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Abstract

Decision-making on shelter location-allocation is the most critical part of
humanitarian relief logistics because it affects security of victims and influ-
ences the success of disaster management strategy. Without an appropriate
approach for determining shelter location-allocation, decision-makers would
make ad-hoc decisions which result in high cost, slow response, and failure
to rescue the victims.

Proposing facility location-allocation models in the context of humanitar-
ian logistics, monetary criterion cannot be ignored because it helps decision-
makers to sufficiently prepare the grant aid for disaster relief purposes. In
the same way, considering monetary and non-monetary criteria simultane-
ously helps to ensure that the victims are being taken care well under the
optimal relief budget. Furthermore, the proposed models should be solved by
proper approaches to generate optimal solutions. The victims and decision-
makers would get the benefit if the proposed models could simplify prompt
decision-making for determining location-allocation in response to disasters.

This study aims to propose the optimization models to determine shelter
location-allocation in response to disaster. In addition to the models, a novel
approach for dealing with large scale location-allocation is proposed. Therein,
four models are formulated to consider proper locations to use as shelters.
The first model seeks to determine shelter location-allocation with total cost
minimization. The proposed mathematical model is solved by Genetic Al-
gorithm. The second model considers both monetary and non-monetary for
justifying shelter location-allocation. The objectives of the model are to si-
multaneously minimize total cost, total evacuation time, and number of open
shelters. The proposed mathematical model is solved by Epsilon Constraint
method and Goal Programming which are the posteriori and priori methods
respectively. The third model seeks to concurrently minimize total cost, and
total evacuation time. The proposed model is solved by a novel approach that
integrated Epsilon Constraint method and Artificial Neural Network to facili-
tate fast decision-making. To the best of our knowledge, there are no existing
works that combined these methods in coping with location-allocation prob-
lems, especially in field of humanitarian relief logistics. The fourth model
involves multi-echelon relief facilities location-allocation. The first echelon
determines appropriate shelter location-allocation to minimize total cost and
minimize total evacuation time, while the second echelon involves justify-
ing distribution center location-allocation to minimize distribution cost. The
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proposed model is solved by Epsilon Constraint method.
The applicability of the proposed models and proposed solution approach

is validated through the case study of shelter location-allocation in response
to flooding in Surat Thani, Thailand. The results generated by each model
are compared with the current shelter location-allocation plan determined
by the government sector. The comparison results indicate that consider-
ing appropriate shelter location-allocation based on proposed models mostly
produces lower total cost than the current plan. It is plausible to use the pro-
posed models and proposed solution approach to improve disaster response
for the benefit of victims and decision-makers.

Keywords: Disaster Management, Epsilon Constraint Method, Genetic Al-
gorithm, Goal Programming, Artificial Neural Network
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Chapter 1

Introduction

1.1 Background

Natural disasters have caused enormous damage to humankind, animals, so-
cial and economic sectors. In 2019, the occurrences of catastrophes were
more frequent than in any year in the previous decade. Based on statistical
data reported by the Centre for Research on the Epidemiology of Disasters
(CRED), there were 396 natural disaster events, 11,755 deaths, 95 million
affected people, and resulted in $103 billion economic losses. Among all dis-
asters, flooding took the most drastic effects on people which causing death.
The statistical report also revealed that Asian was the continent that most
affected by catastrophes [11].

According to the uncertainty of catastrophe events, disaster management
plays an important role in dealing with the hazard phenomena caused by both
natural and man-made. Disaster management is a systematic approach for
alleviating victims’ suffers through the processes of mitigation, preparedness,
response, and recovery [40, 46]. Humanitarian logistics involves in facilitat-
ing disaster management processes as well as enhancing the effectiveness,
efficiency, and equity of the relief logistics and supply chain.

Unlike traditional or commercial logistics which seeks profitability, hu-
manitarian logistics aims at decreasing losses and healing the sufferers. The
activities of humanitarian logistics are more complex because the resources
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and budgets for relief purposes would not be increased although the impacts
of disasters are expanding. The mentioned activities include evacuating the
victims from the affected areas to safe places, planning, storing, and distribut-
ing relief supplies such as temporary shelters, foods, potable water, survival
bags, medical supplies, tents, generators, etc. [58, 59] to alleviate the vic-
tims’ suffering at the right time, right quantity to the right place [34, 54].
The decision-makers must conduct the relief activities carefully because there
are several constraints that should be considered such as response time, avail-
ability of relief facilities, relief supplies, etc. Furthermore, decision-makers
must ensure that all activities can rescue the victims equally [57].

Humanitarian logistics also involves selecting the appropriate locations of
relief facilities such as temporary shelters, medical centers, healthcare centers,
warehouses, or distribution centers [47, 48]. In this case, determining proper
locations to establish these relief facilities is very important due to it involves
several parties in relief supply chain. Moreover, it requires a great deal of
money for investment and takes long-term effects on the stakeholders. In ad-
dition to all relief facilities, decision making on shelter location-allocation is
the most critical part in humanitarian relief logistics because it involves the
victims’ securement [47]. However, the crucial criteria both in terms of mon-
etary and non-monetary are required to consider when selecting the proper
sites, otherwise, the related organizations would make ad-hoc decisions that
lead to high cost, waste of resources, and slow response, and unable to serve
the victims [2].

1.2 Research motivation

Lacking an appropriate approach for determining shelter location-allocation,
the decision-makers could make ad-hoc decisions which causing overwhelming
costs, slow response, and failure in rescue the victims. Previously, many
publications presented the optimization models for dealing with location-
allocation problem. Majority of the research works usually consider either
monetary criteria (e.g., minimizing total cost, operation cost, transportation
cost, etc.) and non-monetary criteria (e.g., minimizing distance, time, or
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maximize demand coverage). Although humanitarian logistics does not aim
at profitability, but cost criteria cannot be ignored.

For the publications that proposed multi-objective optimization models
in which monetary and non-monetary criteria are considered simultaneously,
the employed solution approaches rather involved weighted assigning i.e.,
Weighted Sum Method (WSM), Weighted Goal Programming (WGP). The
weighted coefficients are assigned to both monetary and non-monetary ob-
jectives in order to express the significance of a particular objective function.
However, in the context of humanitarian logistics which attempts to help suf-
ferers, these criteria cannot be compared the importance via weighted assign-
ment. The decision-makers cannot state whether monetary or non-monetary
are more important. As a result, the decision-maker will be under pres-
sure when determining location-allocation. Therefore, the aforementioned
solutions are not suitable to deal with location-allocation in response to hu-
manitarian logistics.

According to the literature review, relief facility location-allocation prob-
lems are typically conducted based on an optimization basis. Dealing with
location-allocation by optimization method can generate optimal solutions,
but intensive computational time is required, especially when several objec-
tives are determined concurrently. Thus, integrating optimization techniques
with other applications would be advantageous when dealing with location-
allocation in response to disasters in which fast decision fast decision-making
is necessary. To the best of our knowledge, there are no existing works in-
tegrating optimization basis with machine learning for determining facility
location-allocation problems, especially in the area of humanitarian logistics.
Thus, there still room for proposing a novel approach for determining proper
facilities location-allocation.

1.3 Research goals

The research goals of this study involve proposing the models to facilitate
decision-making of shelter location-allocation for the benefit of decision-
makers and the victims. In addition to the models, this study aims to pro-
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pose the novel approach to support fast decision-making of shelter location-
allocation to response to disaster. To achieve the research goals, four models
are developed and aligned by each goal as follows:

Goal 1: Proposing the models to facilitate decision-making of shel-
ter location-allocation for the benefit of decision-makers and vic-
tims.

Model 1: Efficient shelter location-allocation model
The first model involves a single objective optimization for shelter site

selection and allocation. This model aims at minimizing the total cost which
determined based on cost of opening the shelters, victims’ transportation
cost, and service cost that paid during the stays of victims. The optimal so-
lution generated by the proposed model is compared with the current shelter
location-allocation plan which is justified by the government agency.

Model 2: Multi-objective optimization model for shelter location-
allocation

The second model involves multi-objective optimization model for de-
termining shelter location-allocation. There are three objective functions
that include in the model i.e. minimizing total cost, minimizing evacuation
time, and minimizing the number of open shelters. Then, the optimal solu-
tion generated by solving single objective and multi-objective optimization
is compared. This study also raises the idea that selected shelters should be
located far enough from the disruption points or the affected areas to ensure
safety. Hence, the concept to determine the appropriate minimum distance
between the affected areas and candidate shelters is presented.

Model 4: Two-stage facility location-allocation model in re-
sponse to relief supply chain

The fourth model is the effort to extend the applicability of the prior
model to multi-echelon facility location-allocation model. The first echelon
involves disaster response phase which seeks the proper shelters to serve the
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affected area. The second echelon relates to disaster preparation phase which
aims to select the appropriate distribution center to serve the selected shel-
ters. This model is conducted to see the possibility of a future study that
attempts to extend the proposed model and test with the large-scale case
study data.

2. Proposing the novel approach for support fast decision-making
of shelter location-allocation in response to disaster.

Model 3: A novel approach for determining shelter location-
allocation in humanitarian relief logistics

The third model is extended from the second model. The additional
positive coefficient is augmented to the effective criteria i.e. victim’s evacu-
ation time in order to avoid obtaining inefficient solutions that occasionally
occur when employing Epsilon Constraint method to solve multi-objective
optimization model. Herein, the augmented positive coefficient is examined
regarding the allowance time caused by personal allowance, delay, and fa-
tigue which occur during victim’s evacuation process. The results obtained
by solving the multi-objective optimization problem are then prepared and
simulated in several patterns. In this matter, the Artificial Neural Network
(ANN) is employed to construct the mechanism for predicting the large-scale
shelter location-allocation in the future.

1.4 Originality of research

The originality of this dissertation mainly relates the model formulations
that considering the important criteria i.e. monetary, and simultaneously
considering both monetary and non-monetary criteria. The powerful solu-
tion approach Epsilon Constraint is employed for dealing with the multi-
objective optimization problems to avoid assigning weighted coefficient to
the incomparable objective functions in which the prior works did not take
into account this matter. Moreover, machine learning i.e. ANN is integrated
with an optimization method for coping with location problems. To the best

5



of our knowledge, there are no existing works integrated the Epsilon Con-
straint method with ANN to address shelter location-allocation problem in
response to humanitarian logistics.

1.5 Organization of dissertation

The structure of dissertation is divided into seven chapters as described be-
low:

• Chapter 1 describes the research background, research motivation to
express the significance of the research, research aims, and the origi-
nality of this research.

• Chapter 2 presents the survey of literature relates to facility location-
allocation problems in the areas of humanitarian logistics. The litera-
ture review is divided regarding the disaster phase, and summarize in
terms of model formulation, solution methods, and application of the
proposed model.

• Chapter 3 presents the efficient shelter location-allocation model. This
chapter encompasses the research motivation, a model formulation which
encompasses preliminary parameter estimation, indices, parameters,
decision variable, objective function, and a set of constraints. The
applicability of the proposed model is demonstrated through the case
study of shelter site selection during a great flood in Tha Uthae, Surat
Thani, Thailand. The optimal solution generated by the proposed
model is compared with the current shelter allocation plan. Moreover,
the sensitivity analysis is performed to see how the objective functions
change when the maximum acceptable distance between the affected
area and shelter is relaxed, which notice the decision-makers on how to
set the appropriate policy on defining the proper maximum acceptable
distance.

• Chapter 4 proposes the multi-objective optimization model in which the
effectiveness and efficiency are included in formulating the model. The
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concept to determining the appropriate minimum acceptable distance
between affected areas and candidate shelters is presented. The appli-
cability of the proposed model is tested via the a case study of shelter
location-allocation during the great flood in Tha Uthae, Surat Thani,
Thailand. https://www.overleaf.com/project/60233acfa0ac403252dd4bb1

• Chapter 5 presents an integrated Artificial Neural Network (ANN) for
decision making on shelter location-allocation. This model is extended
from the model multi-objective optimization model in chapter 4. Only
significant objective functions are included in the model. First, the
multi-objective optimization model for shelter selection and allocation
is solved by Epsilon constraint methods. Then, the obtained optimal
solution is simulated and executed by Artificial Neural Networks in
order to construct the mechanism for predicting the large-scale shelter
location-allocation in the future.

• Chapter 6 proposes the two-stage relief facility location-allocation model
for humanitarian supply chain. This model is developed to prove that
the proposed method can solve several echelons in the humanitarian
supply chain which could help as a guideline for future research.

• Chapter 7 express the concluding remarks, limitations, research contri-
butions, and future works
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Chapter 2

Literature Review

Humanitarian logistics plays the important role in terms of mobilizing the
sufferers from the disrupted areas to secure zones and managing the flows of
relief resources, knowledge, as well as skills in order to alleviate the trouble
from the catastrophes attacking which caused by nature and human-made.
In this case, considering the appropriate locations for establishing necessary
facilities in coping with catastrophes and emergencies require thorough plan-
ning since a great deal of money is invested. Moreover, it’s effects span a
long time horizon impact and influence the success of disaster management
[6, 18]. The decision making of facility location is not only concerned with
selecting the most proper places but also includes allocating the facilities to
the appropriate demand nodes [5]. The necessity of relief facility location-
allocation regarding disaster phase, and research gap are summarized in next
section.

2.1 Relief facility location-allocation based on

disaster phase

The roles of relief facilities based on disaster stage can be classified as pre-
disaster stage, and post-disaster stage (Figure 2.1). The facilities that are es-
tablished to tackle the pre-disaster phase encompass permanent distribution
centers, permanent shelters, warehouses, and safety areas. In post-disaster,
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Figure 2.1: Facility types in each disaster stage
Boonmee et al. [6]

majority of the facilities are temporarily established for dealing with urgent
situations such as temporary shelters, temporary distribution centers, tem-
porary medical centers, disease control and prevention centers, and garbage
dumps [6].

There are many academic works related to facility location-allocation
problem for dealing with humanitarian logistics and disaster management.
The researchers define and collect important data related to the character-
istics of relief requirements and available resources to develop the mathe-
matical models for determining location-allocation. The roles of facilities
location-allocation regarding the disaster phases, model formulations, solu-
tion methods, and the applications can be concluded as follows:

2.1.1 Pre-disaster

The facilities that are established to tackle the pre-disaster phase encompass
permanent shelters, permanent distribution centers, warehouses, and safety
areas. Mete and Zabinsky [40] developed the two stages stochastic model
to decide location-allocation of warehouse medical supplies during the disas-
ter. The objective function in this stage sought to establish the warehouses
with the minimum operating cost while the objective function in the second

9



stage attempted to minimize total transportation time and the penalty of
unfulfilled demand. The proposed model was tested with a case study of the
earthquakes in Seattle and solved by the Exact Algorithm.

Mejia-Argueta et al. [39] proposed the multi-criteria optimization model
for determining location-allocation of the emergency facilities. Several objec-
tive functions were set to improve the effective criteria included minimizing
the maximum evacuation flow time, maximum supply flow time. Whereas
efficient criterion was improved to minimize the total cost. The formulated
model was verified based on the flood problem in Mexico. The Non-dominant
solutions obtained through two techniques i.e. Weighted Sum Method and
Epsilon Constraint.

Barzinpour and Esmaeili [3] formulated the multi-objective optimization
model to maximize the population’s coverage and minimize the logistics cost
for determining emergency facilities location-allocation. The application of
a proposed model was tested with the real-world problem i.e.urban districts
in Iran, and solved by the Goal Programming approach.

Miç and Koyuncu [41] conducted the multi-objective model to identify
the location-allocation of primary healthcare centers in the vulnerable area
of Syria. The developed objective functions sought to minimize total cost
for opening the facilities, minimize operation cost, minimize transportation
cost, maximize demand coverage, maximize number of open facilities that in-
stalled laboratory, blood service, vaccination service, solar service, and inter-
net service. The multi-objective optimization was solved by Weighted Goal
Programming. The Analytic Hierarchy Process (AHP) was conducted to es-
timate the weight for assigning in Weighted Goal Programming. The model
was solved by using the optimization package together with a geographic
information system (GIS). Kanoun et al. [26] developed the single objec-
tive optimization model to justify the location-allocation of fire emergency
stations. This study incorporated the satisfaction function to identify the
decision-makers’ preferences. The objective function of the proposed model
was to maximize the decision-makers’ satisfaction. The Goal Programming
approach was employed to solve the proposed model. The application was
illustrated via the case study of Sfax city in Tunisia.
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Burkart et al. [9] proposed the multi-objective optimization model for de-
cision making on distribution centers placement. The first objective aimed at
minimizing total traveling cost and fixed cost for opening the distribution cen-
ters, while other objective attempted to minimize the unserved demand. The
application of the developed model was tested with the real-world drought
problem on Mozambique. The Pareto front generated the from the Epsilon
Constraint method.

Horner and Downs [21] presented the warehouse location-allocation model
that sought to minimize the transportation cost which occurred when dis-
tributed the relief goods to serve the victims who suffered the hurricane
disaster in North Florida, USA. In this case, the model was solved by the
GIS-based optimization package.

Ahmadi et al. [1] formulated a mixed integer nonlinear programming
model to determine the location-routing of depots in-last mile transportation
phase. In term of location-allocation, the model sought to minimize the
traveling time, penalty cost of unmet demand, and fixed cost of opening
depot. The proposed model was applied to the earthquake case study in San
Francisco and solved by the Exact Algorithm.

Lauras et al. [31] developed a mixed integer stochastic programming
model to cope with warehouse location-allocation problem. The proposed
model also considered the probability that potential warehouse would be
damaged by the disaster. Therein, the objective of the developed model
sought to minimize unsatisfied transportation and logistics cost.

Ma et al. [33] presented the optimization model for determining the
location-allocation of medical supply warehouses. The objective function in-
tends to minimize the number of selected warehouses, cost of establishing
warehouses, and traveling distance. In this study, Particle Swarm Opti-
mization was implemented and demonstrated through the case study of the
disaster that occurred in Beijing Tianjin Hebei, China.
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2.1.2 Post-disaster

The relief facilities in the post-disaster stage are mostly temporarily estab-
lished in responding to urgent situations such as temporary shelters, tem-
porary distribution centers, temporary medical centers, disease control and
prevention centers, and garbage dumps. The existing papers rather focused
on developing the models to justify temporary shelter location-allocation.

Hallak et al. [20] proposed the multi-objective model to justify the
proper locations for setting the shelters in Idleb, Syria. The objectives of
the proposed model attempted to maximize the covered the victims and
their demands for necessary relief supplies i.e. portable water, sensitization
and hygiene facilities, while cost for operating still meant to be minimized.
The Weighted Goal Programming was employed for addressing the multi-
objective problem. The preference values obtained by interviewing the re-
lated stakeholders i.e. beneficiaries, experts, community representatives.

Kongsomsaksaku and Yang [28] presented the bi-level programming to
justify the shelter location-allocation for flood evacuation planning in Utah,
United States. The first level aimed at determining the number and the
location of the shelters that generated the minimum total evacuation time.
The second level was decided in the viewpoint of evacuees that sought the
best routes to travel to the selected shelters under the shelters’ capacity
restriction. The Genetic Algorithm was handled to solve the proposed model.

Qin et al. [50] constructed the multi-objective model for evaluating shelter
location-allocation during the earthquake in Beijing, China. The objective
functions were designed to minimize evacuation distance, weighted evacua-
tion distance, number of shelters, and the area for establishing the shelters.
In order to deal with several objectives, the modified Particle Swarm Opti-
mization Algorithm was used to solve the problem.

Görmez et al. [16] developed a multi-objective model for two stages
of shelter location-allocation in preparation for the earthquake in Istanbul,
Turkey. In the first stage, the objective function was set to minimize the
demand weighted distance between the neighborhoods and the temporary
shelters. The second stage presented the bi-objective model that meant to

12



minimize the average evacuation distance to the new assigned facilities and
minimize number of selected facilities for serving the refugees. Herein, the
Epsilon Constraint method was employed to solve the bi-objective optimiza-
tion.

Ozbay et al. [47] formulated the three echelons shelter site selection and
allocation model under the uncertainty of the earthquake aftershock scenarios
in Istanbul, Turkey. The objective function aimed at minimizing the number
of selected shelters in each echelon. The proposed model was solved through
Exact Algorithm.

Kilci et al. [27] developed the mixed integer linear programming for locat-
ing the temporary shelter for dealing with the aftermath of the earthquake.
The model sought to select the best possible combination of shelters area
and assign the threat zones to the closest open shelters under the shelters’
capacity restriction. In this study, the proposed model was applied to the
case study of the earthquake in Kartal, Istanbul, Turkey.

Boonmee et al. [8] formulated mathematical model for shelter site selec-
tion allocation to minimize the traveling distance between the affected areas
and the selected shelters. The Fuzzy Analytic Hierarchy Process (Fuzzy
AHP) was performed to choose the most proper plan based on the expert’s
opinions. The numerical experiment was conducted through the case study
of the flood in Chiang Mail, Thailand.

Horner et al. [22] presented a geographic information systems-based
method for selecting the special needs shelters to satisfy the elderly casu-
alties during hurricane attacking in the United States. The developed model
attempted to minimize the transportation cost between the community and
the selected shelter. In this regard, shelters’ capacity and desired number of
the shelters to be located were identified. The model was solved by Exact
Algorithm.

Rodriguez-Espindola and Gaytán [51] developed the bi-objective opti-
mization model to define the appropriate location for shelters and distri-
bution centers placement while simultaneously determining the inventory
preposition of the goods. The objectives of the developed model aimed at
minimizing the distance and a set of costs that combined the acquisition cost,
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transportation cost and facility location cost. The model was tested with a
case study of the flood in Villahermosa, Mexico. In order to obtain the Pareto
frontier, Weighted Sum Method was selected to solve the bi-objective opti-
mization problem. Then, the obtained results from this study were compared
with the existing guidelines announced by Mexican authorities.

Hu et al. [23] conducted the study on shelter site selection to respond to
the earthquake in Beijing, China. The bi-objective model for minimizing the
transportation distance and total cost of shelter construction was proposed.
The Non-dominated Sorting Genetic Algorithm was employed to improve the
performance of both effectiveness and efficiency.

Chanta and Sangsawang [10] formulated the bi-objective optimization
model to define the proper locations for using as the temporary shelters.
The first objective was to maximize the number of victims that can be cov-
ered by the open shelter within a fixed distance. The second objective was
to minimize the total distance between the disrupted areas and the closest
shelters. The Epsilon Constraint method was employed to address the con-
flict objective functions. The application of the proposed model was tested
via the flood case study in Nonthaburi, Thailand.

Balcik and Beamon [2] formulated the model to determine the optimal
number of distribution centers for storing the relief supplies. The selected
distribution centers should be able to entirely satisfy the victims’ demand.
The transportation cost between the affected place and selected distribution
center was restricted by the limited budget. The model was tested with the
case study of worldwide earthquake occurrence during 1900 – 2006 and solved
by the Exact Algorithm.

Manopiniwes and Irohara [35] proposed the multi-objective optimization
model to define the location of relief facilities i.e. evacuation centers and
distribution centers together with determining the stock preposition of the
relief goods. In term of location-allocation, the objective functions were to
minimize the fixed cost for opening distribution centers and cost of trans-
portation. Another objective function attempted to minimize the maximum
response time between facilities and demand points which included the threat
areas and the selected evacuation centers. The normalized Weighted Sum
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Method was applied to address the multi-objective functions. The applica-
tion of the proposed model was validated based on a flood case study in
Chiang Mai, Thailand.

The survey on related literature can be summarized to illustrate model
formulations, solution methods and the applications of the proposed method-
ology are demonstrated in Table 2.1 and Table 2.2 respectively.

2.2 Research gap

Based on the literature review, the publications present the models for en-
hancing efficiency and effectiveness performances. For efficient criteria im-
provement, the objective functions of the formulated models usually seek to
minimize the cost of transportation, fixed cost for opening the facilities, op-
erating cost, and penalty cost. Whereas the effective criteria, the objective
functions normally aim to minimize the distance between particular areas
and selected facilities, traveling time, and the number of open facilities.

There were both single-stage and multi-stage location-allocations. In
terms of the objective function, numerous publications focus on improving
the single objective function. However, addressing the real-world problem re-
quires to determine several important criteria together [13]. Some prior works
improve both efficiency and effectiveness simultaneously which is the mone-
tary and non-monetary term respectively, but the adopted solution methods
require assigning the weight to define the importance of each objective func-
tion. For the victim’s relief effort, allocated weight coefficients to incompara-
ble criteria, especially monetary and non-monetary terms would be awkward
to decision-making. It cannot signify and compare the importance of money
and victim’s welfare through weight allocation.

Capturing important data, information, and knowledge to formulate opti-
mization models helps decision-makers to define proper relief facility location-
allocation. Although optimization generates an optimal solution or near-
optimal solution, sometimes requires a great computational time. The re-
search relates location-allocation in humanitarian logistics or disaster man-
agement should be integrated with other decision support systems for sim-
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Table 2.2: Application of the facility location-allocation

Authors
Facility
types

Disaster
types

Characteristics
of disaster Case study

Mete and Zabinsky [40] WH E Magnitude levels Seattle, USA
Mejia-Argueta et al. [39] EF F Simulated flood levels Mexico

Balcik and Beamon [2] DC E - National Geophysical
Data Center

Hallak et al. [20] S C Vulnerability ratio Idleb, Syria
Kongsomsaksakul and Yang [28] S F - Utah, USA
Qin et al. [50] S E - Beijing, China
Barzinpour and Esmaeili [3] EF C - Iran
Görmez et al. [16] S E - Istanbul, Turkey
Miç and Koyuncu [41] HC C - Syria
Kanoun et al. [26] EF C - Sfax, Tunisia
Ozbay et al. [47] S E Aftershock scenario Istanbul, Turkey
Burkart et al. [9] DC D - Mozambique
Kilci et al. [27] S E - Istanbul, Turkey
Boonmee et al. [6] S F Flood warning alarm Chiang Mail, Thailand
Horner et al. [22] S H - USA
Rodríguez-Espíndola and Gaytán [51] S, DC F Flood level assessment Villahermosa, Mexico
Horner and Downs [21] WH H - North Florida, USA
Hu et al. [23] S E - Beijing, Chi
Manopiniwes and Irohara [35] S, DC F Flood risk scenario Chiang Mai, Thailand
Lauras et al. [31] WH E Magnitude levels Peru

Ma et al. [33] WH E - Beijing ,Tianjin,
Hebei, China

Chanta and Sangsawang [10] S F - Nonthaburi, Thailand
Remark:
C: Conflict area
D: Drought
E: Earthquake
F: Flood
H: Hurricane

plifying the practical use [36]. In this case, machine learning can employ
to deal with location-allocation problem. The successes of using machine
learning to solve this problem are proven via the study of Kuo et al., 2002
[29] which combines fuzzy AHP with ANN to define the proper location of
convenience stores, and Yang et al., 2015 [60] that incorporates WebGIS with
several machine learning algorithms i.e. ANN, support vector regression, lin-
ear regression, and boosted regression to predicting the sites to establish the
hotels. Somehow, to the best of our knowledge, there still no prior works
integrated optimization-based techniques with machine learning algorithms
to tackle location-allocation under the context of humanitarian logistics.
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Chapter 3

Efficient Shelter
Location-allocation Model

3.1 Introduction

The proposed methodology begins with formulating an efficient shelter location-
allocation model which involves cost control. Although humanitarian logis-
tics aims at helping the affected people, somehow cost criterion is an im-
portant issue that should not be ignored. Moreover, it reflects how well the
resource utilization. Without proper planning, the decision-makers would
make the ad-hoc decision in which the scarce would occur and eventually
affect the victims’ welfare.

In this chapter, a mathematical model is proposed to minimize the total
cost which includes fixed cost of opening the shelters, transportation cost for
victim mobilizing, and service cost during the victims’ stay in the shelter.
The data that are used to formulate the model includes the candidate shel-
ters which are predetermined, the number of victims in each affected area,
traveling distance between the affected area and candidate shelter, shelters’
capacity, fixed cost for opening shelters, victim’s transportation cost, and
duration of the disaster.
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3.2 Model formulation

The preliminary parameter estimation, assumptions of the proposed model,
model formulation, and decision variable are described as follows:

3.2.1 Preliminary parameter estimation

Distance estimation

Since coordinates of candidate shelters and affected are known. The Eu-
clidean method is used to estimate the distance between two points.

Table 3.1: Distance between affected areas and candidate shelters
O/D A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
S1 11.81 15.99 18.04 20.12 11.26 11.24 11.24 25.55 9.00 10.33
S2 18.54 20.12 21.82 23.52 16.06 16.12 15.06 25.87 16.79 17.87
S3 20.27 13.15 12.25 11.43 15.33 15.48 13.73 4.40 23.80 22.97
S4 21.97 22.35 23.81 25.27 18.81 18.89 17.48 25.95 20.73 21.67
S5 14.81 17.95 19.88 21.84 13.41 13.42 12.93 26.04 12.37 13.63
S6 9.61 1.86 0.29 2.47 6.57 6.63 6.66 11.76 14.24 12.84
S7 19.86 12.07 10.56 9.05 15.47 15.60 14.29 1.10 24.00 22.88
S8 18.08 10.97 10.15 9.49 13.17 13.32 11.61 4.83 21.67 20.81
S9 25.26 18.81 18.21 17.59 20.10 20.26 18.26 9.65 28.15 27.61
S10 43.80 39.75 39.90 39.94 38.93 39.08 36.98 33.09 44.65 44.94
S11 23.29 17.09 16.64 16.22 18.12 18.28 16.25 9.34 26.08 25.57
S12 0.84 7.69 9.52 11.61 5.52 5.36 7.49 20.83 5.54 3.82
S13 3.70 5.09 6.65 8.63 5.03 4.91 6.82 18.21 8.60 6.93
S14 8.43 0.68 1.97 4.08 4.94 5.00 5.00 12.56 12.88 11.57
S15 11.52 4.17 2.08 0.82 8.92 8.97 9.02 10.91 16.29 14.80
S16 10.60 3.57 3.73 4.79 6.05 6.18 5.07 10.47 14.58 13.51
S17 10.25 2.62 2.36 3.56 6.19 6.29 5.63 10.68 14.52 13.31
S18 7.18 5.68 7.55 9.53 2.18 2.32 0.60 15.69 9.84 9.23
S19 23.51 15.63 13.74 11.73 19.67 19.78 18.76 4.74 28.00 26.70
S20 4.60 12.18 14.21 16.39 8.39 8.25 9.94 24.86 0.34 1.47

Constant coefficient of transportation cost

The constant coefficient of transportation cost per person varies on the dis-
tance is denoted by α. Herein, the α is estimated regarding the ratio of fuel
cost per liter divided by the product of fuel consumption rate kilometer per
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liter and vehicle’s capacity per trip as illustrated in equation 3.1.

α =
Fuel cost

Fuel consumption rate · V ehicle′s capacity
(3.1)

3.2.2 Model formulation

Assumptions

• The victims in each affected area are mobilized as an entire unit and
not separately assigned to different shelters

• The number of victims and location of the candidate shelters are fixed

• The vehicles used in evacuation process are homogenous

Indices
I Set of affected area i
J Set of candidate shelter j

Parameters
dij Distance between affected area i and candidate shelter j
cj Capacity of the candidate shelter j
hi Number of victims in area i
fj Fixed cost of opening the shelter j
M Maximum acceptable distance between affected area and shelter
α Constant coefficient of transportation cost per kilometer per person
β Wage per person for hiring staff to work in the shelter
γ Ratio of the required staff per victims
T Duration of the disaster occurrence
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Decision variable
Xj 1, if candidate shelter j is selected or otherwise 0
Yij 1, if affected area i is assigned to shelter j or otherwise 0
Zij The victim in area i is assigned to candidate shelter j

Objective function

Min
∑
j∈J

Xjfj + α
∑
i∈I

∑
j∈J
dijYijhi + βT

∑
i∈I

Zij
γ

(3.2)

The objective function (3.2) attempt to minimize the total cost which
includes three terms below.

∑
j∈J Xjfj

The first term involves the total fixed cost for opening the shelters, where
where fj is estimated regarding the installation cost of portable toilets, tem-
porary warehouses, and kitchens.

α
∑
i∈I

∑
j∈JdijYijhi

The second term explains the total cost for victims transportation. The
transportation cost estimation is considered based on the distance and num-
ber of victims that are mobilized from affected area i to selected shelter j
multiply by the constant coefficient of victims transportation cost varies on
distance.

βT
∑
i∈I

Zij

γ
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The third term relates the service cost which occur during the stay of the
victims. The estimation is performed based on the number of required staffs
to work in the shelters during the disaster occurrence.

Subject to

∑
j∈J

Yij = 1, ∀i∈I (3.3)

Constraint (3.3) identifies that an affected area i must be entirely assigned
to only particular shelter j

Yij ≤ Xj, ∀i∈I,j∈J (3.4)

Constraint (3.4) restricts each affected area i will be allocated to only selected
shelters.

dijYij ≤ M, ∀i∈I ,j∈J (3.5)

Constraint (3.5) limits the distance between an affected area i to selected
shelter j does not exceed the maximum acceptable distance M.

∑
i∈I

Zij ≤ cjXj, ∀j∈J (3.6)

Constraint (3.6) ensures that the number of assigned victims does not exceed
the capacity of selected shelter j.
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∑
j∈J

Zij = hi, ∀i∈I (3.7)

Constraint (3.7) restrains the number of assigned victims equal to the number
of victims in each affected area i.

Xj ∈ {0, 1}, ∀j∈J (3.8)

Constraint (3.8) defines the binary variable, Xj is 1 if candidate shelter is
selected to open, otherwise 0.

Yij ∈ {0, 1}, ∀i∈I ,j∈J (3.9)

Constraint (3.9) defines the binary variable, Yij is 1 if affected area i is allo-
cated to candidate shelter j, otherwise 0.

3.3 Solution approach

The meta-heuristics search technique Genetic Algorithm (GA) is employed
to solve the proposed model since it avoids getting trapped with the local
optimal solution, and successfully used to deal with many location-allocation
problems. Herein, the proposed model is solved in two aspects i.e. "capaci-
tated shelter" and "uncapacitated shelter". With GA for shelter site selec-
tion and allocation, it starts with input the parameters of the model. The
algorithm will begin to randomly initialize the population for generating the
feasible solutions. Then, the fitness each individual population is measured
based on the proposed objective function. Next, the value of fitness measure-
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Figure 3.1: Flow chart of GA for shelter location-allocation

ment is passed through GA operator to crossover and mutate for producing
the new population. After that, all individual populations are checked. Only
the individual population that provides the best fitness value (herein the to-
tal cost) is selected as the final solution. Therein, the degree of constraint
precision is set as 0.000001, convergence is 0.0001, random seed is 0, popu-
lation size is 100, and GA is set to terminate if without any improvement
longer than 30 sec.
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3.4 Applicability of the proposed model

A case study of shelter allocation in response to flooding in Tha Uthae,
Surat Thani of Thailand is applied to test the applicability of the proposed
mathematical model. There is a set of predetermined shelters that must be
justified which should be opened and assigned to serve all affected areas.

The terrain of Tha Uthae sub-district is lowland and repeatedly faces
flooding, especially during the rainy season. Regarding the statistical data
of the great flood in 2011 [53], there were a total number of 5,076 victims.
Basically, the Department of Disaster Prevention and Mitigation, Ministry
of Interior which is the government agency that decides the evacuation shel-
ters for each community based on their administrative area. The candidate
shelters are schools, colleges, city halls, or temples. However, the assigned
shelters are rather decentralizing than centralizing. The number of victims in
each affected area are and the candidate shelters are shown in Table 3.2-Table
3.3. Since the latitude and the longitude of affected areas and candidate shel-
ters are known, the distances are estimated based on the Euclidean distance
approach. The maximum acceptable distance between affected areas and
shelters are assumed not to exceed 10 kilometers. The vehicles that are used
for victim transportation belong to the Royal Thai Army. The truck capacity
is 12 persons and the fuel consumption rate 8 kilometers per liter.

In terms of shelter’s capacity, schools and colleges are assumed to handle
the victims not over 2,000 victims as claimed by JICA [16], other shelters
that are not the schools can accommodate 500 victims. The related costs
for opening the shelters still need to be included, such as costs for portable
toilets, tents to use as a temporary kitchen, medical center, and warehouse
[14] which hereafter are defined as the fixed cost.

To estimate the service cost that occurs when serving the victims dur-
ing the time they reside in the shelter, the cost of staff hire is determined.
Although assisting the victims is volunteer work, government staffs are still
paid by their agencies. In this case, the standard wage of 380 Thai Baht per
person per day is taken into account. The number of required staff is 1 staff
per 50 victims [14].
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Table 3.2: Affected area and number of victims
Area No. of victims (person) Area No. of victims (person)
A1 750 A6 250
A2 540 A7 350
A3 400 A8 450
A4 800 A9 500
A5 650 A10 386

Table 3.3: Candidate shelters and capacities

Candidate shelters Capacity
S1, S3, S5, S6, S8, S10, S11
S14, S15, S16, S17, S19, S20 500

S2, S4, S7, S9, S12, S13, S18 2,000

3.5 Numerical experiment results

3.5.1 Computational results

Table 3.4 shows the results generated by the proposed model. The number
of selected shelters, shelter allocation, and total cost of both capacitated
and uncapacitated shelters are compared with the current shelter assignment
announced by the government agency. “Capacitated shelter”considers the
restrictions of capacity and that the maximum acceptance distance does not
exceed 10 kilometers. There are 5 selected shelters—S7, S12, S18, S19, and
S20—to serve the victims. The shelter utilization rates are 40%, 89.3%, 77%,
90%, and 100% respectively and the total cost is 899,471 Thai Baht.

For “uncapacitated shelter”, the capacity in constraint 5 is ignored. It
reveals that only small shelters which generate cheaper costs and are located
within the acceptable distances of 10 kilometers are chosen. There are 3
selected shelters include S3, S6, and S20. The number of selected shelters
and the total cost are less than that of the capacitated shelters. Since the
objective function is not bound by the capacity restriction, the model then
seeks to select a few shelters which are located in the acceptable distance
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Table 3.4: The result of case study with acceptable distance not over 10 km
Affected area Capacitate shelter Uncapacitate shelter Current plan

A1 S12 S20 S12
A2 S18 S6 S13
A3 S18 S6 S14
A4 S7 S6 S6
A5 S12 S20 S15
A6 S18 S20 S16
A7 S18 S20 S17
A8 S19 S3 S18
A9 S20 S20 S19
A10 S12 S20 S7

Setup cost (THB) 660,000 342,000 1,260,000
Transportation cost (THB) 6,911 6331 7,036

Service cost (THB) 232,560 232,560 232,560
Total cost (THB) 899,471 580,891 1,499,596

to minimize the total cost. The total cost of 3 selected shelters is 580,891
Thai Baht. However, uncapacitated shelters would be difficult to employ in
a practical manner due to overabundantly assigning the victims to particular
shelters, which leads to congestion and will eventually affect the victims’
welfare.

Both capacitated and uncapacitated shelters are compared to the current
shelter assignment planned by the government sector. The numerical exper-
iment reveals that the service cost of all plans remain constant, as shown
in Table 3.4, since the number of victims is not changed and all victims are
rescued. Moreover, it is evident that the current plan fails to achieve cost ef-
ficiency because there are 10 shelters that are selected and allocated based on
their administrative area. The shelter allocation is decentralized and causes
the setup cost to be unavoidably higher. Likewise, the total cost obtained
from the proposed model, both capacitated shelter and uncapacitated shelter
is lower than the current plan as 40.02% and 61.26% respectively.
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3.5.2 Sensitivity analysis

The sensitivity analysis is conducted to demonstrate how parameters influ-
ence the objective function and the model. Here, the maximum acceptable
distances (constraint 3.5) are set between 10-30 kilometers to allow the nu-
merical experiment to be more flexible. In the case of capacitated shelter,
it is the most cost efficient when the maximum acceptable distance does not
exceed 25 kilometers. It is required to select 5 shelters to serve the victims.
Relaxing the maximum acceptable distance results in an increase in the trans-
portation cost. On the contrary, the fixed cost of opening the shelter does
not increase as the relaxed distance is extended. Meanwhile, the relaxation
of distance will not significantly affect the service cost since the constraint
strictly ensures that all victims are served thoroughly (Figure 3.2).

For uncapacitated shelter, it shows that, as the maximum acceptable dis-
tance is relaxed, the fixed cost of selected shelters decreases. This is because
the relaxation of the acceptable distance means that the cheapest shelter
can be found and selected without considering the limitation of the shelters’
capacity. Since total cost is dominated by fixed cost, it leads the total cost
to decrease as the maximum acceptable distance is relaxed (Figure 3.3).

3.6 Conclusion and discussion

This chapter presents the mathematical model for shelter site selection and
allocation for efficient response to relief logistics during the disaster. The
model is formulated as mixed integer nonlinear programming and solved by
Genetic Algorithm in order to achieve cost minimization. The proposed
model is tested with the real world case study of the floods in Tha Uthae,
Surat Thani, Thailand. The comparisons of the results obtained from this
model (i.e. capacitated and uncapacitated shelter and current shelter al-
location plan announced by the government) are shown. The comparison
indicates that, when using the proposed model, the obtained results outper-
form the current shelter allocation plan. This study has positive implications
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Figure 3.2: Sensitivity analysis of capacitated shelter with distance 10-30 km

Figure 3.3: Sensitivity analysis of uncapacitated shelter with distance 10-30
km
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for the decision-makers to develop the appropriate strategies. However, this
model still has the limitations because only cost criterion is concerned for
shelter location-allocation. In practical manner, several important criteria
should be included. Another limitation is that, the distance between af-
fected areas and candidate shelters is approximated based on the Euclidean
distance which could not perfectly reflect the actual road networks distance.
However, these weak points are improved and extended to further study in
the next model.
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Chapter 4

Multi-objective Optimization
Model for Shelter
Location-allocation

4.1 Introduction

After disaster attacking, people’s houses are likely to be destroyed, and the
sufferers should be rescued from the disrupted points to the assigned shel-
ters or evacuation centers. Decision-making of the relief facilities is very
important, especially shelter site selection due to it affects to performance of
humanitarian relief logistics in terms of equity, efficiency, and effectiveness
[2, 34, 58]. Likewise, shelter placements require a considerable amount of
money to invest and take a long-time effect on the related parties [47, 48].
With inappropriate determining the characteristics of relief requirements, the
decision-makers could not make a suitable judgment which caused failure in
healing the victims’ suffer, high costs, waste of resources, and slow response.
Furthermore, location-allocation also takes a significant impact on achieving
proper practices in responding to disaster management [52].

Generally, the optimization techniques are employed to reasonably quan-
tify the optimal number of required facilities and decide an appropriate
location-allocation as well. Considering the previous works, the researchers
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usually proposed a single-echelon network and single-objective optimization
(e.g.,[2, 26, 27, 22, 21, 31, 7]). However, to achieve practical purposes, several
criteria should be simultaneously incorporated when formulating the model.
It was revealed that, the researchers mainly developed the bi-objective opti-
mization model when determining the relief facilities location-allocation (e.g.,
[5, 20, 3, 16, 9, 51, 23, 10]). There are relatively small numbers of the exist-
ing studies that proposed the multi-objective model (more than two objective
functions) for dealing with location-allocation.

Regarding the reviewed literature, the objective functions are usually
formulated to minimize transportation distance, transportation cost, trans-
portation time. As a result, the nearest shelters or other facilities are selected
eventually. However, it is suspicious whether the closest facilities are located
far and safe enough from the areas that were attacked by the disaster. Se-
lecting the nearest facilities seems to reduce time, distance, and cost but if
not located far enough it will not be helpful for rescue and relief purposes.

For solution approaches, the previous works generally employed Weighted
Sum Method [39, 51, 35]) and Weighted Goal Programming (e.g., [20, 3, 41,
26]) to decide the location-allocation of the relief facilities. Yet, Weighted
Goal Programming requires the decision-makers to designate their prefer-
ences before the solution process. Nonetheless, the decision-makers only de-
fine their expectations without knowing beforehand what is included in the
model [42], while Weighted Sum Method also involves defining the subjective
preference through the weight coefficient for assigning to each objective func-
tion. The optimal solutions could be influenced if the weight coefficient of
each objective is unclear determined by decision-makers [61]. Meanwhile, the
Exact Algorithm requires a longer time for the computational process. The
weak points of the aforementioned methods, especially assigning the weight
to several criteria could confront the difficulty since some criteria are incom-
parable and troublesome to identify the priority, such as victims’ welfare
against monetary for healing [9] which should be considered when solving
the problems in humanitarian logistics filed.

This study develops the multi-objective optimization model for justifying
shelters location-allocation which considers both effective and efficient crite-
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ria. The proposed model encompasses contradiction objectives as follows:

1. Minimizing the total cost which combines fixed cost for opening shel-
ters, victims transportation cost, and service cos

2. Minimizing the total evacuation time

3. Minimizing the number of selected shelters

The Epsilon Constraint method and Goal Programming are employed to
define the compromising solutions. Unlike other prior works that usually
restricted the traveling distance between an affected area and facility with
the maximum distance. This study considers the minimum distance between
an affected area and a candidate facility instead. The concept to evaluate
minimum acceptable distance between the affected area and the selected
shelter is introduced. The application of the proposed model is demonstrated
through the case study of the flood in Tha Uthae Sub-district, Surat Thani,
Thailand which normally confronts repeated floods, especially during the
rainy season. The obtained results would be a benefit for the decision-makers
to define and allocate the optimal number of shelters which generate the
minimum total evacuation time with reasonable total cost. The parameters,
assumptions, and model formulation are demonstrated in the next section.

4.2 Model formulation

The methodology of this research encompasses two phases i.e. preliminary
parameter estimation, models formulation approach as follows:

4.2.1 Preliminary parameter estimation

In order to develop the model, the considerable parameters i.e. minimum
acceptable distance between an affected area and candidate shelter (mij) is
predetermined. The (mij) means the minimum distance between affected
area i and candidate shelter j, which helps decision-makers avoid selecting
shelters located nearest to affected areas. This is because the nearest shelters
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may not be safe from the same disaster. Initially, each affected area is divided
into an equal grid of one-kilometer increments. The mij is simply estimated
based on the diagonal length line of rectangle L, and multiplied by the ratio of
victims in each affected area (hi) to population density per square kilometer,
as shown in equation (4.1)

mij = L · hi
Population density

(4.1)

4.2.2 Model formulation

Assumptions

The assumptions of the models are defined as below:

• The number of victims in each affected area is known and fixed

• The locations of all affected areas and candidate shelters are fixed

• The victims in each affected area are evacuated to the selected shel-
ters as the entire unit and not permit to separately assign to different
shelters

• The vehicles using in evacuation process are homogeneous

• The velocity of the vehicles is constant, the traffic conditions are ignored
to consider

Mathematical model

There are three objectives functions, and a set of constraints for shelter
location-allocation are demonstrated as follows:

Indices
I Set of affected areas
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J Set of candidate shelters

Parameters
dij Distance between affected area i and candidate shelter j
cj Capacity of the candidate shelter j
hi Number of victims in area i
fj Fixed cost for opening the shelter j
mij Minimum distance between area i and shelter j
C Capacity of vehicle
N Number of vehicles for evacuation process
W Maximum allowed time for evacuating the victims from area i

to shelter j
α Constant coefficient of transportation cost per kilometer

per person
β Wage per person for hiring staff to work in the shelter
γ Ratio of the required staff per victim
T Duration of the disaster occurrence
V Velocity of the vehicle using in evacuation process

Decision variables
Xj 1, if candidate shelter j is selected or otherwise 0
Yij 1, if affected area i is assigned to shelter j or otherwise 0
Zij Number of victims in area i that are assigned to shelter j

Objective functions

Min f1 =
∑
j∈J

Xjfj + α
∑
i∈I

∑
j∈J
dijYijhi + βT

∑
i∈I

Zij
γ

(4.2)

The first objective function (4.2) attempts to minimize the total cost that
incorporates three terms. The first term is fixed cost for opening the shel-
ters, where fj is determined based on the cost for installing portable toilets,

35



temporary warehouses, and kitchens. The second term is transportation cost
regarding the distance and number of victims that are evacuated from af-
fected area i to selected shelter j. The third term is the service cost which
is estimated as the number of required staff to work in shelters throughout
a disaster.

Min f2 =
∑
i∈I

∑
j∈J

dijYij
V
· hi
NC

(4.3)

The second objective function (4.3) seeks to minimize the total time for
evacuating victims based on the distance between affected area i to shelter j,
the number of victims that are displaced, the number of vehicles, the capacity
of vehicles, and the vehicles’ speed during the disaster.

Min f3 =
∑
j∈J

Xj (4.4)

The third objective function (4.4) aims to minimize the number of open
shelters that can thoroughly serve the victims.

Subject to

∑
j∈J

Yij = 1, ∀i∈I (4.5)

Constraint (4.5) restricts that an affected area i must be entirely assigned
to only single shelter j.

Yij ≤ Xj, ∀i∈I,j∈J (4.6)

Constraint (4.6) stipulates that affected area i must be assigned to only
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open shelters j.

dijYij ≥ mij, ∀i∈I ,j∈J (4.7)

Constraint (4.7) requires that the distance between affected area i to
assigned shelter j must be farther than the minimum acceptable distance
mij.

dijYij
V
· hi
NC

≤ W, ∀i∈I ,j∈J (4.8)

Constraint (4.8) limits the duration for evacuating victims from an af-
fected area i to shelter j to no longer than the maximum allowed time for
evacuating W (hours).

∑
i∈I

Zij ≤ cjXj, ∀j∈J (4.9)

Constraint (4.9) restricts the number of assigned victims to within the
capacity of selected shelter j.

∑
j∈J

Zij = hi, ∀i∈I (4.10)

Constraint (4.10) ensures the number of assigned victims is equal to the
number of victims in each affected area i.

Xj ∈ {0, 1}, ∀j∈J (4.11)

Constraint (4.11) is a binary variable: Xj is 1 if candidate shelter is
selected to open; otherwise it is 0.
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Yij ∈ {0, 1}, ∀i∈I ,j∈J (4.12)

Constraint (4.12) is a binary variable: Yij is 1 if affected area i is allocated
to candidate shelter j; otherwise it is 0.

4.3 Solution approach

In practice, there are various criteria that should be considered when formu-
lating the models for determining facility location-allocation. Dealing with
multi-objective functions is more complex than single-objective functions in
which the optimal solution can be acquired straightforwardly. Generally,
multi-objective optimization is formulated by the equation (4.13) - (4.14).

Max or Min f(x) = (f1(x), f2(x), ..., fp(x)) (4.13)

Subject to

x ∈ F (4.14)

Where p is the number of objective functions and p ≥ 2, and x =

x1, x2, ..., xn is the vector of decision variables, and S is a set of feasible so-
lutions. In this case, the set of feasible solutions is recognized as the Pareto
optimal set which is a compromise between various objectives, and there is
no single optimal solution that can optimize all objective functions concur-
rently. As mentioned above, applying a solution approach which requires
assigning a weighting coefficient to monetary and non-monetary objective
functions is not appropriate in the context of humanitarian logistics. This
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study employs both priori and posteriori method in solving the proposed
mathematical model. The Goal Programming (GP) without determining
weight is a delegate of priori method while Epsilon Constraint method (EC)
is a representative of posteriori method.

4.3.1 Epsilon Constraint method

In order to solve the proposed model, the EC proposed by Haimes et al.
[19] is employed to generate the Pareto optimal. This is because this method
does not require weight assignment and excludes the intervention of decision-
makers. The decision-makers are allowed to evaluate and select the proper
solution for implementation after the Pareto optimal is obtained [24]. With
EC, only one objective function is selected as the primary objective function,
while other objectives are transformed to be constraints of the main objective.
However, the right-hand side value of each transformed constraint should be
individually solved to obtain the optimal solutions for using as the epsilon
value ε2, ε3, ..., εp [30, 38].

This study selects the first objective function (4.2) to be the primary ob-
jective because the inappropriateness of decision-making based on monetary
criteria means that organizations could not properly allocate budget for relief
purposes. Insufficient budget allocation would eventually affect victims’ wel-
fare. On the other hand, excessive spending reflects inefficiency of resource
utilization. While the second (4.3) and third objective functions (4.4) are
altered to be the constraints (4.16) and (4.17) respectively.

Min f1(x) (4.15)

Subject to

f2(x) ≤ ε2 (4.16)
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f3(x) ≤ ε3 (4.17)

(4.5) - (4.12)

4.3.2 Goal Programming

GP is a priori method in which the decision-makers identify optimistic pref-
erence values to each objective in advance. Since the aims of GP are to mini-
mize deviations from preference values, the obtained solution is depended on
decision-makers’ desire consequently [13, 42]. Using GP to deal with multi-
objective optimization in this study can be defined as the equation (4.18)-
(4.23). Therein, d+i and d−i are over-achievement and under-achievement of
the objectives respectively. The preference level of objective i defined by
decision-makers is denoted by gi. In this case, g1 is a preference value of
total cost, g2 is a preferred total evacuation time of 10 affected areas, and
g3 is a preference value of number of open shelters to thoroughly serve the
victims. A set of feasible solutions is denoted as F .

Min
p∑
i=1

(d−i + d+i ) (4.18)

Subject to

f1(x)− d+1 + d−1 = g1 (4.19)

f2(x)− d+2 + d−2 = g2 (4.20)

f3(x)− d+3 + d−3 = g3 (4.21)

x ∈ F (4.22)
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d+i , d
−
i ≥ 0 (4.23)

(4.5) - (4.12)

The numerical experiment is conducted by using What’sBest LINDO Op-
timization with laptop Microsoft Windows 10, Intel(R) Core (TM) 1.51 GHz,
RAM 4.0 GB. The applicability of the proposed model is validated by the
flood case study which is demonstrated in the next section.

4.4 Applicability of the proposed model

A case study of the flood in Tha Uthae, Surat Thani province of Thailand
is adopted to this study. The terrain of Tha Uthae is lowland and usually
faces with flooding, especially during the rainy season. Providing temporary
shelters to serve the victims is one of the basic relief processes for responding
to the disaster. Basically, the Ministry of Finance takes the responsibility
to allocate the grant aid for responding to disaster relief and emergency as-
sistance. Each district receives an initial aid of 500,000 THB per district,
and also a budget to pay for meals and stuff. In summary, each district
will receive an initial allowance of 1,300,000 baht regarding the Regulation
of the Ministry of Finance on Government Grant for Relieving Disaster Vic-
tims in Emergencies 2020 [43]. For shelter site selection and allocation, the
Department of Disaster Prevention and Mitigation, Ministry of Interior of
Thailand is the agency that takes responsibility in this matter. The existing
infrastructures such as colleges, schools, city halls, and temples are normally
used as the candidate shelters. However, the current judgment on shelter
site selection and allocation are rather decentralizing.

Based on the great flood of Tha Uthae in 2011, there were 5,076 victims
that suffered from the submerged. At that time, the population density per
square kilometer area was 120 persons. There were 10 affected areas and 20
candidate shelters for serving the sufferers [53]. Since coordinates of affected
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areas and candidate shelters are known, road network distances between the
affected areas to candidate shelters can be acquired from the Google Maps
Distance Matrix API. The vehicles that are used in victims’ transportation
belong to the Royal Thai Army. Herein, there are 5 vehicles available in each
selected shelter. The vehicle’s capacity is 12 persons, a fuel consumption
rate is 8 kilometers per liter, and vehicle’s speed during the inundation is
24 kilometers per hour based on the estimated function of flood depth and
vehicle’s speed proposed by Pregnolato et al.[49].

In the aspect of candidate shelter’s capacity, colleges and schools can han-
dle 2,000 victims [16]; others else can accommodate 500 victims. Fixed cost
for opening shelter is determined regarding the expenses of portable toilets,
and tents for using as temporary kitchen, medical center, and warehouse [14].

For a service cost that occurs when serving the victims during the time
they residing in the shelters. A service cost is estimated based on cost of
staff hiring. The government staffs are still paid by their agencies with the
standard wage of 380 Thai Baht per person per day. The number of required
staff is 1 staff per 50 victims [14]. Average duration of the disaster occurrence
based on the historical data is 6 days, while the restricted times to finish
evacuating all victims from a particular area to assigned shelter are set from
64 to 84 hours. Table 4.1 - 4.2 shows the parameters that are used in the
numerical experiment.

Table 4.1: Affected area and number of victims
Area No. of victims (person) Aarea No. of victims (person)
A1 750 A6 250
A2 540 A7 350
A3 400 A8 450
A4 800 A9 500
A5 650 A10 386
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Table 4.2: Candidate shelters and capacities

Candidate shelters Capacity
S1, S3, S5, S6, S8, S10, S11
S14, S15, S16, S17, S19, S20 500

S2, S4, S7, S9, S12, S13, S18 2,000

4.5 Numerical experiment results

Initially, the proposed model is solved by EC and GP with the maximum
allowed time for evacuating victims as 72 hours (W = 72) due to the relief
organization should respond to disasters within the first 3 days after occur-
rence. The results generated by EC and GP are then compared with the
current shelter location-allocation plan.

4.5.1 Numerical experiment results generate by Epsilon

Constraint method

First, the three objective functions are solved individually. The optimal
solution of each objective function is then used to construct the Payoff Table
to illustrate the lower bound and upper bound (Table 4.3). These bounds
are known as the ε2 and ε2 of the additional constraints of equation (4.16)
and (4.17) respectively.

Based on solving the multi-objective optimization with EC, the Pareto
optimal and shelter location-allocation is shown in Table 4.4. When concur-
rently considering three criteria for dealing with shelter location-allocation
problems, total cost and number of selected shelters remain the same, at
869,944 Thai baht and 4 shelters respectively. However, total time for evac-
uating victims from 10 affected areas to selected shelters is 203.07 hours,
which is a considerable improvement.
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Table 4.3: Payoff table under the standard evacuation time 72 hours

Criteria Objective functions Lower
bound

Upper
boundf1 f2 f3

Total cost 869,944 1,002,712 880,925 869,944 1,002,712
Total evacuation time 338.46 244.78 227.48 227.48 338.46
Number of shelters 4 5 4 4 5

Table 4.4: Pareto optimal and shelter allocation generated by Epsilon Con-
straint method

Total cost
(THB)

Total evacuation time
(Hours)

Number of shelters
(Shelters) Shelter-allocation

869,944 203.07 4

S1: A8
S2: A4, A6, A7, A9
S4: A1, A2, A5
S13: A3, A10

4.5.2 Numerical experiment results generate by Goal

Programming

When solving the multi-objective for shelter location-allocation problem by
GP, the goal is set to minimize total deviations from the preference values
of three objective functions. However, each objective function is a different
criterion, i.e., cost, time, and unit of shelter, the deviation of which cannot be
directly considered together. Therefore, the deviation is considered in terms
of "percentage deviation". Under the maximum allowed time for evacuating
of 72 hours (W = 72), it generates a total percentage deviation of 1.02.
The total cost for opening shelters, victim transportation cost, and service,
was 1,030,898 Thai baht. The total time for evacuating all victims from 10
affected area is 401.25 hours. In this case, there are 5 shelters selected to
serve the victims (Table 4.5).
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Table 4.5: Pareto optimal and shelter allocation generated by Goal Program-
ming

Sum
Deviation

Total cost
(THB)

Total evacuation
time (Hours)

Number of shelters
(Shelters) Shelter allocation

1.02 1,030,898 401.25 5

S1: A9
S2: A5, A6, A7, A8
S4: A1, A4
S7: A2
S13: A3, A10

4.5.3 Comparisons of the Pareto optimal generated by

Epsilon Constraint and Goal Programming

The Pareto optimal generated by EC and GP are compared with the current
shelter location-allocation plan. The comparisons reveal that solving the
proposed model with EC and GP outperformed the current plan in terms
of total cost and number of open shelters. The current shelter location-
allocation plan revealed the best total evacuation time. The current plan
opened several shelters to serve the victims, helping to reduce transportation
time and distance. However, the allocated budget for responding to the
emergency situation is only 1,300,000 Thai baht [43], which would not be
enough to enact this plan (Table 4.6).

This study also conducts sensitivity analysis to investigate how the pa-
rameters affect the objective functions. The experiment results are illustrated
in the next section.

4.5.4 Sensitivity analysis

The sensitivity analysis is conducted to both Epsilon Constraint method
and Goal Programming to observe how the objective functions change when
a particular parameter is relaxed. In this analysis, the maximum allowed
time for evacuating the victims from affected area i to selected shelter j was
relaxed to between 64-84 hours (W = 64-84). The numerical experiments
are demonstrated as follows:
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Table 4.6: Comparison results generated by each solution approach

Criteria Solution approach
Epsilon Constraint Goal Programming Current Plan

Total cost
(THB) 869,944 1,030,898 1,546,126

Total evacuation time
(Hours) 203.07 401.25 198.39

Number of shelters
(Shelter) 4 5 10

Shelter allocation S1: A8
S2: A4, A6, A7, A9
S4: A1, A2, A5
S13: A3, A10

S1: A9
S2: A5, A6, A7, A8
S4: A1, A4
S7: A2
S13: A3, A10

S6: A4
S7: A10
S12: A1
S13: A2
S14: A3
S15: A5
S16: A6
S17: A7
S18: A8
S19: A9

Sensitivity analysis based on Epsilon Constraint Method

When maximum allowed times for evacuating are relaxed to be longer, the
total costs and the number of open shelters do not decrease. Sensitivity
analysis results indicate that if decision-makers seek to minimize total cost,
setting W = 72 hours would be the proper policy. On the other hand, if
decision-makers put more importance on improving total evacuation time,
the appropriate value of W would be 66, 68, or 70 hours. Although setting
W as 66 hours generated the lowest total time of victims’ evacuation (155.62
hours), it required a large number of opened shelters, leading to the highest
total cost, at 1,076,591 Thai baht (Table 4.7).

Sensitivity analysis based on Goal Programming

Relaxing maximum allowed times for evacuating victims from each area to
selected shelters does not improve total cost or number of open shelters. If
decision-makers seek to minimize total cost and number of open shelters with
acceptable total victim evacuation time, setting W = 68 hours would satisfy
these requirements. Furthermore, the results of sensitivity analysis indicate
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that, defining W to be longer than the standard 72 hours for time of victim
evacuation would not improve total cost, evacuation time, or number of open
shelters (Table 4.7).

Comparisons of sensitivity analysis generated by each solution

In terms of total cost, the results generated by EC and GP are compared with
the total cost of the current shelter location-allocation plan. Even whenW is
relaxed, the total cost of the current plan is fixed as 1.55 million Thai baht,
due to the fact that shelter location-allocation is only based on administra-
tive areas but W is not considered. This numerical experiment reveals that
solving the proposed mathematical model with EC and GP produces lower
costs than the current plan, and the results generated by EC outperform
those of GP (Figure 4.1).

For total evacuation time of 10 affected areas, employing the current plan
for shelter assignment produces a total evacuation time of 198.9 hours, which
is quite low due to the large number of shelters opened to serve the victims.
However, it was found that the results produced by EC were better than
the current plan when relaxing W to 66,68, or 70 hours, while GP generated
total evacuation times above 350 for all W values (Figure 4.2).

Considering the number of open shelters, the current plan assigned 10
shelters to serve 10 affected areas, even after relaxing W , which led to the
results generated by EC and GP outperforming the current plan. Overall,
the results produced by EC generated a lower number of open shelters than
GP, except when W is relaxed to 66 or 68 hours (Figure 4.3).
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Figure 4.1: Comparisons of total cost generated by Epsilon Constraint and
Goal Programming

Figure 4.2: Comparisons of total evacuation time generated by Epsilon Con-
straint and Goal Programming
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Figure 4.3: Comparisons of number of selected shelters generated by Epsilon
Constraint and Goal Programming

4.6 Conclusion

This study proposes the multi-objective optimization model for shelter location-
allocation in order to improve humanitarian relief logistics. There are three
objective functions: to minimize total cost, total evacuation time, and num-
ber of open shelters. The Epsilon Constraint and Goal Programming are used
to solve the proposed mathematical model. Moreover, sensitivity analysis is
conducted to observe the impact of a parameter (maximum allowed time for
evacuating) on the objective function. The optimal solutions generated by
Epsilon Constraint and Goal Programming are compared with the current
shelter location-allocation plan. The application of the proposed model is
validated through a case study of shelter location-allocation in response to
flooding in Tha Uthae, Surat Thani, Thailand. The numerical experiment
results, in terms of total cost and number of open shelters generated by
solving the proposed model, clearly outperform the current shelter location-
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allocation plan. On the other hand, the current plan mainly produces a
better total evacuation time, due to a higher number of shelters open to
serve victims.

Considering the solution approaches, i.e. Epsilon Constraint and Goal
Programming, numerical experiments demonstrate that Epsilon Constraint
proves more informative than Goal Programming when making a decision on
shelter location-allocation, since Goal Programming seeks to minimize devi-
ation from preference values of all objective functions. It can be stated that
preference values defined by decision-makers influence the optimal solution
and the performance of humanitarian logistics. However, solving the pro-
posed model with these solutions can improve decision-making in response
to disasters, especially flooding.

The limitation of this study involves the application of other disaster
types. The proposed model perhaps work well in case of flood problems
in which the characteristics of disaster are unlike other catastrophes e.g.
earthquake, hurricane, or landslide. Currently, decision-making on facility
location-allocation in response to disasters is usually conducted based on
decision-makers’ experience or ad-hoc decision-making. Thus, the proposed
model would improve both efficiency and effectiveness of humanitarian relief
logistics. The findings of this study provide a guideline to improve decision-
making for shelter location-allocation in the context of humanitarian logistics,
and would be advantageous for designing a proper disaster response strategy
in the future.
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Chapter 5

A Novel Approach for
Determining Shelter
Location-allocation in
Humanitarian Relief Logistics

5.1 Introduction

Disaster onsets occur more frequently and impact humankind and economic
system all over the world. In 2019, there were 95 million affected people,
11,755 number of deaths, and resulted in an economic loss of $103 billion
approximately [11]. Humanitarian logistics takes a significant role in sup-
porting disaster management processes by managing the flows of basic aid
such as foods, water, survival bags, and medical supplies [58, 59] with the
right quantity, time, and place for helping people [34, 54]. It also relates
evacuating the victims from affected areas to safe areas. Decision-making on
location-allocation of relief facilities such as shelter, medical centers, distribu-
tion centers, warehouses, etc. is important. Among all relief facilities, shelter
location-allocation is the critical part because it influences the security and
welfare of the sufferers and impacts the performance of humanitarian logis-
tics [47]. Although dealing with catastrophes is such uncertainty, but having

52



decision support helps in defining the measures for minimizing loss of life and
damages [25]. Previously, a large number of researchers employ optimization
techniques to justify relief facilities location-allocation with the efforts to
improve effectiveness, efficiency, and equity. The necessary data that incor-
porate in the optimization including location of damaged areas and candidate
facilities, number of victims, distance, time, cost, resource for rescue process,
magnitude of disaster, etc. [48]. Recently, machine learning algorithms (ML)
can be integrated to select the location of potential facilities such as hotels
and convenience stores [29]. Nevertheless, to the best of our knowledge,
integrate ML algorithm for determining facilities location-allocation in the
context of humanitarian logistics is somehow not existing.

This study proposes a methodology that integrates the Epsilon Con-
straint method (EC) and Artificial Neural Network (ANN) to determine
shelter location-allocation. Since shelter location-allocation is a critical part
of disaster response stage, fast decision-making is very important. A multi-
objective optimization model is formulated to simultaneously minimize total
cost and minimize total evacuation time. The proposed model is solved
by Epsilon Constraint method because it generates the optimal solutions
without intervention of decision-makers during the solution process. How-
ever, Epsilon Constraint method requires intensive computational time, espe-
cially when dealing with large-scale data and with several objective functions.
Thus, ANN is combined with Epsilon Constraint method to facilitate prompt
decision-making and address the complexity. Herein, ANN is supervised by
the optimal solutions generated by Epsilon Constraint method. The appli-
cability of the proposed methodology is demonstrated through a case study
of shelter allocation in response to flooding in Surat Thani, Thailand. It is
plausible to use this proposed methodology to improve disaster response for
the benefit of victims and decision-makers.
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5.2 Related work

5.2.1 Optimization-based for facility location-allocation

There are many studies that determine the appropriate location-allocation
of the relief facilities to prepare and respond to humanitarian logistics. The
relief facilities for supporting pre and post-disaster management include shel-
ters, medical centers, healthcare centers, warehouses, distribution centers,
disease control centers, and garbage dumps. The decision-making on facili-
ties location-allocation is usually done based on optimization methods. The
existing pieces of literature encompass a single echelon and multi-echelon
which represented through single-objective and multi-objective optimization
model. Although dealing with several objectives or criteria together is dif-
ficult, especially when each objective is opposed but it is a necessity when
conducting decision-making in practice [45].

For shelter location-allocation, majority of the prior works usually present
a single echelon with both single and multi-objective. In aspect of single-
objective optimization, the authors propose the models to improve either
efficiency or effectiveness such as minimizing transportation cost and solve
by exact algorithm [22], minimizing total cost then solve by Genetic Al-
gorithm [48], minimizing distance between disrupted areas and shelters [7],
minimizing number of opened shelter and solve by Exact Algorithm [47]. For
the multi-objective model, some studies just seek to improve an effective cri-
terion such as minimizing demand weighted distance, number of shelters, and
area for locating shelter, then solve the proposed model by Particle Swarm
Algorithm [50], minimizing demand weighted distance, number of shelters
and employs Epsilon Constraint method for a trade-off [16], maximizing de-
mand coverage while minimizing demand weighted distance, then solve by
Epsilon Constraint method [10]. However, there are still some works attempt
trading-off between efficiency and effectiveness criteria by minimizing maxi-
mum response time and total cost, and solve by Weighted Sum Method [37],
maximizing demand coverage while minimizing operation cost and employs
Weighted Goal Programming to solve the proposed model [20], minimizing
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distance and total cost, then solve by Weighted Sum method [51].

5.2.2 Machine learning for facility location-allocation

ML can be combined with other applications for facility location-allocation.
There is a study that employs K-means to determine the capacitated facil-
ity location-allocation. The proposed clustering-based approach is compared
against the Genetic Algorithm [32]. There also integration between an au-
tomated WebGIS with ANN, Support Vector Regression, Linear Regression
and Boosted Regression for predicting the potential sites to establish the ho-
tels [60]. Moreover, ANN is also combined with Fuzzy AHP to construct a
decision support system for convenience stores location-allocation [29]. De-
spite there are a relatively small number of studies adopt ML to justify the
proper location, but it implies the applicability ML in determining location-
allocation problem, and still room for further studies.

ANN is one of ML algorithms that is used for coping with location-
allocation problems. It mimics the biological nervous system of human
brain’s activities in which much more complex than the normal model can
capture [55]. It is recognized as a tool for classifying the patterned or struc-
tured of dataset [4]. The architecture of ANN encompasses three parts i.e.
input layer, hidden layers, and output layer. The input layer correlates with
storing input data, information, or feature which required a normalization
beforehand for a better numerical precision purpose. The hidden layer is an
internal layer consists of neurons for extracting associated patterns of the
processes being analyzed. The output layer includes the neurons to generate
and present the final network outputs [12]. The architecture of ANN is shown
in Figure 5.1

Regarding the literature survey, the studies on location-allocation are
mostly conducted based on an optimization basis. Some studies simulta-
neously incorporate efficiency and effectiveness which is monetary and non-
monetary respectively. The solution methods for dealing with these criteria
involve weighted assignment to signify the importance of a particular ob-
jective function, especially Weighted Sum method and Weighed Goal Pro-
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Figure 5.1: Architecture of single ANN [12]

gramming. Nevertheless, monetary and non-monetary terms cannot compare
in this sense. Decision-makers cannot state that money is more important
than victims’ welfare since humanitarian logistics aims at helping people with
reasonable resource utilization. Therefore, the solution approaches relate to
weighed assignment would not appropriate for this context. The obtained
results from solving optimization model guarantee the optimal solution or
near-optimal solution. Somehow, the numerical experiment processes are
conducted under the assumption that all areas are attacked by disaster con-
currently, and a particular facility can serve several areas. Though in a real
situation, the onset would not arise at the same time and there would be
some areas that disrupted. The onsets of target areas could happen in nu-
merous patterns and more complex. So, this weak point can be coped with
ML algorithm for decision making on location-allocation problems.

5.3 Model formulation

This study begins with formulating a multi-objective optimization model
to simultaneously minimize total cost and minimize total evacuation time.
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The necessary data for developing the model including number of victims,
locations of affected areas and candidate shelters, distance based on road
networks obtained from Google APIs, vehicle specifications, restricted time
for evacuation, and ratio of required staff. Formulation of multi-objective
optimization model for shelter location-allocation is illustrated as follows:

Assumptions

• The locations of all affected areas and candidate shelters are fixed

• The victims in each affected area are evacuated to the selected shel-
ters as the entire unit and not permit to separately assign to different
shelters

• The vehicles using in evacuation process are homogeneous

• The velocity of the vehicles is constant, the traffic conditions are ignored
to consider

Indices

I Set of affected areas
J Set of candidate shelters

Parameters

dij Distance between affected area i and candidate shelter j
Capj Capacity of candidate shelter j
Capv Capacity of vehicle
hi Number of victims in area i
fj Fixed cost for opening the shelter j
mij Minimum distance between affected area i and candidate shelter j
N Number of vehicles for evacuation process
T Duration of the disaster occurrence
V Velocity of the vehicle using in evacuation process
W Time for evacuating the victims in area i to shelter j
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α Constant coefficient of transportation cost per kilometer per person
β Wage per person for hiring staff to work in the shelter
γ Ratio of the required staff per victim

Decision variables

Xj 1, if candidate shelter j is selected or otherwise 0
Yij 1, if affected area i is assigned to shelter j or otherwise 0
Zij Number of victims in area i that assigned to shelter j or

otherwise 0

Objective functions

Min f1 =
∑
j∈J

Xjfj + α
∑
i∈I

∑
j∈J
dijYijhi + βT

∑
i∈I

Zij
γ

(5.1)

The first objective function (5.1) is formulated to minimize the total cost
that includes fixed cost for opening shelters, victim’s transportation cost
which is determined based on the number of victims and distance between
affected areas and selected shelters, and operation cost which is paid for
serving the victims during their stays in the shelters.

Min f2 =
∑
i∈I

∑
j∈J

dijYij
V
· hi
NCapv

(5.2)

The second objective function (5.2) attempts to minimize the total time
for victims’ evacuation which is estimated regarding the number of evacu-
ated victims, distance between affected areas and selected shelters, number
of available vehicles, capacity of vehicle, and speed of vehicle.
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Subject to

∑
j∈J

Yij = 1, ∀i∈I (5.3)

Constraint (5.3) forces each affected area should be wholly allocated to
only single shelter.

Yij ≤ Xj, ∀i∈I,j∈J (5.4)

Constraint (5.4) restricts each affected area should be allocated to only
opened shelter.

dijYij ≥ mij, ∀i∈I ,j∈J (5.5)

Constraint (5.5) restrains the distance between affected area and selected
shelter must be greater than the ideal minimum distance to ensure that
selected shelter is far enough from the attacking point which could occur in
area i.

dijYij
V
· hi
NCapv

≤ W, ∀i∈I ,j∈J (5.6)

Constraint (5.6) limits the victim’s evacuation in each affected area to
selected shelter must not exceed the restricted time.

∑
i∈I

Zij ≤ CapjXj, ∀j∈J (5.7)

Constraint (5.7) restricts the number of assigned victims must not exceed
the capacity of selected shelter.
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∑
j∈J

Zij = hi, ∀i∈I (5.8)

Constraint (5.8) restrains the numbers of assigned victims equal to num-
ber of victims in each affected area.

Xj ∈ {0, 1}, ∀j∈J (5.9)

Constraint (5.9) expresses the binary variable Xj is 1 if candidate shelter
is selected to open.

Yij ∈ {0, 1}, ∀i∈I ,j∈J (5.10)

Constraint (5.10) defines the binary variable Yij is 1 if affected area i is
allocated to shelter j, otherwise 0.

5.4 Proposed solution approach

Initially, the Epsilon Constraint approach proposed by Haimes et al. [19] is
employed to solve the proposed multi-objective optimization model because
the Pareto optimal can be obtained without intervention of decision-makers
during the computational process. However, this method requires a greater
execution time which could not effectively support disaster response. Hence,
ANN is used to combine with Epsilon Constraint method in order to sim-
plify fast decision-making. In this case, ANN learns the knowledge from the
optimal solutions generated by Epsilon Constraint method. The solution
approach is illustrated in Figure 5.2.
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Figure 5.2: ANN-EC for shelter location allocation

5.4.1 Epsilon Constraint method for multi-objective op-

timization

Solving the proposed multi-objective optimization model with Epsilon Con-
straint method, only one objective function is assigned as the main objec-
tive while other objectives are transformed to be the additional constraints.
Herein, f1 which seeks to minimize the total cost is defined as the main
objective function, while f2 that aims to minimize the total time for vic-
tims’ evacuation is transformed to be an additional constraint. Initially, f2 is
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individually solved to produce the epsilon values (ε) to restrict the main ob-
jective. However, ε values must be defined appropriately to avoid generating
inefficient solutions. Augmented objective function with positive coefficient
constant helps to cope with inefficient solutions problem [16]. Thus, this
study applies the allowance time to augment the f2. The allowance is an
additional time that could occur when conducting a specific task. It in-
cludes personal desire, fatigue, and delay caused by special situations. The
personal desire is time to permit the staff to relax by drinking water, access-
ing restroom, etc. The fatigue is justified based on exhaustion and mental
strength of staff. The delay is an additional time for transportation delay
caused by disasters [44]. The allowance time of three factors is estimated as
a total of 20% of the ordinary victim’s evacuation time which denoted as δ.
Solving a multi-objective optimization based on Epsilon Constraint can be
illustrated below.

Objective function

Min f1 (5.11)

Subject to

δ
∑
i∈I

∑
j∈J

dijYij
V
· hi
NC

≤ εf2 (5.12)

(5.3) - (5.10)

The numerical experiment is conducted by using What’sBest LINDO Op-
timization with laptop Microsoft Windows 10, Intel(R) Core (TM) 1.51 GHz,
RAM 4.0 GB.

Typically, the proposed model is deterministic and incorporates parame-
ters that occurred in a specific year, all areas are assumed to confront disaster
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onsets concurrently. Shelter allocation is rather centralization in which all
affected areas are probably assigned to share the same shelters. Nevertheless,
all areas would not be attacked by disaster at the same time. The onsets per-
haps occur in several ways such as affected areas A1-A5 were ever disrupted
by disaster simultaneously. Affected areas A1-A4 were assigned to serve by
shelter S4, while A5 is assigned to serve by S2. On the other hand, if only
area A1 is attacked by disaster while A2 is safe, then it is arguable that what
shelter should be assigned to serve A1. The proposed methodology must
have the ability to deal with complexity. Therefore, the optimal solutions
generated by Epsilon Constraint method are simulated into several situations
in order to allow ANN to learn the knowledge of shelter location-allocation
based on disaster onsets’ patterns. The simulated data are generated for
all possible combinations of the onsets and shelters assignment based on the
optimal solutions obtained by solving the proposed model by Epsilon Con-
straint method. Herein, 0 means usual situation while 1 means attacked by
disaster. The concept to simulate the dataset is shown in Figure 5.3.

Figure 5.3: The concept of simulating dataset based on obtained optimal
solutions
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5.4.2 ANN for shelter location-allocation

After the optimal solutions produced by Epsilon Constraint are simulated
to express several disaster onsets together with shelter location-allocation,
the ANN is employed to predict shelter assignment. Integrating ANN with
Epsilon Constraint is beneficial to decision-making process because it helps
to reduce the computational time and support fast decision-making. In or-
der to deal with limited datasets and avoid bias from splitting train and test
procedure, 10-fold cross-validation technique is introduced to check the ef-
fectiveness of ANN. Then, the data are trained and tested with feedforward
ANN. The input layer represents the affected areas and shelter location-
allocation. The output layer expresses result of ANN by aggregating the
outputs from hidden layer via linear transfer function or summation function
(5.13). Where n is total number of nodes and xi is input multiplied by weight
wi and sum up with the bias value b.

n∑
i=1

xiwi + b (5.13)

The hidden layer lays between input and output layers to produce the
outputs by determining the output from the prior layer with weights and
biases. The obtained nonlinear is then transformed by using the Sigmoid
function as illustrates in equation (5.14).

Sigmoid(x) =
1

1 + e−x
(5.14)

For the hyperparameter tuning step, this study adjusts the learning rate
because it is the most important hyperparameter [15]. However, the opti-
mal learning rate cannot be exactly calculated for a given data and employed
model. The proper learning rate of the given model can be done through grid
search of the approximated logarithmic scale within a set {0.1, 0.01, 10−3, 10−4, 10−5}
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[15]. Occasionally, the learning rate is obtained by performing a trial-and-
error manner. To pick the optimal value of learning rate, this study con-
ducts a sensitivity analysis of learning rate with the given values of {0.00001,
0.00003, 0.00005, 0.00007, 0.00009, . . . , 0.9}. The learning rate that gener-
ates the highest accuracy will be selected to use in the final model.

5.5 Applicability of proposed methodology

The case study of shelter allocation in responding to flood in five districts
of Surat Thani, Thailand including Muang, Phun Phin, Chaiya, Tha Chang,
and Tha Chana. These five districts encompass 25 sub-districts cover 96 af-
fected areas (neighborhoods), which consider as the economic center, trans-
portation, and agricultural zones (Figure 5.4). These areas usually face floods
during the rainy season. According to statistical data of great flood in 2011,
there were 194,780 affected people scattering in 96 neighborhoods [53]. The
average flood duration was estimated as six days.

Figure 5.4: Case study areas

The Department of Disaster Prevention and Mitigation, Ministry of In-
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terior of Thailand is the agency that takes responsibility for shelter location-
allocation. The existing infrastructures are used as temporary shelters e.g.
schools, city halls, temples, and gymnasiums. There were 84 candidate shel-
ters and each shelter can accommodate 3,000 victims. During the onsets,
government must pay for additional portable toilets and tents for locating
kitchen, medical center, and warehouse for storing relief stuff. The cost of
opening a shelter is approximately 144,000 THB. Moreover, the government
also need to pay the staff wage for working in the shelter during the stays of
victims. The ratio of required staff is one staff per 50 victims [14] and each
is paid with a standard wage of 380 THB per day. The distance between
the affected areas and candidate shelters are based on road networks which
obtain from Google Maps Distance Matrix API. Based on decision-maker
interview, the vehicles for evacuation belong to the Royal Thai Army which
can handle 12 person per round as its capacity. The fuel consumption rate is
8 kilometers per liter. During the flood, the velocity of vehicle is estimated
as 24 kilometers per hour [49]. The standard restriction time to evacuate
victims from each area should not exceed 72 hours after the occurrence [17].

5.6 Experiment results

5.6.1 Results generated based on Epsilon Constraint

method

First, each objective function is solved individually to define the upper and
lower bound to use in solving multi-objective with epsilon constraint. The
payoff table demonstrates the optimal solutions of f1 and f2 which minimize
total cost, and total evacuation time of victims respectively (Table 5.1). It
reveals that when seeking to minimize total cost, the total time of victims’
evacuation is quite long because a small number of shelters are opened which
leads to a longer time for transportation. On the other hand, when mini-
mizing the total time for evacuation, several shelters are opened to shorten
transportation time by ignoring to concern the total cost. The upper and
lower bounds express in Table 5.1 are the epsilon constraint values (εf2) that
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will be used for restricting the primary objective functions following equation
(5.12).

After restricting the primary objective function with the epsilon value, the
optimal solutions generated by epsilon constraint method are demonstrated
in terms of selected shelters, total cost, and total evacuation time of all case
study areas (Table 5.2).

The optimal solutions obtained from solving the proposed multi-objective
optimization model by Epsilon Constraint are simulated to create the dataset.
These simulated data are used as the input data of the ANN model. The
simulated data indicate the shelter-allocation of all possible onset relying on
the assumption that all affected would be attacked by disaster at a difference
time. The data contain in table 5.3 are some part of the whole dataset.
Herein, 0 means usual situation, 1 means flooding.
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Table 5.2: Shelter location-allocation based on epsilon con-
straint method

Area Selected shelters Total cost (THB) Total evacuation time (hours)

Muang-Watpradu
S2, S4 499,604 77.58

A1-A5
Muang-Khuntalae

S6, S8, S10 823,198 107.49
A6-A11
Muang-Makhamtia

S12, S14 377,952 18.71
A12-A14
Muang-Klongchanak

S15 258,831 17.88
A15-A18
Muang-Kongnoi

S20, S22 413,115 25.1
A19-A23
Muang-Bangsai

S26 214,003 14.78
A24-A26
Phun Phin-Thakam

S27 250,559 30.77
A27-A29
Phun Phin-Namrob

S32 183,851 8.1
A30-A32
Phun Phin-Bang-ngon

S33, S36 361,281 12.37
A33-A37
Phun Phin-Leeled

S37 227,671 26
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Table 5.2: Shelter location-allocation based on epsilon con-
straint method

Area Selected shelters Total cost (THB) Total evacuation time (hours)

A38-A40
Phun Phin-Maluan

S40 210,994 23.83
A41-A43
Chaiya-Pawae

S44, S45 369,403 19.35
A44-A45
Chaiya-Tung

S47, S48 336,305 6.37
A46-A48
Chaiya-Lamed

S49, S50 343,649 7.88
A49-A51
Chaiya-Wiang

S51, S53 342,649 5.46
A52-A54
Chaiya-Takrob

S54 194,966 7.25
A55-A57
Chaiya-Pakmark

S56, S58 459,559 85.92
A58-A62
Tha Chang

S59 210,625 22.7
A63-A65
Tha Chang-Klonsai

S62 206,050 11.73
A66-A67
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Table 5.2: Shelter location-allocation based on epsilon con-
straint method

Area Selected shelters Total cost (THB) Total evacuation time (hours)

Tha Chang-Thakhoei
S65 216,639 20.91

A68-A69
Tha Chang-Parkchaluy

S67, S68 404,520 42.65
A70-A72
Tha Chang-Sawiat

S69, S71, S72, S73 585,698 56.18
A73-A80
Tha Chana

S74, S75, S77, S78, S79 703,438 126.73
A81-A89
Tha Chana-Wang

S80 181,469 8.17
A90-A92
Tha Chana-Smorthong

S83 181,534 8.89
A93-A96
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5.6.2 Shelter location-allocation based on ANN-EC

The simulated data are trained and tested with the ANN model under the
different learning rates between 0.00001, 0.00003, 0.00005,..., 0.9. Since the
solution approach has integrated the Epsilon Constraint method and ANN
for determining shelter location-allocation, the proposed solution is called
ANN-EC from now on. According to the optimal learning rate cannot be
identified exactly, the sensitivity analysis is conducted to select the most
proper learning rate of the model and given data (Table 5.4). With learning
rate 0.1-0.9, the execution times are less than 1 minute but the accuracy
performances are dramatically low. On the other hand, adjusting the learning
rate with small values 0.007-0.00001 required a longer time for executions,
but do not yield higher accuracy in anyway. Based on the given dataset, the
sensitivity analysis exposes that the learning rates between 0.09-0.009 provide
acceptable accuracy rate (above 70%), and learning rate 0.05 is the most
appropriate value for using in the final model which generates the highest
accuracy of 90.76% with the execution time 4.54 minutes (Figure 5.5).

Figure 5.5: Sensitivity analysis of learning rates between 0.1-0.00001
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Table 5.4: Accuracy and execution time varies on different learning rate

Learning Rate Accuracy (%) Execution time (mins)
0.00001 6.66 4.38
0.00003 7.18 4.27
0.00005 7.18 4.41
0.00007 7.18 3.53
0.00009 7.18 3.53
0.0001 7.18 4.11
0.0003 7.18 5.04
0.0005 7.18 4.1
0.0007 7.18 4.02
0.0009 7.71 4.28
0.001 7.71 4.55
0.003 29.21 4.1
0.005 59.53 4.1
0.007 69.76 4.09
0.009 72.84 4.08
0.01 72.84 5.55
0.03 76.39 4.16
0.05 90.76 4.54
0.07 89.21 3.44
0.09 83.24 4.27
0.1 6.66 0.27
0.3 6.16 0.2
0.5 6.16 0.27
0.7 6.16 0.28
0.9 6.68 0.28

Regarding the sensitivity analysis, the final ANN-EC model with a learn-
ing rate of 0.05 and momentum value 0.9 is employed to classify shelter
location-allocation.

The results generated by Epsilon Constraint and ANN-EC are compared
with the baseline i.e. current shelter location-allocation plan announced by
the government sector and illustrated through comparisons graph (Figure
5.6). The blue dots and green dots are cost per person obtained from Ep-
silon Constraint and ANN-EC respectively. The blue line represents cost
per person of the current shelter allocation plan. It was found that the re-
sults generated by ANN-EC are quite consistent with the optimal solutions
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produced by Epsilon Constraint method. Thus, it leads the green dots over-
lapped with blue dots. It can be stated that, solving the proposed model
with both Epsilon Constraint and ANN-EC mainly provides better solutions
than current plan determined by the government. The optimal solutions
generated by Epsilon Constraint method outperform the current plan on the
average of 67.11 %, while ANN-EC produces the better results than current
plan on the average of 68.19 % (Table 5.5).

In aspect of evacuation time, the optimal solutions produced by the Ep-
silon Constraint method generated a greater evacuation time than current
shelter location-allocation plan determined by the government. In the same
way, the results produced by ANN-EC mostly worse than current shelter
location-allocation plan (Figure 5.7). It was found that the optimal solu-
tions produced by Epsilon Constraint method worse than current plant on
the average of 20.77 %, and ANN-EC generated worse results than current
plan around 98 % (Table 5.6). This is because the current shelter location-
allocation plan is rather a decentralization. The victims from each area are
assigned to served by different shelter that located nearby their house. As a
result, the evacuation time is shorter, but an expensive cost requires to pay
by the government sector.
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Table 5.5: Comparisons of total cost per person generated by EC,
ANN-EC, and current shelter location-allocation

Affected
areas

Current Shelter Allocation EC ANN Differentiation
Assigned
shelter

Cost
(THB/person)

Assigned
shelter

Cost
(THB/person)

Assigned
shelter

Cost
(THB/person)

Current VS
EC

Current VS
ANN-EC

A1 S1 4,769 S4 2,602 S4 2,717 2,167 2,052
A2 S3 664 S4 362 S4 378 302 286
A3 S2 832 S4 454 S4 474 378 358
A4 S5 3,236 S4 1,765 S4 1,843 1,470 1,392
A5 S4 1,047 S2 571 S49 596 476 450
A6 S7 756 S8 499 S53 540 257 216
A7 S10 1,084 S8 716 S8 774 368 310
A8 S8 1,689 S6 1,115 S6 1,207 574 483
A9 S6 623 S6 412 S6 445 212 178
A10 S9 1,131 S10 747 S10 808 384 323
A11 S11 1,446 S10 955 S10 1,033 491 413
A12 S14 1,137 S14 822 S14 822 315 315
A13 S12 870 S12 629 S12 629 241 241
A14 S13 783 S14 566 S14 566 217 217
A15 S15 467 S15 301 S15 301 166 166
A16 S16 772 S15 498 S15 498 274 274
A17 S16 1,481 S15 955 S15 955 525 525
A18 S15 585 S15 377 S15 377 208 208
A19 S17 1,575 S20 771 S20 771 804 804
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Table 5.5: Comparisons of total cost per person generated by EC,
ANN-EC, and current shelter location-allocation

Affected
areas

Current Shelter Allocation EC ANN Differentiation
Assigned
shelter

Cost
(THB/person)

Assigned
shelter

Cost
(THB/person)

Assigned
shelter

Cost
(THB/person)

Current VS
EC

Current VS
ANN-EC

A20 S18 1,180 S20 578 S20 578 603 603
A21 S23 2,411 S22 1,180 S22 1,180 1,231 1,231
A22 S20 2,461 S22 1,204 S22 1,204 1,256 1,256
A23 S19 1,592 S20 779 S20 779 813 813
A24 S25 1,035 S26 443 S26 443 592 592
A25 S26 2,242 S26 960 S26 960 1,282 1,282
A26 S24 775 S26 332 S26 332 443 443
A27 S27 1,520 S27 696 S27 696 824 824
A28 S28 759 S27 348 S27 348 411 411
A29 S29 568 S27 260 S27 260 308 308
A30 S30 2,038 S32 792 S32 792 1,246 1,246
A31 S31 1,403 S32 546 S32 546 858 858
A32 S32 2,296 S32 892 S32 892 1,403 1,403
A33 S35 2,000 S36 1,112 S36 1,132 889 868
A34 S34 2,097 S36 1,165 S36 1,187 932 910
A35 S36 2,032 S36 1,129 S36 1,150 903 882
A36 S33 2,827 S33 1,571 S67 1,600 1,256 1,227
A37 S36 2,611 S36 1,451 S36 1,478 1,160 1,133
A38 S39 641 S37 285 S37 285 356 356
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Table 5.5: Comparisons of total cost per person generated by EC,
ANN-EC, and current shelter location-allocation

Affected
areas

Current Shelter Allocation EC ANN Differentiation
Assigned
shelter

Cost
(THB/person)

Assigned
shelter

Cost
(THB/person)

Assigned
shelter

Cost
(THB/person)

Current VS
EC

Current VS
ANN-EC

A39 S37 1,190 S37 529 S37 529 661 661
A40 S38 1,391 S37 619 S37 619 772 772
A41 S40 896 S40 375 S40 375 521 521
A42 S41 1,105 S40 463 S40 463 642 642
A43 S42 2,376 S40 995 S40 995 1,381 1,381
A44 S44 438 S45 438 S6 493 - (55)
A45 S45 515 S44 515 S53 580 - (65)
A46 S46 854 S48 597 S65 597 256 256
A47 S47 3,141 S47 2,198 S47 2,198 943 943
A48 S48 2,011 S47 1,407 S47 1,407 604 603
A49 S49 1,164 S50 1,173 S6 1,256 (9) (93)
A50 S50 1,096 S49 1,105 S49 1,184 (9) (87)
A51 S50 692 S49 697 S67 747 (5) (55)
A52 S51 1,320 S53 931 S53 1,018 389 302
A53 S52 1,974 S53 1,393 S8 1,522 581 452
A54 S53 1,018 S51 718 S6 785 300 233
A55 S55 722 S54 416 S54 416 306 306
A56 S54 1,605 S54 924 S54 924 681 681
A57 S55 1,052 S54 605 S54 605 446 446
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Table 5.5: Comparisons of total cost per person generated by EC,
ANN-EC, and current shelter location-allocation

Affected
areas

Current Shelter Allocation EC ANN Differentiation
Assigned
shelter

Cost
(THB/person)

Assigned
shelter

Cost
(THB/person)

Assigned
shelter

Cost
(THB/person)

Current VS
EC

Current VS
ANN-EC

A58 S56 1,413 S56 1,094 S56 1,094 319 319
A59 S58 1,058 S58 819 S58 819 239 239
A60 S57 1,141 S58 884 S58 884 257 257
A61 S58 1,285 S56 995 S56 995 290 290
A62 S58 618 S58 478 S58 478 139 139
A63 S59 898 S59 374 S59 374 524 524
A64 S60 4,211 S59 1,755 S59 1,755 2,456 2,456
A65 S61 898 S59 374 S59 374 524 524
A66 S62 431 S62 254 S62 254 177 177
A67 S63 883 S62 520 S62 520 362 362
A68 S64 593 S65 355 S65 355 239 239
A69 S65 460 S65 275 S65 275 185 185
A70 S66 849 S67 620 S67 636 229 213
A71 S67 767 S68 560 S53 575 207 192
A72 S68 792 S67 579 S67 594 214 199
A73 S69 2,253 S72 1,830 S71 1,867 423 386
A74 S70 729 S71 592 S71 604 137 125
A75 S70 2,218 S71 1,802 S71 1,838 416 381
A76 S71 2,212 S73 1,797 S73 1,832 415 379
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Table 5.5: Comparisons of total cost per person generated by EC,
ANN-EC, and current shelter location-allocation

Affected
areas

Current Shelter Allocation EC ANN Differentiation
Assigned
shelter

Cost
(THB/person)

Assigned
shelter

Cost
(THB/person)

Assigned
shelter

Cost
(THB/person)

Current VS
EC

Current VS
ANN-EC

A77 S72 889 S72 722 S72 737 167 152
A78 S69 2,212 S69 1,797 S53 1,832 415 379
A79 S69 2,318 S71 1,883 S71 1,921 435 398
A80 S73 2,461 S73 1,999 S8 2,039 462 422
A81 S75 1,139 S75 1,421 S75 1,416 (282) (277)
A82 S78 2,097 S74 2,615 S65 2,606 (519) (510)
A83 S74 1,880 S77 2,345 S77 2,337 (465) (457)
A84 S74 2,256 S79 2,814 S79 2,804 (558) (548)
A85 S74 1,925 S75 2,401 S75 2,393 (476) (468)
A86 S77 1,762 S78 2,198 S78 2,191 (436) (428)
A87 S76 2,892 S77 3,607 S77 3,595 (715) (703)
A88 S78 2,820 S77 3,517 S77 3,505 (697) (686)
A89 S79 1,104 S75 1,377 S75 1,372 (273) (268)
A90 S80 1,622 S80 907 S80 907 715 715
A91 S81 927 S80 518 S80 518 408 408
A92 S81 1,622 S80 907 S80 907 715 715
A93 S82 2,351 S83 908 S83 908 1,443 1,443
A94 S82 2,351 S84 908 S84 908 1,443 1,443
A95 S82 3,135 S85 1,210 S85 1,210 1,924 1,924
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Table 5.5: Comparisons of total cost per person generated by EC,
ANN-EC, and current shelter location-allocation

Affected
areas

Current Shelter Allocation EC ANN Differentiation
Assigned
shelter

Cost
(THB/person)

Assigned
shelter

Cost
(THB/person)

Assigned
shelter

Cost
(THB/person)

Current VS
EC

Current VS
ANN-EC

A96 S82 2,351 S86 908 S86 908 1,443 1,443
Average Improvement (Percentage) 67.11 68.19
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Table 5.6: Comparisons of evacuation time generated by EC, ANN-
EC, and current shelter location-allocation

Affected
areas

Current Shelter Allocation EC ANN Differentiation
Assigned
shelter

Time
(Hours)

Assigned
shelter

Time
(Hours)

Assigned
shelter

Time
(Hours)

Current VS
EC

Current VS
ANN-EC

A1 S1 1.87 S4 4.47 S4 4.47 (3) (3)
A2 S3 18.98 S4 25.68 S4 25.68 (7) (7)
A3 S2 1.58 S4 23.59 S4 23.59 (22) (22)
A4 S5 2.33 S4 5.58 S4 5.58 (3) (3)
A5 S4 16.00 S2 18.25 S49 68.75 (2) (53)
A6 S7 11.43 S8 27.53 S53 179.67 (16) (168)
A7 S10 16.33 S8 16.83 S8 16.83 (1) (1)
A8 S8 12.02 S6 12.78 S6 12.78 (1) (1)
A9 S6 29.75 S6 29.75 S6 29.75 - -
A10 S9 5.86 S10 11.72 S10 11.72 (6) (6)
A11 S11 7.38 S10 8.88 S10 8.88 (2) (2)
A12 S14 7.73 S14 7.73 S14 7.73 - -
A13 S12 5.77 S12 5.77 S12 5.77 - -
A14 S13 1.80 S14 5.20 S14 5.20 (3) (3)
A15 S15 7.00 S15 7.00 S15 7.00 - -
A16 S16 1.13 S15 4.20 S15 4.20 (3) (3)
A17 S16 0.42 S15 1.08 S15 1.08 (1) (1)
A18 S15 5.60 S15 5.60 S15 5.60 - -
A19 S17 0.83 S20 4.80 S20 4.80 (4) (4)
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Table 5.6: Comparisons of evacuation time generated by EC, ANN-
EC, and current shelter location-allocation

Affected
areas

Current Shelter Allocation EC ANN Differentiation
Assigned
shelter

Time
(Hours)

Assigned
shelter

Time
(Hours)

Assigned
shelter

Time
(Hours)

Current VS
EC

Current VS
ANN-EC

A20 S18 2.30 S20 9.70 S20 9.70 (7) (7)
A21 S23 4.85 S22 3.35 S22 3.35 1 1
A22 S20 1.85 S22 2.45 S22 2.45 (1) (1)
A23 S19 7.65 S20 4.80 S20 4.80 3 3
A24 S25 5.03 S26 7.65 S26 7.65 (3) (3)
A25 S26 2.27 S26 2.27 S26 2.27 - -
A26 S24 2.48 S26 4.86 S26 4.86 (2) (2)
A27 S27 3.50 S27 3.50 S27 3.50 - -
A28 S28 8.99 S27 8.99 S27 8.99 - -
A29 S29 27.63 S27 18.28 S27 18.28 9 9
A30 S30 1.47 S32 2.60 S32 2.60 (1) (1)
A31 S31 1.60 S32 3.30 S32 3.30 (2) (2)
A32 S32 2.20 S32 2.20 S32 2.20 - -
A33 S35 0.30 S36 2.35 S36 2.35 (2) (2)
A34 S34 2.60 S36 4.10 S36 4.10 (1) (1)
A35 S36 2.70 S36 2.70 S36 2.70 - -
A36 S33 0.97 S33 0.97 S67 16.67 - (16)
A37 S36 2.25 S36 2.25 S36 2.25 - -
A38 S39 3.03 S37 12.02 S37 12.02 (9) (9)
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Table 5.6: Comparisons of evacuation time generated by EC, ANN-
EC, and current shelter location-allocation

Affected
areas

Current Shelter Allocation EC ANN Differentiation
Assigned
shelter

Time
(Hours)

Assigned
shelter

Time
(Hours)

Assigned
shelter

Time
(Hours)

Current VS
EC

Current VS
ANN-EC

A39 S37 6.87 S37 6.87 S37 6.87 - -
A40 S38 1.11 S37 7.12 S37 7.12 (6) (6)
A41 S40 10.83 S40 10.83 S40 10.83 - -
A42 S41 8.87 S40 8.67 S40 8.67 0 0
A43 S42 4.43 S40 4.33 S40 4.33 0 0
A44 S44 8.75 S45 8.75 S6 110.00 - (101)
A45 S45 10.60 S44 10.60 S53 19.00 - (8)
A46 S46 0.92 S48 4.08 S65 4.17 (3) (3)
A47 S47 0.65 S47 0.65 S47 0.65 - -
A48 S48 0.06 S47 1.63 S47 1.63 (2) (2)
A49 S49 0.00 S50 1.25 S6 25.42 (1) (25)
A50 S50 1.30 S49 2.80 S49 2.80 (1) (1)
A51 S50 0.00 S49 3.82 S67 37.50 (4) (37)
A52 S51 1.34 S53 2.16 S53 2.16 (1) (1)
A53 S52 1.58 S53 1.50 S8 25.42 0 (24)
A54 S53 0.19 S51 1.80 S6 53.33 (2) (53)
A55 S55 4.40 S54 4.60 S54 4.60 (0) (0)
A56 S54 0.40 S54 0.40 S54 0.40 - -
A57 S55 1.55 S54 2.25 S54 2.25 (1) (1)
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Table 5.6: Comparisons of evacuation time generated by EC, ANN-
EC, and current shelter location-allocation

Affected
areas

Current Shelter Allocation EC ANN Differentiation
Assigned
shelter

Time
(Hours)

Assigned
shelter

Time
(Hours)

Assigned
shelter

Time
(Hours)

Current VS
EC

Current VS
ANN-EC

A58 S56 14.12 S56 14.12 S56 14.12 - -
A59 S58 9.92 S58 9.92 S58 9.92 - -
A60 S57 0.75 S58 14.48 S58 14.48 (14) (14)
A61 S58 0.67 S56 15.53 S56 15.53 (15) (15)
A62 S58 31.88 S58 31.88 S58 31.88 - -
A63 S59 12.58 S59 12.58 S59 12.58 - -
A64 S60 1.53 S59 1.45 S59 1.45 0 0
A65 S61 13.75 S59 8.67 S59 8.67 5 5
A66 S62 7.35 S62 7.35 S62 7.35 - -
A67 S63 3.21 S62 4.38 S62 4.38 (1) (1)
A68 S64 5.50 S65 6.33 S65 6.33 (1) (1)
A69 S65 14.58 S65 14.58 S65 14.58 - -
A70 S66 4.58 S67 11.73 S67 11.73 (7) (7)
A71 S67 20.58 S68 11.92 S53 36.83 9 (16)
A72 S68 30.00 S67 19.00 S67 19.00 11 11
A73 S69 1.90 S72 2.50 S71 5.15 (1) (3)
A74 S70 0.00 S71 14.59 S71 14.59 (15) (15)
A75 S70 0.00 S71 5.15 S71 5.15 (5) (5)
A76 S71 5.15 S73 6.35 S73 6.35 (1) (1)

86



Table 5.6: Comparisons of evacuation time generated by EC, ANN-
EC, and current shelter location-allocation

Affected
areas

Current Shelter Allocation EC ANN Differentiation
Assigned
shelter

Time
(Hours)

Assigned
shelter

Time
(Hours)

Assigned
shelter

Time
(Hours)

Current VS
EC

Current VS
ANN-EC

A77 S72 17.85 S72 17.85 S72 17.85 - -
A78 S69 2.50 S69 2.50 S53 6.40 - (4)
A79 S69 0.50 S71 5.15 S71 5.15 (5) (5)
A80 S73 2.08 S73 2.08 S8 22.50 - (20)
A81 S75 29.33 S75 29.33 S75 29.33 - -
A82 S78 27.25 S74 25.46 S65 19.58 2 8
A83 S74 2.17 S77 3.50 S77 3.50 (1) (1)
A84 S74 19.50 S79 16.13 S79 16.13 3 3
A85 S74 17.79 S75 16.29 S75 16.29 2 2
A86 S77 4.20 S78 2.90 S78 2.90 1 1
A87 S76 1.03 S77 2.77 S77 2.77 (2) (2)
A88 S78 1.03 S77 1.03 S77 1.03 - -
A89 S79 35.40 S75 29.33 S75 29.33 6 6
A90 S80 3.80 S80 3.80 S80 3.80 - -
A91 S81 0.10 S80 3.30 S80 3.30 (3) (3)
A92 S81 1.90 S80 1.07 S80 1.07 1 1
A93 S82 4.13 S83 3.03 S83 3.03 1 1
A94 S82 1.47 S84 3.30 S84 3.30 (2) (2)
A95 S82 0.93 S85 0.93 S85 0.93 - -
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Table 5.6: Comparisons of evacuation time generated by EC, ANN-
EC, and current shelter location-allocation

Affected
areas

Current Shelter Allocation EC ANN Differentiation
Assigned
shelter

Time
(Hours)

Assigned
shelter

Time
(Hours)

Assigned
shelter

Time
(Hours)

Current VS
EC

Current VS
ANN-EC

A96 S82 4.10 S86 1.63 S86 1.63 2 2
Average Improvement (Percentage) (20.77) (98.06)
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5.7 Conclusion

This study involves determining shelter location-allocation in responding to
humanitarian logistics. The first step begins with proposing a multi-objective
optimization model which aims at minimizing the total cost and minimizing
the total time for victims’ evacuation. The Epsilon Constraint approach is
used to deal with these conflicting objectives. The optimal solutions illustrate
the selected shelters to serve the victims in each area. It reveals that one shel-
ter can accommodate the victims from several affected areas regarding the
assumption of the model. However, the onsets would not occur concurrently
in a real situation such as previously two affected areas ever confronted disas-
ter at the same time and assigned to share the same shelter, but in the future
either one area supposes to face disaster again, but another is safe, then it is
arguable whether the shelter allocation plan would be the same. The prob-
ability of disaster onsets would arise in numerous patterns and tends to be
more complex when conduct decision-making for several areas. Therefore,
this study employs ANN to deal with large scale data for dealing with this
complexity. In this matter, the obtained optimal solutions are simulated to
express possible situations that would arise in all affected areas together with
assigned shelters. The datasets are test and train by ANN. The sensitivity
analysis is performed to define the optimal learning rate that can generate
the best accuracy rate. Applicability of the proposed methodology is demon-
strated through the case study of shelter location-allocation for flood areas
of five districts encompass 96 affected areas (neighborhoods) of Surat Thani,
Thailand. The final ANN model is used to train and test these data with
the optimal learning rate of 0.05 and a momentum of 0.9. The shelter allo-
cation results generated by both Epsilon Constraint method and ANN are
shown and compared. The results obtained from ANN quite a consistency
with epsilon constraint method both in aspects of total cost per person and
total evacuation time. However, it was found that ANN outperforms the
optimization-based method in some cases.

In conclusion, it can be stated that the dataset for using as the input of
ANN are acquired from solving multi-objective optimization problem with
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epsilon constraint method. Combining two methods for determining shel-
ter location-allocation is the contribution of this study. To the best of our
knowledge, there are no prior works proposed this methodology, especially in
the context of humanitarian logistics. Nevertheless, this study still has some
limitations due to the simulated dataset obtained from optimization-based
method in which tested with specific affected areas. It may not compatible
with other case studies that have different characteristics. Yet, it would be
advantageous for decision-makers of these 96 areas when they make decisions
on shelter allocation in the future.
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Chapter 6

Two-stage Facilities
Location-allocation Model in
Responding to Relief Supply
Chain

6.1 Introduction

The occurrences of natural catastrophes have caused noteworthy damages
to humankind, social, and economic sectors. In 2019, there were globally
396 disasters attacking reported. The effects of disasters resulted in 11,755
dead, 95 million people affected, and $103 billion economic losses. Among all
occurrences, flood was one of the most frequent catastrophes which radically
impacted the highest number of affected people around the world, especially
in Asia [11].

Manipulating the proper logistics practices to simplify disaster manage-
ment is recognized as the "humanitarian logistics". The goal of humanitarian
logistics is to alleviate the victims’ suffers through the processes of rescuing
the victims from disrupted area to safe zones, as well as planning, storing,
and delivery the relief supplies such as temporary shelters, foods, potable wa-
ter, survival bags, medical supplies, tents, generators, etc. [58, 59] for healing
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efforts with the right time, right quantity to the right place [34, 54]. Further-
more, humanitarian logistics and humanitarian supply chain beyond focuses
on the relationship among the related parties to facilitate such mobilizing
possible which is very important to respond to the catastrophes properly
[56].

Humanitarian logistics and supply chain also relates decision-making on
facilities location-allocation, e.g. shelter, distribution center, warehouse, or
healthcare center is very vital since it takes a long-time effect, requires a
considerable investment, and involves many parties [47, 48]. Among all facil-
ities, finding temporary shelters to support the victims is an important issue
that must be considered beforehand [47]. Moreover, a proper manner for
justifying facility location-allocation helps decision-makers to avoid ad-hoc
decision making. In this case, optimization techniques are employed for ef-
ficient allocating scarce resources which impact the success of humanitarian
supply chain best practices [57].

To entirely improve both effective and efficient criteria along the supply
chain, developing multi-echelon facility location-allocation model is essential.
Regarding a literature survey in Chapter 2, majority of previous studies usu-
ally present the single echelon for relief facility location-allocation. There is
only relative small number of studies that develop the several echelon. More-
over, when determining the objective functions of the multi-echelon facility
location-allocation models, majority of the studies generally proposed the
single objective optimization models for location-allocation. The limitation
of a single objective function could ignore some important criteria. There-
fore, it is necessity to consider various echelon facility location-allocation for
improving the whole supply chain, and should take into account the consider-
able criteria concurrently for achieving the desired goals of the humanitarian
relief supply chain.

This study proposes a multi-objective optimization model for two-echelon
or two-stage facilities location-allocation. The first echelon is focused on the
process of evacuating the victims from the disrupted areas to the selected
shelters. Both efficiency and effectiveness are taken into account for deter-
mining shelter site selection and allocation. Therein, the efficient shelter
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site selection-allocation model proposed by [48] is employed and extended by
including a further considerable criterion, i.e. the total time for victims’ evac-
uation. For the second echelon, it involves justifying the suitable locations
to utilized as the distribution centers for storing and distributing the relief
supplies to serve the victims who stay in the selected shelters. Mathematical
model is formulated to minimize the total transportation cost between the
candidate distribution centers and the open shelters. The application of the
proposed model is illustrated through the flood case study in Tha Uthae,
Surat Thani of Thailand.

The originality of this study mainly relates the model formulation that
concurrently considering both efficient and effective criteria in which the prior
work mostly ignored determining simultaneously. Furthermore, the proposed
model seeks to improve two echelons, i.e. preparedness phase and response
phase. The powerful solution approach Epsilon Constraint is employed for
dealing with the multi-objective optimization problem to avoid assigning
weight coefficient to the incomparable objective function and avoiding defined
the preference values that lead to face with ambiguity in which the prior work
did not consider this matter.

6.2 Proposed methodology

The mathematical formulation for the two-echelon facilities location-allocation
model is proposed. The first echelon attempts to define proper shelter
location-allocation and the second echelon aims to assign the appropriate
distribution centers to store and dispatch the relief supplies to the open shel-
ters. The relationship and linkages between two echelon is demonstrated
in the Figure 6.1. The assumptions of two-echelon relief facility location-
allocation model can be described as follows:

Assumptions

• The number of victims in each affected area is known and fixed
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Figure 6.1: Design of two echelon relief facility location-allocation

• The locations of all affected areas, candidate shelters, and candidate
distribution center are fixed

• The victims in each affected area are evacuated to the selected shel-
ters as the entire unit and not permit to separately assign to different
shelters

• The vehicles using in evacuation process and relief supplies distribution
are homogeneous

• The velocity of the vehicles is constant, the traffic conditions are ignored
to consider
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Model formulation

1) First echelon model
The first echelon involves a disaster response phase which aims at evacuat-

ing the victims from the affected areas and seeking the appropriate shelters
to serve the victims. Herein, a set of candidate shelters is predetermined.
The existing infrastructures such as schools, temples, municipalities are used
as the candidate shelters. To improve both effective and efficient criteria
together, the multi-objectives function is formulated to 1) minimize the total
cost which combines fixed cost for opening shelters, victims’ transportation
cost, and service cost, and 2) minimize the total time for victims’ evacua-
tion. The mathematical model, indices, parameters, and decision variables
are illustrated as follows:

Indices
I Set of affected areas
J Set of candidate shelters

Parameters
dij Distance between affected area i and candidate shelter j
hi Number of victims in area i
fj Fixed cost for opening the shelter j
Capj Capacity of the candidate shelter j
Capv Capacity of vehicle
mij Maximum acceptable distance between area i and shelter j
N Number of vehicles for evacuation process
T Duration of the disaster occurrence
V Velocity of the vehicle using in evacuation process
W Time for evacuating the victims in area i to shelter j
α Constant coefficient of transportation cost per kilometer

per person
β Wage per person for hiring staff to work in the shelter
γ Ratio of the required staff per victim
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Decision variables
Xj 1, if candidate shelter j is selected or otherwise 0
Yij 1, if affected area i is assigned to shelter j or otherwise 0
Pij Number of victims in area i that are assigned to shelter j

Objective functions

Min f1 =
∑
j∈J

Xjfj + α
∑
i∈I

∑
j∈J
dijYijhi + βT

∑
i∈I

Pij
γ

(6.1)

To develop the model, a set of the affected areas I and a set of predeter-
mined shelters J are incorporated. The first objective function (6.1) of the
proposed model aims to minimize the total cost which includes three terms
i.e. fixed cost for opening shelters, victim’s transportation cost, and victim
service cost.

Min f2 =
∑
i∈I

∑
j∈J

dijYij
V
· hi
NCapv

(6.2)

The second objective function (6.2) aims at minimizing the total time for vic-
tim’s evacuation. In this case, the data including distance between affected
area i to shelter j, number of victims that are mobilized, number and capacity
of vehicles, and vehicle’s speed during the flood are determined. The con-
straints for the objectives functions can be defined as Equation (6.3)-(6.10).

Subject to

∑
j∈J

Yij = 1, ∀i∈I (6.3)
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Constraint (6.3) limits an affected area i must be entirely assigned to only
single shelter j and must not be separately assigned to different shelters

Yij ≤ Xj, ∀i∈I,j∈J (6.4)

Constraint (6.4) restricts an affected area i must be assigned to only open
shelter j.

dijYij ≤ mij, ∀i∈I ,j∈J (6.5)

Constraint (6.5) restrains the distance between an affected area i to assigned
shelter j must not greater than a maximum acceptable distance.

dijYij
V
· hi
NCapv

≤ W, ∀i∈I ,j∈J (6.6)

Constraint (6.6) confines the duration for evacuating the victims from an
affected area i to selected shelter j not longer than a particular restrict time
W (hours).

∑
i∈I

Pij ≤ CapjXj, ∀j∈J (6.7)

Constraint (6.7) restricts the number of victims from each area i must not
exceed capacity of selected shelter j.
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∑
j∈J

Pij = hi, ∀i∈I (6.8)

Constraint (6.8) restrains the number of assigned victims equal to the num-
ber of victims in each affected area i.

Xj ∈ {0, 1}, ∀j∈J (6.9)

Constraint (6.9) defines the binary variable, Xj is 1 if candidate shelter is
selected to open, otherwise 0.

Yij ∈ {0, 1}, ∀i∈I ,j∈J (6.10)

Constraint (6.10) defines the binary variable, Yij is 1 if affected area i is
allocated to candidate shelter j, otherwise 0.

Since the proposed model attempts to improve the performance of hu-
manitarian logistics in the practical manner, there are two criteria of cost
and time that taken into account when formulating mathematical model
for location-allocation. Solving a multi-objective optimization is more com-
plex than solving a single objective model that the solution can be obtained
straightforwardly. In this circumstance, the multi-objective optimization
model is denoted as Equation (6.11)-(6.12). Where x = x1, x2, ..., xn is the
vector of decision variables, and S is a set of feasible solutions.

Max or Min f(x) = (f1(x), f2(x)) (6.11)
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Subject to

x ∈ S (6.12)

Regarding the above equations, the set of feasible solutions is recognized
as a Pareto optimal set which is compromising among various objectives.
There is no single optimal solution that can optimize all objective functions
at the same time. To avoid the vague causes by predetermining the pref-
erence value and assigning the weight to incomparable criteria, this study
selects the Epsilon Constraint method for dealing with multi-objective op-
timization model for relief facility location-allocation problem. With this
method, only one objective function is chosen as the primary objective while
other objectives are transformed to be the constraints of primary objective
function. However, the right-hand side values of the transformed constraints
should be known. Therefore, it is necessity to solve the inferior objective
function individually to obtain the optimal solutions for assigning as the
ε2,ε3,...εp, where p is the number of objective functions.

According to the prior works, the characteristics of disaster and relief re-
quirements are determined for solving the social issues and enhance the per-
formance of relief supply chain in terms of efficiency and effectiveness. Yet, a
large number of the previous works focused on improving a specific echelon
instead of several echelons which still be the limitation for improving the
whole relief supply chain. In aspect of model formulation, the research works
were extensively proposed as single-objective optimization which attempts
to improve either efficiency or effectiveness. There are a relatively small
number of studies that considered several objective functions concurrently.
Nevertheless, the considered criteria emphasize improving either effective-
ness or efficiency such as [16], and [10] that proposed the model to improve
effectiveness but ignore the efficiency. For solution methods, the well-known
approaches e.g. Weighted Goal Programming, and Weighted Sum Method
usually employed by the researchers to deal with several objective functions.
Nevertheless, these methods may not appropriate for dealing with multi-
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objective optimization for location-allocation in the context of humanitarian
logistics as previously illustrated in the literature review part. This study
aims to improve the research gaps by considering both criteria simultaneously
and use the more proper solution i.e. Epsilon Constraint method to deal with
the multi-objective optimization problem for facility location-allocation with
two-echelon for improving the relief supply chain.

In this study, the first objective function (6.1) which seeks to minimize
the total cost is selected to be the primary objective function, while the
second objective function (6.2) is transformed to the constraint of the pri-
mary objective since cost efficiency is an important criterion that reflects how
well of resource utilization which could be limited during disaster attacking
period. Furthermore, decision-makers can plan and adequately allocate the
budget for preparing and responding to catastrophes by determining the cost
criterion. Without an appropriate for determining cost, it could affect the
victims’ welfare. Therefore, solving the bi-objective optimization for facility
location-allocation by using Epsilon Constraint method can be illustrated as
follows:

Objective function

Min f1(x) (6.13)

Subject to

f2(x) ≤ ε2 (6.14)

(6.3) - (6.10)
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2) Second echelon model
The second echelon a preparedness phase that aims to select appropriate

distribution centers for storing and distributing the emergency supplies kits
to the victims who reside in the open shelters. The district office, munici-
pality, or sub-district administration organization are used as the potential
distribution centers. The objective function is formulated to minimize the
transportation cost between the selected distribution centers and the selected
shelters which acquired from solving the model in the first echelon. The
model, indices, parameters and decisions variable can be formulated as fol-
lows:

Indices
K Set of open shelters
L Set of candidate distribution centers

Parameters
dkl Distance between open shelter k and distribution center l
mkl Maximum acceptable distance between open shelter k and

distribution center l
sk Number of open shelters k
ζ Constant coefficient of transportation cost per kilometer

per round
Capl Capacity of distribution center l

Decision variable
Zkl 1, if shelter k is served by distribution center l or otherwise 0

Objective function

Min f3 = ζ
∑
k∈K

∑
l∈L
dklzklT (6.15)

102



The objective function is to minimize the total transportation cost between
distribution centers and open shelters. Therein, the transportation cost is
estimated regarding the distance between distribution centers and shelters
together with the frequency of trips which determines based on duration of
disaster occurrence.

Subject to

dklZkl ≤ mkl, ∀k∈K ,l∈L (6.16)

Constraint (6.16) restrict the transportation distance between open shelter k
and selected distribution center l is not farther maximum acceptable distance
mkl.

∑
k∈K

sk ≤ CaplZkl, ∀l∈L (6.17)

Constraint (6.17) limits total the number of open shelters should not over
the capacity of selected distribution centers.

Zkl ∈ {0, 1}, ∀k∈K ,l∈L (6.18)

Constraint (6.18) defines the binary variable, Zkl is 1 if candidate distribu-
tion center is decided to open, otherwise 0.

The numerical experiment is conducted by using the What’sBest LINDO
Optimization with laptop Microsoft Windows 10, Intel(R) Core (TM) 1.51
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GHz, RAM 4.0 GB. The proposed model is tested with the flood case study
which is demonstrated in the next section.

6.3 Applicability of the proposed model

The real-world case of the great flood in Tha Uthae, Surat Thani province
of Thailand is used to test the proposed model of the study. The terrain of
Tha Uthae is a lowland and usually faces with flooding, especially during the
rainy season. Based on the great flood of Tha Uthae in 2011, Surat Thani
National Statistical Office reported that, there were 10 affected areas, 20
candidate shelters and 5,076 victims that suffered from the submerged [53].

Table 6.1: Affected area and number of victims
Area No. of victims (person) Area No. of victims (person)
A1 750 A6 250
A2 540 A7 350
A3 400 A8 450
A4 800 A9 500
A5 650 A10 386

The related authorities involve the relief process by evacuating the vic-
tims from the affected areas to the temporary shelters. The Department of
Disaster Prevention and Mitigation, Ministry of Interior of Thailand is the
agency that takes the responsibility in shelter site selection and allocation.
Although there is no construction cost since existing infrastructures are uti-
lized as shelters, some fixed cost still exist due to the installation of portable
toilets, and tents for using as temporary kitchen, medical center, and ware-
house. Therefore, the cost for opening a shelter is estimated as 144,000 THB
per shelter.

Since the position of both affected areas and candidate shelters are known,
the distance based on road network is acquired from the Google Maps Dis-
tance Matrix API. The vehicles that are used in victims evacuation process
belong to the Royal Thai Army. There are 3 vehicles available in each se-
lected shelter. The vehicle’s capacity is 12 persons, a fuel consumption rate
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is 8 kilometers per liter, and vehicle’s speed during the inundation is 24 kilo-
meters per hour based on the estimated function of flood depth and vehicle’s
speed proposed by [49].

The authorities require to pay the service cost which arise when serving
the victims during the time they residing in the shelters. In this case, a
service cost is determined regarding a cost of staff hiring. The government
staffs are paid by their agencies with the standard wage of 380 THB per
person per day. The number of required staff is 1 staff per 50 victims [14].
An average duration of the disaster occurrence based on the historical data
is 6 days. Therefore, the service cost is estimated the whole cost for hiring
the staff during 6 days.

For distribution centers, the district office, municipality, or sub-district
administration organization are utilized as the candidate distribution centers.
Each distribution center can serve the open shelters not exceed three shelters.
The trucks will transport the relief supplies from the selected distribution
center to open shelter once a day. According to the location of open shelters
and candidate distribution centers are known, the road network distance
also can obtain from the Google Maps Distance Matrix API. The maximum
acceptable distance between open shelter and distribution center must not
longer than 50 kilometers.

6.4 Numerical experiment results

The numerical experiment begins with solving the first echelon model which
involves defining locations of shelters and assigning the selected shelters to
the affected areas. The selected shelters are latterly used for determining
the location-allocation of the distribution centers in the second echelon. The
experiment results of each echelon are demonstrated as follows:

6.4.1 Numerical experiment results of the first echelon

In the first echelon, there are two objective functions that incorporated for
determining an appropriate shelter location-allocation. The Epsilon Con-
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straint is employed to solve the multi-objective optimization problem for
shelter location-allocation. Therein, the first objective function (6.1) which
seeks to minimize total cost is selected to be the primary objective (6.13),
while another objective function (6.2) that aims to minimize total time for
victims evacuation is transformed to be the constraint (6.14) for restricting
the primary objective function.

Initially, the objective function (6.2) is individually solved in order to
define the optimal solution of total time for evacuated the victims in all
affected areas to the selected shelters. The result indicates that, the optimal
solution of total time for evacuated the victims in all affected areas to the
selected shelters is 367.58 hours. There are 3 shelters required to open for
serving the victims, the total cost is 760,146 THB. The shelters location-
allocation can be illustrated in Table 6.2.

Table 6.2: Shelter location-allocation generated by solving the second objec-
tive function

Open shelters Shelter location-allocation
S18 A1, A4,
S19 A2, A5, A9
S20 A3, A6, A7, A8, A10

Based on the obtained optimal solution result from individual solving the
objective function (6.2), the total time for victims evacuation 367.58 hours
is defined as the ε2 which is the right-hand side of equation (6.14) for lat-
terly solving the multi-objective optimization model with Epsilon Constraint
method.

In this study, the multi-objective optimization for shelter location-allocation
is solved varies upon adjusting the values of maximum acceptable distance
between affected area i and shelter j (mij) between 30 - 65 kilometers. Ad-
justing the right-hand side values of the particular constraint to observe how
the objective function changes is known as "Sensitivity Analysis". Here, the
Pareto solution varies upon differentmij generated by solving multi-objective
optimization are shown in Table 6.3.

Figure 7.1.4 demonstrates the Pareto optimal results indicate that, when
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Figure 6.2: Total cost, total evacuation time, number of open shelters, and
average distance varies on max. acceptable distance between affected area
and shelter

mij is relaxed, the average distance between affected areas and selected shel-
ters tend to increase. Likewise, the total time for victims evacuation increase
when mij are loosened as well. However, the results reveal that, relaxing
the mij has no significant effect in reducing the total cost. Furthermore, the
number of open shelters do not decrease when permit the mij to be loosened.
Based on the conducting the numerical experiment, it also helps to decide
an appropriate strategy to define the proper maximum acceptable distance
between affected area and shelter. Herein, the proper maximum acceptable
distance should not greater than 50 kilometers since it generates the lowest
total cost 740,486 THB, the number of open shelter is 3, with the acceptable
total time for victims’ evacuation 290.33 hours.
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6.4.2 Numerical experiment results of the second eche-

lon

After shelter location-allocations varies on different maximum acceptable dis-
tances are know, selecting the location of distribution centers and allocate to
open shelters are subsequently determined. The objective function (6.15) is
solved with the restrictions of distance between selected distribution center
and open shelter (mkl) not exceed 50 kilometers, and each distribution center
can serve not over 3 shelters. The location-allocation of distribution centers
for serving open shelters are illustrated in Table 6.4.

6.4.3 Total cost along the relief supply chain

Since the location-allocation of both shelter and distribution are determined.
The total cost along the relief supply chain can be estimated. The cost es-
timation is considered based on the total cost that combines fixed cost for
opening shelters, victim’s transportation cost and service cost along with
the transportation cost between open shelters and distribution centers. The
total cost can be demonstrated in Table 6.5. Regarding the numerical exper-
iment, it is clearly seen that with the maximum acceptable distance between
the affected areas and shelters not exceed 50 kilometers, it generates the
lowest total cost of the relief supply chain. Likewise, the results of shelter
location-allocation in the first echelon, it was found that restricts the max-
imum acceptable distance, not over 50 kilometers generate the lowest total
cost.
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Table 6.5: Total cost along the supply chain

Mij Shelter location-allocation Distribution center
location-allocation

Total cost
(THB)

30

S3: A4, A8
S12: A1
S13: A3, A10
S19: A2, A9
S20: A5, A6, A7

DC3
DC3
DC3
DC1
DC2

1,010,121

35

S1: A1, A4
S13: A10
S19: A2, A3, A9
S20: A5, A6, A7, A8

DC3
DC3
DC1
DC2

890,537

40
S1: A1, A4, A10
S19: A2, A3, A9
S20: A5, A6, A7, A8

DC3
DC1
DC3

749,056

45
S1: A1, A4, A10
S19: A2, A3, A9
S20: A5, A6, A7, A8

DC3
DC1
DC3

749,056

50
S1: A4, A5, A10
S19: A2, A3, A9
S20: A1, A6, A7, A8

DC3
DC1
DC3

748,343

55

S1: A4, A5
S18: A1
S19: A2, A3, A9
S20: A6, A7, A8, A10

DC3
DC3
DC1
DC2

896,830

60

S1: A4, A5
S18: A1
S19: A2, A9
S20: A3, A6, A7, A8, A10

DC3
DC3
DC1
DC2

903,530

65

S15: A4
S18: A1
S19: A2, A5, A9
S20: A3, A6, A7, A8, A10

DC3
DC3
DC1
DC2

905,178

6.5 Conclusion

This study proposed the two-echelon relief facility location-allocation model.
The first echelon involves justifying shelter location-allocation. The proposed
model considers two criteria i.e. 1) total cost which includes the fixed cost
for open shelter, victims’ transportation cost and service cost, and 2) total
victims evacuation time. Since the proposed model is a multi-objective func-
tion, the Epsilon Constraint method is employed to solve the model. In this
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study, minimizing the total cost is selected to be the primary, while mini-
mizing the total time for victim evacuation is altered to be the constraint of
the primary objective function. The sensitivity analysis is also conducted in
order to observe how the objective function change when a particular con-
straint is adjusted. In this case, the maximum acceptable distance constraint
between the affected area and shelter is restricted between 30 - 65 kilometers
is selected to perform.

After the locations of shelters are defined, selecting the appropriate dis-
tribution centers is then determined. In the second echelon which relates to
deciding distribution center location-allocation, the proposed model seeks to
minimize the total transportation cost between selected distribution centers
and open shelters during disaster occurrence. Then, the total cost along the
relief supply chain is determined.

In this study, the proposed model in both echelons is tested with the flood
case study in Tha Uthae, Surat Thani, Thailand. The proposed two-echelon
facility location-allocation model would benefit to the decision-makers to
efficiently and effectively deal with the disaster both response phase and
preparation phase.

The originality of this study mainly relates to model formulation which
considering both efficient and effective criteria in which the prior work mostly
ignored determining simultaneously. Furthermore, the proposed model does
not only seek to improve a particular echelon but includes two-echelon i.e.
preparedness phase and response phase of disaster management. This study
defines the weak points of the solution methods involve weight assignment
for addressing multi-objective optimization for location-allocation under the
context of humanitarian relief logistics. The more informative and effective
method i.e. Epsilon Constraint is employed to deal with the bi-objective
optimization problem to avoid identifying the preference values which lead
to face with ambiguity in decision making and to evade assigning weight
coefficient to the incomparable objective function, especially monetary and
non-monetary criteria in which the prior works did not take into account this
matter.

However, this study still has a limitation i.e. the proposed model is
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formulated based on flood characteristics. Therefore, it would be difficult to
apply to other types of disasters. For the future study, the uncertainty in
terms of disaster’s severity to include in the model in order to efficiently and
effectively apply for solving real-world problems.
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Chapter 7

Conclusion, Contribution, and
Future Work

7.1 Research conclusion

This dissertation proposed the methodologies to determine appropriate man-
ners of shelter location-allocation in responding to humanitarian logistics.
Several models are formulated as a guideline for decision-makers to justify
which shelters should be opened to serve the victims in the aftermath of
the disaster, and identify how the opened shelters should be assigned to the
affected areas. The conclusion of each model can be summarized as follows:

7.1.1 Efficient shelter location-allocation model:

This model is a single objective optimization model seeks to minimize the
total cost of opening shelters, victims’ evacuation cost, and victims’ service
cost. The Genetic Algorithm is used to solve the proposed model. The
highlight of this model is a considering of the cost which is an important
criterion that reflects how well resource utilization. Without cost determi-
nation, the decision-makers would not adequately plan the required budget
for victims’ relief purposes. The application of the model is validated with a
case study of shelter allocation in responding to flood in Tha Uthae, Surat
Thani, Thailand. The results generated by the proposed method outperform
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the current shelter location-allocation determined by a government agency.
However, this proposed methodology still has some limitations i.e. the dis-
tance between affected areas and candidate shelters is approximated based
on the Euclidean distance in which could not perfectly reflect the actual road
network distance and only one criterion that is considered.

7.1.2 Multi-objective optimization model for shelter location-

allocation:

This model seeks to improve both efficient and effective criteria concurrently
in which prior works usually proposed the single-objective function and ignore
to consider these two criteria together. There are three objective functions
i.e. minimize total cost, minimize total evacuation time, and minimize the
number of selected shelters. Unlike prior works, this study presents a con-
cept to determine the proper minimum distance between the affected area
and candidate shelter based on the number of victims and population density
of each area. The Epsilon Constraint method is adopted to solve the pro-
posed multi-objective since it avoids assigning the weight to monetary and
non-monetary objective functions. The Pareto optimal generated by Epsilon
Constraint method and optimal solution generated by individually solve sin-
gle objective function is then compared. The applicability of the proposed
model is illustrated through the case study of shelter allocation in responding
to the flood in Tha Uthae, Surat Thani of Thailand.

7.1.3 A novel approach for determining shelter location-

allocation in humanitarian relief logistics:

This model begins with formulating multi-objective optimization model to
minimize total cost and minimize total evacuation time. The optimal so-
lutions generated by the Epsilon Constraint method are latterly simulated
and brought to classify shelter allocation by ANN. The ANN model with
the proper learning rate is adopted to train and test the dataset. Then, the
shelter allocation results generated by both Epsilon Constraint and ANN are
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compared. The obtained results from ANN quite consistent with the Epsilon
Constraint method both in aspects of total cost per person and total evac-
uation time. However, ANN outperforms the optimization-based method in
some cases. The novelty of this model can is demonstrated through the in-
tegration of ANN with the Epsilon Constraint method for decision-making
on location-allocation problems. To the best of our knowledge, there are no
prior works propose and employ to deal with location-allocation problem in
context of humanitarian logistics. However, this novel approach still has a
limitation. The simulated dataset obtained from solving multi-objective op-
timization model is considered only the case study affected area. It may not
compatible with other case studies that have different characteristics. Yet,
this novel approach would be advantageous for decision-makers of these 96
areas when they make decisions on shelter allocation in the future.

7.1.4 Two-stage facilities location-allocation model in

responding to relief supply chain:

This model proposes a two-echelon relief facility location-allocation. First
echelon involves justifying shelter location-allocation that generates mini-
mum total cost and evacuation time. The second echelon relates to deter-
mining distribution center location-allocation to serve all opened shelters.
The formulated model attempts to minimize the total transportation cost
between selected distribution centers and open shelters during disaster oc-
currence. Then, the total cost along the relief supply chain is determined.
The application of the proposed model is tested by the case study of shelter,
and distribution center location-allocation during the flood in Tha Uthae,
Surat Thani, Thailand. The originality of this study mainly relates to the
model formulation which considering both efficient and effective criteria of
multi-echelon in which the prior work mostly ignored determining simultane-
ously. However, the limitation of this study still exist. However, this model
is formulated based on flood characteristics. So, it would not appropriate
to apply to other types of disasters. For the future study, the uncertainty
in terms of disaster’s severity would be included in the model for solving
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real-world problems.
Conclusion of above-mentioned models aligning by the research goals can

be summarized as follows:

7.2 Contribution

The contribution of this dissertation is divided into three parts i.e.theoretical
contribution, practical contribution, and contribution to knowledge science
as follows:

7.2.1 Theoretical contribution:

Decision-making on shelter site selection and allocation is normally con-
ducted by the optimization method. This study proposed optimization mod-
els to improve monetary and non-monetary terms concurrently. Regarding
the literature review, the prior works rather focus on improving either effi-
ciency or effectiveness and employ weight assignment solution approach i.e.
Weighted Sum Method, and Weighted Goal Programming to solve the pro-
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posed models. In the context of humanitarian logistics, monetary and non-
monetary are incomparable and cannot define its importance through the
given weights. Hence, the powerful solution approach Epsilon Constraint
method is adopted to solved multi-objective optimization models in this
study. To advance the decision-making of shelter location-allocation, this
study integrates the Artificial Neural Network to deal with complex and
large-scale data for solving location-allocation problems in humanitarian lo-
gistics field which recognized as the main contribution of this research.

7.2.2 Practical contribution:

The proposed multi-objective optimization models provide decision-making
support to decision-makers or related government sectors to determine ap-
propriate shelter location-allocation for responding to the flood onsets. In-
stead of allocating shelters relying on administrative areas or based on ad-
hoc decision-making, the proposed models help decision-makers to assign
the shelters to all affected area with the minimum total cost, minimum total
evacuation time, and all victims can access to the alleviate throughout. Fur-
thermore, the novel approach which combines optimization-based and ma-
chine learning for justifying shelter allocation simplifies the decision-making
process to be more effective when dealing with large-scale data and complex
decision-making in the future.

7.2.3 Contribution to knowledge science:

This study creates the knowledge by gathering data, information, and exist-
ing knowledge to formulate the mathematical models for solving real-world
problems of shelter location-allocation. The proposed models are solved by
optimization techniques to generate the optimal solutions. The obtained
optimal solutions are interpreted to create the new knowledge and repre-
sent through the proper measures to deal with decision-making on shelter
location-allocation for the benefit of stakeholders in relief supply chain.

In addition to proposed models, the contribution of this study involves
proposing the new approach for dealing with location-allocation problem.
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The optimization technique (Epsilon Constraint method) is integrate with
machine learning algorithm (Artificial Neural Network). It concerns with al-
lowing machine learning i.e. Artificial Neural Network to learn the knowledge
which generated by Epsilon Constraint method

In addition to proposed models, the contribution of this study involves
proposing a new approach by integrating Epsilon Constraint method and
Artificial Neural Network to deal with location-allocation problem. In this
case, ANN is allowed to learn the optimal solutions which are the knowl-
edge that generated by Epsilon Constraint. The ANN will learn how the
shelters are assigned to all affected areas under the several patterns of dis-
aster onsets. The novel approach helps decision-makers to determine shel-
ters location-allocation faster than optimization technique. It also supports
prompt decision-making which is very important to disaster response process.

7.3 Future works

This study plan to extend the proposed mathematical models to the stochas-
tic facility location-allocation models. The uncertainty parameters such as
disaster risk levels or uncertainty demand will be included in the mathe-
matical models. It would improve decision-making on location-allocation
problems in real situations. Furthermore, the proposed novel approach for
dealing with location-allocation will be tested with other case studies in order
to improve the method for determining location-allocation problems contin-
uously.
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Appendix

Report of interview decision-maker in disaster relief

Interviewee: Mr. Amnuay Praneetpholkrang, the Expert Committee of
Nakhon Ratchasima Municipality, Thailand who involved and experienced
in determining the action plan to response to flood.

Date of interview: October 2020, Thailand

Questions and responses

Q1: What party takes the responsibility in decision-making for
response to flooding?

R1: Normally, the provincial office collaborates with the municipality.
Department of Disaster Prevention and Mitigation which is one section of
the municipality directly involve in rescue, prevent, and mitigate which cause
by fire, flood, earthquake, building collapse, as well as other disasters. This
section also involves in preparing manpower and equipment to help the vic-
tims in a timely manner regarding to the legal regulations.

Q2: About the rescue process which involves evacuating the vic-
tims from affected areas to safe zones, what party take the action
in this process?

R2: There are several parties get involves in evacuating process. Other
than the Department of Disaster Prevention and Mitigation section, the
Royal Thai Army is another sector that assists in evacuation process by allo-
cating manpower and vehicles to mobilize the victims to the assigned shelters.

Q3: In terms of facilities for rescue evacuate the victims. What
vehicles that are used in evacuation process? What is the specifi-
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cation of the vehicles? How many vehicles normally available for
evacuation process?

R3: The vehicles that ever used in evacuation process belong to the Royal
Thai Army. The further information about the specification can be found in
the manual “Vehicle used in the Thai Army (in Thai Language)”. Basically,
the required vehicles for evacuating the victims should be 3-5 vehicles.
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The employed solver What’sBest! Lindo Optimization
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