
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title Harmony Analysis based on Tonal Pitch Space

Author(s) 山本, 紘征

Citation

Issue Date 2021-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/17164

Rights

Description
Supervisor: 東条 敏, 先端情報科学研究科, 修士（情

報科学）

Master’s Thesis

Harmony Analysis based on Tonal Pitch Space

Hiroyuki Yamamoto

Supervisor Professor Satoshi Tojo

Graduate School of Advanced Science and Technology
Japan Advanced Institute of Science and Technology

(Information Science)

February, 2021

Abstract

Tonal Pitch Space (TPS) gives us a numerical distance between two chords, and
enables us to give multiple interpretations of chord sequences as to their keys and
degrees. Therefore, we can find the most plausible (i.e. sounds natural for humans)
interpretation as the shortest path for the sequence. In this thesis, we present two
studies to augment/revise TPS from different aspects. They are closely related
but done separately.

First, we try to improve the expressiveness by applying three extensions to
TPS and the interpretation graph proposed by Sakamoto et al. to deal with jazz
harmony well. In the first extension, we augment TPS to cover those chords
commonly used in jazz. Thereafter, we propose the notion of ϵ-transition, which is
a free reinterpretation of a chord, to represent a pivot chord. Also, we propose the
notion of cadential shortcut, which includes multiple chords to express a cadence,
given as a shorter directed path in addition to the original sequences of possible
interpretations. We show our method successfully capture more information while
reducing the ambiguity. Furthermore, we conduct chord reharmonization and
cadence evaluation as examples of applications of our method.

Next, we address the arbitrariness in TPS. We generalize the distance calcula-
tion system and propose a framework in which we can define new distance elements
freely in the form of table and train them with data. In the training procedure,
a total distance of a path is converted to a path probability, then update the pa-
rameters by gradient descent based on the cross entropy loss. We compare several
distance elements and show the best one can considerably improve the prediction
accuracy.

Acknowledgments

I would like to express my deep gratitude and appreciation to my supervisor Pro-
fessor Satoshi Tojo. Without his patient support and guidances, it would have
been impossible for me to complete this master’s program.

I would also like to extend my appreciation to my supervisor of minor research
Professor Yasushi Inoguchi for his great instructions.

In addition, I my very thankful to my colleagues under Tojo laboratory and
others for their help and friendshop.

Contents

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Thesis Outline . 2

2 Preliminaries 3
2.1 Tonal Pitch Space . 3

2.1.1 Overview . 3
2.1.2 Regional Distance . 3
2.1.3 Chordal Distance . 4
2.1.4 Distance based on the Basic Space 4
2.1.5 Distance within Related Keys 6
2.1.6 Distance across Related Keys 6

2.2 Former Approaches . 7

3 Three Extensions on TPS 9
3.1 Overview . 9
3.2 Three Extensions . 9

3.2.1 Extension 1: Tetrads and Scales 9
3.2.2 Extension 2: ϵ-transitions 10
3.2.3 Extension 3: Cadential Shortcuts 13

3.3 Experiments . 13
3.3.1 Data and Method . 13
3.3.2 Results . 14
3.3.3 Tree Representation . 17

3.4 Applications . 20
3.4.1 Overview . 20
3.4.2 Reharmonization . 20
3.4.3 Cadence Pattern Evaluation 22

1

4 Distance Learning Model 25
4.1 Overview . 25
4.2 Proposed Model . 25

4.2.1 Distance Element 1: TPS Region 26
4.2.2 Distance Element 2: TPS Chord 26
4.2.3 Distance Element 3: TPS Basic Space 28
4.2.4 Distance Element 4: Scale Distance 28
4.2.5 Distance Element 5: Tonic Distance 28
4.2.6 Distance Element 6: Key Distance 29
4.2.7 Distance Element 7: Root-Degree Distance 30
4.2.8 Distance Element 8: Key-Degree Distance 31

4.3 Learning Strategy . 31
4.3.1 Path Probability . 32
4.3.2 Loss and Gradient . 34
4.3.3 Accuracy . 34

4.4 Experiments . 34
4.4.1 Data and Method . 34
4.4.2 Results . 37

5 Conclusion and Future Work 39
5.1 Conclution . 39
5.2 Future Work . 39

A Properness of the Path Probability 43

B Differentiating the Loss Function 45

C Learned Tables 47

List of Figures

2.1 regional circle-of-fifths . 4
2.2 chordal circle-of-fifths . 5
2.3 basic space from I/C to iv/d . 5
2.4 interpretation graph . 7

3.1 extended interpretation graph . 12
3.2 analysis of ’Fly Me to the Moon’ (a) original method (b) proposed

method . 16
3.3 generated trees . 19
3.4 analysis of ’Fly Me to the Moon’ (a) original method (b) proposed

method . 21
3.5 an example of nine-chord sequence (a) original sequence (b) modi-

fied sequence . 22

4.1 an example of adding a constant value C to every distance If a+b+c
is greater than a′ + b′ + c′, a + b + c + 3C is always greater than
a′ + b′ + c′ + 3C. 27

4.2 sample calculation of path accuracy Note that, if we look at the last
three layers, there are just two unique paths. But the accuracy of
the fourth layer is 1/3 instead of 1/2. 35

List of Tables

3.1 Extended Chord Types . 11
3.2 Cadence Patterns . 13
3.3 Graph Complexity and Shortest Paths Counts 15
3.4 30 Best and Worst Patterns (acc gain represents accuracy gain) . . 24

4.1 performances of distance elements prms, mean, and stdev repre-
sent model parameters, mean accuracies, and standard deviations
of accuracies . 38

C.1 Distance Element 4.1 . 47
C.2 Distance Element 4.2 . 47
C.3 Distance Element 5.1 . 47
C.4 Distance Element 5.2 . 48
C.5 Distance Element 5.3 . 48
C.6 Distance Element 5.4 . 48
C.7 Distance Element 6.1 . 48
C.8 Distance Element 6.2 . 48
C.9 Distance Element 7.1 . 49
C.10 Distance Element 7.2 . 49
C.11 Distance Element 4.1 . 49
C.12 Distance Element 5.1 . 49
C.13 Distance Element 4.2 . 50
C.14 Distance Element 5.1 . 50
C.15 Distance Element 5.1 . 50
C.16 Distance Element 7.1 . 50
C.17 Distance Element 4.1 . 50
C.18 Distance Element 5.1 . 51
C.19 Distance Element 7.1 . 51
C.20 Distance Element 4.2 . 51
C.21 Distance Element 5.1 . 51
C.22 Distance Element 7.1 . 51
C.23 Distance Element 6.1 . 52

4

C.24 Distance Element 7.1 . 52
C.25 Distance Element 6.2 . 52
C.26 Distance Element 7.2 . 52
C.27 Distance Element 6.1 . 53
C.28 Distance Element 7.1 . 53
C.29 Distance Element 6.1 . 53
C.30 Distance Element 7.1 . 53

Chapter 1

Introduction

1.1 Background and Motivation

Harmony is one of the most fundamental components of music [15], and, like
natural language, there must be some kinds of syntax in harmonic sequences [1].
Harmonic syntax has been utilized in many music applications, e.g. audio chord
transcription [3], melody harmonization [5], or meter detection [8].

Tonal Pitch Space (TPS) [7] is a music model which provides a foundation
to the harmonic analysis by defining the smoothness of chord connection as the
numeric distance between two chords, given their keys and degrees. When a chord
name is interpreted in multiple ways as to these keys and degrees, a chord sequence
also gets multiple interpretations and results in a complicated network of connec-
tions. Among which, we can regard the path of connections with the shortest
distance as the most natural interpretation.

Sakamoto et al.[14] have proposed a method to find the most plausible inter-
pretations of chord progressions by finding the shortest path in the interpretation
graph , a directed graph whose edge weights calculated with TPS. However, this
method has some limitations: (1) tetrads (e.g. seventh chords) are not considered,
(2) natural/harmonic/melodic minor scales are not distinguished, (3) every chord
has only one interpretation in an interpretation path, (4) direction is not consid-
ered, and (5) relations among more than two chords are not considered. Because
these limitations tend to result in somewhat coarse analysis especially for jazz, the
number of shortest paths often becomes enormous.

To overcome these limitations, in the first study we propose three extensions
on TPS and interpretation graph. First, we incorporate tetrads and distinction of
three minor scales (i.e. natural, harmonic, and melodic minor scales) in TPS to
deal with the issues on (1) and (2). Second, we introduce ϵ-transition, which is a
notion in automata theory, that tolerates ‘free’ shift in states, into the interpre-

1

tation graph, in which a chord progression is regarded as a state change from a
vertex to another. This ϵ-transition, however, allows us to reread a chord name to
another without progression. This contributes the interpretation of pivot chord,
and thus solves (3). Third, we introduce the notion of cadential shortcuts to solve
(4) and (5). If a certain sequence of chords matches a typical progression of ca-
dences, we can skip the intermediate progressions and can jump to the cadences.
This kind of shortcuts explicitly gives us the direction of chord progression to solve
(4), and they enable us to consider tri-grams (or more) to solve (5).

Aside from this, TPS contains some arbitrariness in the structure and coeffi-
cients. The distance in TPS is composed of three elements and they are mainly
based on music theory and observation, but not, strictly speaking, defined in an
objective manner. Furthermore, the model is a little too simple to predict chord
interpretations, resulting in a low prediction accuracy.

In the other study in this thesis, we work through these problems by a novel
framework which enables us to define new distance elements and train them with
data. First we rearrange the distance formula in TPS to the sum of three distance
elements. Then generalize it to allow us to add other distance elements, we define
these new distance elements in the form of table. Next, we introduce a novel
probability formula which gives higher probability to a shorter path. Finally,
by differentiating the cross entropy loss function, we calculate the gradient in
parameter space and update the parameters using it.

1.2 Thesis Outline

The rest of this thesis is organized as follows: Chapter 2 provides some prelim-
inaries to our studies. In Chapter 3 and 4, we detail our two studies on TPS
respectively. Finally, in Chapter 5, we summarize our contributions and state our
further directions.

2

Chapter 2

Preliminaries

2.1 Tonal Pitch Space

2.1.1 Overview

Tonal Pitch Space (TPS) is a music model for the quantitative harmony analysis
proposed by Fred Lerdahl [7]. It is proposed to complement Lerdahl’s the other
music theory the Generative Theory of Tonal Music (GTTM) [6], which applies
the generative grammar to extend the Schenkerian theory.

In this model, a chord is interpreted as a pair of a key and a degree in it
(e.g. interpretations of C major triad are as follows: I/C, III/a, V/F, IV/G, VI/e,
and VII/d) and a distance is defined between two chord interpretations. This
distance is intended to represent the degree of the perceptual distance, i.e. when
the distance of two chord interpretations in TPS is small, the transition between
them should sound natural to us. By means of this, we can determine the most
plausible interpretation pair as the pair which achieves the shortest distance.

A distance in TPS is defined as a combination of three elements explained
below.

2.1.2 Regional Distance

The first element is the distance between keys, and is defined as the length of
the shortest arc on the regional circle of fifths (Figure 2.1). This distance cannot
be calculated between major and minor keys, so one must convert either key to
the key with same key signature. For example, to calculate the regional distance
between G major and A minor, we must convert G major to E minor, or A minor
to C major, then we can calculate the distance, 1 in this case, from the regional
circle-of-fifths.

3

Figure 2.1: regional circle-of-fifths

2.1.3 Chordal Distance

Along with the regional circle-of-fifths, TPS defines chordal circle-of-fifths (Figure
2.2). The second element is the distance between root notes, and is defined as the
length of the shortest arc on the chordal circle-of-fifths. Note that though this is
also called ‘circle-of-fifths’, not all adjacent elements are of perfect fifths.

2.1.4 Distance based on the Basic Space

The last element is based on a structure called basic space, which is composed of
5 levels (i.e. root, fifth, triadic, diatonic, and chromatic) and each level contains
pitch classes reflecting the chord interpretation. The levels are arranged in order
of the importance of a pitch class to the chord, level a being the most important.
The way how to calculate the distance on basic space is illustrated in Figure 2.3.
The distance is defined as the number of missing circles from destination to source.
In Figure 2.3, there are five missing circles (which are highlighted), therefore, the
distance in this case is 5.

4

Figure 2.2: chordal circle-of-fifths

Figure 2.3: basic space from I/C to iv/d

5

2.1.5 Distance within Related Keys

TPS distinguishes key pairs as related or distant. Related keys are defined as
follows: {

C(I) = {I, i, ii, iii, IV,V, vi} from major key

C(i) = {i, I, bIII, iv, v, bVI, bVII} from minor key
(2.1)

If we define a boolean function

f(x, y)
∆
= C(x) contains y

this function satisfies f(x, y) = f(y, x) for all (x, y). Key pairs which are not
related are regarded as distant.

We can think of a key’s related keys as the ones which share all, or all except
one, pitch classes with the original key plus parallel key of the original key. Related
keys are considered to have so strong structural links with the original key that
the modulation between them should sound natural to humans.

The distance between chord interpretations x and y, which are related keys, is
defined as a sum of the three distances explained above:

δ(x, y) = region(x, y) + chord(x, y) + basicspace(x, y) (2.2)

2.1.6 Distance across Related Keys

If we interpret a transition between distant keys as a direct modulation, it can
sound unnatural to us. Instead, in TPS, it is interpreted as a combination of
modulations between related keys. For example, modulation from C major to D
major should be interpreted as modulations C major → G major → D major,
instead of just C major → D major. Note that, there are infinite combinations to
realize this, so we must choose the one that achieves the shortest total distance.
Also note that, in all passing keys (e.g. G major, in this example) the degrees are
set to be one. Therefore, the distance is defined as follows:

δ(x, y) = min(δ(x, TR1) + ∆(R1, Rn) + δ(TRn , y)

|R1 ∈ C(Rx), Rn ∈ C(Ry))

∆(R1, Rn) = min(
n−1∑
i=1

δ(TRi
, TRi+1

)|Ri+1 ∈ C(Ri))

(2.3)

As explained above, the distance within related keys (equation 2.2) is composed
of the sum of three elements. Now, because equation 2.3 is the sum of quation
2.2s, the resulting distance can also be considered as the sum of the three elements.
Therefore, we can rewrite the distance as follows:

δ(x, y) = totalRegion(x, y) + totalChord(x, y) + totalBasicspace(x, y) (2.4)

6

2.2 Former Approaches

Sakamoto et al.[14] have applied TPS to analyze chord sequences to find the most
plausible interpretation as the shortest path based on the distances described
above.

Given a chord sequence, at first, their method extends each chord to its inter-
pretations and constructs a graph whose edges have weights that correspond to the
distances on TPS. Then it applies the Viterbi algorithm [16] to find the shortest
interpretation paths from the start to the goal. Figure 2.4 shows an interpretation
graph for chord sequence C → F → G → C, and one of the shortest interpretation
paths is I/C → IV/ C → V/C → I/C.

Figure 2.4: interpretation graph

However, because this method is based on TPS, there are several limitations de-
rived from this method. First, TPS basically is a theory for the harmony of period
of common practice [11] and only consider major triads and minor triads and does
not distinguish three minor scales, but it is insufficient to analyze jazz harmony
which belongs to the period beyond common practice and for the most part com-
posed of tetrads and is often characterized by scale-conscious performances. Also,
TPS only defines the distances between two chord interpretations, so, for example,

7

some chord sequences found very often in jazz like II1 → V → I cannot be dealt
directly with it. Moreover, the distance becomes symmetric (i.e. δ(x, y) = δ(y, x)
for all x and y), but it seems not appropriate for harmony analysis; every chord
progression should hold its own meaning, and the reverse order often does not
make sense. Finally, the interpretation graph of [14] does not allow double inter-
pretations on a chord in an interpretation path, therefore it cannot express key
modulations by pivot chords, which is common in jazz. As a consequence, the
original TPS cannot distinguish the subtle differences in the jazz chords, and the
analysis results in a number of the shortest paths with the same value.

Additionally, in the effort to improve cadence detection, Matsubara et al.[19]
have proposed to restrict the minor scale to harmonic one to avoid the ambiguity
in chord interpretation, and to revise the candidates of chord interpretations for
each Berklee chord name. Also, Yamaguchi et al.[20] have proposed to extend
the basic space with an additional layer particularly designed to express seventh
chord.

1We henceforth simplify the degree notation to use only upper case letters and omit acciden-
tals.

8

Chapter 3

Three Extensions on TPS

3.1 Overview

TPS [7] and the method of Sakamoto et al. [14] have several limitations especially
when we analyze jazz harmony, so we propose three extensions to handle these
limitations. We explain these extensions in detail in section 3.2. Then we conduct
experiments to confirm if our approach successfully improve the expressiveness of
the model and reduce the ambiguity of the results in section 3.3. And finally, in
section 3.4, we show two applications utilizing added information and structure by
the extensions.

3.2 Three Extensions

3.2.1 Extension 1: Tetrads and Scales

TPS basically is a theory for the harmony of the period of common practice [11]
and only consider triads and does not distinguish three minor scales, but it is
insufficient to analyze jazz harmony which belongs to the period beyond common
practice and for the most part composed of tetrads1 and is often characterized by
scale-conscious performances. So, as the first extension, we extend chord types
and scales as in Table 3.1, which is obtained from [9]. This includes commonly
used chord types, available scales, degrees, and chord functions. Some of them
are non-diatonic chords and they are penalized according to the number of out-
of-scale notes. The penalty cost used here is a parameter (we set this 1 for each

1in fact, tetrads are mentioned a little in the literature [7] but we employ Table 3.1 in con-
sideration of the subsequent extensions.

9

out-of-scale notes2). Note that not all of the chord interpretations appeared in the
original TPS are included in the table (e.g. second-degree triads of major keys).

3.2.2 Extension 2: ϵ-transitions

In the former approach, it is impossible to assign two interpretations at a same
time to a chord. Then secondly, we introduce ϵ-transition to express paths which
contain interpretation changes within a chord. For example, given a chord sequence
A7 → Dm7 → G7 → CM7, we may consider A7 → Dm7 is in D (harmonic)
minor, and Dm7 → G7 → CM7 is in C major, then Dm7 is a pivot chord, which
bridges the key modulation and needs to be interpreted in both keys. We call
this bridging edges ϵ-transitions. To bring this into the calculation, we modify the
interpretation graph, as shown in Figure 3.1, duplicating every chord interpretation
candidate so that each chord can have at most two interpretations at once without
losing applicability of Viterbi algorithm. In Figure 3.1 all diagonal arrows within
rectangles are ϵ-transition, for example the white arrow inside the Dm7’s rectangle
is the one described above. The cost of this interpretation change is a parameter
(we set this cost 0.5).

2We have chosen this value through our experiments, and the same goes for the other param-
eters in this chapter.

10

chord type scale degree chord function

major triad maj I T
nat bIII T
maj, mel IV SD
maj, har, mel V D

dominant seventh maj* I T
maj*, nat*, har*, mel* bII D
mel IV SD
maj, har, mel V D
nat*, har*, mel*, maj* bVI SDM
nat*, har*, mel* VII SD

major seventh maj I T
nat*, har*, mel*, maj* bII SDM
nat bIII T
maj IV SD
nat, har bVI SDM

minor triad nat, har, mel I T
nat, har IV SDM

minor seventh nat I T
maj, mel II SD
maj III T
nat, har IV SDM
nat V D
maj VI T

minor-major seventh har, mel I T
diminished seventh har VII D
half-diminished seventh nat, har II SDM

maj* #IV T
mel VII D

‘maj’, ‘nat’, ‘har’, and ‘mel’ mean major, natural minor, harmonic minor, and melodic
minor scales respectively. ‘*’ is added if the chord is non-diatonic.

Table 3.1: Extended Chord Types

11

F
ig
u
re

3.
1:

ex
te
n
d
ed

in
te
rp
re
ta
ti
on

gr
ap

h

12

3.2.3 Extension 3: Cadential Shortcuts

Thirdly, to handle chord sequences of more than two chords, we extend the inter-
pretation graph further to add new edges, which we call cadential shortcuts. Based
on [9], we define the sequence patterns as certain sequences of chord functions and
are listed in Table 3.2. These patterns are defined as sequences of chord functions
within the same keys and their parallel keys, and the consecutive same functions
can be wrapped into one. For example, pattern 5 (SD → D → T) can be applied
to Fm7 → Dm7 → G7 → Cm7. This method also enables us to take the direction
into consideration and to assign different costs to reversed chord sequences. We
search for all the patterns in Table 3.2 in the graph and for every identical pattern,
we add cadential shortcuts connecting from the start node to the end node of the
identical patterns and set the cost as that of the original path times 0.5 (this is
also a parameter). In Figure 3.1, there found a pattern 5 (SD → D → T, shown
by thick arrows) and added a cadential shortcut (shown by a dashed arrow). Our
statistical analysis will be shown later in the next section. This modification also
retains the applicability of the Viterbi algorithm to find the shortest paths (for
convenience of explanation, we expressed the cadential shortcuts as edges, but
they are actually combinations of edges and nodes).

pattern function sequence

1 D → T
2 SD → T
3 SDM → T
4 SD → SDM → T
5 SD → D → T
6 SDM → D → T
7 SD → SDM → D → T

Table 3.2: Cadence Patterns

3.3 Experiments

3.3.1 Data and Method

We test if our approach can successfully disambiguate the chord interpretations
by reducing the number of the shortest paths. We use JazzCorpus [4], which is
an annotated corpus of tonal jazz chord sequences of 76 pieces totaling roughly

13

3,000 chords, and for each music piece we extract every successive nine3 chords in
the sliding window and then apply the analysis described above and calculate the
averages of generated graph complexity (in terms of node count and edge count)
and the numbers of shortest paths. To compensate those chords which are not
included in Table 3.1, we substitute them for similar chords (e.g. Csus4,7 with C7,
C#5,7 with C7).

3.3.2 Results

The result is shown in Table 3.3(a). It shows that while our extensions increase
the complexity of the interpretation graphs the number of resulting shortest paths
is reduced, especially when cadential shortcuts are applied.

This result is of arbitrary nine chords within pieces, so that there exist a lot of
unnatural chord sequences to which hardly any cadence patterns can be applied.
Then, we apply the same calculations, but this time the whole piece instead of
nine chords sliding window, to several well-known jazz standards. The results are
shown in Table 3.3(b). Though each piece has different characteristics from the
others, it can be seen that in all cases our proposed method can reduce the number
of shortest paths.

Figure 3.2 shows the first eight measures of‘ Fly Me to the Moon ’along
with the results of (a) original method [14] and (b) our proposed method. White
arrows represent ϵ-transitions and consecutive dashed arrows represent cadential
shortcuts. As can be seen, the result of the original method contains many forks
with the same costs, and in this example, there are 24 = 16 paths. On the
other hand, our method can find one shortest path. This is especially because
the cadential shortcuts prefer those plausible cadences to the other equally costed
forks.

3We have chosen this number in terms of processing time.

14

#nodes #edges #shortest

paths

original [14] 56 300 227.49
+ tetrads, 4 scales 55.01 287.22 172.76
+ ϵ-transitions 108.01 617.43 450.27
+ cadential shortcuts 131.58 657.06 74.18

(a) average

#chords original proposed

[14] approach

Fly Me to the Moon 34 8,495,104 384
Autumn Leaves 31 262,144 48
I Got Rhythm 53 over 1B 41,472
Giant Steps 24 193,536 3,888
Afro Blue 18 786,432 8
Blue Monk 13 3,072 2,560
I Remember Clifford 75 58,392,576 768

(b) shortest paths counts for each piece

Table 3.3: Graph Complexity and Shortest Paths Counts

15

F
ig
u
re

3.
2:

an
al
y
si
s
of

’F
ly

M
e
to

th
e
M
o
on

’
(a
)
or
ig
in
al

m
et
h
o
d
(b
)
p
ro
p
os
ed

m
et
h
o
d

16

3.3.3 Tree Representation

Music have some hierarchical structure, among which, the cadence and modula-
tion between keys are fundamental basis of harmonic aspect. There are a lot of
computational approach to obtain the harmonic structures [6, 13, 10, 2]. These
studies mainly focus on the generative grammars based on the music theory of
the chord function, the cadence and the key. In contract to these approaches, by
utilizing the fact that, when our method successfully narrow down the candidate
paths, the resulting paths usually contain a lot of cadence shortcuts which are
connected with ϵ-transitions, we can generate a tree with a bottom up manner.

Specifically, the steps to generate a tree are as follows:

1. Generate a tree for each cadential shortcut.

• The trees can be n-ary according to the length of cadential shortcuts,
but we adopt (left-brancing) binary tree after the convention of preced-
ing studies.

• However, every repetition of same functions is grouped under a parent
node at first (n-arys are allowed here).

• The caption of each leaf node is the corresponding function and key
in the cadential shortcut, of each internal node is copied from its right
most child node’s. We omit the scale information here for the sake of
ease.

2. In case an ϵ-transion connects two cadential shortcuts, corresponding trees
should be merged by one, where the root node of the previous tree as a child
of the left most leaf node of the subsequent tree.

3. Generate a tree for each chord which is not assigned to any cadential short-
cuts (the tree is therefore composed of only one node). Captions are blank.

4. Line up the trees generate above.

Figure 3.3 shows two examples of generated trees. Double lines represent ϵ-
transitions, dashed lines represent cadential shortcuts, and dotted lines represent
repetitions of same functions. In the case of Figure 3.3(a), the leftmost tree (which
represents the result shown in Figure 3.2(b)) is composed of four cadences intercon-
nected by three modulations. The second and third one have an identical structure
with two cadences and one modulations. The last one consists of just one cadence.
In the case of Figure 3.3(b), all trees have just one cadence because no ϵ-transition
is detected. Overall, our method seems to detect modulation sequences which
finish in either relative keys.

17

Although the structures expressed by these trees are still very coarse, they seem
to capture some basic structural facts. So we believe our three extensions especially
ϵ-transitions and cadential shortcuts can actually improve the expressiveness.

18

F
ig
u
re

3.
3:

ge
n
er
at
ed

tr
ee
s

19

3.4 Applications

3.4.1 Overview

In this section, we present two applications which utilize the extensions explained
above. The first one utilizes the additional information obtained by our method,
and the second one the structure of the third extension.

3.4.2 Reharmonization

Overview

As a first application, we propose a method to replace chords based on the infor-
mation of chord functions. Because cadential shortcuts assign chord functions to
each constituent chord, it is possible to replace some chords retaining the rough
harmonical meaning.

Method

If a chord is given a chord function by a cadential shortcut, we replace the chord
with the chord of the same key, scale and function from Table 3.1 at random (e.g.
if C is interpreted as T of C major, the candidate set for replacement is {C7, CM7,
Em7, Am7, F#m7-5}). If a chord is given two chord functions by two cadential
shortcuts interconnected by an ϵ-transition, we search all candidate chords for
each chord function and replace the original chord with the intersection of the two
candidate chords at random (e.g. if F is interpreted both T of D natural minor
and SD of C major, the candidate chords for each chord function are {F7, Dm,
Dm7} and {F7, Dm7} respectively. Then the intersection is {F7, Dm7}. So we
can replace F with F7 or Dm7).

Example

Figure 3.4 shows an (a) before and (b) after example of applying this method.
Replaced chords are highlighted by red rectangles. When we listen to the two
chord sequences above, we should notice that there is not a significant difference
in impression between these two. That is because this method does not change any
chord functions, i.e. the meaning in harmony. Strictly speaking, it is possible that
the method explained in section 3.2 simply reduces the shortest paths completely
ignoring human perception. But if the reharmonized chord sequence sounds similar
to the original one, which is the case in Figure 3.4, this fact can be seen as a
collateral evidence of the effectiveness of our method.

20

Figure 3.4: analysis of ’Fly Me to the Moon’ (a) original method (b) proposed
method

21

3.4.3 Cadence Pattern Evaluation

Overview

In this application, we conduct an experiment utilizing cadential shortcuts in an
opposite manner to evaluate cadence patterns themselves. In the foregoing section,
we adopted the cadence patterns in Table 3.2 as de-facto standards, but here we
drop it and examine all bi-gram and tri-gram patterns. Moreover, we include
patterns of degrees (e.g. II→V→ I).

Method

We use nine-chord sliding window again, but this time we replace the chord at the
middle of each window with all possible chord candidates (i.e. 8 chord types times
12 keys). Figure 3.5 shows an example of (a) the original nine-chord sequence
and (b) the modified chord sequence whose fifth chord (i.e. FM7) is replaced by
all possible chords. We create an interpretation graph from the modified chord
sequence and search for the shortest paths. Then we can calculate a chord predic-
tion accuracy from the shortest paths by counting the paths which pass through
one of the interpretations of the correct chord (i.e. FM7).

Figure 3.5: an example of nine-chord sequence (a) original sequence (b) modified
sequence

We evaluate arbitrary cadence patterns by how much gain (or loss) should them
yield through cadential shortcuts compared to the accuracy without any cadential
shortcuts (18.8%). Intuitively, better patterns should be able to guide the shortest
paths more strongly to the true chord, and vice versa.

22

For this experiment, we use JazzCorpus[4].

Results

The result is shown in Table 3.4. Common progressions like II → V → I and their
relative siblings (i.e. IV → VII → III) can be found in the best patterns. And we
can find IV → VII → III is better than both IV → VII and VII → III, likewise, II
→ V→ I is better than both II→ V and V→ I, SD→ D→ T is better than both
SD → D and D → T. This result confirms the limitations of the former approach
we mentioned above, that is, the insufficiency of bi-gram. Also, the necessity of
distinguishing the directions is corroborated by the fact that D → T is located at
the best 11th while T → D at the very worst.

There are some other interesting features we can find in the table for which
we have not given explanations yet. For example, there are many third-degree
ascensions (e.g. I → III, VI → I) in the worst patterns, but some of their reversed
patterns can be found in the best patterns.

23

best patterns acc gain worst patterns acc gain(%)
1 IV → VII → III 55.85% 1 T → D -24.47%
2 II → V → I 55.48% 2 I → III -23.35%
3 II → V 49.41% 3 III → V -23.19%
4 IV → VII 43.88% 4 VI → I -22.61%
5 VII → III 28.83% 5 II → IV -22.29%
6 SD → D → T 27.98% 6 SD→D→ SDM -21.22%
7 SD → D 27.39% 7 D→ SDM→T -21.12%
8 V → I 17.34% 8 IV → VI -21.06%
9 SD → SDM 17.02% 9 V → II → IV -20.85%
10 SDM → T 16.76% 10 IV → I -20.69%
11 D → T 15.00% T → D → T -20.69%
12 III → IV 12.82% 12 I → IV -20.27%
13 I → VI → II 11.17% 13 VI → III -20.21%
14 VI → II → V 10.74% 14 D→ SDM→ SD -20.11%
15 I → II 9.20% 15 II → VI -20.00%
16 VII → III → IV 8.78% 16 V → VII → IV -19.31%
17 SDM → SD 7.77% 17 SD → T -18.78%
18 VII → III → I 7.71% 18 D → SDM -18.72%
19 I → VI 5.85% 19 T → SD → T -18.35%
20 IV → II 5.59% 20 IV → II → III -18.09%

III → IV → III 5.59% 21 IV → VI → III -17.66%
22 V → III → VI 4.47% 22 II → VII → I -17.55%
23 IV → VII → V 4.10% 23 II → VI → I -17.39%
24 III → I 4.04% II → IV → I -17.39%
25 III → VI → II 3.19% 25 IV → V → III -17.34%
26 SDM → T → SDM 2.87% II → III → I -17.34%
27 VI → II 2.66% D → T → D -17.34%

V → I → VI 2.66% 28 IV → I → III -16.60%
29 SD → SDM → SD 2.18% 29 IV → VII → I -14.52%

VII → V 2.18% 30 V → III → IV -14.36%

Table 3.4: 30 Best and Worst Patterns (acc gain represents accuracy gain)

24

Chapter 4

Distance Learning Model

4.1 Overview

As explained in chapter 2, TPS distance is composed of three elements (i.e. region,
chord, and basicspace). Although these elements are inspired by both music theory
and actual experience, they do not have enough evidence to support the specific
settings. Also, they seem to be a little too simple when it comes to predicting
chord interpretations.

In this chapter, we propose a novel distance model which generalize the settings
in TPS using various distance elements and a method to learn the parameters
from human-annotated data. Then, by an experiment, we show our model can
successfully achieve higher predicting accuracy than that of TPS.

4.2 Proposed Model

We define symbols and functions as follows:

X ∆
= {I/A, ii/A, iii/A, · · · , v/g#,VI/g#,VII/g#} : the set of chord inter-

pretations

I ∆
= {1, 2, 3, 4.1, 4.2, · · · , |I|}: the set of distance element indices

scale : X → {0, 1}: the function which maps a chord interpretation to its
scale1 (e.g. scale(iii/A) = 0, scale(III/c) = 1)

tonic : X → {n ∈ Z|0 ≤ n ≤ 11}: the function which maps a chord
interpretation to its tonic note (e.g. tonic(iii/A) = 1, tonic(III/c) = 0)

1Here, we only consider major (= 0) and minor (= 1) scales.

25

majorTonic(x)
∆
=

{
tonic(x) if scale(x) = 0

(tonic(x) + 3) mod 12 otherwise
for all x ∈ X (e.g.

majorTonic(iii/A) = 9, majorTonic(III/c) = 3)

From now on, we use x and y as arbitrary elements in X .

root : X → {n ∈ Z|0 ≤ n ≤ 11}: the function which maps a chord interpre-
tation to its root note (e.g. root(iii/A) = 1, root(III/c) = 3)

degree : X → {n ∈ Z|1 ≤ n ≤ 7}: the function which maps a chord
interpretation to its degree (e.g. degree(iii/A) = 3, degree(III/c) = 3)

distanceElementi : X ×X → R: the function which maps a chord interpre-
tation pair to their distance based on the distance element of index i ∈ I

b : I → {0, 1}: the function which specifies the activation of each distance
element

The distance on TPS can be thought of the sum of three distance elements as
in equation 2.4. Now we rearrange this equation as a sum of all (active) distance
elements.

GTPS(x, y) =
∑
i∈I

b(i) · distanceElementi(x, y) (4.1)

Then, we add several new distance elements which are defined in the form of tables.
With those distance elements, we can freely define which feature to distinguish or
ignore to calculate the distance. Also with b(i) term in equation 4.1, we can use
any combinations of distance elements.

Note that we allow the distance to be zero or negative, because they do not
prevent us from calculating the shortest paths in interpretation graphs. If it is
uncomfortable to think a distance to be negative, it is possible to add some constant
values to every distance without changing the shortest path as illustrated in Figure
4.1.

4.2.1 Distance Element 1: TPS Region

This ellement corresponds to the totalRegion in equation 2.4.

distanceElement1(x, y)
∆
= totalRegion(x, y) (4.2)

4.2.2 Distance Element 2: TPS Chord

This ellement corresponds to the totalChord in equation 2.4.

distanceElement2(x, y)
∆
= totalChord(x, y) (4.3)

26

Figure 4.1: an example of adding a constant value C to every distance
If a + b + c is greater than a′ + b′ + c′, a + b + c + 3C is always greater than
a′ + b′ + c′ + 3C.

27

4.2.3 Distance Element 3: TPS Basic Space

This ellement corresponds to the totalBasicspace in equation 2.4.

distanceElement3(x, y)
∆
= totalBasicspace(x, y) (4.4)

(We do not define alternatie distance elements of basicspace. Because, in in-
terpretation graphs, the levels other than diatonic level, which is almost identical
to TPS region, do not reflect the difference between each interpretation. Of course
totalBasicspace(x, y) can be different when x and y are not in relative keys, but we
do not think it have a significance, and, even if it does, we can cover the operation
by key-degree distance.)

4.2.4 Distance Element 4: Scale Distance

Distance elements for scale transitions. We define two variants as follows:

DE 4.1: Scale Distance

M4.1 ∈ R2

distanceElement4.1(x, y)
∆
= M4.1 [(scale(y)− scale(x)) mod 2]

(4.5)

This distant element distinguishes three patterns (i.e. major → major, minor →
minor, and major → minor or minor → major).

DE 4.2: Asymmetric Scale Distance

M4.2 ∈ R2×2

distanceElement4.2(x, y)
∆
= M4.2 [scale(x), scale(y)]

(4.6)

This distant element distinguishes the direction (i.e. major → minor and minor
→ major).

4.2.5 Distance Element 5: Tonic Distance

Distance elements for tonic transitions, which generalize totalRegion in equation
2.4. We define six variants as follows:

28

DE 5.1: Relative Tonic Distance

M5.1 ∈ R7

distanceElement5.1(x, y)

∆
= M5.1

[
min

(
(majorTonic(y)−majorTonic(x)) mod 12,

(majorTonic(x)−majorTonic(y)) mod 12

)] (4.7)

Among all variants, this one is conceptually closest to the totalRegion.

DE 5.2: Parallel Tonic Distance

M5.2 ∈ R7

distanceElement5.2(x, y)
∆
= M5.2

[
min

(
(tonic(y)− tonic(x)) mod 12,

(tonic(x)− tonic(y)) mod 12

)]
(4.8)

Unlike the relative tonic distance, this one identifies parallel keys (e.g. C major
and C minor), instead of relative keys (e.g. C major and A minor).

DE 5.3: Asymmetric Relative Tonic Distance

M5.3 ∈ R12

distanceElement5.3(x, y)
∆
= M5.3 [(majorTonic(y)−majorTonic(x)) mod 12]

(4.9)
This one distinguishes the direction of tonic transition over majorTonics.

DE 5.4: Asymmetric Parallel Tonic Distance

M5.4 ∈ R12

distanceElement5.4(x, y)
∆
= M5.4 [(tonic(y)− tonic(x)) mod 12]

(4.10)

This one distinguishes the direction of tonic transition over tonics.

4.2.6 Distance Element 6: Key Distance

Distance elements for scale-tonic transitions, which can handle both scale tran-
sitions and tonic transitions at once. One can calculate them using both scale
distances and tonic distances and adding the resulting distances, but this assumes
the independence of the transitions of scales and that of tonics. By contrast, key
distances can consider the interactions of scales and tonics.

29

DE 6.1: Symmetric Key Distance

M6.1 ∈ R2×7

distanceElement6.1(x, y)

∆
= M6.1

[
(scale(y)− scale(x)) mod 2,min

(
(tonic(y)− tonic(x)) mod 12,

(tonic(x)− tonic(y)) mod 12

)]
(4.11)

DE 6.2: Asymmetric Key Distance

M6.2 ∈ R2×2×12

distanceElement6.2(x, y)
∆
= M6.2 [scale(x), scale(y), (tonic(y)− tonic(x)) mod 12]

(4.12)
This one distinguishes the direction of scales and tonics.

4.2.7 Distance Element 7: Root-Degree Distance

Distance elements for root note transitions from each degree, which roughly gen-
eralize totalChord in equation 2.4. We define two variants as follows:

DE 7.1: Symmetric Degree-Root Distance

M7.1 ∈ R7×7

distanceElement7.1(x, y)

∆
= M7.1

[
degree(x),min

(
(root(y)− tonic(x)) mod 12,

(tonic(x)− root(y)) mod 12

)] (4.13)

This one calculates distances according to the relative positions of roots for each
(before) degree.

DE 7.2: Asymmetric Degree-Root Distance

M7.2 ∈ R7×12

distanceElement7.2(x, y)
∆
= M7.2 [degree(x), (root(y)− tonic(x)) mod 12]

(4.14)

This one distinguishes the direction in addition to the features above.

30

4.2.8 Distance Element 8: Key-Degree Distance

Distance elements for key-degree transitions, which can handle both key (i.e. scale
and tonic) transitions and degree transitions at once. These can distinguish all
the combinations TPS can distinguish, thus, they subsume totalBasicspace in
equation 2.4.

DE 8.1: Symmetric Key-Degree Distance

M8.1 ∈ R2×7×7×7

distanceElement8.1(x, y)

∆
= M8.1 [(scale(y)− scale(x)) mod 2, degree(x),

degree(y),min

(
(tonic(y)− tonic(x)) mod 12,

(tonic(x)− tonic(y)) mod 12

)]
(4.15)

Note that this one deals with source and destination degrees separately as in
asymmetric case.

DE 8.2: Asymmetric Key-Degree Distance

M8.2 ∈ R2×7×2×12×7

distanceElement8.2(x, y)

∆
= M8.2 [scale(x), degree(x), scale(y), degree(y), (tonic(y)− tonic(x)) mod 12]

(4.16)

4.3 Learning Strategy

We define additional symbols and functions as follows:

G: an interpretation graph with T layers

Gs:t: from sth layer to tth layer of G (Gs:s can be abbreviated as Gs). As a
simplified notation, a node in the sth layer can be written as x ∈ Gs, likewise,
x ∈ Gs:t be a path from the sth layer to the tth layer, and x ∈ Gs:t−1||xt be
a path from sth layer to the (t−1)th layer and added xt to be the last node.

xs:t: from sth element to tth element of an interpretation path x (xs:s can
be abbreviated as xs

2)

2in the previous section, we used just x or y to mean them

31

x∗
0:T : the ground truth interpretation path

GTPSpath(xs:t)
∆
=
∑t−1

u=s GTPS(xu, xu+1)

We want the calculated distances to allow us to estimate the true interpretation
path as a shortest path in the interpretation graph. So we need to learn the
parameters to give true interpretation path a shorter total distance than the other
interpretation paths.

For that purpose, we first define the path probability formula and then train
the parameters by using the gradients on the parameter spaces.

4.3.1 Path Probability

We define the path probability from start node to sth chord interpretation as
below:

P(X0 = x0|G0)
∆
= 1

P(X0:s = x0:s|G0:s)
∆
=

s−1∏
t=0

exp(−GTPS(xt, xt+1))

denom(G, t)

where denom(G, t)
∆
=
∑
l∈Gt

∑
m∈Gt+1

P(Xt = l|G0:t) exp(−GTPS(l,m))

(4.17)

We can calculate a whole interpretation path as P(X0:T = x0:T |G0:T).
This probability is designed to give higher values to the interpretation paths

with shorter total distances.

Theorem 1 (order accordance). In an interpretation graph G, GTPSpath(x0:s)
is smaller than GTPSpath(x

′
0:s) if and only if P(X0:s = x0:s|G0:s) is greater than

P(X0:s = x′
0:s|G0:s).

32

Proof.

GTPSpath(x0:s) < GTPSpath(x
′
0:s)

⇔ exp(−GTPSpath(x0:s)) > exp(−GTPSpath(x
′
0:s))

⇔ exp(−
s−1∑
t=0

GTPS(xt, xt+1)) > exp(−
s−1∑
t=0

GTPS(x′
t, x

′
t+1))

⇔
s−1∏
t=0

exp(−GTPS(xt, xt+1)) >
s−1∏
t=0

exp(−GTPS(x′
t, x

′
t+1))

#divide both sides by the same (positive) value

⇔
∏s−1

t=0 exp(−GTPS(xt, xt+1))∏s−1
t=0 denom(G, t)

>

∏s−1
t=0 exp(−GTPS(x′

t, x
′
t+1))∏s−1

t=0 denom(G, t)

⇔
s−1∏
t=0

exp(−GTPS(xt, xt+1))

denom(G, t)
>

s−1∏
t=0

exp(−GTPS(x′
t, x

′
t+1))

denom(G, t)

#from equation 4.17

⇔ P(X0:s = x0:s|G0:s) > P(X0:s = x′
0:s|G0:s)

We can calculate the node probability P(Xs = xs|G0:s) as below:

P(Xs = xs|G0:s) =
∑

x0:s∈G0:s−1||xs

P(X0:s = x0:s|G0:s)

=
∑

x0:s∈G0:s−1||xs

s−1∏
t=0

exp(−GTPS(xt, xt+1))

denom(G, t)

=
∑

x0:s∈G0:s−1||xs

(
s−2∏
t=0

exp(−GTPS(xt, xt+1))

denom(G, t)

)
exp(−GTPS(xs−1, xs))

denom(G, t)

=
∑

x0:s∈G0:s−1||xs

P(X0:s−1 = x0:s−1|G0:s−1)
exp(−GTPS(xs−1, xs))

denom(G, t)

=
∑

xs−1∈Gs−1

P(Xs−1 = xs−1|G0:s−1)
exp(−GTPS(xs−1, xs))

denom(G, t)

As we can see, this process has a recursive structure, and, by calculating in a
sequential manner from the start node, we can get the node probability with the
time complexity linear to the s. Note that, P(Xs = xs|G0:s) = P(Xs = xs|G0:T) is
not always the case.

33

4.3.2 Loss and Gradient

We define a cross entropy loss function as follows:

Loss(x0:T |G0:T)
∆
=

∑
x0:T∈G0:T

−P∗(X0:T = x0:T) ln P(X0:T = x0:T |G0:T) (4.18)

Here, P∗ is the probability function which only responds to the ground truth:

P∗(X0:T = x0:T)
∆
=

{
1 if x0:T = x∗

0:T

0 otherwise

We can get the gradient by differentiating Loss (4.18) with respect to the
parameters, then apply stochastic gradient descent algorithm to update the pa-
rameters to minimize the value of Loss (4.18), which results in maximizing the
path probability for the ground truth path.

4.3.3 Accuracy

We evaluate our model based on how accurately it can predict each chord inter-
pretation by specifying the shortest path in the interpretation graph. If there are
more than one shortest paths, we calculate a weighted average for each node in
proportion to how many paths go through the node3 as in Figure(4.2).

We show the algorithm to calculate the path accuracy in Algorithm 1.

4.4 Experiments

4.4.1 Data and Method

We use the dataset annotated in rntxt format [17], published at [17, 18]. The
dataset is composed of 360 pieces (1,691 phrases, 76,341 chords) and we regard
every phrase as a unit (i.e., to which we predict the interpretation path) but when
a phrase exceeds 50 chords we divide it into units each of which does not exceed
50 chords, resulting in 2,472 phrases. Then use 1,976 phrases to the training, and
248 phrases to the validation, and remaining 248 phrases to the test

Rntxt format contains a lot of information other than degree/key, but in this
study we utilize only key and degree information. About secondary/tertiary
chords, we employ local keys (e.g., V/V/V on C major key is interpreted as V
on D major key).

3this proportion is different from the node probability

34

Figure 4.2: sample calculation of path accuracy
Note that, if we look at the last three layers, there are just two unique paths. But
the accuracy of the fourth layer is 1/3 instead of 1/2.

35

Algorithm 1 Algorithm for calculating the path accuracy

Input: a # a list of ground truth interpretations for layer indices
G # an interpretation graph, which is a table of interpretations for layer indices
0 to T-1 and node indices
b # a backward link list calculated by means of Viterbi algorithm (b[i][j] is
the list of node indeces in layer i-1 to which there is a link from node index j
in layer i)

Output: accuracy
1: c← zeroList(sizeOf(G)) # a list of the number of paths from each node to the

goal node. Initially zero
2: p← zeroList(sizeOf(G)) # a list of the probabilities of each node in each layer.

Initially zero
3: c[T - 1][0] ← 1 # path count from goal node to goal node
4: for i ← T-1 to 1 step -1 do
5: for j in G[i] do
6: for k in b[i][j] do
7: c[i-1][k] ← c[i-1][k] + c[i][j]
8: p[0][0] ← 1 # node probability of start node
9: for i ← 0 to T-1 do

10: for j in G[i] do
11: d ← sum(c[i+1][k] where b[i+1][k] contains j)
12: for k where b[i+1][k] contains j do
13: p[i+1][k] ← p[i+1][k] + p[i][j] × c[i+1][k] / d
14: accuracy ← 0
15: for i ← 1 to T-1 do # exclude start and goal layers
16: accuracy ← accuracy + p[i][a[i]]
17: accuracy ← accuracy / T

36

We set all initial parameter values to be zero and train the models by mini-
batch stochastic gradient descent with batch size=100 and learning rate=0.001.
We continue training until no accuracy update in validation set for ten epochs in
a row, then pick the parameter which gives the highest validation accuracy..

4.4.2 Results

We compare the performances of each distance element and some combinations.
The result is shown in the table 4.1.

exp 0 is without any distance elements, just for information.
exp 1 is the original TPS. This one successfully double the accuracy (i.e.,

narrow down the candidate interpretation by half) from exp 0. We consider this
one to be the baseline.

We also conduct ablation patterns of TPS (exp 2-7). When used alone (exp 2-
4), totalBasicspace is the best performance (exp 4) and achieved almost the same
accuracy as the full TPS (exp 1). We consider the reason why totalBasicspace is a
little better than totalRegion (exp 2) is that basic space can exress region distance
by the diatonic level and also other levels can give additional information. Seeing
the result of exp 3, however, totalChord do not improve accuracy well. That is
also the case when used two of them together (exp 5-7).

In exp 8-19, we test each proposed distance elements by themselves. DE 5.1
can accomplish almost the same accuracy as the full TPS (exp 1, 10), although
it has only seven parameters. DE 4.x cannot improve accuracy at all without dis-
tinguishing directions (exp 8,9), but surprisingly, for the other distance elements,
it turns out that there is very little or no accuracy gain by distinguishing the di-
rection from the comparisons exp 10 to exp 12, exp 11 to exp 13, exp 14 to
exp 15, exp 16 to exp 17, and exp 18 to exp 19. We also test tonic distances
in which parallel keys are identified (exp 11, 13), but they are significantly worse
than those of relatie keys (exp 10, 12). DE 8.x, being the most complex distance
elements, can achieve over 86% accuracy.

In exp 20-26, we test some combinations of proposed distance elements. The
combinations are selected so that involved distance elements complement each
other though not exhaustive. The combination of exp 23 can achieve 83% with
only 58 parameters, likewise, that of exp 25 and exp 26 can achieve 85.5% and
86% with a little more parameters. Therefore, it seems that taking the interactions
of all scale, tonic, and degree into account is not so important considering the huge
parameter size. Also, it is interesting that DE 4.1 have meaningful contribution
in exp 23 here although it does not make difference at all by itself (exp 8).

Lastly, we test some combinations of TPS element and distance tables (exp
27-29). Root table can be benefited from the elements from TPS (exp 28), but
in the other combinations, there are not so obvious accuracy gains.

37

DE DE DE DE DE DE DE DE DE DE DE DE DE DE DE
exp 1 2 3 4.1 4.2 5.1 5.2 5.3 5.4 6.1 6.2 7.1 7.2 8.1 8.2 prms mean stdev

0 - 0.1900 0.0257

1 ○ ○ ○ - 0.3847 0.1023

2 ○ - 0.3780 0.1034

3 ○ - 0.1930 0.0288

4 ○ - 0.3842 0.1023

5 ○ ○ - 0.3770 0.1052

6 ○ ○ - 0.3850 0.1025

7 ○ ○ - 0.3841 0.1023

8 ○ 2 0.1900 0.0257

9 ○ 4 0.2522 0.1432

10 ○ 7 0.3983 0.1006

11 ○ 7 0.2908 0.2415

12 ○ 12 0.3974 0.1003

13 ○ 12 0.2870 0.2408

14 ○ 14 0.4249 0.1739

15 ○ 48 0.5017 0.3380

16 ○ 49 0.5646 0.1640

17 ○ 84 0.5741 0.1628

18 ○ 686 0.8625 0.1780

19 ○ 2,352 0.8690 0.1717

20 ○ ○ 9 0.3978 0.1015

21 ○ ○ 11 0.5131 0.3402

22 ○ ○ 56 0.7627 0.1585

23 ○ ○ ○ 58 0.8301 0.1869

24 ○ ○ ○ 60 0.8226 0.1814

25 ○ ○ 63 0.8495 0.1775

26 ○ ○ 132 0.8601 0.1681

27 ○ ○ ○ 14 0.4210 0.2318

28 ○ ○ ○ 49 0.7309 0.1566

29 ○ ○ ○ 63 0.8308 0.1887

Table 4.1: performances of distance elements
prms, mean, and stdev represent model parameters, mean accuracies, and standard de-
viations of accuracies

38

Chapter 5

Conclusion and Future Work

5.1 Conclution

In this thesis, we exhibit two studies on TPS.

Three extensions

In order to overcome some limitations of TPS and interpretation graph, we have
proposed three extensions. At first, we extend the original TPS to include tetrads
and various minor scales, and thereafter, we have introduced ϵ-transition, that is a
distance-free transition in two chords, and cadential shortcut, into the network of
possible interpretations of chord progression. Inevitably, we have also considered
the tri-grams and the explicit direction in them. As a result, we could reduce the
number of the shortest paths and could obtain the efficient algorithm to find the
most plausible interpretation, which results in a more reliable method to analyze
jazz chord sequence.

Distance Learning Model

In order to tackle the arbitrary nature of TPS and improve prediction accuracies,
we generalized the distance calculation in TPS and introduced a new framework
to freely define additional distance elements and train them with data. We have
defined several experimental distance elements and shown the results, and found
a combination of two tables achieved over 80% accuracy with only 77 parameters.

5.2 Future Work

So far, the studies descibed above are, though closely related to each other, con-
ducted independently. Thus, the main direction for our future work is to integrate

39

them. But there are several more issues to be considered, for example, (1) distinc-
tion between long-term and short-term modulations, (2) chords’ relative impor-
tance, especially related to their lengths or relationships with beats, (3) repititions
in chord sequences, and (4) local and global structure.

40

Bibliography

[1] J. Bharucha, C. Krumhansl: “The representation of harmonic structure in
music: Hierarchies of stability as a function of context”, Cognition, vol. 13,
pp. 63-102, 1983

[2] M. Granroth-Wilding, M Steedman: “A robust parser-interpreter for jazz
chord sequences”, Journal of New Music Research, 43(4), pp. 355-374, October
2014

[3] W. bas de Haas, J. P. Magalhães, F. Wiering, “Improving audio chord tran-
scription by exploiting harmonic and metric knowledge”, International Society
for Music Information Retrieval Conference (ISMIR), 295-300, 2012

[4] “JazzCorpus” http://jazzparser.granroth-wilding.co.uk/JazzCorpus.html,
2013

[5] H. V. Koops, J. P. Magalhães, W. bas de Haas, “A functional approach to
automate melody harmonization” in Proceedings of the first ACM SIGPLAN
workshop on Functional art, music, modeling & design - FARM’13 , p.47,
ACM Press, 2013

[6] F. Lerdahl, R. Jackendoff: “A Generative Theory of tonal music”, Cambridge,
MA, 1983

[7] F. Lerdahl: “Tonal Pitch Space”, Oxford University Press, 2001

[8] A. McLeod, M. Steedman, “Meter detection in symbolic music using a lexi-
calized PCFG”, in Proceedings of the 14th Sound and Music Computing Con-
ference, 2017

[9] Musashino Academia Musicae: “Jazz theory workshop”, ISBN: 978-
4990194116, 2005

[10] M. Neuwirth, M. Rohrmeier: “Towards a syntax of the classical cadence”,
What is a Cadence, pp. 287-338, 2015

41

[11] W. Piston: “Harmony”, W.W. Norton, 1948

[12] H. Riemann, “Harmony simplified, or The theory of the tonal functions of
chords”, Augener Ltd., 1895

[13] M. Rohrmeier: “Towards a generative syntax of tonal harmony”, Journal of
Mathematics and Music, 5(1), pp. 35-53, March 2011

[14] S. Sakamoto, S. Arn, M. Matsubara, S. Tojo: “Harmonic analysis based
on tonal pitch space”, in Proceedings of the 8th International Conference on
Knowledge and Systems Engineering (KSE), pp. 230-233, 2016

[15] C. Stumpf: “The origins of music”, Oxford University Press, Oxford, UK,
2012, First published in 1911, translated by David Trippett

[16] A. Viterbi: “Error bounds for convolutional codes and an asymptotically op-
timum decoding algorithm.” IEEE transactions on Information Theory, 13.2:
pp. 260-269, 1967

[17] D. Tymoczko, M. Gotham, M. S. Cuthbert, C. Ariza: “The romantext format:
a flexible and standard method for representing roman numeral analyses”,
International Society for Music Information Retrieval Conference (ISMIR),
123-129, 2019

[18] M. S. Cuthbert, C. Ariza: “Music21: A toolkit for computer-aided musicology
and symbolic music data” in Proceedings of the 11th International Society for
Music Information Retrieval Conference (ISMIR), 637-642, 2010

[19] M. Matsubara, T. Kodama, S. Tojo: “Revisiting cadential retention in
GTTM” in 2016 Eighth international conference on knowledge and systems
engineering (KSE), 218-223, 2016

[20] N. Yamaguchi, N. Sugamura: “Improving TPS to tackle non key constituent
note” in 情報処理学会研究報告, vol.2011-MUS-89 No.10, 1-6, 2011

42

Appendix A

Properness of the Path
Probability

Theorem 2 (properness). The path probability function (4.17) is a proper proba-
bility mass function.

Proof. It is trivial that the function (4.17) always returns zero or more, so we show
a proof of it being normalized.

I. Base case: s = 0∑
x0:0∈G0:0

P(X0:0 = x|G0:0)

becuase layer 0 only contains the start node

= P(X0 = x0|G0) = 1

II. Induction case:

Assume the probability for x0:s is normalized:∑
x0:s∈G0:s

P(X0:s = x0:s|G0:s) = 1

It follows that:∑
x0:s+1∈G0:s+1

P(X0:s+1 = x0:s+1|G0:s+1)

=
∑

x0:s+1∈G0:s+1

s∏
t=0

exp(−GTPS(xt, xt+1))

denom(G, t)

=
∑

x0:s+1∈G0:s+1

(
s−1∏
t=0

exp(−GTPS(xt, xt+1))

denom(G, t)

)
exp(−GTPS(xs, xs+1))

denom(G, s)

43

=
∑

x0:s+1∈G0:s+1

P(X0:s = x0:s|G0:s)
exp(−GTPS(xs, xs+1))

denom(G, s)

=
∑

x0:s∈G0:s

P(X0:s = x0:s|G0:s)
∑

xs+1∈Gs+1

exp(−GTPS(xs, xs+1))

denom(G, s)

from the assumption

= Ex0:s∼P(X0:s=x0:s|G0:s)

 ∑
xs+1∈Gs+1

exp(−GTPS(xs, xs+1))

denom(G, s)


= Exs∼P(Xs=xs|Gs)

 ∑
xs+1∈Gs+1

exp(−GTPS(xs, xs+1))

denom(G, s)


=

Exs∼P(Xs=xs|Gs)

[∑
xs+1∈Gs+1

exp(−GTPS(xs, xs+1))
]

denom(G, s)

=

∑
xs∈nodes in Gs

P(Xs = xs|G0:s)
(∑

xs+1∈Gs+1
exp(−GTPS(xs, xs+1))

)
denom(G, s)

=

∑
xs∈nodes in Gs

∑
xs+1∈nodes in Gs+1

P(Xs = xs|G0:s) exp(−GTPS(xs, xs+1))

denom(G, s)

=
denom(G, s)

denom(G, s)

= 1

44

Appendix B

Differentiating the Loss Function

We update the parameters in the distance tables based on the gradient on the
parameter space of loss function (4.18). The partial differentiation of Loss (4.18)
with respect to a parameter i can be calculated as below:

∂

∂i
Loss(x0:T |G0:T)

=
∂

∂i

∑
x0:T∈G0:T

−P∗(X0:T = x0:T) ln P(X0:T = x0:T |G0:T)

= − ∂

∂i
ln P(X0:T = x∗

0:T |G0:T)

=
T−1∑
t=0

(
∂

∂i
GTPS(x∗

t , x
∗
t+1) +

∂
∂i
denom(G, t)

denom(G, t)

)

=
T−1∑
t=0

(
∂

∂i
GTPS(x∗

t , x
∗
t+1)

+
∂
∂i

∑
l∈Gt

∑
m∈Gt+1

P(Xt = l|G0:t) exp(−GTPS(l,m))

denom(G, t)

)

=
T−1∑
t=0

(
∂

∂i
GTPS(x∗

t , x
∗
t+1)

+

∑
l∈Gt

∑
m∈Gt+1

((
∂
∂i
P(Xt = l|G0:t)

)
exp(−GTPS(l,m))

+P(Xt = l|G0:t)(− ∂
∂i
GTPS(l,m)) exp(−GTPS(l,m))

)
denom(G, t)


Here, P(Xt = l|G0:t) and denom(G, t) appear in the calculation process of path
probability, so we can reuse the results. Also, GTPS(x∗

t , x
∗
t+1) and

∂
∂i
GTPS(x∗

t , x
∗
t+1)

45

can be calculated easily, because GTPS(4.1) is composed of simple sums and prod-
ucts. Lastly, ∂

∂i
P(Xt = l|G0:t) in

∂
∂i
denom(G, s) can be calculated as below:

∂

∂i
P(Xs = l|G0:s)

=
∂

∂i

∑
x0:s∈G0:s−1||l

P(X0:s = x0:s|G0:s)

=
∂

∂i

∑
x0:s∈G0:s−1||l

s−1∏
t=0

exp(−GTPS(xt, xt+1))

denom(G, t)

=
∂

∂i

∑
x0:s∈G0:s−1||l

(
s−2∏
t=0

exp(−GTPS(xt, xt+1))

denom(G, t)

)
exp(−GTPS(xs−1, xs))

denom(G, s)

=
∂

∂i

∑
x0:s∈G0:s−1||l

P(X0:s−1 = x0:s−1|G0:s−1)
exp(−GTPS(xs−1, xs))

denom(G, s− 1)

=
∂

∂i

∑
xs−1∈Gs−1

P(Xs−1 = xs−1|G0:s−1)
exp(−GTPS(xs−1, xs))

denom(G, s− 1)

=
∑

xs−1∈Gs−1

((
∂

∂i
P(Xs−1 = xs−1|G0:s−1)

)
exp(−GTPS(xs−1, l))

denom(G, s− 1)

+ P(Xs−1 = xs−1|G0:s−1)
− ∂

∂i
GTPS(xs−1, l) exp(−GTPS(xs−1, l))

denom(G, s− 1)

+ P(Xs−1 = xs−1|G0:s−1) exp(−GTPS(xs−1, l))

(
−

∂
∂i
denom(G, s− 1)

(denom(G, s− 1))2

)

And, ∂
∂i
P(X0 = x0|G0) = 0. This calculation also has the recurssive structure, and

then it can be done with the time complexity linear to s.

46

Appendix C

Learned Tables

We show some learned tables here along with the experiment index in table 4.1.

exp 8 (mean accuracy: 0.1900)

same different

-9.1420 9.1420

Table C.1: Distance Element 4.1

exp 9 (mean accuracy: 0.2522)

m → m m → M M → m M → M

-0.0805 2.1005 2.1065 -4.1265

Table C.2: DE 4.2 Asymmetric Scale Distance

M and m represent major and minor respectively.

exp 10 (mean accuracy: 0.3983)

0 1 2 3 4 5 6

-3.5671 1.7843 0.1090 0.5144 0.4938 -0.7986 1.4642

Table C.3: DE 5.1 Symmetric Relative Tonic Distance

47

exp 11 (mean accuracy: 0.2908)

0 1 2 3 4 5 6

-3.1773 1.0981 0.3198 0.3420 0.4696 -0.4395 1.3873

Table C.4: DE 5.2 Symmetric Parallel Tonic Distance

exp 12 (mean accuracy: 0.3974)

0 1 2 3 4 5 6 7 8 9 10 11
-3.9559 1.7830 -0.3763 0.5761 0.1307 -1.3396 2.4011 -1.0155 0.5497 -0.1429 0.0119 1.3777

Table C.5: DE 5.3 Asymmetric Relative Tonic Distance

exp 13 (mean accuracy: 0.2870)

0 1 2 3 4 5 6 7 8 9 10 11
-3.1325 1.2794 0.3784 -0.0616 0.3652 -0.7204 1.0724 -0.7232 0.3251 -0.0661 0.2336 1.0496

Table C.6: DE 5.4 Asymmetric Parallel Tonic Distance

exp 14 (mean accuracy: 0.4249)

0 1 2 3 4 5 6

same scale -4.5291 1.4668 -0.7550 -0.7202 0.3703 -1.9399 1.5414

different scale 0.5231 2.2363 0.0065 0.0185 0.5357 -0.6334 1.8790

Table C.7: DE 6.1 Symmetric Key Distance

exp 15 (mean accuracy: 0.5017)

0 1 2 3 4 5 6 7 8 9 10 11
m →m -4.0805 0.5347 0.6193 0.6912 0.7210 1.5947 0.3386 0.8221 0.7171 0.6523 0.8196 0.4392
m →M 0.1487 0.6921 0.0095 -0.8318 0.7684 -1.1241 0.9943 -1.5331 -0.2327 0.5193 0.2843 1.0473
M →m -0.1208 1.0329 -0.1088 0.5299 0.0316 -1.4335 0.6568 -1.2028 0.6335 -0.7179 0.0266 0.9415
M →M -4.1080 0.7495 -0.1991 -0.2233 0.7713 -1.5880 0.8108 -1.4034 0.9633 -0.7715 -0.4024 0.5202

Table C.8: DE 6.2 Asymmetric Key Distance

48

exp 16 (mean accuracy: 0.5646)

0 1 2 3 4 5 6

I -2.1364 -0.2428 -1.2300 -0.9671 -0.8545 -1.9446 -0.9838

II -1.4643 -0.4901 0.8658 1.7406 1.1741 -2.1727 -0.5462

III 0.7865 1.9792 1.5660 1.2300 1.8880 0.4950 2.1298

IV -0.4006 0.0876 -0.1672 0.5432 0.7467 -0.8113 0.4326

V -3.6247 -0.5544 0.0197 -0.0175 -0.4645 -1.8448 0.3572

VI -0.6037 1.3931 -0.2668 1.5488 1.1821 -0.1407 0.3900

VII -0.9196 0.3194 0.1389 0.9728 -0.4951 0.8346 0.5217

Table C.9: DE 7.1 Symmetric Root-Degree Distance

exp 17 (mean accuracy: 0.5741)

0 1 2 3 4 5 6 7 8 9 10 11
I -1.9201 -0.3975 -2.2787 -0.3055 -0.6012 -1.0834 -1.5807 -2.6999 -0.4727 -0.9351 -1.0649 -1.4854
II -1.4865 1.5211 -0.6794 2.0620 0.1544 0.2403 -0.1252 -2.0222 1.7608 0.2322 1.4291 -0.9605
III 0.4270 1.8276 0.4380 2.1739 1.2958 0.4127 2.1799 0.8899 2.6460 1.3481 1.2776 1.3829
IV -1.2916 1.3897 -0.6210 0.5828 0.5750 0.0990 -0.1995 -1.6577 0.9013 0.3302 1.1225 -1.1953
V -2.8522 -0.2712 -0.0217 -0.1476 -0.0296 -1.2315 -0.3548 -1.7013 -1.6602 -0.6881 -0.8627 -0.6053
VI -0.1232 3.0267 -1.1130 1.7791 -0.1045 0.4096 0.1881 -0.7840 2.1779 0.2436 0.7574 -0.1274
VII -1.4845 0.0222 0.8162 1.1288 -0.7300 0.9453 0.2520 -0.2731 -1.0152 0.8859 0.6409 -0.7285

Table C.10: DE 7.2 Asymmetric Root-Degree Distance

exp 20 (mean accuracy: 0.3978)

same different

-1.4857 1.4856

Table C.11: DE 4.1 Symmetric Scale Distance

0 1 2 3 4 5 6

-5.8407 1.8882 -0.1762 0.5447 0.4020 -0.2239 3.4059

Table C.12: DE 5.1 Symmetric Relative Tonic Distance

49

exp 21 (mean accuracy: 0.5131)

m → m m → M M → m M → M

7.9310 0.7848 -0.1483 -8.5676

Table C.13: DE 4.2 Asymmetric Scale Distance

0 1 2 3 4 5 6

-3.7589 2.0313 -0.3118 -0.0394 0.2855 -1.3292 3.1225

Table C.14: DE 5.1 Symmetric Relative Tonic Distance

exp 22 (mean accuracy: 0.7627)

0 1 2 3 4 5 6

-4.2126 2.0075 -0.1807 0.3806 0.6485 -0.8862 2.2429

Table C.15: DE 5.1 Symmetric Relative Tonic Distance

0 1 2 3 4 5 6

I -1.4555 0.5248 -0.9321 -0.9356 -0.1057 -1.0672 -1.4584

II -0.9990 0.9874 -0.0976 1.4389 0.9192 -0.8180 0.2644

III 0.5509 1.1457 2.7326 2.0825 1.8152 1.0904 0.5746

IV -0.9032 0.4555 0.6506 0.3071 0.9307 -0.6415 0.4745

V -3.0040 -1.0570 -1.2147 -0.7959 -1.0415 -1.5849 -1.3887

VI -1.0994 1.0170 0.7277 1.2165 0.8760 0.0874 0.0735

VII -1.2973 -0.1743 0.9229 0.8209 -0.4374 -0.3001 0.1224

Table C.16: DE 7.1 Symmetric Root-Degree Distance

exp 23 (mean accuracy: 0.8301)

same different

-1.3284 1.3284

Table C.17: DE 4.1 Symmetric Scale Distance

50

0 1 2 3 4 5 6

-4.7035 2.3838 -0.3904 0.1168 0.1830 -0.7972 3.2076

Table C.18: DE 5.1 Symmetric Relative Tonic Distance

0 1 2 3 4 5 6

I -1.1163 0.8278 -0.8286 -0.2953 -0.2934 -0.2274 -1.2769

II -0.5993 1.2294 0.3006 1.7796 1.4394 0.0974 0.6483

III 0.6651 1.8481 0.3599 0.6069 1.4840 0.6341 0.9252

IV -0.6827 0.8744 0.1457 0.1562 -0.0750 -0.6584 1.1782

V -2.6282 -1.5102 -0.6740 -0.7721 -1.0519 -0.9889 -2.5869

VI -0.2773 1.0749 -0.2257 0.7386 0.8021 0.1763 -0.3795

VII -1.5505 0.1360 -0.6268 0.8390 -0.3952 -0.0479 0.8014

Table C.19: DE 7.1 Symmetric Root-Degree Distance

exp 24 (mean accuracy: 0.8226)

m → m m → M M → m M → M

-1.4968 2.0810 0.9054 -1.4897

Table C.20: DE 4.2 Asymmetric Scale Distance

0 1 2 3 4 5 6

-4.7924 2.8432 -0.2835 0.2135 -0.1444 -0.6909 2.8546

Table C.21: DE 5.1 Symmetric Relative Tonic Distance

0 1 2 3 4 5 6

I -1.4962 -0.0177 -1.5910 -1.2736 -0.5644 -2.4248 -1.2053

II -0.2567 2.3961 0.8835 3.5469 2.7362 0.0857 0.7835

III 0.4598 2.0948 0.8605 2.7362 3.9246 0.5282 0.8618

IV -2.8761 0.4976 -0.6746 -0.2275 0.0450 -0.9408 -0.1462

V -4.6433 -1.2227 -2.6818 -1.4713 -2.0131 -1.3421 -2.7926

VI -0.7158 2.5107 -0.9377 1.5766 2.2842 0.2702 0.0889

VII -2.7079 0.7241 0.1875 3.0367 1.0382 -0.8398 0.9053

Table C.22: DE 7.1 Symmetric Root-Degree Distance

51

exp 25 (mean accuracy: 0.8495)

0 1 2 3 4 5 6

same scale -4.3479 1.1185 -0.3396 -0.2549 0.3644 -1.5989 1.0589

different scale 0.5935 1.8052 0.3880 -0.1346 0.4425 -0.1841 1.0889

Table C.23: DE 6.1 Symmetric Key Distance

0 1 2 3 4 5 6

I -0.6811 0.6933 -0.4004 -0.4410 -0.1498 -0.5408 -0.9726

II -0.5044 0.8811 0.0271 1.1171 0.5425 0.0053 0.2244

III 0.5616 0.4865 1.1036 1.0527 1.2224 1.0255 0.5324

IV -0.9107 0.9280 0.1347 0.1765 0.6473 0.1758 -0.1181

V -2.7061 -1.0805 -0.8100 -0.6738 -1.0829 -0.6197 -0.9695

VI 0.0597 1.2621 -0.0252 0.7898 0.2470 0.1686 -0.2000

VII -1.1013 -0.0228 -0.2167 0.7258 -0.5920 -0.0604 0.0891

Table C.24: DE 7.1 Symmetric Root-Degree Distance

exp 26 (mean accuracy: 0.8601)

0 1 2 3 4 5 6 7 8 9 10 11
m →m -4.6702 0.6296 1.0156 0.3040 0.7798 -0.0841 0.4645 -0.0546 0.7311 0.4758 0.5950 0.7532
m →M 0.4585 0.7105 0.4104 -0.2051 0.5977 0.2976 0.6990 -0.7562 -0.0385 0.7601 0.3898 0.7186
M →m 0.6366 0.6263 0.0118 0.5935 0.1331 -0.2731 0.7573 -0.6503 0.6228 -0.1717 0.4816 0.7297
M →M -4.2386 0.6887 -0.8995 -0.6776 0.3238 -2.0665 0.8252 -1.8150 0.6786 -1.0249 -0.6993 0.4256

Table C.25: DE 6.2 Asymmetric Key Distance

0 1 2 3 4 5 6 7 8 9 10 11
I -0.7846 0.2012 -1.1181 -0.6599 -0.0854 -1.2274 -0.5275 -0.9145 0.0018 -0.1719 -0.3207 0.6099
II -0.0888 0.3121 -0.1132 1.3319 0.6036 0.1743 0.3521 0.1246 0.3674 0.4958 0.0565 0.7932
III 0.5100 0.3069 0.7551 0.8806 0.7171 0.6353 0.4982 0.8885 1.4533 1.0428 1.2905 0.9273
IV -1.0089 -0.3286 0.0088 0.2255 -0.4282 -0.2808 0.2926 -0.1518 0.3864 -0.0159 1.1027 0.7816
V -3.0607 -0.6654 -1.1435 -1.0418 -0.5856 -1.0516 -0.9890 -0.7324 -0.9687 -1.0162 -0.7775 -0.6387
VI -0.0050 0.4755 -0.2038 0.5977 0.1136 0.5360 0.0029 0.4213 0.7213 0.1303 0.9610 0.6919
VII -1.8355 -0.0802 0.1853 0.9261 -0.6274 -0.3199 0.0685 0.3828 -0.4321 -0.0005 0.0746 -0.0145

Table C.26: DE 7.2 Asymmetric Root-Degree Distance

52

exp 27 (mean accuracy: 0.4210)

0 1 2 3 4 5 6

same scale -2.6892 0.1660 -1.2418 -0.4851 0.1629 -0.9612 0.0357

different scale 1.4732 0.6458 0.9513 1.6348 1.3342 -1.3819 0.3555

Table C.27: DE 6.1 Symmetric Key Distance

exp 28 (mean accuracy: 0.7309)

0 1 2 3 4 5 6

I -1.7124 -0.2856 -1.0896 -0.7193 -0.4216 -1.1785 -0.4627

II -0.8944 0.2632 0.0719 1.0884 0.6311 -1.2397 0.0343

III 0.6594 0.4868 2.1172 1.5341 1.5659 1.4235 0.1188

IV -0.8169 0.8430 0.1607 0.6808 0.4742 -0.7168 0.3717

V -3.0319 -1.0239 -1.0646 -0.3079 -0.3995 -1.7175 -0.5103

VI -0.0950 1.0500 0.5974 1.4117 1.1828 0.3587 0.2392

VII -1.0077 -0.0867 0.3995 1.4172 -0.2055 -0.1742 -0.0192

Table C.28: DE 7.1 Symmetric Root-Degree Distance

exp 29 (mean accuracy: 0.8308)

0 1 2 3 4 5 6

same scale -2.9213 0.7873 -1.3205 -0.9826 -0.3925 -0.6543 0.2823

different scale 1.9547 1.2910 0.7344 0.8642 0.8754 -0.9530 0.4349

Table C.29: DE 6.1 Symmetric Key Distance

0 1 2 3 4 5 6

I -0.5894 -0.1715 -0.5039 -0.7799 -0.6642 -0.6184 -1.2058

II -0.4217 0.8921 0.2129 0.8705 0.7474 -0.0335 0.7388

III 0.4562 1.8898 0.5690 0.4528 1.1606 1.0905 0.4266

IV -0.6044 1.0036 0.3485 0.6186 -0.3626 -0.0723 3.3166

V -2.9783 -2.2100 -0.8053 -1.4102 -2.0756 -0.5896 -2.5831

VI 0.1019 1.6858 0.4895 1.5451 1.2057 0.5585 0.0056

VII -1.4729 0.3084 0.1233 0.3992 -0.8177 -0.3257 0.0789

Table C.30: DE 7.1 Symmetric Root-Degree Distance

53

