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and vocal activity detection
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Abstract

In this paper, a novel blind separation method for monaural singing voice based on

an extension of robust principal component analysis (RPCA) using a rank-1 constraint

called Constraint RPCA (CRPCA) is proposed. Although the conventional RPCA is an

effective method to separate singing voice from the mixed audio signal, it fails when

one singular value (e.g., drum) is much larger than all others (e.g., other accompanying

instruments). The proposed CRPCA method utilizes rank-1 constraint minimization

of singular values in RPCA instead of minimizing the nuclear norm, which not only

provides a solution robust to large dynamic range differences among instruments but

also reduces the computation complexity. Further quality improvement is achieved by

converting CRPCA to an ideal binary masking, combining it with harmonic masking

to create a coalescent masking, and finally, combining with a vocal activity detection.

Evaluation results on ccMixter and DSD100 datasets show that the proposed method

achieves better separation performance than the previous methods.
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Figure 1: Illustration of blind monaural singing voice separation system.

1. Introduction

Monaural singing voice separation has received much attention in recent years for

its range of potential applications including singer identification [1], melody extraction

[2], music information retrieval (MIR) [3], chord recognition [4], speech enhancement

[5], and computational auditory scene analysis (CASA) [6]. This type of separation5

is even more difficult than multichannel source separation since only one channel is

used [7]. Blind monaural singing voice separation is a technique for extracting singing

voice from a set of single channel mixed music signals without any additional prior

information. The blind monaural singing voice separation system is shown in Fig. 1.

Mixture music consists of singing voice and background music including drums, bass,10

and other instruments. After separation by the proposed method, we obtain the target

singing voice and accompaniment parts from the mixture music.

There have been many methods proposed to overcome the difficulty in separation

tasks. However, state-of-the-art methods for singing voice separation are still far be-

hind human hearing capability, especially for single-channel sources, and the task re-15

mains extremely challenging [8] due to the musical instruments involved and time-

varying spectral overlap between singing voice and background music. Research in the

field of monaural singing voice separation can be divided into two categories: super-

vised and unsupervised learning methods. Supervised learning methods mainly rely

on prior knowledge about the mixed audio sources. Deep neural network (DNN)-20

based models [9] [10] [11] [12] [13] [14] are perhaps the most widely used supervised
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learning models for singing voice separation. Although they have proven effective

for separating singing voice, a large number of training data are needed in advance,

which makes these models difficult to apply in case of small audio data. In addition,

when there is a mismatch between training and testing samples [15], separation quality25

decreases due to overfitting. In light of this, unsupervised methods are often prefer-

able for monaural singing voice separation, particularly when only a limited amount

of audio data is available or when there is no additional prior information [16] [17].

Many unsupervised methods are inspired by, or loosely based on, non-negative matrix

factorization (NMF) [18] [19] [20], which is a type of dimensionality reduction that30

decomposes a non-negative matrix into a non-negative basis matrix and a non-negative

activation matrix using an iterative cost-minimization algorithm with multiplicative up-

date rules. Although NMF has shown impressive results in monaural audio source sep-

aration, it is difficult to determine the appropriate number of nonnegative basis vectors.

Robust principal component analysis (RPCA) [7] is an effective approach for singing35

voice separation because singing voice can be well modeled as a sparse matrix, while

accompaniment as well modeled as a low-rank matrix. RPCA has been extensively

and successively applied in other signal processing applications like speech enhance-

ment [21] [22] [23], SAR imaging [24] [25], direction of arrivals tracking [26] and also

in computer vision applications [27] [28] [29]. Inspired by this sparse and low-rank40

model, a new RPCA-based method that incorporates harmonicity priors and a back-

end drum removal procedure was proposed [30]. In a similar vein, Yang [31] proposed

multiple low-rank representations (MLRR) to decompose a magnitude spectrogram

into two low-rank matrices. Rafii et al. [32] proposed a repeated accompaniment

concept for background music and used the Repeating Pattern Extraction Technique45

(REPET) for separating the repeating music part from the non-repeating singing voice

in a mixture signal. Sprechmann et al. [33] proposed a real-time online singing voice

separation by robust low-rank modeling. Fourer et al. [34] proposed a novel unsuper-

vised singing voice detection method which uses single-channel Blind Audio Source

Separation (BASS) algorithm as a preliminary step. Chan et al. [35] proposed us-50

ing informed group-sparse representation with the idea of pitch annotations separation.

Pu et al. [36] proposed an approach in audio separation with the assistance of visual
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information.

As stated above, RPCA is an effective way to separate singing voice from the mix-

ture signal. It decomposes a given amplitude spectrogram (matrix) of a mixture signal55

into the sum of a low-rank matrix (accompaniment) and a sparse matrix (singing voice).

Since musical instruments reproduce nearly the same sounds every time, a given note

is played in a given song, the magnitude spectrogram of these sounds can be consid-

ered as a low-rank structure. Singing voice, in contrast, varies significantly, but has

a sparse distribution in the spectrogram domain to its harmonic structure. Although60

RPCA has been successfully applied to singing voice separation, it fails when there are

significant differences in dynamic range among the different background instruments.

Some instruments, such as drums, correspond to singular values with tremendous dy-

namic range; because it uses nuclear norm to estimate the rank of the low-rank matrix,

RPCA algorithms similar to those in [37] over-estimate the rank of a matrix that in-65

cludes drum sounds. The accuracy of such separation results thus decreases, as drums

may be placed in the sparse subspace instead of being low-rank.

To overcome these issues, Mikami et al. [38] proposed a residual drums sound

estimation method for singing voice separation. Jeong et al. [39] proposed an extension

of RPCA with weighted l1-norm minimization for singing voice separation, but only70

studied the different weighted values on a sparse matrix rather than including the low-

rank matrix as well. In another approach, Li and Akagi [40] proposed an extension of

the RPCA algorithm called weighted robust principal component analysis (WRPCA),

which uses different weighted values to describe the low-rank matrix for singing voice

separation. However, it suffers from high computational cost due to computing the75

singular value decomposition (SVD) at each iteration. Hence, the running time of

WRPCA is slower than RPCA. Recently, a partial sum minimization of singular values

as an alternative to minimizing the nuclear norm in RPCA [41] was proposed, which

uses minimized rank to determine the different values of SVD in image processing. In

response to the above problems, in this paper, we extend the idea in [41] and propose80

an extension of RPCA exploiting the rank-1 constraint (CRPCA) [42], which utilizes

the rank-1 constraint minimization of singular values in RPCA instead of minimizing

the nuclear norm for separating singing voice from the mixture music. There are other
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works which used rank-1 constraint RPCA in computer vision application [43] [44]

[45] [46]. To the best of our knowledge, this is the first work using different singular85

values for the singing voice separation task. CRPCA not only describes the different

values of SVD but also reduces the computation complexity. This present study extends

the preliminary work [42] by melody extraction, which plays a vital role in separating

singing voice [47] [48] [49], we convert the CRPCA output to an ideal binary masking,

combine it with a harmonic masking to create a coalescent masking, and apply the90

coalescent masking to extract the singing voice. In addition, we adopt a vocal activity

detection (VAD) algorithm to constrain the temporal segments in which singing voice

may occur.

To sum up, in this paper, we propose a blind separation method based on rank-1

constraint RPCA for monaural singing voice. The major contributions of this paper are95

summarized as follows.

• We present an extension of RPCA called CRPCA, which constraints the low-rank

matrix in RPCA to have rank greater than or equal to one, thereby describing the

sensitively of RPCA to dynamic range variation.

• We construct coalescent masking, which consists of time-frequency masking100

fused with harmonic masking. In addition, we use VAD to constrain the tem-

poral segments that are allowed to contain singing voice.

• We demonstrate through a detailed experiment on monaural singing voice sepa-

ration that the proposed method can achieve a significant improvement of sepa-

ration performance over the conventional RPCA and even exceeds the previously105

proposed WRPCA [40].

The remainder of this paper is structured as follows. In Section 2, we briefly re-

view related work on singing voice separation focusing on RPCA-based methods. The

proposed CRPCA method is described in Section 3. In Sections 4 and 5, we introduce

the coalescent masking and VAD, respectively. Then, the results and analysis of the110

experiments on benchmark datasets are provided in Section 6. We conclude in Section

7 with a brief summary.
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2. Related work

This section briefly reviews the conventional RPCA. Then, we discuss the previ-

ously proposed WRPCA and its application to singing voice separation.115

2.1. Principle of RPCA

Candés et al. [37] presented a convex program RPCA, which decomposed an input

matrix X ∈ Rm×n into the sum of a low-rank matrix L ∈ Rm×n and a sparse matrix

S ∈ Rm×n. This problem can be formulated as

minimize |L|∗ + λ|S |1,

subject to X = L + S ,
(1)

where |L|∗ denotes the nuclear norm (sum of singular values), |S |1 denotes the L1-norm120

(sum of absolute values of matrix entries), and λ > 0 is a positive constant balanc-

ing the relative importance of model violations between the low-rank matrix L and

sparse matrix S . As Candés et al. [37] suggested, we set λ = 1/
√

max(m, n) in this

work. Furthermore, this convex program can be solved by accelerated proximal gra-

dient (APG) or augmented Lagrange multipliers (ALM) [50]. There are two versions125

of ALM methods: inexact and exact. We use the efficient inexact ALM algorithm for

solving the RPCA problem as a baseline method for comparison in our experiments

[7].

2.2. Principle of WRPCA

WRPCA is an extension of RPCA that has different scale values between sparse130

and low-rank matrices. The corresponding model can be defined as

minimize |L|w,∗ + λ|S |1,

subject to X = L + S ,
(2)

where w is a vector of weights and |L|w,∗ is the low-rank matrix computed using weighted

singular value minimization, S is the sparse matrix, X ∈ Rm×n is an input matrix, and

λ > 0 is a trade-off constant parameter between the sparse matrix S and the low-rank

matrix L. We used λ = 1/
√

max(m, n) as suggested by Candés et al. [37]. We also135
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adopted an efficient inexact ALM [50] to solve this convex model. The corresponding

augmented Lagrange function is defined as

J(X, L, S , µ) = |L|w, ∗ + λ|S |1+ < J, X − L − S >

+
µ

2
|X − L − S |2F , (3)

where J is the Lagrange multiplier and µ is a positive scalar.

In RPCA, nuclear norm minimization and L1-norm affect not only the sparsity and

low-rankness of the two decomposed matrices but also their relative scale values. In140

order to better balance their scale values, WRPCA uses different weighted value strate-

gies to trim the low-rank matrix during each stage of the singing voice separation pro-

cessing.

Set X = UΣVT , X ∈ Rm×n, where

Σ =

 diag(δ1(X), δ2(X), ..., δn(X))

0

 , (4)

and δi(X) denotes the i-th singular value of X. If the positive regularization parameter145

C exists and the positive value ε < min(
√

C, C
δ1(X) ), using Candés et al [51] proposed

reconstruct sparse signals, the reweighing formula can be defined as

wl
i =

C
δi(Ll) + ε

, (5)

so the weighted values will converge to

L∗ = UΣ′VT , (6)

where

Σ′ =

 diag(δ1(L∗), δ2(L∗), ..., δn(L∗))

0

 , (7)

and150

δi(L∗) =


0

c1 +
√

c2

2

(8)
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Algorithm 1 WRPCA for singing voice separation

Input: Mixture signal X ∈ Rm×n, weight vector w.

1: Initialize: ρ, µ0, L0 = X, J0 = 0, k = 0.

2: While not converge,

3: do :

4:

∣∣∣∣∣∣ S k+1 = arg min |S |1 +
µk
2 |X + µ−1

k Jk − Lk − S |2F .

5:

∣∣∣∣∣∣ Lk+1 = arg min |L|w,∗ +
µk
2 |X + µ−1

k Jk − S k+1 − L|2F .

6:

∣∣∣∣∣∣ Jk+1 = Jk + µk(X − Lk+1 − S k+1).

7:

∣∣∣∣∣∣ µk+1 = ρ ∗ µk.

8:

∣∣∣∣∣∣ k = k + 1.

9: end while.

Output: S m×n, Lm×n.

where c1 = (δi(X)−ε) and c2 = ((δi(X)+ε)2−4C) [52]. In this work, we empirically set

the regularization parameter C as the maximum matrix size, which enables us to obtain

the best separation performance results on the audio dataset, e.g., C = max(m, n) [40].

The specific process for separating singing voice from the mixed music signal is

outlined in Algorithm 1, where the value of X is a mixed music signal from the ob-155

served audio datum. After separation by WRPCA, we obtain a low-rank matrix L (ac-

companiment) and a sparse matrix S (singing voice). Therefore, we can use the WR-

PCA method to decompose an input matrix into a low-rank matrix part and a sparse

matrix part. The separation results outperform the RPCA method in different audio

data. However, it suffers from high computational cost due to computing an SVD at160

each iteration, which in turns leads to slow running time.

3. Constraint RPCA (CRPCA)

CRPCA is an extension of RPCA in which the low-rank matrix is constrained to

have rank greater than or equal to one. Because of this constraint, the first singular
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value can be removed from the nuclear norm, thereby freeing the first basis vector to165

represent a component with very high singular value such as the average drumset or

average background noise. The corresponding model can be defined as

minimize
min(m,n)∑

i=2

δi(L) + λ|S |1,

subject to X = L + S ,

(9)

where L is the low-rank matrix and S is the sparse matrix. X ∈ Rm×n is an input

matrix, and λ > 0 is a trade-off constant parameter between the sparse matrix S and

the low-rank matrix L. δi(L) is the i-th singular value of L. We use the same value λ =170

1/
√

max(m, n) as suggested by Candés et al. [37]. We also adopt an efficient inexact

version of the ALM [50] to solve this convex model. The corresponding augmented

Lagrange function is defined as

J(X, L, S , µ) = min
min(m,n)∑

i=2

δi(L) + λ|S |1

+ < J, X − L − S > +
µ

2
|X − L − S |2F , (10)

where J is the Lagrange multiplier and µ is a positive value.

From the above Lagrangian function, we can obtain the following two sub-problems

related to L and S :

Lk+1 = min
L

min(m,n)∑
i=2

δi(L) + 〈Jk, X − L − S k〉

+
µk

2
|X − L − S k |

2
F , (11)

S k+1 = min
S

λ|S |1 + 〈Jk, X − Lk − S 〉

+
µk

2
|X − Lk − S |2F , (12)

3.1. Update rules based on rank-1 constraint175

As suggested by Oh et al. [41], the update rules of L and S are equivalent to solving

the above two sub-problems, as

Lk+1 = P1,µ−1
k

(X − S k + µ−1
k Jk), (13)
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Algorithm 2 CRPCA for singing voice separation

Input: Mixture signal X ∈ Rm×n.

1: Initialize: ρ > 1, µ0 > 0, k = 0, L0 = S 0 = 0.

2: While not converge,

3: do :

4:

∣∣∣∣∣∣ Lk+1 = P1,µ−1
k

(X − S k + µ−1
k Jk).

5:

∣∣∣∣∣∣ S k+1 = Qλµ−1
k

(X − Lk+1 + µ−1
k Jk).

6:

∣∣∣∣∣∣ Jk+1 = Jk + µk(X − Lk+1 − S k+1).

7:

∣∣∣∣∣∣ µk+1 = ρ ∗ µk.

8:

∣∣∣∣∣∣ k = k + 1.

9: end while.

Output: Lm×n, S m×n.

S k+1 = Qλµ−1
k

(X − Lk+1 + µ−1
k Jk), (14)

and P1,µ−1
k

(·) can be defined as

P1,µ−1
k

(Y) = UY (DY1 + Qµ−1
k

(DY2 ))VT
Y , (15)

where the soft-thresholding operator [53] can be defined as180

Qµ−1
k

(DY2 ) = sign(DY2 ) · max(|DY2 | − µ
−1
k , 0), (16)

where Y = Y1+Y2 (Y ∈ Rm×n), DY1 = diag(δ1, 0, ..., 0), DY2 = diag(0, δ2, ..., δmin(m,n)),

and δ1 and δ2 are the first and second singular values.

The separation process corresponding to the mixed music signal is outlined in Al-

gorithm 2. The input value X is a mixed music signal from the observed audio data.

Finally, after the algorithm convergences, we obtain a low-rank matrix L (accompani-185

ment) and a sparse matrix S (singing voice).
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4. Coalescent masking

4.1. Time frequency masking

We apply ideal binary time frequency masking (IBM) [7] to further improve the

separation results from low-rank and sparse matrices by CRPCA. The function Mibm is190

defined as

Mibm(i, j) =


1 S i j ≥ Li j

0 S i j < Li j

(17)

where S i j and Li j are the values of the sparse and low-rank matrices.

4.2. Vocal F0 estimation

Vocal F0 estimation can significantly improve the separation performance of singing

voice [49], so extracting the F0 contour properly is crucial. Subharmonic summation is195

an efficient technique for this calculation [48] [54]. In this work, we adopt the salience

function H(t, s), which is formulated as

H(t, s) =

N∑
n=1

hnP(t, s + 1200 log2 (n)), (18)

where t and s indicate frame index and logarithmic frequency, respectively. P(t, s)

represents the power at frame t and frequency s, N is the number of harmonic parts,

and hn is a decaying factor, 0.84n−1 in this paper. Log frequency s is measured in cents200

(1200 cents per octave), and P(t, s) is computed with a frequency resolution of 200 bins

per octave (6 cents per bin).

The optimal melody contour C can be solved by using an optimal path problem

formulated as

C = argmax
T−1∑
t=1

(
log atH(t, st) + log T (st, st+1)

)
, (19)

where T (st, st+1) is a transition probability that indicates the likelihood of the current205

F0 moving to the next F0 in the consecutive frame, and at is a normalization factor that

makes the salience values sum to one within the range of the F0 search. We use the

Viterbi search algorithm [55] to optimize the melody contour C value.
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4.3. Harmonic masking

In accordance with the previous research, we define the harmonic masking Mh by210

the above-mentioned obtained vocal F0 as

Mh(t, f ) =


1 nFt −

w

2
< f < nFt +

w

2

0 others
(20)

where Ft is the vocal F0 estimated at frame t, n is the index of a harmonic part, and w

is a frequency width for extracting the energy around each harmonic part.

4.4. Coalescent masking

In this section, we propose a coalescent masking, which is combining harmonic215

masking Mh with ideal binary time frequency masking Mibm. The corresponding for-

mulation Mc can be described as

Mc = Mibm ⊗ Mh (21)

where Mibm and Mh are the time frequency masking and harmonic masking, respec-

tively, and ⊗ denotes the element-wise multiplication operator.

Finally, the temporal segments in which singing voice can be obtained by using the220

coalescent masking, the following formulas can be defined as

S vocal = Mc ⊗ X (22)

where ⊗ denotes the element-wise multiplication operator.

5. Vocal activity detection

To obtain better separation performance and optimize the value of coalescent mask-

ing, we apply a VAD algorithm to constrain the temporal segments in which singing225

voice. Singing voice only be detected in frames t such that Ω(t) > k, where k is a

threshold. The cost function Ω(t) can be defined as

Ω(t) =
∑

f

 1
H f

H f∑
n=1

P(t, s + 1200 log2 (n))


1.8

, (23)
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Figure 2: Block diagram of proposed blind monaural singing voice separation system.

where H f = (Fs/2 f ) is the number of harmonics of the frequency f that exist at fre-

quencies below the Nyquist rate Fs/2. P(t, s) stands for the power at frame t and log

frequency s.230

A block diagram of our proposed blind monaural singing voice separation system

is given in Fig. 2. For each mixture music in the test dataset, we first apply a mag-

nitude short-time Fourier transform (STFT) [56] to obtain X, then separate X into the

corresponding low-rank matrix L and sparse matrix S by using the CRPCA method.

We then utilize coalescent masking to constrain the time-frequency masking to only235

those times and frequencies that constrain harmonics. VAD is adopted to improve the

separation performance by discriminating the vocal and non-vocal frames. Finally, we

use an inverse short-time Fourier transform (ISTFT) [57] to obtain the accompaniment

and singing voice parts from the mixture music.

In this work, we randomly excerpted example 30-second audio data units from the240

ccMixter dataset. Figures 3 and 4 show the spectrograms of separated singing voice

parts and separated accompaniment parts from the mixed music signal. Different sep-

aration methods are used to compare the original spectrograms, singing voice, and

accompaniment, respectively. As shown in the figures, the spectrogram of Fig. 3(b)

contains the greatest amount of interference from background music signal (accompa-245

niment) in the recovered singing, while in Fig. 3(f) contains the least. In other words,

the latter is better than the former in singing voice separation task. As for the compar-

ison with accompaniment in Fig. 4, CRPCA using coalescent masking and VAD has

the best value of separation performance among them.
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(a) (b)

(c) (d)

(e) (f)

Figure 3: Spectrograms are excerpted from AlexBeroza - To Be Sensitive (with mindmapthat) in the

ccMixter dataset: (a) spectrogram of original singing voice, (b) spectrogram of separated singing voice

by RPCA, (c) spectrogram of separated singing voice by WRPCA, (d) spectrogram of separated singing

voice by CRPCA (Proposed 1), (e) spectrogram of separated singing voice by CRPCA with IBM (Proposed

2), (f) spectrogram of separated singing voice by CRPCA using coalescent masking and VAD (Proposed 3),

respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 4: Spectrograms are excerpted from AlexBeroza - To Be Sensitive (with mindmapthat) in ccMixter

dataset: (a) spectrogram of original accompaniment, (b) spectrogram of separated accompaniment by RPCA,

(c) spectrogram of separated accompaniment by WRPCA, (d) spectrogram of separated accompaniment by

CRPCA (Proposed 1), (e) spectrogram of separated accompaniment by CRPCA with IBM (Proposed 2),

(f) spectrogram of separated accompaniment by CRPCA using coalescent masking and VAD (Proposed 3),

respectively.

15



6. Experimental results and analysis250

We performed experiments using two different datasets for the singing voice sep-

aration task: ccMixter [58]1 and DSD100 [8]2. Conventional RPCA [7] and WRPCA

[40] are included for comparison.

• Proposed 1: CRPCA only

• Proposed 2: CRPCA with IBM255

• Proposed 3: CRPCA using coalescent masking and VAD

6.1. Experiment datasets and conditions

The ccMixter dataset contains 50 full songs with durations ranging from 1’17” to

7’36”. Each audio datum contains three parts: singing voice, accompaniment, and a

mixture of the two, respectively.260

The Demixing Secrets Dataset (DSD100) contains 100 full stereo songs of different

styles with durations ranging from 2’21” to 7’15”, as also used for the 2016 Signal

Separation Evaluation Campaign (SiSEC) [8], which is split into 50 training (dev) and

50 test songs. Each datum consists of bass, drums, other, and singing voice. In our

experiments, all data are conducted as the test data. We consider the sum of drums,265

bass, and other as the accompaniment part. The objective is to separate the singing

voice from the accompaniment in a mixed music signal.

Our main focus in these experiments is the monaural source separation task. This

task is typically even more difficult than multichannel source separation due to the

availability of only one channel. Therefore, the two-channel stereo mixture datasets270

we used were downmixed into a single channel. We evaluated the whole audio datum

rather than just partial lengths on both datasets. All experiment data were sampled at

44.1 kHz. STFT and ISTFT with a window size of 1024 samples and a hop size of 256

samples were used. All experiments were run using MATLAB R2015a on a PC win10,

X64-based processor, RAM 32GB with i7-6700K CPU@4.00 GHz.275

1https://members.loria.fr/ALiutkus/kam/
2http://liutkus.net/DSD100.zip
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To evaluate the effectiveness of the proposed method, we assessed its separation

performance in terms of source-to-distortion ratio (SDR), source-to-interference ratio

(SIR), and normalized SDR (NSDR) by using the BSS-EVAL 3.0 metrics [59]3. The

estimated signal Ŝ (t) is defined as

Ŝ (t) = S target(t) + S inter f (t) + S arti f (t), (24)

where S target(t) is the allowable deformation of the target sound, S inter f (t) is the al-

lowable deformation of the sources that account for the interferences of the undesired

sources, and S arti f (t) is an artifact term that may correspond to the artifact of the sep-

aration method. The formulas for SDR, SIR, and NSDR are respectively defined as

S DR = 10 log10

∑
t S target(t)2∑

t

(
S inter f (t) + S arti f (t)

)2 , (25)

S IR = 10 log10

∑
t S target(t)2∑
t S inter f (t)2 , (26)

NS DR(v̂, v, x) = S DR(v̂, v) − S DR(x, v), (27)

where v̂ is the separated voice part, v is the original singing voice signal, and x is the280

original mixture value. The NSDR is used to estimate the overall improvement in SDR

between x and v̂.

Higher values of SDR, SIR, and NSDR mean that the method exhibits better sep-

aration performance in terms of the singing voice separation tasks. More specifically,

the value of SDR indicates the overall quality of the separated target sound signals,285

while the value of SIR reflects the suppression of the interfering source. All metrics

are expressed in dB.

6.2. Results and discussions

For the ccMixter dataset, all comparisons of singing voice separation results with

the conventional RPCA, WRPCA, and proposed methods (CRPCA only, CRPCA with290

3http://bass-db.gforge.inria.fr/bss eval/
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Figure 5: Comparison of monaural singing voice separation results on ccMixter dataset for conventional

RPCA, WRPCA, CRPCA, CRPCA with IBM, and CRPCA using coalescent masking and VAD in terms of

SDR, SIR, and NSDR, respectively.

IBM and CRPCA using coalescent masking and VAD) are shown in Fig. 5. From the

experimental results obtained with the SDR, SIR, and NSDR, we can clearly see that

CRPCA using coalescent masking and VAD gets better separation results than others.

Fig. 6 shows the results with the conventional RPCA, WRPCA, and the proposed

methods on the DSD100 dataset. From the experimental results obtained with SDR,295

SIR, and NSDR values, again, it clearly shows that the proposed CRPCA using coa-

lescent masking and VAD delivered the best separation results. Moreover, the value of

SIR was improved by more than 10 dB in comparison with the conventional RPCA.

We also compared the running time of the proposed method with those of the pre-

vious methods on the above-mentioned two datasets. Table 1 lists the running time of300

each method on the ccMixter and DSD100 datasets. The running time on CRPCA was

much shorter than on RPCA or WRPCA, while WRPCA had the worst results.

As the above-mentioned experimental results demonstrate, although WRPCA ob-

tained better separation results than the conventional RPCA, the running time was

much longer than RPCA on both datasets. CRPCA can utilize a prior target rank to305

separate audio source from the mixture signals, regardless of separation performance

or running time, which leads to the superiority of CRPCA to RPCA and WRPCA.

In the case of running time, WRPCA had the worst performance. As for the sepa-
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Figure 6: Comparison of monaural singing voice separation results on DSD100 dataset for conventional

RPCA, WRPCA, CRPCA, CRPCA with IBM, and CRPCA using coalescent masking and VAD in terms of

SDR, SIR, and NSDR, respectively.

ration performance in terms of NSDR, our proposed method delivered improvements

by +2.56 dB and +2.95 dB on the ccMixter and DSD100 datasets, respectively. In-310

deed, in terms of SIR, the proposed method yielded estimates with significantly less

interference, +10.29 dB and +11.45 dB, respectively.

Table 1: Running time (hh:mm:ss)

Dataset RPCA WRPCA CRPCA

ccMixter 02:04:40 03:03:31 00:52:10

DSD100 04:34:30 06:49:28 01:54:17

7. Conclusion

In this paper, we have proposed blind monaural singing voice separation based on

an extension of RPCA exploiting the constraint that the accompaniment spectrogram315

must have rank greater than or equal to one, and permitting its first singular values to

be arbitrarily large without penalty. Time-frequency masking and harmonic masking

are combined to construct coalescent masking, and VAD is utilized to constrain the

singing voice and accompaniment values. Experimental results on the ccMixter and

19



DSD100 datasets demonstrate that the proposed method outperforms the conventional320

RPCA and WRPCA methods. As for running time, CRPCA is faster than RPCA and

WRPCA under the same conditions, while WRPCA is the slowest. For future work,

we will investigate robust graph embedding/learning approaches [60] [61] to optimize

the separation performance from the mixed audio signal.
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[48] J. Salamon, E. Gómez, Melody extraction from polyphonic music signals using

pitch contour characteristics, IEEE Transactions on Audio, Speech, and Language

Processing, 20.6, 2012, pp. 1759-1770.480

[49] Y. Ikemiya, K. Itoyama, K. Yoshii, Singing voice separation and vocal F0 esti-

mation based on mutual combination of robust principal component analysis and

subharmonic summation, IEEE/ACM Transactions on Audio, Speech, and Lan-

guage Processing, 24.11, 2016, pp. 2084-2095.

[50] Z. Lin, M. Chen, Y. Ma, The augmented lagrange multiplier method for exact485

recovery of corrupted low-rank matrices, arXiv preprint arXiv:1009.5055, 2010.

[51] E. J. Candés, M. B. Wakin, S. Boyd, Enhancing sparsity by reweighted l1 mini-

mization, Journal of Fourier analysis and applications, 14.5, 2008, pp. 877-905.

[52] S. Gu, Q. Xie, D. Meng, W. Zuo, X. Feng, L. Zhang, Weighted nuclear norm mini-

mization and its applications to low level vision, International journal of computer490

vision, 121.2, 2017, pp. 183-208.

[53] E. Hale, W. Yin, Y. Zhang, Fixed-point continuation for `1-minimization:

Methodology and convergence, SIAM Journal on Optimization, 19.3, 2008, pp.

1107-1130.

[54] D.J. Hermes, Measurement of pitch by subharmonic summation, The journal of495

the acoustical society of America, 83.1, 1998, pp. 257-264.

[55] Forney, G. David, The viterbi algorithm, Proceedings of the IEEE, 61.3, 1973,

268-278.

[56] S.H. Nawab, T.F. Quatieri, J.S. Lim, Signal reconstruction from short-time

Fourier transform magnitude, IEEE Transactions on Acoustics, Speech, and Sig-500

nal Processing, 31.4, 1983, pp. 986-998.

[57] N. Sturmel,L. Daudet, Signal reconstruction from STFT magnitude: A state of

the art. In International conference on digital audio effects (DAFx), 2011, pp.

375-386.

26



[58] A. Liutkus, D. Fitzgerald, Z. Rafii, B. Pardo, L. Daudet, Kernel additive models505

for source separation, IEEE transactions on audio, speech, and language process-

ing, 62.16, 2014, pp. 4298-4310.

[59] E. Vincent, R. Gribonval, C. Févotte, Performance measurement in blind audio

source separation, IEEE transactions on audio, speech, and language processing,

14.4, 2006, pp. 1462-1469.510

[60] N. Han, J. Wu, Y. Liang, X. Fang; W. Wong, S. Teng, Low-rank and sparse em-

bedding for dimensionality reduction, Neural Networks, 2018, pp. 202-216.

[61] Z. Kang, H. Pan, S. Hoi, Z. Xu, Robust Graph Learning from Noisy Data,

Preprint, December 2018.

515

Feng Li is currently pursuing his Ph.D. degree in Acoustic Information Science

(AIS) Laboratory at Japan Advanced Institute of Science and Technology

(JAIST) in Japan. He is a member of European Association for Signal Processing

(EURASIP), the Asia Pacific Neural Network Society (APNNS), and the

Acoustical Society of Japan (ASJ). His research interests include audio source520

separation, speech enhancement and noise reduction.

Masato Akagi received his B.E. from Nagoya Institute of Technology in 1979,

and his M.E. and Ph.D. Eng. from the Tokyo Institute of Technology in 1981 and525

27



1984. He joined the Electrical Communication Laboratories of Nippon Telegraph

and Telephone Corporation (NTT) in 1984. From 1986 to 1990, he worked at the

ATR Auditory and Visual Perception Research Laboratories. Since 1992 he has

been on the faculty of the School of Information Science of JAIST and is now

a full professor. His research interests include speech perception, modeling of530

speech perception mechanisms in human beings, and the signal processing of

speech.

28


	Introduction
	Related work
	Principle of RPCA
	Principle of WRPCA

	Constraint RPCA (CRPCA)
	Update rules based on rank-1 constraint

	Coalescent masking
	Time frequency masking
	Vocal F0 estimation
	Harmonic masking
	Coalescent masking

	Vocal activity detection
	Experimental results and analysis
	Experiment datasets and conditions
	Results and discussions

	Conclusion

