipe: A compiler frame-
work for optimizing multi-kernel workloads in opencl for fpga. arXiv
preprint arXiv:2002.01614, 2020.

[12] S. Memeti, L. Li, S. Pllana, J. Ko lodziej, and C. Kessler. Benchmarking
opencl, openacc, openmp, and cuda: programming productivity, perfor-
mance, and energy consumption. In Proceedings of the 2017 Workshop
on Adaptive Resource Management and Scheduling for Cloud Comput-
ing, pages 1–6, 2017.

[13] M. T. Nguyen, R. Kawano, and Y. Inoguchi. An approach to use high-
level synthesis on hifp 2.0: Nd-range kernel & single-task kernel. In Joint
conference of Hokuriku chapters of Electrical and information Societies
2020, 2020.

[14] E. Nurvitadhi, G. Venkatesh, J. Sim, D. Marr, R. Huang, J. Ong
Gee Hock, Y. T. Liew, K. Srivatsan, D. Moss, S. Subhaschandra, et al.
Can fpgas beat gpus in accelerating next-generation deep neural net-
works? In Proceedings of the 2017 ACM/SIGDA International Sympo-
sium on Field-Programmable Gate Arrays, pages 5–14, 2017.

[15] K. Shata, M. K. Elteir, and A. A. El-Zoghabi. Optimized implementa-
tion of opencl kernels on fpgas. Journal of Systems Architecture, 97:491–
505, 2019.

[16] C. B. Weare. System and method for audio fingerprinting, Nov. 8 2005.
US Patent 6,963,975.

[17] H. R. Zohouri, N. Maruyama, A. Smith, M. Matsuda, and S. Matsuoka.
Evaluating and optimizing opencl kernels for high performance comput-
ing with fpgas. In SC ’16: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
pages 409–420, 2016.

48



Listing 6.1: dwt.vhd
1 library ieee;
2 use ieee. std_logic_1164 .all;
3 use ieee. numeric_std .all;
4
5 package dwt_pkg is
6 type natural_array is array( natural range <>) of

natural range 0 to 65535;
7 end package ;
8
9 -- ----------------------------------------------

10
11 library ieee;
12 use ieee. std_logic_1164 .all;
13 use ieee. numeric_std .all;
14 use work. dwt_pkg .all;
15
16 ENTITY dwt IS
17 PORT (
18 wave: IN natural_array ( 0 to 7 );
19 dwt_wave : OUT natural
20 );
21 END ENTITY ;
22
23 ARCHITECTURE rtl OF dwt IS
24 signal temp_dwt_1 : natural_array ( 0 to 3 );
25 signal temp_dwt_2 : natural_array ( 0 to 1 );
26 signal temp_dwt_3 : natural ;
27 BEGIN
28 temp_dwt_1 (0) <= (wave (0) + wave (1)) / 2;
29 temp_dwt_1 (1) <= (wave (2) + wave (3)) / 2;
30 temp_dwt_1 (2) <= (wave (4) + wave (5)) / 2;
31 temp_dwt_1 (3) <= (wave (6) + wave (7)) / 2;
32
33 temp_dwt_2 (0) <= ( temp_dwt_1 (0) + temp_dwt_1 (1)) /

2;
34 temp_dwt_2 (1) <= ( temp_dwt_1 (2) + temp_dwt_1 (3)) /

2;
35
36 temp_dwt_3 <= ( temp_dwt_2 (0) + temp_dwt_2 (1)) / 2;
37
38 dwt_wave <= temp_dwt_3 ;
39 END ARCHITECTURE ;

49



Listing 6.2: dwt all.vhd
1 library ieee;
2 use ieee. std_logic_1164 .all;
3 use ieee. numeric_std .all;
4 use work. dwt_pkg .all;
5
6 entity dwt_all is
7 generic ( num_of_fpid_frames : positive := 4096);
8
9 port (

10 wave_all : in natural_array ( 0 to
num_of_fpid_frames *32 -1 );

11 dwt_wave_all : out natural_array ( 0 to
num_of_fpid_frames -1 )

12 );
13 end entity ;
14
15 architecture rtl of dwt_all is
16 signal tmp_wave_all : natural_array ( 0 to

num_of_fpid_frames *32 -1 );
17 signal tmp_dwt_all : natural_array ( 0 to

num_of_fpid_frames -1 );
18
19 component dwt is
20 port (
21 wave: in natural_array ;
22 dwt_wave : out natural
23 );
24 end component dwt;
25 begin
26 tmp_wave_all <= wave_all ;
27
28 gen_dwt : for i in 0 to num_of_fpid_frames -1 generate
29 dwt_en : dwt
30 port map (
31 tmp_wave_all ( i*32 to i*32+7 ),
32 tmp_dwt_all (i)
33 );
34 end generate ;
35
36 dwt_wave_all <= tmp_dwt_all ;
37 end architecture ;

50



Listing 6.3: feature extraction.vhd
1 library ieee;
2 use ieee. std_logic_1164 .all;
3 use ieee. numeric_std .all;
4 use work. dwt_pkg .all;
5
6 entity feature_extraction is
7 generic ( num_of_fpid_frames : positive := 4096);
8
9 port (

10 dwt_wave_all : in natural_array (0 to
num_of_fpid_frames -1);

11 fpid_all : out natural_array (0 to
num_of_fpid_frames -1)

12 );
13 end entity ;
14
15 architecture rtl of feature_extraction is
16 begin
17 fpid_all ( num_of_fpid_frames -1) <= 0;
18
19 gen: for i in 0 to num_of_fpid_frames -2 generate
20 fpid_all (i) <= 1 when ( dwt_wave_all (i) >

dwt_wave_all (i+1)) else 0;
21 end generate ;
22 end architecture ;

51



Listing 6.4: hifp.vhd
1 library ieee;
2 use ieee. std_logic_1164 .all;
3 use ieee. numeric_std .all;
4 use work. dwt_pkg .all;
5
6 entity hifp is
7 generic ( num_of_fpid_frames : positive := 4096);
8
9 port (

10 wave_all : in natural_array (0 to
num_of_fpid_frames *32 -1);

11 wave_dwt_all : out natural_array (0 to
num_of_fpid_frames -1);

12 fpid_all : out natural_array (0 to
num_of_fpid_frames -1)

13 );
14 end entity ;
15
16 architecture rtl of hifp is
17 signal temp_dwt_all : natural_array (0 to

num_of_fpid_frames -1);
18
19 component dwt_all is
20 generic ( num_of_fpid_frames : positive );
21
22 port (
23 wave_all : in natural_array ( 0 to

num_of_fpid_frames *32 -1 );
24 dwt_wave_all : out natural_array ( 0 to

num_of_fpid_frames -1 )
25 );
26 end component ;
27
28 component feature_extraction is
29 generic ( num_of_fpid_frames : positive );
30
31 port (
32 dwt_wave_all : in natural_array (0 to

num_of_fpid_frames -1);
33 fpid_all : out natural_array (0 to

num_of_fpid_frames -1)
34 );

52



35 end component ;
36 begin
37 en_dwt_all : dwt_all
38 generic map( num_of_fpid_frames => num_of_fpid_frames

)
39 port map(
40 wave_all ,
41 temp_dwt_all
42 );
43
44 en_feature_extraction : feature_extraction
45 generic map( num_of_fpid_frames => num_of_fpid_frames

)
46 port map(
47 temp_dwt_all ,
48 fpid_all
49 );
50
51 wave_dwt_all <= temp_dwt_all ;
52 end architecture ;

53



Listing 6.5: single task hifp.cl
1 __kernel void generate_fpid (
2 __global const short int * restrict wave ,
3 __global short int * restrict fpid
4 ) {
5 short int dwt_wave [4097];
6
7 // dwt
8 for (int i=0; i <4096; i++) {
9 short int wave_tmp [8];

10
11 for (int j=0; j <8; j++) {
12 wave_tmp [j] = wave[i*32 + j];
13 }
14
15 for (int k=8; k >1; k/=2) {
16 for (int l=0; l<k/2; l++) {
17 wave_tmp [l] = ( wave_tmp [l*2] + wave_tmp [

l*2 + 1]) / 2;
18 }
19 }
20
21 dwt_wave [i] = wave_tmp [0];
22 }
23
24 // feature extraction
25 for (int i=0; i <4096; i++) {
26 if ( dwt_wave [i] > dwt_wave [i+1]) {
27 fpid[i] = 1;
28 }
29 }
30 }

54



Listings

6.1 dwt.vhd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2 dwt all.vhd . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.3 feature extraction.vhd . . . . . . . . . . . . . . . . . . . . . . 51
6.4 hifp.vhd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.5 single task hifp.cl . . . . . . . . . . . . . . . . . . . . . . . . . 54

55


