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Chapter 1

Introduction

Nowadays, applications that implement machine learning and data mining tech-
niques are ubiquitous in all aspects of everyday life. In several tasks such as clas-
sification or recognition, those techniques have been proved to be able to perform
equally and even surpass humans. However, models that can achieve prominent
performance are normally complex, opaque and have low interpretability. It is a
non-trivial task to explain the underlying behaviors of those models and the reason
for their final outcomes. In many domains that require to make high-stakes decisions
such as healthcare, medicine or finance, interpretability is considered as one of the
most important factors for the adoption of those machine learning models.

1.1 Interpretable Machine Learning and XAI

One of the main reasons for the popularity of applications that implement machine
learning techniques is a significant improvement in their performance. Recently,
advancements in deep learning techniques have brought applications of machine
learning back to life with robust performance and more real-life experience such
as image recognition or automatic driving car. Specifically, with the abundance
of data, deep learning techniques could achieve prominent accuracy due to their
capability of capturing complicated relationships hidden in the data. However, such
high accuracy comes with high complexity and opaqueness in the models [1].

It is challenging to explain for the results of those so-called black-box models
- which is one of the essential requirements when employing them within a deci-
sion support system, especially in domains that need the interpretability for making
high-stakes decisions [2]. In recent years, there is the raising of eXplanatory Ar-
tificial Intelligence (XAI) and Interpretable Machine Learning (Interpretable ML)
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fields which aim to resolve the mentioned problem. Specifically, XAI promotes trans-
parency in whole or parts of systems and the explainability for their decisions. In
the work of [3], the explanations for decisions made by algorithms are claimed to be
vital to guarantee fairness, detect potential algorithmic or data bias and to make
sure that the algorithms perform as expected. In machine learning domain, the two
terms explainability and interpretability have different meaning but are frequently
used interchangeably. In the remaining parts of this dissertation, we also do not
differentiate the meaning of those two terms when using them.

In the work of [4], interpretable ML is considered as the utilization of ML models
in order to exploit relevant domain knowledge about hidden relationships in avail-
able data. Insights that are formed by that relevant knowledge can be used to guide
communication, actions and further discovery. On the other hand, the interpretabil-
ity of ML models was also mentioned as the first step to assure the explainability
of the models which “must be complete with the capacity to defend their actions,
provide relevant responses to questions and be audited” [3].

In real applications, there are two main situations where interpretability is re-
quired as an essential property of a system. Firstly, it is necessary for troubleshooting
when a problem occurs. As observed in several ML applications, intentionally hid-
den information or unforeseen behaviors may be embedded into the models [3]. For
example, a deep neural network can misclassify an image while applying a certain
perturbation on the same image [5]. In the other work of [6], deep neural networks
can be tricked to misclassify inputs with no resemblance to the true category. Neu-
ral networks that process natural languages can also occur similar problems [7].
With the increase of research on adversarial examples of ML models, there is more
emphasis placed on the interpretability and explainability of ML models in order
to promote the understanding of their decision-making process as well as problem
detection for suspected cases.

Secondly, in the fields that require to make high-stakes decisions such as medicine,
healthcare or finance, interpretability is considered as one of the main requirements
for the adoption of ML systems for data analysis [8]. In the work of [9], it was
mentioned that the clinical decision related to radiation treatment should not be
based merely on the accuracy of a prediction system but also on an informed under-
standing of the relationship among patients’ characteristics, radiation response and
treatment plans. Moreover, it is also challenging for the application of neural net-
works in predicting medical outcomes when comparing with the use of interpretable
methods such as logistic regression [10]. In a review in the applications of deep
neural networks for health informatics [11], the lack of interpretability is pointed
out as the main reason that limits the adaptation of deep neural networks into the
healthcare section. Furthermore, in [12], the need for opening ML black boxes is
posed as one of the biggest challenges for ML applications in the medical field.
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Besides the two aforementioned situations, with the widespread of everyday life
applications that implement ML techniques, the global community is becoming more
aware of their impact and the related issues. Social awareness is reflected in the
implementation of legal documents such as the European Union directive for General
Data Protection Regulation (GDPR). GDPR defined the right of explanation as
providing an individual with “meaningful information about the logic involved, as
well as the significance and the envisaged consequences of such processing for the
data subject” [13]. Furthermore, several GDPR-like laws are being adopted in many
countries such as the California Consumer Privacy Act (CCPA) or the Privacy
Amendment (Notifiable Data Breaches) to Australia’s Privacy Act. Although the
right of explanation is not clearly declared in those documents, it is still a big step
toward the full recognition and implementation of this right in the legit documents.

1.2 Research Objectives

The main objectives of this research are firstly improving the robustness of explain-
able ML models. Specifically, there is a general observation that explainable models
tend to have low performance when dealing with complex problems. On the other
hand, more complicated methods can achieve significantly higher accuracy but have
lower interpretability. As an effort to mitigate this problem, we conduct an inves-
tigation on a common explainable model for the clustering task and propose a new
clustering method with higher performance while still do not notably increase its
complexity.

The second objective of our research is instead of improving an explainable model
that may underfit the problem, we focus on a systematic combination of explainable
supervised and unsupervised ML methods to form a new framework that can model
complex problems while still preserve their interpretability.

Finally, a refinement is added to our previous proposed system with the intro-
duction of uncertainty management. A demonstration is given on how uncertainty
management can help to improve the effectiveness of the system as well as provide
more explanations and new knowledge about the underlying data to users.

1.3 Dissertation Structure

The dissertation contains seven chapters. The summarized content of each chapter
is described as below:

– In the first chapter, we briefly introduce the concepts of interpretable ML as

3



well as XAI and give the motivation of our research about why it is necessary
for a system to be explainable. Then we lead directly into the research problem
and our research objectives.

– In chapter 2, we conduct a review of the related literature of our research. Par-
ticularly, a survey on new trends of XAI and interpretable ML is conducted to
clarify current approaches for achieving an explainable ML model. After that
several different methods to evaluate the interpretability of ML models will be
mentioned. Finally, in this chapter, we introduce applications of interpretable
ML in a broad range of areas including healthcare, material discovery and
banking sector.

– In chapter 3, we conduct an investigation on a common interpretable method
for the clustering task. Specifically, a brief introduction on the clustering
method will be provided and its working mechanism is analyzed for better
understanding as well as improvement. After that, we describe in detail our
newly proposed clustering method which is based on the common one with
several major improvements. In other to prove the merit of our proposed
method, an experiment will be conducted and demonstrated in this chapter.

– In chapter 4, a discussion on the use of transparent learning methods over
black-box models is given. Moreover, we introduce a new transparent classifi-
cation framework based on a systematic combination of supervised and unsu-
pervised methods. An experimental evaluation is given with a wide range of
real data in healthcare field as well as general data. Furthermore, an analysis
on the interpretability of the proposed system is also provided.

– In chapter 5, a refinement is added to the proposed system mentioned in
chapter 4 with uncertainty management. Firstly, we cover some background
concepts of the evidence theory and fuzzy clustering in this chapter. Then
details on our proposed classification system which utilized the above concepts
will be described. Finally, an in-depth comparative experiment is conducted
to evaluate our proposed methods.

– In chapter 6, we provide a general discussion on the remained limitations as
well as problems in our work and in the research community related to the
field of interpretable ML and XAI.

– Finally, in chapter 7, we summarize and draw conclusions on our research and
mention about our future work.
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Chapter 2

Literature Review

In this chapter, we would like to provide a big picture of recent work on interpretable
Machine Learning (ML) and eXplainable Artificial Intelligence (XAI) fields includ-
ing a taxonomy of current approaches on attempts to achieve explainable systems.
Moreover, due to the lack of a consensus definition of interpretability, we further
elaborate on several different methods for evaluating the quality of the explanations
and the interpretability of those systems. Finally, we introduce a number of appli-
cations of interpretable ML in critical decision-making and explainability-required
fields such as healthcare, credit scoring in the banking system and material discovery.

2.1 A Taxonomy of Interpretable ML Approaches

Currently, there are existing several different ways to classify interpretable ML tech-
niques which are commonly based on their ability to provide comprehensive explana-
tions and the types of those explanations. Specifically, interpretable ML techniques
are generally divided into two main branches: intrinsically interpretable methods and
post-hoc models [14, 4, 15, 16, 17, 2, 18]. Intrinsically interpretable (or transparent)
methods are designed so that the self-explanatory capability is incorporated into the
structure of those models [16] and ready to provide insights into the relationships
they have learned from the data [4]. On the other hand, post-hoc models are de-
fined as a second model to provide the explanations for existing (usually black-box)
models [16].

However, recently in the work of [14], they noted a newly rising approach for
building explainable models with causal interpretability, and named the aforemen-
tioned approaches as the traditional ones. According to [14], traditional approaches
provide merely statistical interpretability while causal interpretability aims at an-
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swering causal relationship-related questions such as “What if” (causal interven-
tional interpretability) and “Why” (counterfactual interpretability). In the taxon-
omy that is presented in this section, we would like to consider the idea of organizing
current approaches as traditional and causal ones as suggested in [14]. Moreover,
due to the gap and several disparities in the classification of interpretable ML ap-
proaches, we would like to summarize and propose a more consistent and coherent
taxonomy for interpretable ML techniques as described in Figure 2.1. Details about
this taxonomy will be presented in the following subsections.

Intrinsic	models Post-hoc	models

Traditional	interpretable	models

Group	explainability Local	explainability

Model-agnostic
explainability

Model-specific
explainability

Interpretable	ML	models

Global	explainability

Causal	interpretable	models

Causal	interventional
interpretability

Counterfactual
interpretability

Figure 2.1: A taxonomy of interpretable ML approaches.

2.1.1 Traditional Interpretable Models

Traditional interpretable ML techniques can generally be grouped into two cate-
gories: intrinsically interpretable models and post-hoc models, depending on the
time when the interpretability is obtained [14]. It is a common distinction that can
be found in recent XAI related surveys [18, 17] that based on the models’ aim of
providing explanations. Specifically, intrinsically interpretable models are designed
in order that insights into the decision-making process as well as knowledge on the
underlying data can be incorporated directly into the models [4]. Several common
examples of intrinsically interpretable models can be given such as decision trees
[19], association rule learning [20] or linear regression.

In contrast, post-hoc models are proposed for generating explanations for a second
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model (usually a black-box model) [16]. Recently, deep neural networks such as
CNN (Convolutional Neural Network) or RNN (Recurrent Neural Network) become
ubiquitous in a wide area of applications because of their prominent performances.
However, those models are considered as black-boxes because it is hard to track
their decision-making processes as well as understand what they have really learned
from the training data as described in Figure 2.2. Because of those reasons, deep
neural networks have become one of the main targets for post-hoc models which aim
to extract knowledge from the trained networks as well as provide explanations for
their decisions.

Figure 2.2: Black-box model vs. transparent model [21].

A. Intrinsically Interpretable Models

Intrinsically interpretable (or transparent) models are approaches that incorporate
the interpretability directly into the model structures [16]. Based on the characteris-
tics of their structure, the proposed models can provide users with insights into their
decision-making processes as well as useful knowledge about the underlying data.
Based on the types of their explainability given by the intrinsic models, they are
further divided into three categories: global explainability, group-based explainability
and local explainability [16, 22, 23]. Details of those categories will be described in
the following parts.

Global Explainability

Globally interpretable models are transparent about their working mechanism and
decision-making processes [16]. In other words, the models can provide explanations
about their overall behavior [24]. There are several models that are deemed to be
globally interpretable such as decision trees, rule-based models or linear regression.
Moreover, globally interpretable models can also be constructed on the foundation
of the aforementioned models.

Besides, according to [16], models can provide global interpretability by promot-
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ing to incorporate interpretability constraints such as enforcing sparsity terms or
imposing semantic monotonicity constraints in classification models [25]. Similarly,
decision trees are pruned by replacing subtrees with leaves to encourage long and
deep trees rather than wide and more balanced trees [26]. Trained ML models can
be simplified by applying those constraints, moreover it could also improve the com-
prehensibility of the models. In this part, we briefly review two popular globally
interpretable methods including decision trees [19], and linear regression.

Figure 2.3: An example of a decision tree with positive and negative class (binary)
and three attributes. The red path represents for a decision rule which leads to the
positive class if the testing instances satisfy the tree’s conditions [14].

Decision Trees is a popular interpretable classification method that was pro-
posed by [19]. Among several variations of this method, CART (Classification and
Regression Tree) algorithm is one of the most well-known binary decision tree learn-
ing algorithms proposed by [27]. With the input is a set of data instances, those
instances will then be split based on the feature that has the largest information
gain (IG). For splitting the nodes at the most informative features, the objective
function will be maximized for the information gain at each split as defined by the
following formula.

IG(Dp, att) = I(Dp)−
[
Nleft

Np

I(Dleft) +
Nright

Np

I(Dright)

]

Where att is the feature to perform the split, Dp and Dleft, Dright are the dataset
of the parent, left and right child nodes respectively, I is the impurity measure,
Np is the total number of samples at the parent node, and Nleft, Nright are the
number of samples in the left and right child node. The information gain provides
the distinctive amount between the impurity of the parent node and the sum of
the child node impurities—the lower the impurity of the child nodes, the larger the
information gain.
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Specifically, in the CART algorithm, the impurity measure is implemented as
the Gini index (GI). Basically, the Gini index aims to minimize the probability of
misclassification as defined in the Eq. (2.1) where p(i|t) is the proportion of the
samples that belong to class c for a particular node t.

IGI(t) =
c∑
i=1

p(i|t)(−p(i|t)) = 1−
c∑
i=1

p(i|t)2 (2.1)

The splitting procedure will be conducted at each child node iteratively until the
leaves are pure. This means that the samples at each node all belong to the same
class. An example of a decision tree’s result is illustrated in Figure 2.3.

Linear Regression is another method regarded as being interpretable. The
linear regression captures linear relationships between a dependent variable (target)
and independent variables (features). The weight of each feature represents the
mean change in the prediction given a one-unit increase of the feature. Accordingly,
it can be interpreted as the features with larger weights has more effect on the final
result. Specifically, the target value can be expressed as a linear combination of the
features with their first value randomly initialized weights:

y = w0 + w1a1 + w2a2 + ...+ wkak

where y is the target (class); a1, a2, ..., ak are the attribute values; and w0, w1, ..., wk
are the weights assigned to each attribute correspondingly.

The final values of the weights are optimized from the training data. In detail,
the linear regression method optimizes a set of k + 1 coefficients wj by minimizing
the sum of the squares of these differences over all the training instances. Given n
training instances; denote the ith one with a superscript i. Then the sum of the
squares of the differences can be defined as

n∑
i=1

(
yi −

k∑
j=1

wja
i
j

)2

where the expression inside the parentheses is the difference between the ith in-
stance’s actual class and its predicted class. This sum of squares is what we have to
minimize by choosing the coefficients appropriately.

Group-Based Explainability

The concept of group-based explainability was mentioned in the work of [23]. In this
work, they discussed the application of interpretable ML in endorsing to improve
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healthcare quality where cohort inspection is a common practice that can help ex-
perts in the field to understand the pathology of specific groups of patients. From
this information, doctors can provide better effective treatment.

Figure 2.4: The typical process for conducting a cohort study [28].

Basically, in epidemiology, a cohort is a group of people who share a common
experience, condition or characteristic. And cohort study aims to measure and com-
pare the incidence of disease in two or more study cohorts [28]. In medical research,
cohort studies are very strong and popular designs, however, they are also very time
consuming and expensive. Currently, due to the availability of medical data (espe-
cially patients’ medical records), a retrospective cohort study can be conducted in
a less expensive and faster way with the help of machine learning and data mining
techniques.

Figure 2.5: An example of a retrospective cohort study conducted on neurosurgery
field [29].
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Specifically, the investigation and knowledge about cohorts play an important
role when building applications based on patients’ medical information. The cohort-
specific explanations then can be a target when developing interpretable models for
healthcare applications. The importance of providing learned information about
the subgroups of a population is also essential in other fields such as biology or
environmental study. The illustration in Figure 2.5 is an example of retrospective
cohort study on the neurosurgery field.

Local Explainability

Locally interpretable models are designed to be more justifiable and can explain
the reasons for specific decisions made by them [16]. While globally interpretable
models provide a degree of transparency about their inner structure which can en-
sure that they work as expected, locally interpretable models provide users with
understandable rationale for their specific decisions.

k-Nearest Neighbors is a popular non-parametric classifier proposed by [30].
k-Nearest Neighbors (k-NN) is developed on the idea that the information about the
label of a target pattern x′ can be inferred from its k nearest neighbors. Specifically,
k-NN assigns the class label of the target instance as the label of the majority of its
k-nearest patterns in the training data space. In order to find the nearest neighbors,
a similarity measure is needed to be defined in the data space. Usually, in a q
dimensional space Rq, it is reasonable to employ the Minkowski metric (p-norm)
[31].

||x′ − xj||p =

(
q∑
i=1

|(xi)′ − (xi)j|p
)1/p

In case p = 2, the similarity measure corresponds to the Euclidean distance. In
other data spaces, adequate distance functions have to be chosen, e.g., the Hamming
distance in Bq. In the case of binary classification where the label set is denoted
as y = {1,−1}, then the kNN function to decide the class of a new instance x′ is
defined as

fkNN(x′) =

{
1 if

∑
i∈Nk(x′) yi ≥ 0

−1 if
∑

i∈Nk(x′) yi < 0

where Nk(x′) is the set of indices of the k nearest instances.

The essential part of k-NN is the choice of k value which defines the locality
of k-NN. Choosing the value of k too small or too large can negatively affect the
performance depend on the imbalance and the agglomerations of the underlying
data. Practically, the optimized value of k can be derived using model selection
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Figure 2.6: The results of kNN classification on Gaussian-based data with two
neighborhood sizes ((a) k = 1 and (b) k = 20). With the value of k = 1, kNN has
a tendency to overfit the problem, while with a larger k, the algorithm will ignore
small patterns of data concentration [31].

techniques such as cross-validation. Figure 2.6 shows the influence on the clustering
of data with different k values.

Growing Self-Organizing Maps (GSOM) [32] is a data representation method
that is usually used in clustering task. GSOM is an improved version of Self-
Organizing Maps (SOM) [33]. GSOM inherits the capability of preserving the topol-
ogy structure of the underlying data as well as is able to learn a new representation
dynamically. It is normally used as a tool for mapping high-dimensional data into
a low-dimensional feature map.

Unlike SOM, GSOM does not predefine the number of nodes for the generated
map. GSOM learning process includes three phases: initialization, growing and
smoothing phases. In the initialization phase, GSOM is started with four nodes and
can grow the number of nodes during the learning process. All of the four nodes are
boundary nodes (nodes have at least one of its immediate neighboring positions free
of a node), therefore new nodes can be grown from all of the four boundary nodes.
In the initialization phase, each node is set with a random weight vector.

In the growing phase, the new input data will be assigned to their nearest nodes
by comparing the distance (similarity) between new input data with all weight vec-
tors using Euclidean distance. The process can be described by the following for-
mulation.

|v − wq′| ≤ |v − wq|,∀q ∈ N (2.2)
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where


q′ : assigned node (winner)

q : all nodes in the network

v, w : input and weight vectors respectively

After assigning new data to their nearest nodes (winner nodes), weight vector of
winner nodes and their neighbors will be adjusted in the way that closer neighbors
will be adapted more than further ones. The weight adaptation can be described by
Eq. 2.3. After that, it increases the error value of the winner node (the difference
between input vectors and weight vectors). If the total error of a node is greater
than the growth thread-hold (a hyper-parameter set by users), a new node will be
grown from that node (if it’s boundary node) or distribute the weight to neighbors
if it’s not a boundary node. The new grown node’s weight vector will be initialized
so that it will match with weights of neighboring nodes.

wj(k + 1) =

{
wj(k), j /∈ Nk+1

wj(k) + LR(k) ∗ (xk − wj(k)), j ∈ Nk+1

(2.3)

with


LR(k) : learning rate

wj(k), wj(k + 1) : weight vector of node j before and after being adjusted

Nk+1 : neighborhood of the winning node at (k + 1)th iteration

Figure 2.7: The GSOM for the zoo dataset [32].

The smoothing phase takes place after the new node growing phase. Inputs to
the network are the same as growing phase with a smaller learning rate. As a result
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of that, the weight adaptation is done with a lower rate of adaptation in order to
smooth out existing quantization error. One of the demonstrated results of GSOM
with zoo dataset from UCI repository is depicted in Fig. 2.7. It’s is interesting in
what we can be able to observe from the generated map, animals that have similar
biological characteristics are forming groups (mapped closely to each other). It
shows that GSOM has the capability of reserving salient structures of the original
data while mapping them into a lower dimensional space.

B. Post-hoc Models

When ML models do not satisfy the aforementioned descriptions to be considered
as transparent models, a separate method must be devised and applied to the model
to explain their decisions [17]. Specifically, the purpose of post-hoc explainability
techniques (or post-modeling explainability) is to be able to extract understandable
information about how an already trained model generates its predictions for any
given input.

There is an observation about the trade-off between model accuracy and explana-
tion fidelity for transparent and post-hoc models [2]. Specifically, intrinsically inter-
pretable models can provide undistorted explanations about their decision-making
process but may sacrifice prediction performance to some extent. While post-hoc
models are limited in their approximate nature while keeping the underlying model
accuracy intact [16]. Moreover, there is criticism about the use of post-hoc models
to explain for the original black-box ones such as the doubts about the fidelity of the
explanations provided by post-hoc models or if the post-hoc models can mimic the
behaviors of the original ones so why do we need those black-boxes at the beginning
[2].

There are generally two types of post-hoc approaches: model-agnostic and model-
specific methods [17, 22, 14]. Model-agnostic methods are built to give explanations
for any kind of models while model-specific methods are designed for a specific kind
of black-box model such as deep neural network or random forest. Details about
these two types of post-hoc approaches will be described in the following parts.

Model-Agnostic Explainability

Model-agnostic techniques for post-hoc explainability are designed to be plugged to
any model with the intent of extracting information from its prediction procedure
[17]. In several cases, simplification techniques are utilized to generate proxies that
mimic behaviors of black-box models with the purpose of tracking their decision-
making procedure and reducing the models’ complexity. On the other hand, model-
agnostic methods may focus on extracting knowledge directly from the models or
visualizing the processes to ease the interpretation of their behavior [17].
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Basically, model-agnostic explanation methods are not dependent on the orig-
inal black-box models. For this reason, model-agnostic methods can have the ad-
vantage of reusing capability with different black-box models. However, in some
cases, model-specific methods can provide more useful information due to their des-
ignation for a specific system [34]. In the next part, we would like to review two
popular model-agnostic methods named Local Interpretable Model-Agnostic Expla-
nations (LIME) [35] and Shapley Additive Explanations (SHAP) [36].

Local Interpretable Model-Agnostic Explanations - (LIME) [35] is a
popular framework that generates local explanations for black-box models. LIME
approximates the prediction of any black-box via local surrogate interpretable mod-
els. It provides explanations for an instance by perturbing it around its neighbor-
hood. The perturbed samples are then fed to a complex model for labeling and
weighted based on their proximity to the original data. Finally, LIME learns an
interpretable model on the weighted perturbed data and their associated labels to
create the explanations.

Figure 2.8: An example of LIME for explaining a single prediction. Given a predic-
tion provided by a trained model that a patient has the flu, LIME will emphasize the
symptoms in the patient’s history that led to the prediction. Specifically, sneeze and
headache contribute to the “flu” prediction, while “no fatigue” is evidence against
it [35].

Specifically, in order to formulate the problem, they assume that interpretable
explanations need to use a representation that is understandable by human. Those
representations are denoted as g ∈ G, where G is a class of potentially interpretable
models. The domain of g is {0, 1} that acts over the absence or presence of in-
terpretable components. Also, Ω(g) is defined as the complexity of the explanation
g. The unfaithfulness an explanation g when approximating a model f is measured
by a function L(f, g, πx). Then, LIME ensures the interpretability and the local
fidelity of its explanations by minimizing the function L and the complexity of the
explanations Ω(g) as the following.

ξ(x) = argmin
g∈G

L(f, g, πx) + Ω(g)

where πx is a proximity measure to find neighbors of a instance x.
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In order to be model-agnostic, no assumptions are made about the working
mechanism of the model f . Therefore, the optimized value of L is approximated by
drawing samples around an instance x and weighted by the distances to its neighbors
πx. The primary intuition behind LIME is presented in Figure 2.9, sample instances
are drawn from both in the vicinity of x (which have a high weight due to πx) and
far away from x (low weight from πx). Even though the original model may be too
complex to explain globally, LIME presents an explanation that is locally faithful.

Figure 2.9: An illustration of LIME’s intuition. The blue and pink background
represent for the decision function f of a black-box model which is unknown to
LIME. While the bold red cross sign is the decision made by f that need to be
explained. LIME will generate the explanation by sampling its neighboring instances
and weighting the results by their “distance” to the explained instance (represented
by their size in the figure). The dashed line is the learned explanation that is locally
(but not globally) faithful [35].

Kernel Shapley Additive Explanations - (Kernel SHAP) [36] is a unified
version of the linear LIME method and Shapley values that assigns each feature an
importance value for a particular prediction. Shapley values is a common method
to explain model predictions from the cooperative game theory. The explanations
given using Shapley values satisfy desirable properties including

Local accuracy: the explanation model g(x′) matches the original model f(x)
when x = hx(x

′), where φ0 = f(hx(0)) represents the model output with all simpli-
fied inputs toggled off (i.e. missing).

f(x) = g(x′) = φ0 +
M∑
i=1

φix
′
i

Missingness: Missingness constrains features where x′i = 0 to have no attributed
impact.

x′i = 0 =⇒ φi = 0
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Consistency: if a model changes so that some simplified input’s contribution
increases or stays the same regardless of the other inputs, that input’s attribution
should not decrease.

f ′x(z
′)−f ′x(z′\i) ≥ fx(z

′)−fx(z′\i) for all inputs z′ ∈ {0, 1}M , then φi(f
′, x) ≥ φi(f, x)

As pointed out by [36] about the relationship between additive feature attribu-
tion methods (including LIME), they pointed out that LIME can have a unique
solution for the weight of each feature as the Shapley values. However, for LIME
due to the heuristically choosing of the loss function L, weighting kernel πx and
regularization term Ω, in some cases, LIME cannot guarantee the local accuracy
and consistency which results in intuitive behavior [36]. To mitigate the limitation
of LIME, kernel SHAP was proposed with a specific way to defined the formulations
of the aforementioned loss function, weighting kernel and regularization term as the
following so that LIME can return a unique explanation g(x′) for a given instance
x that satisfy the desirable properties. An example of SHAP’s result is illustrated
in Figure 2.10.

Ω(g) = 0

πx′(z
′) =

(M − 1)

(M choose |z′|)|z′|(M − |z′|)

L(f, g, πx′) =
∑
z′∈Z

[f(fx(z
′))− g(z′)]2πx′(z

′)

Figure 2.10: Explanations for the risk of hypoxaemia in the next five minutes
during surgery [37].

Model-Specific Explainability

According to [17], model-specific explainability is tailored or designed to explain
certain ML models. Many model-specific methods are designed for Deep Neural
Networks (DNN), which is a class of models that are widely used because of its
prominent performance in spite of being very opaque in terms of interpretability,
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a typical example of black-box models [34] . Besides, model-specific explanations
are also provided for other common black-box models such as random forests or
other ensemble learning methods. In the next part, we would like to introduce a
notable model-specific explanation method for convolutional neural networks which
is saliency maps [38].

Saliency Maps for Convolutional Networks is firstly proposed by [38] for
visualizing regional parts of pictures that most affect the classification process of a
trained convolutional network. Specifically, in order to query about spatial support
of a particular class c in a given image I0, the pixels of I0 will be ranked based on
their influence on the score model Sc(I0) as follows.

Sc(I) = wTc I + bc

Practically, the class score model Sc(I) that is used in deep convolutional net-
works is much more complicated and highly non-linear. However, given a specific
input image I0, the value Sc(I) can be approximated with a linear function in the
neighborhood of I0 with the computation of the first-order Taylor expansion:

Sc(I) ≈ wT I + b

Then w can be computed as the derivative of Sc at the point of I0.

w =
∂Sc
∂I

∣∣∣∣
I0

After computing the derivative w using back-propagation, the saliency map M ∈
Rm×n of an image I0 that has m rows and n columns can be obtained by rearranging
the elements of the vector w. In the case of grey-scale images, the number of elements
in w is equal to the number of pixels in I0, and the saliency map for I0 can be built
as Mij = |wh(i,j)| with h(i, j) is the index of the element in w which is corresponding
to the pixel at ith row and jth column. For multi-channel images, assuming that the
color channel c of the pixel (i, j) of image I0 corresponds to the element indexed
h(i, j, c) of w. Then the saliency map for I0 across all color channel can be derived
as the maximum value of those channel Mij = maxc|wh(i,j,c)|.

In Figure 2.11, the saliency maps are illustrated for the highest-scoring class
on randomly selected ILSVRC-2013 test set images [38]. According to the results,
prominent objects in images are highlighted with a brighter color which shown their
effects on final classification results. Moreover, in this work, they proposed a method
for detecting objects in images with the background of saliency maps with a thresh-
old scheme for spotting whole objects.
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Figure 2.11: The saliency maps for images in the top-1 predicted class that belong
to ILSVRC-2013 dataset [38].
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2.1.2 Causal Interpretable Models

In this subsection, we discuss the general notions and mechanisms of causal inter-
pretability frameworks. According to [14], current ML models only optimized to
discover correlations - not causal information which can be a problem when it’s is
required for decision-making in real-world situations. An example can be listed as
the policy-making that is related to smoking and cancer. This problem raises the
need for causal ML models which can capture real causal information. Specifically,
a causal interpretable model can help us to gain insights into the real causes of de-
cisions made by ML algorithms, improve their performance, and prevent them from
failing in unexpected circumstances.

As mentioned in the work of [39], there are three different levels of interpretability
and argues that generating counterfactual explanations is the way to achieve the
highest level of interpretability. Below are those levels of interpretability and their
definitions:

• Statistical (associational) interpretability: Aims to uncover statistical associ-
ations by asking questions such as “How would seeing x change my belief in
y?’

• Causal interventional interpretability: Is designed to answer “What if” ques-
tions.

• Counterfactual interpretability: Is the highest level of interpretability, which
aims to answer “Why” questions.

Before leading into the details of approaches to providing causal interventional
and counterfactual interpretability, we would like to introduce several background
concepts of causal inference as the following [14].

• Structural Causal Models (SCM) is defined as a 4-tuple variable M(X,U, f, Pu)
where X is a finite set of endogenous variables which are usually observable, U
is a finite set of hidden variables, f is a set of function {f1, f2, ..., fn} where each
function represents a causal mechanism such that ∀xi ∈ X, xi = fi(Pa(xi), ui)
andPa(xi) is a subset of (X \ {xi}) ∪ U and Pu is a probability distribution
over U .

• Causal Bayesian Network (CBN) is a representation of a SCM M(X,U, f, Pu).
CBN is a directed graph model G(V,E) where V is the set of observable
variables X and E denotes the causal mechanism.
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• Average Causal Effect (ACE) of a binary random variable x on another random
variable y (outcome) is defined as :

ACE = E[y|do(x = 1)]− E[y|do(x = 0)]

where do(.) is the operator which denotes the corresponding interventional
distribution defined by the SCM or CBN.

A. Causal Interventional Interpretability

Causal interventional interpretability is designed to explain the role and importance
of each component of a ML model on its decisions with concepts from the causality
[14]. As traditional interpretability cannot provide explanations for better under-
standing of ML models, several causality approaches have been employed to solve
the problem. According to [14], currently there are two common approaches in build-
ing model-based explanations with causality. The first approach is considering the
complex models in the form of Structural Causal Models (SCM) and defined a way
to estimate the Average Causal Effect (ACE) of each component inside the original
models. The second approach is the assembly of a good performance model, domain
knowledge on the causal graph and appropriate visualization tools. In this part, we
would like to introduce a notable method to generate model-based explanations for
complex models proposed by [40] that belongs to the first approach. More details
about other methods can be found in the survey of causal interpretable models [14].

Causal Attributions for Neural Networks was proposed by [40] in order to
identify the causal influence of an input to a neural network’s output. Specifically,
they tried to address the question: “What is the causal effect of a particular input
neuron on a particular output neuron of the network?”. In order to provide the an-
swer for that question, a neural network (generally a feed-forward neural network) is
considered as an SCM M([l1, l2, ..., ln], U, [f1, f2, ..., fn], Pu) where li (i ∈ {1, 2, ..., n})
is the layer i of the network and fi is the causal function at layer i.

Figure 2.12: The representation of a feed-forward neural network as an SCM [40].
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Practically, only neurons in the input and output layers can be observable,
therefore the causal structure of the original neural network can be reduced as
M([l1, ln], U, f ′, Pu). Consequently, the causal attribution of an input neuron xi for
an output neuron y can be defined as the value of the average causal effect ACE of
a continuous variable xi on the target variable y as the following.

ACEy
do(xi=α) = E[y|do(xi = α)]− baselinexi

where E[y|do(xi = α)] is the interventional expectation of y given the intervention
do(xi = α) and baselinexi is the average ACE of xi on y which are defined as below.
Details on the computation of the interventional expectation and the baseline can
be found in [40].

E[y|do(xi = α)] =

∫
y

yp(y|do(xi = α)) dy

baselinexi = Exi [Ey[y|do(xi = α)]]

B. Counterfactual interpretability

Counterfactual interpretability is considered as the example-based interpretation
that aims to provide data instances that are able to explain for the model or the un-
derlying data distribution [14]. Specifically, counterfactual explanations is designed
to answer the causal question “Why” as mentioned in the previous parts by providing
counterfactual examples that help users understand a model’s decisions. Further-
more, counterfactual examples can be obtained by performing minimal changes in
the original instance’s features and have a predefined output. Practically, the prob-
lem is formulated as a new type of conditional probability P (yx|x′, y′) that indicates
how likely the outcome of an observed instance y′ would change to yx if x′ is set to
x [14].

Currently, there are several different approaches to generate counterfactual ex-
amples for explaining decisions of ML models. However, main approaches vary from
reducing the distance between models’ predictions and counterfactual outcomes to
leverage adversarial or prototype examples. Applications of counterfactual expla-
nations are also diverse including image, video classification, natural language pro-
cessing or credit classification in banking. In this part, we would like to introduce
an approach that is used for generating counterfactual visual explanations for the
image classification task that was proposed in the work of [41].

Counterfactual Visual Explanations for convolutional neural networks (CNN)
was proposed by [41] with the aim of generating explanations for the decision of deep
computer vision systems by identifying what and how regions of an input image
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would need to change in order for the system to produce a specific output. Specifi-
cally, given a specific image I which is predicted as class c by the system, a faithful
counterfactual explanation to identify the aforementioned reason could be generated
by detecting the smallest replaceable spatial regions in I and I ′ (an image classified
as class c′) which can make the system predict I as class c′.

Figure 2.13: An example of generating counterfactual visual explanations for a
query image I. It explains the reason that I was classified as class c (Crested
Auklet) instead of c′ (Red Faced Cormorant) by finding a region in a distractor
image I ′ and a region in I (red boxes) so that if exchanging the highlighted region
in both images then the resulting image I? would be classified more confidently as
c′ [41].

By decomposing a CNN as two main parts: spatial feature extractor f(I) and de-
cision network g(f(I)), given two images I, I ′, a transformation T can be conducted
as I? = T (I, I ′) such that I? is classified as class c′ by the train model g(f(.)). The
transformation is conducted by finding the minimum number of region replacements
from I ′ to I to generate I? that satisfies the condition (minimum-edit counterfactual
problem). The transformation can be formulated as the following where P is the
permutation matrix and a is the binary vector indicating the replacements (0 - no
replacement, 1 - replacement).

f(I?) = (1− a) ◦ f(I) + a ◦ Pf(I ′)

with 1 is a vector of all ones and ◦ represents the Hadamard product.

Then the minimum-edit counterfactual problem can formulated as

minimize
P, a

||a||1

s.t. c′ = argmax g((1 − a) ◦ f(I) + a ◦ Pf(I ′)) with ai ∈ {0, 1} ∀i and P ∈ P
where P is the set of all permutation matrices.
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Given the resulting a and P , the set of pairs of spatial cells involved in the
edits can be extracted as S = {(i, j, i′, j′)|ai×j = 1 ∧ Pi×j,i′×j′ = 1}. The above
optimization problem can be solved using greedy sequential exhaustive search or
continuous relaxation as described in [41].

2.2 Evaluation for Interpretability

Evaluation of interpretability is a challenging task due to the lack of a consen-
sus definition of interpretability and understanding of humans from the concept.
Evaluation of causal interpretability is even more challenging due to the lack of
ground-truth data for causal explanations and verification of causal relationships
[14]. Currently, to the best of our knowledge, there is no unified guideline for evalu-
ating the interpretability of both traditional and causal models. In this subsection,
we would like to introduce three common interpretability evaluation methodologies
including an explanation evaluation taxonomy [15], the PDR framework [4] and a
unified hierarchical framework for explanation evaluation [42].

2.2.1 An Explanation Evaluation Taxonomy

In the work of [15], they proposed a taxonomy of approaches for evaluating the
interpretability of ML models. The proposed taxonomy includes three main cat-
egories: application-grounded, human-grounded, and functionally-grounded evalu-
ation methods. It emphasized the connections and significance of the interaction
between specific tasks and human. Where the tasks could have a different range
of whether they are real tasks, simple or proxy tasks. Also, the interaction with
human when evaluating the interpretability of ML models is an essential factor as
well. Depend on specific situations, different types of approaches could be utilized
for the evaluation. Details of the taxonomy are depicted in Figure 2.14.

Figure 2.14: Taxonomy of evaluation approaches for interpretable models [15].
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Application-Grounded Evaluation: Real Humans, Real Tasks

Application-grounded evaluation relates to the conduction of human experiments
within a real-life application. If a system is designed for a specific task such as
assisting doctors in diagnosing a specific disease, then it is suitable to perform the
evaluation of this system with respect to that real task. This type of evaluation is
intuitive and aligns with assessment methods in human-computer interaction and
visualization fields where efforts are made to ensure that a system follows its intended
task.

Specifically, the quality of an explanation will be evaluated in the context of its
end-task such as whether the generated explanation can provide better identification
of errors, new knowledge, or improve fairness. Two example cases of evaluation can
be listed as:

• Domain expert experiment with the exact application task.

• Domain expert experiment with a simpler or partial task to shorten experiment
time and increase the pool of potentially-willing subjects.

In both types of evaluation experiments, it is important to evaluate how well the
produced explanations can assist humans in completing their tasks. In summary,
this evaluation method directly tests the objective that the system is constructed for
and results of the experiments with respect to those objectives will provide strong
evidence for how successful the system is.

Human-Grounded Evaluation: Real Humans, Simplified Tasks

Human-grounded evaluation relates to the conduction of experiments with humans
and simplified tasks while still preserves the nature of target applications. It shows
the advantage when experiments with full-scale real tasks are challenging. Moreover,
with simplified tasks, it is not necessary to employ highly-trained domain experts for
conducting the tasks which in turn reducing the cost. Human-grounded evaluation
is most appropriate when testing general notions of the quality of explanations.

However, it is also challenging in the case of tasks with specific end-goal such
as identifying errors in a safety-oriented task or picking out relevant patterns in a
science-oriented task. In that case, human-grounded evaluation can be conduct ide-
ally while depends only on the quality of explanations. Several possible experimental
evaluations can be listed as:

• Binary forced choice: humans are provided with pairs of explanations and will
be asked to choose the one that they find of higher quality (basic face-validity
test made quantitatively).
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• Forward simulation/prediction: humans are provided with an explanation and
an input and will be asked to correctly simulate the model’s output (without
regarding of the true output).

• Counterfactual simulation: humans are provided with an explanation, an in-
put, and an output, and are asked what must be changed to change the
method’s prediction to the desired output (and related variants).

Functionally-Grounded Evaluation: No Humans, Proxy Tasks

Functionally-grounded evaluation does not require human-related experiments. It
utilizes proxies to evaluate the quality of explanations. This type of evaluation is
appropriate when there is a need to reduce experiment time and costs. Also, it
can be used as the first step of assessment for immature systems or unethical when
conducting on humans. The major point in this type of experiment is the selection of
proxies. Generally, several considered interpretable models such as decision trees or
rule lists can be used to evaluate the explanations. Several examples of functionally-
grounded experiments can be listed as

• Demonstrate that there is the improvement on performance of a model regard-
ing the proof that it is interpretable.

• Prove that a method performs better with respect to certain models such as
being more sparse—compared to other baselines.

2.2.2 The Predictive Accuracy - Descriptive Accuracy - Rel-
evancy (PDR) Framework

Before describing the details of the PDR framework proposed by[4], a general model
of an interpretable ML process will be introduced as the background for later discus-
sion. Specifically, according to [4], interpretable ML processes can be generalized as a
broader data-science life cycle as in Figure 2.15. The process starts with defining the
domain problem with the help of data. Then predictive models can be constructed
by practitioners and fitted on the collective data. Finally, the aforementioned ques-
tions can be answered by analyzing the trained models (post-hoc analysis). The
general process is iterative until satisfying answers are obtained. According to this
procedure, two types of interpretability are also spotted out: model-based inter-
pretability (in the modeling stage) and post-hoc interpretability (at the post-hoc
analysis stage).

As a guideline to select and evaluate interpretation methods for a particular prob-
lem and audience, the authors proposed PDR framework which consists of three
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Figure 2.15: Different stages of an interpretable ML process in the data-science
life cycle.

desiderata that should be used to select interpretation methods for a particular
problem: predictive accuracy, descriptive accuracy, and relevancy. Specifically, It is
important to guarantee that the explanations provided by an interpretation method
should be faithful to the underlying process. For ensuring the trustworthiness of the
generated explanations, it is necessary to maximize two types of accuracy: predic-
tive accuracy (when approximating the underlying data relationships with a model)
and descriptive accuracy (when approximating what the model has learned using
an interpretation method). Moreover, the provided explanations also have to be
relevant to a specific audience (usually users of the systems).

Predictive accuracy. At the stage of constructing the model, if the model
poorly approximates the underlying relationships in the data, then information ex-
tracted from the model is unlikely to be accurate. There are various well-studied
methods to evaluate the fitness of a model, especially in the supervised learning
field. In the context of interpretability, the model’s fitness is described as predictive
accuracy.

Specifically, when dealing with interpretability problems, it is required for a
model to possess a predictive accuracy above average. Also, the distribution of
predictions is important and needs to be at an appropriate level for every available
class. Moreover, the predictive accuracy should be stable with respect to reasonable
data and model perturbations.

Descriptive accuracy is defined as the level that an interpretation method
(post-hoc model) can unbiasedly capture the relationships in data that learn by ML
models. Specifically, in the stage of post-hoc analysis, errors typically occur when
interpretation methods are utilized to extract knowledge from a trained model. It
is generally a difficult task to extract non-linear relationships learn by black-box
models such as deep neural networks. In those cases, usually post-hoc models can
only provide an imperfect representation of the relationships learned by a model.

Relevancy is considered as another aspect of interpretability. Specifically, an
explanation is regarded as relevant when it can provide insights into a specific domain
problem for a particular audience. In other words, an ML model need not have only
high predictive accuracy but also the information extracted from it has to be relevant
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as well. Relevancy can be seen as a key part when considering the trade-off between
predictive and descriptive accuracy.

The influences of different types of interpretability (model-based and post-hoc)
ML models to the mentioned desiderata are illustrated in Figure 2.16. In particular,
post-hoc and model-based methods both aim to increase descriptive accuracy while
model-based methods can also affect predictive accuracy. Both of the models can
also affect the relevancy that depends on the type of output whether it is helpful for
a particular problem and audience or not. Model-based interpretability with high
descriptive accuracy can be achieved using a simpler model to fit the data, however,
it can also negatively affect predictive accuracy. Post-hoc interpretability is the use
of a second model to extract information from an already trained one which has no
impact on predictive accuracy.

Figure 2.16: Impact of interpretation methods on descriptive and predictive accu-
racy [4].

2.2.3 A Unified Hierarchical Framework for Explanation Eval-
uation

In the work of [42], they proposed a unified framework to evaluate the explana-
tions that are generated by interpretable ML models. Specifically, the evaluation
is based on three general properties of an explanation: generalizability, fidelity and
persuasibility. Before introducing their proposed framework, we briefly remind those
properties’ definitions. Firstly, generalizability is the property to reflect the gener-
alization power of an explanation. In other words, generalization determines the
quality and applicability of an explanation on the range of knowledge and guidance
that it can provide to users. Secondly, fidelity of an explanation is defined as its
degree of faithfulness regarding a target system. Specifically, a faithful explanation
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can precisely capture the decision-making process of the target system and provide
the correct evidence for a particular prediction. Finally, persuasibility reflects the
degree of how humans comprehend and respond to the generated explanations. This
property assesses the subjective aspect of explanations and usually involves with hu-
mans’ evaluation. Depend on a specific group of users and tasks, the persuasibility
of an explanation varies.

Figure 2.17: A unified hierarchical framework for evaluating explanations in in-
terpretable ML [42].

Given the definitions of general properties of explanations that are generated by
interpretable ML models, a unified framework for evaluating explanations can be
defined as a hierarchical structure of three properties generalizability, fidelity and
persuasibility from low level to highest level correspondingly as in Figure 2.17. Par-
ticularly, generalizability serves as the foundation in evaluation with basic require-
ments. In ML applications, proper generalizability of the generated explanations
allows users to make accurate decisions. It guarantees that the explanations have
both a good degree of generalization as well as reveal true knowledge for particular
tasks. For the upper level, the reliability of generated explanations needs to be
verified by evaluating its degree of fidelity to the original models. By assessing the
fidelity, it helps improve the trustworthiness of the generated explanations for better
decision-making. The two levels of generalizability and fidelity are considered from
the machine perspective while the top tier persuasibility is more perceived from the
human perspective.

At the top tier of persuasibility, it requires a higher level of interpretation that
is needed to shorten the gap between users and models-generated explanations. For
a specific task, it depends on the corresponding applications and user groups to
the designation of explanations and the level of interpretability. Generally, model
developers should pay more attention at the machine-related level (generalizability
and fidelity) while end-users will concentrate more to the persuasibility at the highest
level.
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2.3 Applications of Interpretable ML and XAI

Applications of interpretable ML and XAI span across fields, especially in fields
which require to make high-stakes decisions such as healthcare, medicine (person-
alized medicine, drug discovery), banking (credit evaluation), material science (ma-
terial discovery). In this section, we introduce several applications of interpretable
ML in aforementioned fields with the hope of providing a wider view on the need of
interpretability in real applications from different perspectives.

A healthcare application - Interpretable classifiers using rules and Bayesian
analysis for stroke prediction for patients with atrial fibrillation [43]

According to [44], until 2010, the estimated number of individuals with atrial fibril-
lation (AF) globally is around thirty-three million. AF is a disorder of heart rhythm
that was originally caused by the interplay between genetic predisposition, ectopic
electrical activity and abnormal atrial tissue substrate [45]. It has been found that
AF has a strong association with ischemic stroke and is the cause of thromboem-
bolism [46]. There are many indices and systems that have been proposed to assess
the risk of stroke for patients having AF.

Among them, CHADS2 is a common index that was proposed by [47]. The score
of a patient by CHADS2 will be computed by assigning points to the existence of
specific factors. Particularly, CHADS2 considers 5 factors: the presence of conges-
tive heart failure, hypertension, age 75 years or older, diabetes mellitus and history
of stroke, transient ischemic attack or thromboembolism. CHADS2 has a high level
of interpretability which provides doctors with easy to understand scoring assess-
ment to the stroke risk of patients. However, the CHADS2 index was developed
with a database of 1733 medicare beneficiaries and a limited number of factors.

Figure 2.18: Example of a decision list for estimating 1-year stroke risk following
diagnosis of atrial fibrillation from patient medical history [43].

Currently, with the availability of medical data, especially patient medical records,
more effective prediction systems can be developed which the capability of consider-
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ing additional factors. In the work of [43], they proposed a new classification model
that is interpretable as CHADS2 and constructed based on a much bigger number
of data (12586 patients and 4148 factors). The proposed model named Bayesian
Rule Lists (BRL) is presented in the form of decision lists that discretize a high-
dimensional multivariate feature space into a series of simple readily interpretable
decision statements. An example of the results of BRL for classifying stroke risk
of patients with AF is shown in Figure 2.18. The decision lists generated by BRL
contain a series of if...then... statements where the if statements define a partition
of a set of features and the then statements is the predicted outcome.

BRL is originally built on the definitions of Bayesian association rules and
Bayesian decision lists. Particularly, Bayesian association rules have the form of
a → b which is an implication with an antecedent a and a consequent b. In this
case, b is the predicted label y which follows a multinomial distribution.

a→ y ∼ Multinomial(θ)

Consider (x, y) are observations classified by the above rule, N.,l is the number
of observations with label l (with l = {1, ..., L}) and N = {N.,1, ..., N.,L}. Then a
so-called posterior consequent distribution can be obtained as

θ|x, y, α ∼ Dirichlet(α+N)

Given the definition of Bayesian association rules, Bayesian decision lists can
be defined as D = (d,α,N ) where d is an ordered antecedent list d = (a1, ..., am).
Consider Nj,l be the number of observations that satisfy aj but not any of a1, ..., aj−1

and have label l, denote N j = (Nj,1, ..., Nj,L) and N = (N 0, ...,Nm). A Bayesian
decision list then has the form as

if a1 then y ∼ Multinomial(θ)1, θ1 ∼ Dirichlet(α+N 1)
else if a2 then y ∼ Multinomial(θ)2, θ2 ∼ Dirichlet(α+N 2)
...
else if am then y ∼ Multinomial(θ)m, θm ∼ Dirichlet(α+Nm)
else y ∼ Multinomial(θ)0, θ0 ∼ Dirichlet(α+N 0)

The antecedents in BRL are a subset of a preselected collection of antecedents
which in turn generated by using a frequent itemset mining technique with the
constraints that each antecedent applies to a large amount of data and does not
have too many conditions. More details about the generative process of Bayesian
decision lists and the prediction for new observations can be found in [43].
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Interpretable ML models for material discovery

Chemicals are indispensable part of human necessity including applications spanning
a wide range of areas from the laboratory, industrial processes to household usage.
In every aspect of those applications, it is existing the need of designing materials
that possess specific properties. Moreover, it is important to guarantee that the
new materials are not toxic to humans or harmful to the surrounding environment.
QSAR (Quantitative Structure-Activity Relationship) model is one of the popular
tools that are utilized to monitor activity, property and toxicity of chemicals. The
use of QSAR is not limited to material science but also drugs, pharmaceuticals and
other fields as well. The overall process of QSAR can be described in Figure 2.19.

Figure 2.19: The overall scheme of QSAR [48].

QSAR is defined as the modeling on a set of structural chemicals that refers to the
development of a mathematical correlation between a chemical response and quan-
titative chemical attributes defining the features of the analyzed molecules [48]. In
other words, QSAR modeling originates from the concept of the correlation between
response (material’s properties, activities) and the chemical nature of molecules.
Depend on the response (or endpoint) being property, activity or toxicity, there are
different naming which are QSPR, QSAR, QSTR correspondingly. However, in this
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part, we considering QSAR as the representation for those kinds of modeling. The
basic formalization of QSAR technique can be described as the following.

Biological activity = f(Chemical attributes)

The chemical attributes so-called predictors are usually the information derived
directly from the chemical structure and physicochemical information. The predic-
tors are represented in the form of numerical quantities. Then QSAR can be de-
scribed as predictive mathematical models that are developed to explore the knowl-
edge of chemistry and biology in a rational way to meet the desired need of the
chemicals. QSAR models could be regression or classification models. An example
of QSAR regression model can be seen in the following equation where Y is the
response, {X1, ..., Xn} are descriptors and {a1, ..., an} are the contribution (weight)
of each descriptor to the response.

Y = a0 + a1X1 + a2X2 + a3X3 + ...+ anXn

In reality, the modeling of materials could be very complex with non-linear rela-
tions and thousands of predictors that make the process become a black-box. Several
different methods could be used to model those relations and predictors including
statistical methods including machine learning techniques or specific-designed QSAR
models. Currently, deep neural networks show prominent results in QSAR studies
[49], however, authors also mentioned that arcane descriptors and black-box models
can affect the interpretability of the generated results. In the work of [50], authors
encouraged the development and employment of interpretable descriptors in order to
improve the interpretability of the model while still preserve accurate predictive ca-
pability. Moreover, there is another trend of implementing interpretable models that
can provide explanations for the structure-property/activity/toxicity relationships
as well as be able to achieve a reasonable accuracy.

Interpretable Credit Application Predictions With Counterfactual Ex-
planations [51]

Lending is a massive business and credit risk assessment is one of the most impor-
tant tasks in the business to decide whether to provide or reject loans to borrowers.
Specifically, when an individual or business applies for a loan, the lender has to
evaluate whether the business can reliably repay the loan principal and interest. For
a business, there are two measures which commonly used to assess the credit risk:
profitability and leverage [52]. For individual applications, several factors could be
considered such as their income, real estate, etc. The more data collected about the
borrowers, the better lenders can assess their creditworthiness. The choice of appli-
cations with low credit risk can get complicated when more factors are incorporated
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which makes the assessment task become challenging.

Currently, with the abundance of relevant data as well as the development of
machine learning and data mining techniques, credit risk assessment tasks can be
automated and significantly improved. Tradition indices or linear techniques that
are usually utilized to assess loan applications such as the FICO index or logit model
are interpretable, however, their performance is incomparable to other prominent
ML techniques such as deep neural networks, random forest or SVM. Those ML
techniques are powerful due to their capability of extracting non-linear relationships
from the data, however, they are almost black-boxes and it is a nontrivial task to
explain for their decisions.

In the work of [51], they proposed the use of counterfactual explanations for
a black-box model used in the credit risk assessment application. The counter-
factual explanations can be provided for not just rejected cases but also positive
(accepted) cases. Moreover, the counterfactual explanations are kept interpretable
with a weighting scheme for attributes of a specific case. Specifically, they used the
counterfactual generating process proposed by [53] with several adjustments to pro-
vide positive counterfactuals and shorter explanations. Basically, the counterfactual
explanations are generated by calculating the smallest possible change that can be
made to input such that the outcome change to the target class. Specifically, the
following loss function L will be minimized to obtain counterfactual explanations.

L(x, x′, y′, λ) = λ(f̂(x′)− y′)2 + d(x, x′)

argmin
x′
max
λ
L(x, x′, y′, λ)

where x is the input instance, x′ is the closet instance to x that would change the
outcome of the model f from y to y′, f̂ is the trained model, λ is the balance
weight that ensure the desired output with smallest change to the input instance.
Also d(x, x′) is the distance function between two instances which is the Manhattan
distance weighted feature-wise with the inverse median absolute deviation (MAD)
that is defined as the following.

d(x, x′) =

p∑
j=1

|xj − x′j|
MADj

The positive counterfactuals can be generated by setting the target y′ to be
the decision boundary such as P (y = 1) = 0.5 in the case of binary classification.
Moreover, shorter counterfactual explanations can be generated by adding a weight
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vector θ to the distance function as the following where the weight vector can be
generated by the global feature importance or nearest neighbor approaches.

d2(x, x′) =

p∑
j=1

|xj − x′j|
MADj

θj

More details about this method can be found in [51]. An example of the generated
counterfactual explanations is illustrated in Figure 2.20.

Figure 2.20: An illustration of a positive and negative counterfactual explanation.
For the positive counterfactual explanation (a), it show the amount of tolerances
(highlighted in yellow). While the negative counterfactual explanation (b) provides
reasons for the loan rejection with suggestions on how to improve the results with
the increase (green, dashed) or decrease (red, striped) of each feature [51].
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Chapter 3

Improving The Efficiency of
Interpretable Unsupervised
Learning

Interpretable ML techniques are essential for applications in high-stakes decision-
making fields such as healthcare, medicine and finance. However, there is an obser-
vation that ML techniques with a high degree of explainability are usually suffered
from the performance problem when compared with other black-box models such as
deep neural networks or random forests which possess prominent performance [4]. In
an effort to mitigate the gap between interpretable ML models with black-box mod-
els in terms of performance while still preserve a reasonable level of interpretability,
we investigate into popular clustering techniques and leverage our intuition about
the information of hidden relationships in the underlying data to improve their per-
formance. The content of this chapter is a part of our work that has been published
in [54].

3.1 Background

In a wide range of fields, clustering is usually used as a popular method, especially
in machine learning and data mining. Generally, clustering groups data into clusters
where objects belong to the same cluster are similar to each other and different to
objects in other clusters [55]. There are two main types of clustering techniques:
hierarchical and partitional clustering [56]. In real-world applications, partitional
methods are common due to their effectiveness in solving clustering problems with
scalability. The k-means [57] is the most well-known and widely-used partitional-
based method due to its intuitive clustering process as well as low computational
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complexity. However, an inherent limitation of this approach is its data type con-
straint, as the k-means can only work with the numerical data type.

Many efforts have been made in order to mitigate the aforementioned limitation
of k-means to allow it to cluster categorical data. Specifically, several k-means
like methods for categorical data have been proposed such as k-modes [58], k-
representatives [59], k-centers [60] and k-means like clustering algorithm [61]. Those
clustering techniques implement a similar clustering fashion to the k-means method,
however, they vary in the definitions of cluster mean and dissimilarity measure for
categorical data.

Regardless of the important role of dissimilarity measures in clustering tech-
niques, metrics to quantify the resemblance between categorical values are still not
well-understood as no coherent metric is available for categorical data so far. One
common method is encoding categorical data as numerical values so-called dummy
coding (or indicator coding) [62, 63]. Particularly, in this method, binary values are
used to indicate whether a categorical value is present or absent in the original data.
However, by encoding each category as an independent variable, various significant
features and characteristics of categorical data such as the distribution of categories
or their mutual relationships may not be taken into account.

Moreover, the necessity of considering that information in order to quantify the
resemblance between categorical values has been emphasized in literature [61, 64].
Particularly, for the problem of clustering with categorical data, most previous works
have unfortunately neglected the semantic information potentially inferred from re-
lationships among categories. In this chapter, we introduce a new clustering frame-
work for categorical data that is capable of integrating not only the distributions of
categories but also their mutual relationship information into the pattern proximity
evaluation process of the clustering task. The effectiveness of the proposed clustering
technique is then proven by a comparative study conducted on existing clustering
methods for categorical data collected from UCI Machine Learning Repository [65].

The remaining part of this chapter is organized as follows. In the second section,
we describe in detail our proposed clustering framework for categorical data. In the
third section, information about the experimental evaluation that is conducted to
prove the merits of our proposed method will be provided. Finally, we summarize
the work in the last section.

3.2 The Proposed Clustering Framework - RICS

In this section, we introduce a new clustering framework, namely RICS, that can be
able to integrate the mutual relationship information between categorical attributes
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into the clustering process. The details of our proposed clustering technique are
divided into two parts. The first part introduces core concepts and structure of a
k-means like clustering algorithm. In the second part, we propose a new dissimi-
larity measure for categorical data. Before going into the details of the clustering
algorithm, we would like to provide several notations that will be used in the rest
of this chapter.

3.2.1 Notations

Given a categorical data set X that contains n instances and is described by d
attributes. The notations used in the rest of this chapter are presented in the
following.

• A feature (attribute) of X is denoted by Aj, j ∈ {1, ..., d}. For each Aj, its
domain is denoted by dom(Aj). Moreover, each value of Aj is denoted as al
(or simply a) with l ∈ {1, ..., |dom(Aj)|}.

• An instance of X is presented as a vector x = [x1, ..., xd] where the value of x
at an attribute Aj is denoted as xj, j ∈ {1, ..., d}.

• The frequency of al ∈ dom(Aj) is denoted as P (al) and calculated by

P (al) =
count(Aj = al|X)

|X|
(3.1)

similarly, for al ∈ dom(Aj) and al′ ∈ dom(Aj′) we have

P (al, al′) =
count((Aj = al) and (Aj′ = al′)|X)

|X|
(3.2)

3.2.2 A k-Means Like Clustering Framework

The clustering method introduced in this chapter basically implements the general
structure of the k-means like clustering scheme [61]. Particularly, it still preserves
the general process of the k-means method but comprises a modified concept of
cluster centers based on the work of Chen et al. [60] and a weighting method for
each categorical attribute.
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Representation of Cluster Centers

Let C = {C1, ..., Ck} be the set of k clusters of X, for any two different clusters Ci
and Ci′ we have

Ci ∩ Ci′ = ∅ if i 6= i′and X =
k⋃
i=1

Ci (3.3)

Furthermore, for each cluster Ci, the center of Ci is defined as

Vi = [vi1, ..., vij, ..., vid] (3.4)

where vij is a probability distribution on the domain of an attribute Aj that is
estimated by a kernel density estimation function K.

vij = [p(a1), ..., p(a|dom(Aj)|)] (3.5)

where
p(al) =

∑
a∈dom(Aj)

fi(a)K(a|λj) (3.6)

with fi(a) is the frequency probability of an attribute value a in the cluster Vi.

fi(a) =
count(Aj = a|Vi)

|Vi|
(3.7)

Moreover, consider σij as the set that contains all available values of attribute Aj
that exist in cluster Vi

σij = {a, a ∈ dom(Aj)|Vi} (3.8)

then the kernel function K(a|λj) to estimate the probability of those attribute values
in cluster Vi is defined as

K(a|λj) =

{
1− |σij |−1

|σij | λj if a = al
1
|σij |λj if a 6= al

(3.9)

where λj is the smoothing parameter for Cj and has the value range of [0, 1]. In
order to select the best parameter λj, the least squares cross validation (LSCV)
method [60] is utilized. In the case a /∈ σij, K(a|λj) value is set to 0.

Finally, from (3.4)-(3.6), we have the general formulation to compare the dissim-
ilarity between a data instance x ∈ X and a cluster center Vi described as below.

D(x, Vi) =
d∑
j=1

d(xj, vij) =
d∑
j=1

∑
a∈dom(Aj)

p(a)× dis(xj, a) (3.10)

where dis(xj, a) is the measure to quantify the dissimilarity between two values
of an attribute Aj. Detailed information about this measure will be described in
subsection 3.2.3.
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Weighting Scheme for Categorical Attributes

We applied a weighting scheme for categorical attributes where a larger weight is
set to attributes that have a smaller sum of within-cluster distances and vice versa.
More details of the weighting method can be found in [66].

Specifically, a vector of weights W = [w1, ..., wd] will be assigned to each attribute
where wj ≤ 1 and

∑d
j=1wj = 1.

The weighted dissimilarity measure between a data instance x and a cluster
center Vi the can be defined as

Dw(x, Vi) =
d∑
j=1

wj × d(xj, vij) (3.11)

Based on these definitions, the clustering algorithm now aims to minimize the
following objective function:

J(U, V,W ) =
k∑
i=1

n∑
g=1

d∑
j=1

ui,g × wj × d(xj, vij) (3.12)

subject to 
∑k

i=1 ui,g = 1 1 ≤ g ≤ n

ui,g ∈ {0, 1} 1 ≤ g ≤ n, 1 ≤ i ≤ k∑d
j=1wj = 1 0 ≤ wj ≤ 1

(3.13)

where U = [ui,g]n×k is the partition matrix. The algorithm for the k-means like
clustering framework is described in Algorithm 1.
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3.2.3 A Context-Based Dissimilarity Measure for Categori-
cal Data

In distance-based clustering methods, dissimilarity measures play a key role in their
performance. In our work, for measuring the dissimilarity between categorical val-
ues, an extended version of the similarity measure proposed in [54] will be introduced
with the capability of integrating not only the distribution of categories but also their
mutual relationship information. To that end, the amount of information to describe
the appearances of pairs of attribute values will be considered rather than merely
information about single values. In order to reduce the computational cost, only
pairs of attributes that are highly correlated with each other are selected.

Correlation Analysis for Categorical Attributes

In order to extract pairs of highly correlated attributes, we adopted the interdepen-
dence redundancy measure proposed by Au et al. [67] to quantify the dependency
degree between each pair of attributes. Specifically, the interdependence redundancy
value between two attributes Aj and Aj′ is quantified as in the following formula.

R(Aj, Aj′) =
I(Aj, Aj′)

H(Aj, Aj′)
(3.14)

where I(Aj, Aj′) denotes the mutual information [68] between attribute Aj and Aj′
and H(Aj, Aj′) is their joint entropy value. We have the formulas for those measures
as the followings.

I(Aj, Aj′) =

|dom(Aj)|∑
p=1

|dom(Aj′ )|∑
q=1

P (ajp, aj′q) ∗ log
P (ajp, aj′q)

P (ajp) ∗ P (aj′q)
(3.15)

H(Aj, Aj′) = −
|dom(Aj)|∑

p=1

|dom(Aj′ )|∑
q=1

P (ajp, aj′q) ∗ logP (ajp, aj′q) (3.16)

According to Au et al. [67], the interdependency redundancy measure has the value
range of [0, 1]. A large value of R implies a high degree of dependency between
attributes.

For each attribute Aj, in order to select its highly correlated attributes, a relation
set is defined and denoted as Sj. Specifically, Sj contains attributes whose the
associated interdependency redundancy values with Aj are larger than a specific
threshold γ.

Sj = {Aj′ |R(Aj, Aj′) > γ, 1 ≤ j, j′ ≤ d} (3.17)
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New Dissimilarity Measure for Categorical Data

For integrating the relationship information that is contained in the set Sj, the con-
ditional probability of correlated attributes values is utilized to include the mutual
relationships between categorical attributes. In particular, to quantify the similarity
between categorical values of attribute Aj, the following measure is implemented.

sim(xj, x
′
j) =

∑
Aj′∈Sj

∑
a∈dom(Aj′ )

1

|Sj|
× 1

|dom(Aj′)|
×

2× logP ({xj, x′j}|a)

logP (xj|a) + logP (x′j|a)
(3.18)

It could be easily seen that the similarity measure in Eq. (3.18) have the value range
of [0, 1]. Specifically, when xj and x′j are identical, their similarity degree is equal to
1. Then, the dissimilarity measure between two values of an attribute that is used
in Eq. (3.10) could be defined as below.

dis(xj, x
′
j) = 1− sim(xj, x

′
j) (3.19)

The extended dissimilarity measure defined in Eq. (3.19) satisfies the following
conditions:

1. dis(xj, x
′
j) ≥ 0 for each xj, x

′
j with j ∈ {1, ..., d}

2. dis(xj, xj) = 0 with ∀j ∈ {1, ..., d}

3. dis(xj, x
′
j) = dis(x′j, xj) for each xj, x

′
j with j ∈ {1, ..., d}

For reducing the computational time of the proposed algorithm, the generation of
the relation set for each feature will be carried out in advance. Furthermore, the
degree of resemblance between attribute values will also be assessed beforehand and
their values will be kept in a multi-dimensional matrix for later referring. The details
of the RICS algorithm are described in Algorithm 2.

3.3 Experimental Evaluation

In order to prove the merits of our proposed clustering method, a comparative ex-
periment will be conducted on popular baseline clustering methods that can process
categorical data. Particularly, the newly proposed clustering framework RICS will
be contrasted with the k-modes method [58], k-representatives [59] and k-means
like clustering framework [61]. Each method will be executed 300 times per data
set. The values of the hyper-parameters of our method will be set as follows. The
threshold γ will be set to the value of 0.1 as it has been observed to produce gen-
erally good results. For the value of parameter k, it will be assigned to the same
number of classes in each data set. The clustering results will be evaluated by three
common measures which are Purity metric, Normalized mutual information (NMI)
score and Adjusted Rand index (ARI). Details of those metrics can be found in [54].
The final results for three measures will be calculated by averaging the results of
300 running times.
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3.3.1 Testing Data Sets

In this experiment, we collect 14 data sets from the UCI Machine Learning Repos-
itory [65]. All of the selected data sets contain a variety of data types including
categorical, integer and real values. In order to handle numerical values, a dis-
cretization tool from Weka [69] will be utilized to generate discrete categories that
contain a certain range of equal intervals. Then those intervals will be treated nor-
mally as categorical values. Furthermore, the average dependency degree of each
data set is estimated by averaging the interdependency redundancy values of all
distinct pairs of attributes based on Eq. (3.14). Details of collected data sets are
described in Table 3.1.

Table 3.1: Details of data sets for the experiment that are collected from UCI
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3.3.2 Experimental Results

As can be observed from the experimental results displayed in Tables 3.2, 3.3 and
3.4, there is no method that can outperform others for all of the testing data sets.
However, it is noticeable that our proposed clustering framework RICS has achieved
comparative results while performed well in most of the data sets and for all three
evaluation metrics. Specifically, it worked effectively for highly correlated data sets
such as dermatology, hayes-roth, soybean or wine . Furthermore, the overall results
for all three metrics have shown that our proposed framework has the best average
results.

Particularly, by inspecting carefully into results on the purity metric in Table
3.2, the k-modes algorithm seems to outperform k-representatives and k-means like
clustering method, and has a comparative performance with RICS. However, when
combining the information that is extracted from the results on NMI and ARI met-
rics, k-modes actually has poor performances regarding those two more significant
standards, while RICS is still can achieve the best results over the total of 14 testing
data sets.

Table 3.2: The purity results of the clustering experiment on 14 testing data sets
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Table 3.3: The NMI results of the clustering experiment on 14 testing data sets

Table 3.4: The ARI results of the clustering experiment on 14 testing data sets

3.4 Summary

In this chapter, we have introduced a new clustering method for categorical data.
The proposed method can integrate both the information about the distributions of
categories as well as their mutual relationships into the quantification of dissimilarity
between data objects. The merits of the proposed method have been proved by
an extended experiment. Particularly, RICS has a competitive performance or
even outperforms other baseline methods. The proposed clustering framework still
preserves the general structure of k-means method which makes it interpretable.
Moreover, the information about the relationships between features can also be
visualized to provide users with more intuitive insights about the underlying data.
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Chapter 4

Transparent Supervised Learning
Instead of Black-Box Models

Machine learning and data mining techniques increasingly play a significant role
in society under various forms of hardware and software applications. Those ap-
plications can exist in phones, smartwatches, cars or even at your home and have
profound impacts on our private life as well as our work. One of the main reasons
for their development is the improvement in the performance with complex models
built on the base of a huge amount of collected data. Those models are designed to
learn non-linear relationships between the underlying data and provide the predic-
tions based on those learn information. However, little knowledge about what they
have learned can be revealed for their users - which are us - due to the complexity of
their working mechanism. This situation leads to several limitations including the
hardness when debugging a certain problem produced by the systems or gaining the
trust of users by proving their fidelity and fairness. Especially, in many domains
that require transparency and interpretability such as medicine or healthcare, the
characteristics of those models - usually named as black-box - become an important
limitation when considering their adoption in those fields.

In this chapter, we introduce a two-stage binary classification system that can be
applied for healthcare as well as general data. The proposed system still preserves a
proper level of interpretability and can also achieve comparative results with popular
classification techniques. The motivation behind the proposed system is the lack of
effective classification methods for handling data generated by various distributions
(such as healthcare or finance data) that can harmonize both performance and
interpretability perspectives. In this work, we handle the problem by utilizing the
divide and conquer strategy with a new disentangled representation of the underlying
data. The content of this chapter is a part of our work that has been published in
[70].
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4.1 Background

The field of knowledge discovery in data (KDD) has advanced rapidly in recent times
and had a significant impact on almost every aspect of our life. Its ubiquity can
be seen from a wide range of applications in private portable devices to household
electronic equipment and machines used in workplaces. One of the main reasons
for its popularity is the advancement of machine learning (ML) and data mining
techniques based on big data resources. For several ML tasks such as recognition
or prediction, implementing complex ML techniques (so-called black-box) can help
to achieve prominent performance. However, it also comes with the price of high
complexity and opaqueness in those models [1].

Specifically, with the usage of those black-box models, their interpretability has
also deteriorated. Especially, the problem becomes more serious with their applica-
tions in decision support systems that are usually implemented in crucial fields such
as medicine, healthcare or finance - which require a proper level of transparency for
making high-stakes decisions [2]. In order to resolve those limitations, efforts have
been put into research in the field of general explanatory artificial intelligence (XAI)
or specific interpretable ML. Particularly, in XAI-related research, transparency is
enforced in whole or parts of systems with the requirement of explainability in their
decisions. With the implementation of transparency and explainability, it helps to
ensure the fidelity and fairness of the systems [3].

For the definition of interpretable ML, as defined in [4], it is the utilization of
ML techniques for extracting relevant domain knowledge about relationships hid-
den inside the data. Knowledge can be considered as being relevant when it can
provide insights to guide further communication, actions and discovery. Moreover,
interpretability is regarded as the first step to guarantee the explainability of the
models with the capability to defend their decisions, provide relevant responses to
questions and be audited [3]. For many research in the field of XAI and interpretable
ML, the terms of explainability and interpretability have slightly different meanings,
however, can be used interchangeably.

In real-world applications, there are mainly two situations where the inter-
pretability of systems is essential. The first situation is the need to debug the
problems that are caused by ML models. Particularly, several examples of unex-
pected behaviors or intentionally hidden information embedded into ML models
have been pointed out in the work of [3]. Some of them can be listed as the case
of recurrent neural networks that can misclassify the same images which have been
slight adjusted with perturbation methods [5]. Another example was described in
[6] where deep neural networks can simply be tricked into the misclassification of
inputs which are not similar to their true classes. Along with more findings on ad-
versarial examples of ML models are revealed, it emphasizes the need to improve the
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interpretability of those models so that users can understand and give their trust in
ML model-based decision-making processes as well as detecting problems.

The second situation that interpretability is considered to be essential which
is the applications of ML models in crucial fields such as healthcare or finance
where they need to make high-stake decisions. In those fields, the interpretability
of ML systems is regarded as the fundamental condition for implementing them in
actual applications [8]. Furthermore, literature in the fields also emphasizes the
indispensable role of interpretable ML systems. Particularly, in the work of [9], they
argued that the clinical decisions for radiation treatment must not be based only
on the accuracy of the prediction system but also on an informed understanding of
the relationship among patients’ characteristics, radiation response and treatment
plans. Also in [10], the challenge was observed for the implementation of artificial
neural networks for predicting medical outcomes comparing with the utilization
of logistic regression for the same problem. In the review of applications of deep
neural networks in health informatics [11], it was pointed out that the shortage of
interpretability is the main reason that restricts the adaptation of neural networks
into the healthcare sector. Also providing explanations for ML black-box models is
considered as a significant challenge for the medical field [12].

Alongside the aforementioned technical and ethical requirements for the inter-
pretability of ML models, with the increasing influence of ML applications in daily
life, the community is realizing the potential problems and pushing efforts into the
enforcement of interpretability and explainability of those applications. Those ef-
forts are expressed in several legal documents such as the European Union directive
for General Data Protection Regulation (GDPR). Particularly, GDPR defines the
right of explanation as providing an individual with “meaningful information about
the logic involved, as well as the significance and the envisaged consequences of
such processing for the data subject” [13]. Furthermore, other GDPR-like laws are
also being adopted in various regions that can be listed as the California Consumer
Privacy Act (CCPA) or the Privacy Amendment (Notifiable Data Breaches) to Aus-
tralia’s Privacy Act.

Due to the increasing demand of ML models that are both interpretable and
can achieve high performance, especially in the field of healthcare applications, in
this chapter we introduce a classification system named GSIC (GSOM-based In-
terpretable Classifying System). The proposed system is developed based on a
systematic combination of unsupervised and supervised ML techniques that reflects
our intuition about the distribution of the underlying data. Particularly, new data
representations generated by GSOM (The Growing Self-Organizing Map)[32] play
a key role to help overcome the curse of dimensionality problem as well as improve
the efficiency and interpretability. GSOM is a popular dimensional reduction and
visualization method that has the ability to dynamically learn new data represen-
tation and reveal salient relationships from underlying data. To prove the merits
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of our proposed system, an experiment on the classification task will be conducted
along with the demonstration on a use case on specific data set of sepsis patients in
the Intensive Care Unit (ICU).

The remaining part of this chapter is described as follows. In Section 4.2, we
represent the details of our proposed classification system GSIC. In Section 4.3,
information about the classification experiment will be provided to evaluate the
merits of our proposed system including a detailed analysis of sepsis data use case.
Finally, in Section 4.4, we summarize our work and have a discussion about the
limitations and future works.

4.2 A Transparent Classification System for Knowl-

edge Discovery

4.2.1 Notations

We would like to provide notations that will be used to formulate our proposed
system in the next subsection. A data set D comprises n instances and is described
by l attributes. Consequently, D = {x1, x2, ..., xn}. In order to refer to a specific
instance and attribute, x and att notations can be utilized respectively. The GSOM
mapping of D can be denoted as M that consists g codebook vectors (also called
neurons or nodes)M = {m1,m2, ...,mg}. The set of k clusters onM is represented as
C = {C1, C2, ..., Ck}. Furthermore, DT = {DT1, DT2, ..., DTk} is the set containing
decision trees generated for each cluster in C.

4.2.2 GSOM-based Interpretable Classification System (GSIC)

In this work, we introduce a new binary classification system based on the combi-
nation of GSOM representation and traditional machine learning methods to form
a robust and intelligible learning model. The proposed system GSIC is inspired by
the cognitive process of human thinking for the classification task by forming con-
cepts (prototypes) and build discrete rules under each concept to be able to identify
specific objects [71]. The merits of our proposed system two folds. Firstly, semantic
groups of original data can be formed and analyzed in order to provide insights
into the underlying data. Secondly, the computational cost of our system can be
reduced and distributed depending on the number of generated groups by doing the
classification on separate clusters instead of the whole data set. Details of GSIC are
described as the following.

49



Figure 4.1: Illustration for the general structure of GSIC

In the first step of GSIC, a new representation of the original data will be gener-
ated for dimensionality reduction as well as revealing hidden relationships. Specifi-
cally, we implement the GSOM algorithm [32] - a variant of SOM (Self-Organizing
Maps) [72] - for fulfilling the target as its capability to produce self-organizing seman-
tic representations of input data dynamically. Particularly, in new representations,
original similar data instances will be mapped to nearby points in 2D space. A
notable example from GSOM can be found in Chapter 2. To formulate the problem,
a set M containing four codebook vectors will firstly be initialized and denoted as
M = {m1,m2,m3,m4}. Subsequently, the resemblance between each data instance
x and codebook vectors will be estimated using Euclidean distance. Based on their
similarity, data instances are assigned to their closest vector mc (winner node) with
i, c ∈ {1, ..., 4}.

mc = argmin
i

(Euclidean(x,mi))

After the assigning step, the values of the winner node and its neighbors will be
updated to reduce the quantization error (the distance between the data instance
and the winner node) as described in Eq. (4.1). Consequentially, the winner node
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and its neighbors will be closer to assigned data instances after the updating step.
In the following formulation, t is the timestamp, α is the learning rate that decreases
over each step and N is the set of neighbors of mc.

mi(t+ 1) =

{
mi(t), i /∈ Nt+1

mi(t) + α(t) ∗ (x−mi(t)), i ∈ Nt+1

(4.1)

In several situations, the so-called under-representation problem can happen
when a large number of data instances concentrate on a single node in the map.
To resolve the problem, new nodes will be grown from the overpopulated node so
that data instances can be mapped more adequately. Practically, a value named
maximum error HE plays the role of tracking the highest error of generated nodes
in the map M . The error Ec of node mc is defined as the accumulated distance
between it and the assigned data instance x.

Ec(t+ 1) = Ec(t) + ||x−m(t)|| (4.2)

HE = argmax
i

(Ei)

The need of growing new nodes will be set through a threshold value so-called
“Grow Threshold” (GT ) which is computed in advance based on values of data set
D. Specifically, new nodes will be created as direct neighbors of the node that satisfy
the condition HE > GT . Values of new nodes will be initialized to harmonize with
their neighborhood regarding the smoothness of map M . The process of fitting the
data is repeated for every instance in D until there are no changes in the map M
(no new nodes are generated).

The result of GSOM is the self-organized map M which contains g codebook
vectors M = {m1,m2, ...,mg} with (g ≥ i ≥ 4). Each codebook vector is the
representation of a Voronoi region in the original data space. Specifically, data in-
stances assigned to the same codebook vector are similar to each other and adjacent
codebook vectors share several close characteristics. To automatically identify those
semantic groups of codebook vectors, the k-means method will be used to cluster
the map M . Specifically, consider C = {C1, ..., Ck} as the set of k clusters extracted
by k-means in M , for any two different clusters Cj and Cj′ , we have

Cj ∩ Cj′ = ∅ if j 6= j′and M =
k⋃
j=1

Cj (4.3)

For each cluster Cj, the center of Cj is defined as

Vj = [vj1, vj2, ..., vjl] (4.4)
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The resemblance between a codebook vector mi ∈ M and a cluster center Vj
then can be estimated by utilizing the Euclidean distance as the following.

dis(mi, Vj) = ||mi − Vj|| (4.5)

Based on Eq. (4.3) to (4.5), the k-means clustering algorithm aims to minimize
the following objective function:

J(U,D) =

g∑
i=1

k∑
j=1

ui,j × dis(mi, Vj) (4.6)

subject to {∑k
j=1 ui,j = 1 1 ≤ i ≤ g

ui,j ∈ {0, 1} 1 ≤ i ≤ g, 1 ≤ j ≤ k

where U = [ui,j]g×k is the partition matrix.

In order to extract hidden characteristics inside each cluster, a decision trees
algorithm is trained on data instances belonging to each cluster. In this work, we
utilize the CART (Classification and Regression Tree) algorithm - a well-known
binary decision tree learning algorithm proposed by [27]. The generation of decision
trees on each cluster helps to reduce the computation cost as well as increasing the
intelligibility of the model. Specifically, for a cluster Cj ∈ C, starting with all data
instances belonging to Cj, the data will be split at the most informative feature by
maximizing the information gain (IG) as in the Eq. (4.7).

IG(Dp, att) = I(Dp)−
[
Nleft

Np

I(Dleft) +
Nright

Np

I(Dright)

]
(4.7)

where att is the split feature, Dp and Dleft, Dright are the data set of the parent,
left and right child nodes respectively, I is the impurity measure, Np is the total
number of samples at the parent node, and Nleft, Nright are the number of samples
in the left and right child node.

The information gain indicates the difference between the impurity of the parent
node and the sum of the child node impurities—the lower the impurity of the child
nodes, the larger the information gain. The CART algorithm utilizes the Gini index
(GI) as the impurity measure. The Gini index is intuitively a criterion to minimize
the probability of misclassification.

IGI(t) =
c∑
i=1

p(i|t)(−p(i|t)) = 1−
c∑
i=1

p(i|t)2 (4.8)
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where p(i|t) is the proportion of the samples that belongs to class c for a particular
node t.

The splitting process will be conducted iteratively at each child node until the
leaves are pure where samples at each node belong to only one class. The pseudo-
codes of GSIC is provided in Algorithm 3.

4.3 Experimental Evaluation

4.3.1 Testing Data Sets

Nowadays, healthcare data sets have become more relevant that facilitate the surge
of researches and applications in this field. Currently, MIMIC III (Medical Informa-
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tion Mart for Intensive Care III) [73] is considered as one of popular and large-scale
data sets in healthcare field. MIMIC III was developed by MIT Lab and contains
almost 60000 ICU admissions in the Beth Israel Deaconess Medical Center. In this
research, only a subset of MIMIC data set will be utilized for the testing purpose of
the classification task that contains admissions suspected of sepsis [74]. Besides, 7
other real data sets are selected from the UCI Machine Learning Repository [75] to
be evaluated with our proposed system to prove its effectiveness with a variety of
data.

Table 4.1: Details of data sets collected from UCI and MIMIC III

4.3.2 Experimental Setups and Final Results

To prove the merits of our proposed system GSIC, a binary classification experiment
is conducted on a wide range of real data sets and popular baseline methods. Clas-
sifiers in the experiment are separated into two groups: black-box methods (Neural
network, Random Forest, AdaBoost and RBF SVM) and interpretable methods
(GA2M, SBRL, CART, Logistic Regression). Generally, black-box methods are an-
ticipated to be able to gain superior results than the interpretable classifiers due
to their capability of capturing complex and diverse patterns inside the underlying
data. Hyper-parameters of baseline classifiers are optimized using the GridSearch
method. For GSIC, specific values for the set of parameters are determined as
observed to be effective as well as improve the interpretability of our system. Clas-
sifiers are run with 5 folds cross-validation for each data set and final results are the
average of results of 5 folds cross-validation run-times.

For evaluating the results of the classification experiment, we used the AUC
(Area Under The Curve) metric to assess the performance of classifiers. As can be
observed in Table 4.2, black-box methods perform better for most of the testing
data sets regarding their AUC score. Particularly, the neural network proved its
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efficiency through prominent results. It is also noticeable that for a few data sets,
CART still can achieve comparable results to other complex models. However, the
trees generated by CART in those cases are mostly complicated and have large sizes
which lower the interpretability and are easy to overfit the data. On the other hand,
the proposed classifier GSIC performed competitively with black-box models while
still preserves an acceptable degree of intelligibility. To that end, values of major
hyper-parameters of the GSIC which are the number of groups and the deep of
sub-tree inside each group are kept in an adequate range. A detailed analysis of the
interpretability of GSIC will be provided in the next subsection with the sepsis data
use case.

4.3.3 Interpretability Analysis for ICU Sepsis Use Case

According to [76], sepsis is a main cause of hospitalization, morbidity and mortality
worldwide and has been listed as a healthcare priority by WHO [77]. The definition
for sepsis given by The European Society of Intensive Care Medicine/ Society of
Critical Care Medicine is a “life-threatening organ dysfunction caused by a dysreg-
ulated host response to infection” [78]. There are several criteria for assessing the
severity and detection of sepsis have been suggested. Recently, a comparative study
has been conducted for evaluating the effectiveness of relevant sepsis measurements
that focused specifically on the data of patients stayed in ICU (Intensive Care Unit)
[74].

In our experiment, the data set of ICU sepsis patients that was used in the above
comparative study will be employed in the task of predicting mortality risk with the
proposed GSIC classifier. Particularly, the data set originally contains retrospective
data of 23620 admissions of adult patients in ICU with de-identified demographics
information and medical data archived during hospital stays. The medical informa-
tion comprises of Elixhauser index (the degree of comorbid burden for a patient),
SIRS index (Systemic Inflammatory Response Syndrome), SOFA index (Sequential
Organ Failure Assessment) and data informing mechanical ventilation need. Gen-
erally, the cohort is divided into two groups: survival and non-survival. Details of
ICU sepsis data set are described in Table 4.3.

Moreover, values of various sepsis criteria are also provided in the work of [74] for
the ICU sepsis data set. Specifically, seven of the included sepsis criteria are SOFA
index, suspected of infection, Sepsis-3, CDC, Angus, Martin, CMS and Explicit
criteria. As can be seen from Table 4.4, the number of patients who satisfied the
condition of SOFA index larger than 2 surges up to over 75%. While the Sepsis-
3 index constitutes nearly half of the cohort. The Explicit criterion accounts for
only 9% of ICU patients. However, the number of in-hospital mortality for positive
cases that satisfies the Explicit criterion is the highest while for Sepsis-3, it is only
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Table 4.3: Summarized information of ICU sepsis data set [74].

14.5%. The same situation can be observed from the table for in-hospital mortality
of negative cases and composite outcomes for positive/negative cases.

Table 4.4: Statistics for sepsis criteria with patients and mortality rate [74].

One common way to evaluate the interpretability of a system is based on the
so-called functionally-grounded method proposed by [15]. Specifically, a system is
considered as interpretable when it is proved to be well-improved than a proxy
method. In our case, we would like to compare the results of our system the proxy
method which is the CART algorithm as in Table 4.5. It is obvious that the decision
rules generated by GSIC are much succinct and more understandable than the ones
of CART. However, the rules generated by GSIC are conditionally applied to a
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specific group of cohorts instead of the whole population.

Table 4.5: Comparison of decision rules generated by GSIC and CART

Furthermore, a model is also considered as interpretable if it comprises of under-
standable components (model-based interpretability) [4]. Particularly, GSIC practi-
cally implements transparent ML techniques including GSOM, k-means clustering
and Decision trees. The descriptive accuracy as mentioned in [4] then can be im-
proved with the employing of the aforementioned transparent methods. For each
of the implemented techniques, a specific kind of insight about the underlying data
can be extracted. For example, after the training of GSOM, a visual sentimental
map of the original data can be obtained which reveals the relationships that are
hidden inside the data. Specifically, as can be seen from Figure 4.2, a 2D mapping of
the ICU sepsis data can be obtained from GSOM where mortality cases are marked
with cross marks.

A closer look can be taken into the 2D map generated from GSOM for the ICU
sepsis data set. From the map, we can observe the distribution of the original data
(where similar cases are grouped next to each other). Particularly, more observation
about critical cases (mortality cases are cross marked) can be made that provides
practitioners with an overview of groups of the vulnerable cohort. Digging deeper
into the new representation of the original sepsis data, various groups of cohorts (sub-
cohorts) can be extracted by clustering the data points on GSOM map. Specifically,
groups of mortality cases can be induced as in Figure 4.3 using k-means clustering
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Figure 4.2: The 2D map generated by GSOM for the ICU sepsis data set.

Table 4.6: Inference rules of each cluster for predicting mortality cases

method. For contrasting various groups of cohorts, we use the Decision trees method
to extract representative rules between clusters. As can be seen in Figure 4.4,
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Figure 4.3: K-means clustering on generated GSOM .

sepsis martin index can be considered as one of the main factors to distinguish
group 3 of the cohort (cluster 3) from other groups.

Figure 4.4: Representative rules for each sub-cohort.

After extracting groups of cohorts, in order to classify new instances, decision
rules are generated for each cluster using the Decision trees algorithm that is trained
on separate data instances belonging to each cluster. The generated rules can be
sorted based on the number of mortality cases that satisfy those rules. The top-three
rank rules that belong to each group can be seen in Table 4.6. Thanks to the simple
form of decision rules that are generated from separated clusters, it is more under-
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standable for practitioners to gain insights on significant factors that can impact
the high risk of mortality due to sepsis. Specifically, as can be observed in Table
4.6, several factors can have major influence on the mortality risk with sepsis can be
mentioned as sepsis-related indices (e.g. lods (logistic organ dysfunction system)),
time of stay in hospital and ICU (hosp los, icu los) or patients’ demographic (age,
weight).

4.4 Summary

In this chapter, we introduced a new interpretable classification system named GSIC
that achieved comparable results with common classification models. The proposed
system has a transparent structure and its results can be interpreted and understand-
able by practitioners. Particularly, as demonstrated in the use case of predicting the
high mortality risk of sepsis patients that stay in ICU, the information generated by
GSIC can provide users with insights into the relationships hidden in the underlying
data. Furthermore, those insights can be applied to the process of prioritizing pa-
tients for sepsis treatment. However, it needs to be further verified the effectiveness
of the results generated by GSIC with experts in the related fields.

The proposed system still has several limitations such as long computation time
for generating data mapping information or the lack of quantifying the uncertainty
in the classifying process. For future work, we will pay more effort in improving
on aforementioned limitations. Specifically, more focus will be put on enhancing
the efficiency of the system by optimizing the learning process as well as employ
a more fine-grained hyper-parameter tuning. Also, we will extend the evaluation
experiments with more interpretable and black-box ML models to be able to provide
a broader view of the performance of our proposed system when compared with a
wide range of common techniques. Furthermore, the proposed system GSIC can
be extended for handling multi-classes prediction tasks as well as working with
unsupervised data.
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Chapter 5

Enhancing Supervised Learning
with Uncertainty Management

One of the main challenges for the supervised learning task is the uncertainty and
ambiguity of the original data. There are many efforts that have been put into
dealing with the challenge, however, there are still various remained problems, espe-
cially when the interpretability requirement is bundled together. Particularly, one
of the popular supervised learning methods proposed for handling uncertainty data
is the EKNN. The EKNN is an extended version of the famous k-NN (k-nearest
neighbors) classifier that is developed based on the evidence theory. However, by
remaining the original structure of the k-NN which is a distance-based technique,
EKNN also exists the limitations when dealing with high dimensionality data as
well as performs ineffectively with mixed distribution data where closed data points
originated from different classes.

In this chapter, we introduce a new classification technique that can “softly”
classify data points upon each separate cluster which can mitigate the overlapping
data problem. The uncertainty introduced in the representation of data is managed
by combining pieces of evidence induced from the trained clusters using Dempster’s
combination rule to generate final decisions. Moreover, the computational cost is
improved by defining the mass function of evidence with the weight factor based on
the distance between new data points and clusters’ centers. In other to prove the
merits of our proposed classification technique, we conduct an experiment on a wide
range of real data and popular classifiers. The results have shown that our proposed
technique can achieve comparable performance to state-of-the-art methods. The
content of this chapter is a part of our work that has been published in [79].
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5.1 Introduction of Uncertainty in Machine Learn-

ing

Along with the development of artificial intelligence applications, there is a newly
rising field of managing uncertainty in machine learning and data mining tasks. Par-
ticularly, in several areas that require to make high-stakes decisions such as health-
care [80], bio-informatics [81] or even pure machine learning research [82, 83], it is
essential to quantify and manage the uncertainty that arises from the data. Accord-
ing to [84], it is challenging when applying the traditional probabilistic framework
on solving the problem of uncertainty, therefore several different approaches have
been developed for managing uncertainty. Particularly, one of the most well-known
theories in the field can be mentioned is the evidence theory proposed by [85].

Specifically, an example of the uncertainty in the field of supervised learning
can be given is when several specific data instances cannot be correctly labeled
due to the idea conflicts between experts. In order to resolve this specific type of
uncertainty, several methods have been proposed that are developed based on the
evidence theory. Specifically, a common approach is adopting partially supervised
learning where labels of data are represented as the partial membership of available
classes. Evidence-based induction trees [86] is a method that follows this approach
by incorporating evidence-theoretic uncertainty measure to assess the impurity of
nodes in decision trees. Another recent method is CD-EKNN [87] that can handle
data that contain partially known labels by implementing the contextual discount-
ing technique and utilizing the conditional evidential likelihood for optimizing the
model’s parameters.

Another common example of the uncertainty in the data is when the observed
data is lack of information which can be caused by the sparse data problem or over-
lapping (mixed-distribution) data where data points belonging to different classes are
close to each other. Several approaches have been proposed to mitigate this problem.
One common method can be mentioned is EKNN [88]. EKNN is a distance-based
method that classifies new data points based on the evidence of classes of their
neighbors. EKNN works effectively with uncertainty data, however, it also has the
limitation of computational complexity due to the induction of distances of data
in the sample space. Several efforts have been made in order to mitigate this lim-
itation by implementing feature selection or dimensional reduction techniques for
downsizing the feature spaces such as ConvNet-BF [89] or REK-NN [90].

Another limitation of EKNN is the inflexibility when predetermining a number
of nearby neighbors to extract evidence for the class information of a new data point.
This problem can lead to errors when evidence from more neighbors is needed to
collect (sparse distribution) or data points originating from different classes stay
close to each other. Moreover, it is arguable when assigning hard-to-classified data
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to only an ignorance group when those data points can be actually originated from
different classes. Currently, several methods have been developed to improve these
limitations. Specifically, a new approach is removing the need to defined in advance
the number of neighbors by generating prototypes and extracting evidence of a
new data point based on those prototypes such as ProDS [91], CCR [92]. Another
approach instead of assigning hard-to-classified data to a single general unknown
group, they will be assigned to the various classes-combined group named meta-
class in addition to the original ignorance class such as BK-NN [93]. However, it
is criticized that evidence extracted from the classes of prototypes is unreal due to
their non-semantic representations. Also, information about the classes of new data
points also has to be specified with a degree of certainty rather than merely assigned
to some common groups of classes.

In this chapter, we put our effort to mitigate the aforementioned limitations.
Specifically, we introduce a new classification method that can extract the evidence
about the classes of new data objects from various “fuzzy” groups of data that rep-
resent different distributions that generate them. Generally, we make an assumption
that a data set is generated by various distributions which can be represented in the
form of heterogeneous clusters. In real-world applications, this kind of data can be
observed from several fields such as healthcare or finance where data about users
may be collected from different regions and periods. Basically, information about
the distribution in each cluster can be extracted using decision trees on the set of
data belonging to that cluster. Results from those decision trees could be consid-
ered as evidence for determining the classes of new data points. For making a final
decision about the predicted class, Dempster’s combination rule [85] will be used to
fuse the evidence collected from previous steps.

The remaining part of this chapter is presented as follows. In section 5.2, back-
grounds about evidence theory are introduced. In section 5.3, we elaborate on the
details of our proposed classification system named IEBC (Inner Evidence-Based
Classifier). In section 5.4, the experimental evaluation is conducted to prove the
merits of our proposed system. Finally, in section 5.5, we provide a conclusion and
mention about limitations of IEBC as well as our future work.

5.2 Evidence Theory

Evidence theory also known as Dempster-Shafer theory [85, 94] comprises a number
of models for handling uncertainty. Dempster-Shafer theory generalizes probability
theory and set-membership approaches. It plays an important role as an effective
theoretical framework for reasoning with uncertain and imprecise information. In
this part, we would like to provide a background of Dempster-Shafer theory in order
to facilitate the formulation for our proposed classifier.
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The frame of discernment defines a finite and unordered set Ω that contains
relevant values of a variable x. Partial knowledge about the actual value of x can
be represented by a mass function (also known as the basic probability assignment)
m, which is defined as a mapping from 2Ω to [0, 1], satisfying that

m(∅) = 0

∑
A⊆Ω

m(A) = 1

For any subset A ⊆ Ω, m(A) can be interpreted as the belief that one is willing
to commit to A. Focal elements of mass function m is defined as all A that satis-
fies m(A) > 0. There are two non-additive measures so-called belief function and
plausibility function that can equivalently represent m as defined below.

For any subset A ⊆ Ω, the belief function denoted by Bel(A) is defined by

Bel(A) =
∑
B⊆A

m(B)

and Bel(A) can be interpreted as the degree of belief that the actual value of x is
in A. The plausibility function Pl(A) is then defined as

Pl(A) =
∑

B∩A 6=∅

m(B)

Pl(A) can be seen as the degree to which the evidence is not contradictory to the
proposition that the actual value of x is in A.

Furthermore, given two mass functions m1 and m2 on the same frame of dis-
cernment that are derived from independent pieces of evidence, they can be fused
by using Dempster’s combination rule [85] to obtain a new mass function m1 ⊕m2

which is defined as

(m1 ⊕m2)(A) =
1

1−K
∑

B∩C=A

m1(B)m2(C)

for all A ⊆ Ω, where K =
∑

B∩C=∅m1(B)m2(C) is defined as the degree of conflict
between m1 and m2. When the degree of conflict K between m1 and m2 is large, the
combined evidence obtained by Dempster’s combination rule may become unreliable
and unintuitive which was pointed out in [95].
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5.3 IEBC (Inner Evidence-Based Classifier)

A new classifier named IEBC will be introduced within this section in order to mit-
igate the problem of uncertainty with overlapping data that are generated by mixed
distribution. The main intuition of our proposed system is that the overlapping data
can be split by projecting them into a new representation and the classification task
can be conducted on separated groups of data. To that end, we employ a fuzzy clus-
tering technique on a new representation of the data and evidence about the class
of new instances will be extracted and combined from those fuzzy clusters. Partic-
ularly, IEBC comprises of three major components: fuzzy clustering, decision trees
induction and evidence combination. The general process of our proposed system is
depicted in Figure 5.1.

In the first step of clustering new data representation, the fuzzy c-means cluster-
ing technique will be utilized for better grasping the uncertainty inside the data by
allowing partial membership of data instances to each cluster instead of crisply as-
signing them to a specific one. The extracted fuzzy clusters are expected to contain
instances that are generated by the same distribution and the characteristics of the
distribution can be understood by analyzing instances belonging to that cluster.

In order to induce the characteristics of each cluster, decision rules generated
by the CART algorithm will be applied. The CART algorithm will be trained on
instances that belong to separate clusters and the results can also be used to classify
new data instances. Those decision rules are considered as evidence about the “true”
class of new data instances and will be combined across clusters using Dempster’s
combination rule to provide a final decision.

5.3.1 Notations

We would like to provide several notations to facilitate the formulation of our pro-
posed classifier. Given a data set D that contains n instances and is characterized
by m attributes. Then an instance xi can be denoted as xi = {xi1, ..., xim} and data
set D = {xi|i = 1, 2, ..., n}. Values of label of an instance xi belongs to the set
Ω = {1, ..., c}. We define a set of fuzzy clusters {Aj, j = 1, 2, ..., k} that each data
instance can belong to.

5.3.2 The Proposed Classification System

As mentioned in the previous part, IEBC comprises three main components which
are fuzzy clustering, decision tree induction and evidence combination. In this sub-
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Figure 5.1: The overall process of the proposed classification system IEBC

section, we would like to provide a more detailed formulation of the proposed classi-
fication system. Particularly, in the first step of clustering new data representation,
the uncertainty can also occur within the process [83]. Particularly, in several com-
mon clustering methods such as k-means, a data instance has to be assigned directly
to a specific cluster even when it is possible to belong to other clusters as well. This
problem reduces the effectiveness of the clustering process. In order to mitigate
this limitation, we implement the fuzzy clustering approach where a data instance
is allowed to have partial membership to many clusters as defined in the following
[96].

µij = µAj
(xi) ∈ [0, 1] (5.1)

where µij is the membership value of a data instance xi to cluster Aj and has to
satisfy the following conditions:

• Sum of all membership values of a single data instance to all clusters is equal
to 1.

k∑
j=1

µij = 1, for all i = 1, 2, ..., n

• There is no empty cluster or a cluster that contains all of the data instances
in D.

0 <
n∑
i=1

µij < n
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A family of fuzzy partition matrices, Mf , that contains membership values be-
tween k clusters and n data instances can be denoted as:

Mf =

{
U |µij ∈ [0, 1];

k∑
j=1

µij = 1; 0 <
n∑
i=1

µij < n

}
(5.2)

Any U ∈Mf is a fuzzy k-partition, and it follows from the overlapping character
of the clusters and the infinite number of membership values possible for describing
cluster membership that the cardinality of Mf is also infinity, that is, ηMf

=∞.

To determine the fuzzy k-partition matrix U for grouping a collection of n data
sets into k clusters, an objective function J for a fuzzy k-partition can be defined
as:

J(U, v) =
n∑
i=1

k∑
j=1

(µij)
αd2

ij (5.3)

where α is the weighting parameter and dij is the Euclidean distance between the
Aj cluster’s center and the xi data instance.

dij = d(xi − vj) =

[
m∑
l=1

(xil − vjl)2

]1/2

(5.4)

Particularly, the weighting parameter α adjusts the amount of fuzziness and
has the value range of [1,∞) [97]. The center of cluster Aj is denoted as vj =
{vj1, vj2, ..., vjm}. The value of vj is computed as the following formula.

vj =

∑n
i=1(µij)

α × xi∑n
i=1(µij)α

(5.5)

In this work, the fuzzy c-means [98] will be implemented for the task of fuzzy
clustering on the new representation of the original data. Details of the fuzzy c-
means algorithm can be found in [99]. The generated fuzzy clusters are informative
and flexible when assigning data instances to different groups. However, in order
to extract insights from those clusters, it needs to harden (so-called defuzzification)
the information contained in the fuzzy clusters.

There are mainly two methods to defuzzify the fuzzy clusters which are the
maximum membership and nearest center classifier [99]. We use the maximum
membership method for fulfilling the task as it is robust regarding its simplicity.
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The main idea is straight-forward as assigning an instance to the cluster that has the
highest membership values. However, by considering only the highest values, several
fuzzy membership information can also be lost. For including that information, an
adjustment is added to the maximum membership method so that not only the
largest membership but also its nearly equal values will be assigned to the same
cluster by defining a so-called fuzzy threshold β as the following.

µij 7→ µij =


1 , if µij = max

j′
{µij′}

or |µij −max
j′
{µij′}| ≤ β

0 , otherwise

(5.6)

for j, j′ = 1, ..., k and i = 1, 2, ..., n.

By defuzzying partition matrix U into a hard partition matrix U ′ using Eq. (5.6),
we can obtain k clusters {C1, ..., Ck} where

Cj = {xi|µij = 1, i ∈ {1, ..., n}} with j ∈ {1, ..., k}

With each cluster Cj, a decision tree classifier dtj is generated using CART
algorithm [100] for extracting insights from the cluster as well as classifying new
data instances. Specifically, for a data instance xi, the results of each classifier is
noted as P j

i = [pji1, ..., p
j
ic] where pjil (l ∈ Ω and i ∈ {1, ..., n}) is the probability of

the data instance xi classified as class l by the classifier dtj.

In the final step of IEBC, the results of each classifier are considered as evidence
given by an independent expert on the “true” class of a data instances xi. Based
on this assumption, the probability matrix P j

i generated by a classifier dtj along
with the weighting factor uij ∈ U can be utilized to define the basic probability
assignment (bpa) mj as the following.

mj : 2Ω → [0, 1]

mj({l}) = pjil × uij (5.7)

mj(A) = 0 if |A| ≥ 2, A 6= Ω (5.8)

mj(Ω) = 1−
c∑
l=1

pjil × uij (5.9)

69



In IEBC, only the mass functions of focal elements which are singletons will be
considered. All other imprecision will be assigned to the whole frame of discernment
Ω = {1, ..., c}. Specifically, given the evidence Ej = {mj({l}),mj({Ω})} with j ∈
{1, ..., k} and l ∈ {1, ..., c} that is provided by the classifier dtj, we can combine the
set of evidence E = {E1, ..., Ej} by using Dempster’s combination rule (denoted as⊕

).

m =
k⊕
j=1

mj

Specifically, two mass functions mj and mj+1 derived from two evidence sources
Ej, Ej+1 can be combined using Dempster’s rule to obtain a new mass function
mj ⊕mj+1, defined as

mj(A)⊕mj+1(A) =
1

1−K
∑

B∩C=A

mj(B)×mj+1(C)

for all nonempty A ⊆ Ω, where K =
∑

B∩C=∅mj(B) × mj+1(C) is the degree of
conflict between mj and mj+1.

The following table to describe the detailed combination of two evidence sources
Ej, Ej+1.

Table 5.1: Intersection of pieces of evidence from two evidence sources

Finally, the pignistic probability transformation is usually utilized to transform
the combined mass function m into a probability function for making final decisions
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[101]. Due to the consideration of focal sets including only singletons and the ig-
norant set Ω, the probability function m′ generated using the pignistic probability
transformation is as follows.

m′({l}) = m({l}) +
m(Ω)

|Ω|
(5.10)

From Equation (5.10), the portion of m(Ω)
|Ω| is a constant value with ∀l ∈ Ω.

Consequently, the combined mass m({l}) can be used directly to determine the
class of an instance xi by selecting bpa of the class that has the highest mass value.
The pseudo-code of IEBC is provided in Algorithm 4.

predicted class = c? (5.11)

c? = argmax
l

(m({l})) (5.12)

where c?, l ∈ {1, ..., c}.

5.4 Experimental Evaluation

5.4.1 Testing Data Sets

For evaluating the proposed classification system IEBC, a subset of the MIMIC III
data set that contains admissions suspected of sepsis in ICU are selected [74]. The
MIMIC III (Medical Information Mart for Intensive Care III) is currently one of
the most popular and biggest healthcare data sources developed by MIT Lab [73].
Particularly, nearly 60000 ICU admissions with their de-identified medical data are
recorded. Besides, 9 data sets from UCI [75] are also selected to evaluate the gener-
alizability of our proposed system for a variety of data. Summarized information of
the selected data sets is included in Table 5.2.

5.4.2 Experimental Setups and Final Results

To prove the merits of our proposed system IEBC, a classification experiment will
be conducted on binary-labeled data sets. Particularly, the proposed system will be
contrasted with common classification methods including robust supervised learners
(Neural network, Random Forest, AdaBoost and RBF SVM), evidence-based classi-
fication techniques (EKNN [88], ProDS [91]) and CART. Generally, robust classifiers
such as the neural networks or random forests typically can achieve prominent perfor-
mance (accuracy) compared with other techniques thanks to their proven high level
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of competence in learning complex and diverse patterns from the training data. For
a fair comparison, we optimize parameters of baseline methods applying the Grid-
Search method. However, for our proposed method, in order to preserve a proper
level of interpretability, we restraint the ranges of main parameters to low values.
The classification experiment is run with 5 folds cross-validation for each model
and data set. The final results are the averaged value of 5 folds cross-validation
run-times. A part of the results is reused from our previous work [70].

The main metric used to evaluate the classification results is AUC (Area Un-
der The Curve) score. It is an effective and simple metric to evaluate the binary
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Table 5.2: Characteristics of 10 datasets collected from UCI and MIMIC III

Table 5.3: AUC of classification results of 10 testing datasets - part 1

Table 5.4: AUC of classification results of 10 testing datasets - part 2

classification task. As can be observed from the final results in Table 5.3 - 5.4, ro-
bust classifiers such as the neural network or random forests almost dominate other
methods regarding AUC metric. Moreover, our proposed classifier IEBC is out-
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performed state-of-the-art methods while achieved the highest AUC score for three
data sets. With other testing data sets, its performance is competitive with other ro-
bust learning techniques. It should be mentioned that IEBC also has a good degree
of interpretability and their hyper-parameters are not optimized yet. Particularly,
IEBC well-performed with medical data sets such as Sepsis, Haberman, Diabetes,
Liver-disorder and Heart which proved the effectiveness of our proposed method
over the overlapping data problem (medical data generated by mixed distribution).

5.5 Summary

In this chapter, we introduced a new evidence-based classification system named
IEBC for handling the uncertainty that is generated from the data. Specifically,
IEBC is developed to handle the problem when classifying data that are generated
by various distributions. To that end, a fuzzy clustering technique is implemented
in order to extract information of heterogeneous clusters inside the underlying data.
Then, the characteristics of each cluster will be captured using the decision trees
technique. Finally, evidence about the class of new data points will be collected and
integrated by utilizing Dempster’s combination rule to generate the final result.

The effectiveness of our proposed method has been proved by a classification
experiment conducted on a wide range of real data (especially with healthcare data
set) and popular baseline methods. Furthermore, as IEBC comprises of interpretable
machine learning methods such as fuzzy clustering and decision trees as well as
an intuitive evidence combination method, it can also provide users with insights
about relationships that are hidden in underlying data. The extracted knowledge
can support the decision-making process in fields which require to make high-stakes
decisions such as healthcare, medicine or finance. For future work, we will conduct
the multi-classification task with more evidence-based methods. Moreover, a deeper
investigation of applications of our method in healthcare or business fields will be
conducted to explores its potential.
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Chapter 6

General Discussion

In this chapter, we would like to discuss problems and challenges in the field of
interpretable ML and XAI. Firstly, we bring up the original problem of defining in-
terpretability, explainability and how to be able to claim an ML model interpretable.
As currently, there is no concrete definition for those concepts that leads to the hard-
ness of evaluating interpretable ML models. Secondly, the future and potential of
transparent ML models will be discussed. Specifically, we attempt to find answers
to the question posed that how and which directions interpretable models could be
developed among the widespread of black-box models such as deep neural networks.
Finally, we would like to have a brief discussion on trends and applications of post-
hoc models which are also a promising and powerful solution in the field besides
developing intrinsically interpretable models.

What is interpretability in ML context and how to
claim a ML model to be interpretable?

In many research, interpretability is considered as a broad and poorly defined con-
cept with little consensus on its definition and evaluation [4, 15]. Therefore, instead
of implementing a general meaning of this concept, researchers usually try to place
it into a concerned context. Specifically, in [4], they considered interpretability in
the context of machine learning as a part of the data science life circle. Interpretable
machine learning is defined as the use of ML models to extract relevant knowledge
about domain relationships contained in data. Where relevant knowledge is defined
as available insights for a specific audience within a chosen domain problem. On the
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other hand, in the context of ML systems, [15] defined interpretability as the ability
to explain or to present in understandable terms to human.

Moreover, in many of XAI-related research, interpretability and explainability
are two concepts which are usually used interchangeably. However, according to
[102], interpretability is a concept that falls under the umbrella of explainability. If
a system is explainable then it is interpretable but maybe not correct in a reverse
way. The goal of interpretability is merely to describe the internal of a system
in a way that is understandable to humans. Therefore, it depends on cognition,
knowledge and bias of users to determine whether a system is interpretable. It also
mentioned that it should be cautious not to develop persuasive systems rather than
transparent systems.

More generally, in [103], interpretability was observed as not a monolithic con-
cept but reflects several distinct ideas. They argued that interpretations serve ob-
jectives that are deemed important (such as ethics, legality) but struggle to model
formally. Similarly, in [15], interpretability serves as a tool to confirm other impor-
tant desiderata of ML systems besides task performance. Those objectives (desider-
ata) may include trust, causality, transferability, informativeness, fair and ethical
decision-making.

Due to the lack of consensus on the definition of interpretability concepts, there
is also no only benchmark for evaluating interpretable ML models. In chapter 2, we
introduced details of several notable evaluation methods for interpretable models. In
this discussion part, we would like to summarize those approaches and mention their
limitations. Currently, there are two common ways to evaluate the interpretability
of ML models [15]. The first way is placing the models in its application, if the
system is useful in a practical application or a simplified version of it, then it will
be considered interpretable. The second way to evaluate the interpretability is via
a quantifiable proxy by firstly claiming the interpretability of a specific class of ML
methods such as linear models, rule lists, then follows the proposed models optimized
on those classes.

Obviously, those aforementioned evaluation methods are vague, simple and sub-
jective. New evaluation approaches as mentioned in chapter 2 are developed with
more firm background therefore more reliable. Specifically, in [15], they proposed a
data-driven way to derive operational definitions and evaluations for explanations.
The proposed evaluation method creates a general framework for evaluating the in-
terpretability of ML systems. However, there is a lack of specific instructions for
various kinds of applications. Also, human-related evaluations have to be designed
carefully to avoid confounding factors and user-related bias. In [4], they clarified the
desiderata for interpretations when placing the concepts in the general data-science
life cycle which including predictive accuracy, descriptive accuracy and relevancy.
However, also no detailed instructions are given to improve the quality of concerning
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objectives.

In summary, to the best of my knowledge, there is a need for more detailed
definitions of interpretability in the machine learning context. Also, the evaluation
methods for interpretable ML models have to be defined more clearly in both vertical
and horizontal directions. In the vertical direction, there is the need to define the
abstract of evaluation methods for interpretable ML while in the horizontal direction,
application-specific evaluations have to be described.

Future and potential of transparent models

Currently, there are two major trends towards implementing interpretable ML as
introduced in Chapter 2 which are intrinsically transparent and post-hoc models.
While post-hoc interpretation models seem promising while providing explanations
for black-box models as the results benefit from both the high performance of black-
box models as well as the capability to provide explanations for their decision-
making process. However, in the work of [2], they argued about the limitations of
this approach compared to building transparent models. In this part, we would like
to bring up their arguments as the background for the debate about the potential
of transparent models and their future. Specifically, post-hoc interpretation models
suffer from several limitations including the fidelity of the provided explanations. It
comes from the fact that many explanation models do not mimic the computations
of the original models, therefore those explanation models may not use the same
features as original ones and thus not faithful to the working mechanism of the
black-box models.

The second problem related to post-hoc models is that the provided explana-
tions are usually incomplete. In [2], they gave an example of saliency maps used in
the image processing field and argued that the relationship of final labels and the
focus parts of the network is not clarified which leads to confusion when encounter-
ing misclassified cases. Moreover, the incorporation of outside information is hard
compared with transparent models. From those limitations, the development of
explanation techniques for black-box models could be troublesome and potentially
cause catastrophic harm to society.

However, the development of intrinsically transparent models also encounters
several major challenges. When black-box models such as neural networks or random
forest can automatically learn non-linear relationships, most well-known transparent
models such as decision trees or association rule lists struggle to capture that infor-
mation. Moreover, the bigger the size of the learning problem, the more complex
the rules generated by transparent models. Those characteristics limit transparent
models from the applications with big data where a large volume of data and features
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are entailed. Most of the current approaches for building transparent models involve
the incorporation of expert knowledge into intrinsic interpretable models that make
the process ineffective and costly in both computational and financial perspectives.
Also, due to no concrete definition of interpretability, it is challenging to develop
general interpretable models. Instead, application or domain-specific interpretation
is usually developed.

Currently, due to the limitation in performance generally, interpretable ML mod-
els are usually developed for specific data. In particular, instead of being optimized
for all available data which generated by various distributions and posses different
characteristics, it is reasonable to focus on specific datasets which are concerned
by a specific application such as patients’ medical record in healthcare application
or material structure-properties in material discovery application. By focusing on
the data structure to build interpretable models, the proposed models can be more
effective and useful. The second trend in developing transparent models is efforts
to reduce the complexity of generated rules, explanations or representations. For
example, in the case of decision trees, several techniques could be applied to reduce
the size of the generated trees such as trimming techniques which can generalize the
results as well as reduce the complexity. Finally, instead of generating global expla-
nations, transparent models could focus on generating local interpretation with the
aim of reducing the overwhelming of problem space while still can provide accurate
explanations for a specific decision. Several techniques can be applied to fulfill the
goal can be listed as case-based learning or prototype learning.

Future trends for black-box models with explana-
tions

Today, black-box models are becoming ubiquitous with a wide range of applications
because of their prominent performance. Black-box models such as deep neural
networks or random forests generally perform better than other intrinsically trans-
parent methods in many applications due to their capability of capturing non-linear
relationships in the data. In several fields such as image processing or text process-
ing, deep neural networks can equal or even outperform human which lead to the
wide-spreading of those applications from the business section to private life.

A common application of black-box models is recommendation systems for prod-
ucts in business sites where new products can be introduced to users based on their
historical checking items or similarity between users. Another popular application
can be listed as machine translation services such as Google translate which ap-
ply text processing techniques, or face and object recognition applications used for
photo-video capturing or security control purposes. Also, a notable application of
deep learning is in automatic driving cars where ML models collect and process
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multi-sources data for supporting safe driving.

For some of the aforementioned applications such as recommendation system
or automatic language translation, the information and results provided by those
applications for users is not significant for high-stakes decisions and allow room for
mistakes without a deep investigation into the reason. However, in other applications
such as security control using face recognition or in automatic driving cars, errors
happen in those kinds of applications could lead to life-threatening consequences.
When problems happen to those applications, careful diagnostic needs to be carried
out for debugging the origin of the problems as well as providing customers with
reasonable explanations for those failures. However, if the applications are integrated
with black-box models which are opaque and hard to explain then it is a non-trivial
task to debug the problem as well as provide clues for their decision-making process.

Even with a full acknowledgment of the above-mentioned limitations of black-
box models when being applied to high-stakes decision-making applications, one still
cannot totally negate the role and potential of black-box models in those applications
[2]. Therefore, many methods have been proposed to provide explanations for black-
box models’ decisions or integrate the explainability to those models. Specifically,
as described in the literature review part of Chapter 2, an example could be listed as
the saliency maps for the recurrent neural network using in the image classification
task. In that case, a separate model is used to estimate the focus pixels in the images
which the network focuses on. However, as pointed out by [2] where it does not
provide intuitive information for users about the relations of the focus pixels with the
outcome label of the image, especially in wrongly detected cases. Another notable
effort in embedding explainability to black-box models is the attention model with
LSTM (Long Short-Term Memory) - a variation of the recurrent neural network.
In this technique, an attention mechanism is combined with the original model to
extract textual based explanations for the process images. Also a notable approach
is providing local explanations for a single result of black-box models such as LIME
(Local Interpretable Model-Agnostic Explanations) which is described in detail in
Chapter 2.

In summary, in spite of the substantial limitations of black-box models for high-
stakes applications, black-box models are still attractive to this field due to their
prominent performance and well-developed tools as well as the abundant environ-
ment. However, one should consider carefully about limitations of those models when
intend to develop for critical applications in fields such as healthcare, medicine or
self-driving car. Especially, for the generation of explanations using a second model,
the fidelity of explanations to the actual processing mechanism of the original model
has to be maintained in order to provide trustworthy explanations. It is recom-
mended to embed directly the explainability mechanism into the original black-box
models to better ensure the fidelity, however, it can cause a significant increase in
computation cost as well.
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Chapter 7

Conclusion

Machine learning and data mining techniques increasingly play a significant role
in society under various forms of hardware and software applications. Those ap-
plications can exist in phones, smartwatches, cars or even at your home and have
profound impacts on our private life as well as our work. One of the main reasons
for their development is the improvement in the performance with complex models
built on the base of a huge amount of collected data. Those models are designed to
learn non-linear relationships between the underlying data and provide the predic-
tions based on those learn information. However, little knowledge about what they
have learned can be revealed for their users - which is us - due to the complexity of
their working mechanism. This situation leads to several limitations including the
hardness when debugging a certain problem produced by the systems or gaining the
trust of users by proving their fidelity and fairness. Especially, in many domains
that require transparency and interpretability such as medicine or healthcare, the
characteristics of those models become an important limitation when considering
their adoption in those fields. In our research, we make an effort to mitigate the
aforementioned problems for promoting the applications of ML techniques in critical
decision-making fields.

Specifically, in the field of unsupervised learning, clustering is a fundamental
task that has been utilized in many scientific fields. Clustering groups data into
clusters. For each cluster, objects in the same cluster are similar between themselves
and dissimilar to objects in other clusters. The k-means is a popular interpretable
method for the clustering task. However, it suffers from the problem of underfitting
data with simple dissimilarity measures - a key part in formulating clusters of k-
means. In our work, we proposed a new k-means-based clustering method with
a novel dissimilarity measure that can better fit with the underlying data. The
effectiveness of the proposed clustering algorithm is proven by a comparative study
conducted on popular clustering methods for categorical data.
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In the field of supervised learning, we proposed a two-stage binary classification
system named GSIC that is applicable for healthcare (or general) data. The pro-
posed system still preserves a proper level of interpretability and can also achieve
comparative results with popular classification techniques. The motivation behind
the proposed system is the lack of effective classification methods for handling data
generated by various distributions (such as healthcare or finance data) that can
harmonize both performance and interpretability perspectives. The experimental
evaluation with a use case in sepsis patients staying in ICU has shown the merits of
our proposed classification system.

On the other hand, we realized the limitation of our proposed classification sys-
tem when dealing with uncertainty. Specifically, real data with high uncertainty
and ambiguity is challenging for the classification task. E-KNN is a popular evi-
dence theory-based classification method developed for handling uncertainty data.
However, as a distance-based technique, it also suffers from the problem of high di-
mensionality as well as mixed distribution data where closed data points originated
from different classes. Based on that motivation, we enhanced our proposed classi-
fication system GSIC with the capability of handling the uncertainty existing in the
underlying data. The classification experiment conducted on various real data and
popular classifiers has shown that the proposed technique has competitive results
compared with state-of-the-art methods.

For our future work, limitations on our proposed models will be carefully in-
vestigated and improved. Particularly, more efforts will be put into the new k-
means-based clustering technique for reducing computational cost as well as provide
visualization tools to represent discovered mutual relationships between features.
For the improved version of our proposed classification method GSIC, we will con-
duct further testing based on extracted insights from the underlying data with the
collaboration of experts in healthcare or material science fields. Furthermore, we
would like to investigate post-hoc models as a potential research direction for ex-
plaining the decisions of black-box models with common types of data such as text
or images. We hope that with the knowledge gained from developing intrinsically
transparent methods, we can make contributions towards the improvement of the
explainability and interpretability of post-hoc models.
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Neural network and deep-learning algorithms used in QSAR studies: mer-
its and drawbacks. Drug Discovery Today 23(10), 1784–1790 (Oct 2018),
http://www.sciencedirect.com/science/article/pii/S1359644617304762

[50] Mikulskis, P., Alexander, M.R., Winkler, D.A.: Toward In-
terpretable Machine Learning Models for Materials Discov-
ery. Advanced Intelligent Systems 1(8), 1900045 (2019),
https://onlinelibrary.wiley.com/doi/abs/10.1002/aisy.201900045,
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/aisy.201900045

[51] Grath, R.M., Costabello, L., Van, C.L., Sweeney, P., Kamiab, F.,
Shen, Z., Lecue, F.: Interpretable Credit Application Predictions
With Counterfactual Explanations. arXiv:1811.05245 [cs] (Nov 2018),
http://arxiv.org/abs/1811.05245, arXiv: 1811.05245

[52] Managing Disruption | Moody’s Analytics,
https://www.moodysanalytics.com/risk-perspectives-magazine

/managing-disruption

[53] Wachter, S., Mittelstadt, B., Russell, C.: Counterfactual Explanations
without Opening the Black Box: Automated Decisions and the GDPR.
arXiv:1711.00399 [cs] (Mar 2018), http://arxiv.org/abs/1711.00399,
arXiv: 1711.00399

[54] Nguyen, T.P., Dinh, D.T., Huynh, V.N.: A New Context-Based Clustering
Framework for Categorical Data. In: Geng, X., Kang, B.H. (eds.) PRICAI
2018: Trends in Artificial Intelligence. pp. 697–709. Lecture Notes in Computer
Science, Springer International Publishing (2018)

87



[55] Berkhin, P.: A survey of clustering data mining techniques. In: Grouping
multidimensional data, pp. 25–71. Springer (2006)

[56] Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM com-
puting surveys (CSUR) 31(3), 264–323 (1999)

[57] MacQueen, J.: Some methods for classification and analysis of multivariate
observations. The Regents of the University of California (1967)

[58] Huang, Z.: Extensions to the k-Means Algorithm for Clustering Large Data
Sets with Categorical Values. Data Mining and Knowledge Discovery 2(3),
283–304 (Sep 1998)

[59] San, O.M., Huynh, V.N., Nakamori, Y.: An alternative extension of the k-
means algorithm for clustering categorical data. International Journal of Ap-
plied Mathematics and Computer Science 14, 241–247 (2004)

[60] Chen, L., Wang, S.: Central clustering of categorical data with automated fea-
ture weighting. In: Twenty-Third International Joint Conference on Artificial
Intelligence (2013)

[61] Nguyen, T.H.T., Huynh, V.N.: A k-Means-Like Algorithm for Clustering Cat-
egorical Data Using an Information Theoretic-Based Dissimilarity Measure. In:
Foundations of Information and Knowledge Systems. pp. 115–130. Springer,
Cham (Mar 2016)

[62] Cohen, J., Cohen, P.: Applied multiple regression/correlation analysis for the
behavioral sciences. L. Erlbaum Associates, Hillsdale, N.J. (1983)

[63] Ralambondrainy, H.: A conceptual version of the k-means algorithm. Pattern
Recognition Letters 16(11), 1147–1157 (1995)

[64] Ienco, D., Pensa, R.G., Meo, R.: From Context to Distance: Learning Dis-
similarity for Categorical Data Clustering. ACM Trans. Knowl. Discov. Data
6(1), 1:1–1:25 (Mar 2012)

[65] Lichman, M.: UCI machine learning repository (2013),
http://archive.ics.uci.edu/ml

[66] Huang, J.Z., Ng, M.K., Rong, H., Li, Z.: Automated variable weighting in k-
means type clustering. IEEE Transactions on Pattern Analysis and Machine
Intelligence 27(5), 657–668 (May 2005)

[67] Au, W.H., Chan, K.C.C., Wong, A.K.C., Wang, Y.: Attribute Clustering for
Grouping, Selection, and Classification of Gene Expression Data. IEEE/ACM
Trans. Comput. Biol. Bioinformatics 2(2), 83–101 (Apr 2005)

88



[68] MacKay, D.J.C.: Information Theory, Inference & Learning Algorithms. Cam-
bridge University Press, New York, NY, USA (2002)

[69] Hall, M.A., Holmes, G.: Benchmarking attribute selection techniques for dis-
crete class data mining. IEEE Transactions on Knowledge and Data engineer-
ing 15(6), 1437–1447 (2003)

[70] Nguyen, T.P., Nguyen, S., Alahakoon, D., Huynh, V.N.: GSIC: A New Inter-
pretable System for Knowledge Exploration and Classification. IEEE Access
8, 108544–108554 (2020), conference Name: IEEE Access

[71] Seger, C.A., Miller, E.K.: Category Learning in the Brain. Annual review of
neuroscience 33, 203–219 (2010)

[72] Kohonen, T.: Essentials of the self-organizing map. Neural Networks 37, 52–65
(Jan 2013)

[73] Johnson, A.E.W., Pollard, T.J., Shen, L., Lehman, L.w.H., Feng, M., Ghas-
semi, M., Moody, B., Szolovits, P., Anthony Celi, L., Mark, R.G.: MIMIC-III,
a freely accessible critical care database. Scientific Data 3, 160035 (May 2016)

[74] Johnson, A.E.W., Aboab, J., Raffa, J.D., Pollard, T.J., Deliberato, R.O., Celi,
L.A., Stone, D.J.: A Comparative Analysis of Sepsis Identification Methods
in an Electronic Database. Critical Care Medicine 46(4), 494–499 (Apr 2018)

[75] Dua, D., Graff, C.: UCI machine learning repository (2017),
http://archive.ics.uci.edu/ml

[76] Fleischmann, C., Scherag, A., Adhikari, N.K.J., Hartog, C.S., Tsaganos, T.,
Schlattmann, P., Angus, D.C., Reinhart, K.: Assessment of Global Incidence
and Mortality of Hospital-treated Sepsis. Current Estimates and Limitations.
American Journal of Respiratory and Critical Care Medicine 193(3), 259–272
(Sep 2015)

[77] Reinhart, K., Daniels, R., Kissoon, N., Machado, F.R., Schachter, R.D., Fin-
fer, S.: Recognizing Sepsis as a Global Health Priority — A WHO Resolution.
New England Journal of Medicine 377(5), 414–417 (Aug 2017)

[78] Singer, M., Deutschman, C.S., Seymour, C.W., Shankar-Hari, M., Annane,
D., Bauer, M., Bellomo, R., Bernard, G.R., Chiche, J.D., Coopersmith, C.M.,
Hotchkiss, R.S., Levy, M.M., Marshall, J.C., Martin, G.S., Opal, S.M., Ruben-
feld, G.D., Poll, T.v.d., Vincent, J.L., Angus, D.C.: The Third International
Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 315(8),
801–810 (Feb 2016)

[79] Nguyen, T.P., Huynh, V.N.: A New Classification Technique Based on the
Combination of Inner Evidence. In: Huynh, V.N., Entani, T., Jeenanunta,

89



C., Inuiguchi, M., Yenradee, P. (eds.) Integrated Uncertainty in Knowledge
Modelling and Decision Making. pp. 174–186. Lecture Notes in Computer
Science, Springer International Publishing, Cham (2020)

[80] Begoli, E., Bhattacharya, T., Kusnezov, D.: The need for uncertainty quan-
tification in machine-assisted medical decision making. Nature Machine In-
telligence 1(1), 20–23 (Jan 2019), number: 1 Publisher: Nature Publishing
Group

[81] Vluymans, S., Cornelis, C., Saeys, Y.: Machine Learning for Bioinformatics:
Uncertainty Management with Fuzzy Rough Sets p. 2

[82] Huynh, V.N.: Uncertainty Management in Machine Learning Applications.
International Journal of Approximate Reasoning 107, 79–80 (Apr 2019),
https://linkinghub.elsevier.com/retrieve/pii/S0888613X19300672
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