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Abstract

Humans perceive emotion in multimodal ways. Speech is one of the sensory modalities in
which emotions can be perceived. Within speech, humans communicate emotion through
acoustic and linguistic information. In automatic emotion recognition by computers,
known as affective computing, there is a shift from unimodal acoustic analysis to mul-
timodal information fusion. As in human speech emotion perception, computers should
be able to perform speech emotion recognition (SER) from bimodal acoustic-linguistic
information fusion.

This research aims to investigate the necessity to fuse acoustic with linguistic infor-
mation for recognizing dimensional emotions. To achieve this goal, three sub-goals were
addressed: SER by using acoustic features only, fusing acoustic and linguistic information
at the feature level, and fusing acoustic and linguistic information at the decision level.

The first strategy aims at maximizing the potency of recognizing dimensional SER
by merely using acoustic information through investigating the region of analysis and
the effect of silent pause regions. This study generalizes the effectiveness of means and
standard deviations to represent acoustic features and the prediction of the importance of
silent pause regions for dimensional SER. In addition, the aggregation of acoustic feature
models valence and arousal prediction better than the majority voting method. Although
several approaches have been carried out, acoustic-based dimensional SER still has some
limitations. The major drawback is the low performance of valence’s prediction score.

The second and third strategies aim at improving the valence prediction, investigating
the necessity of bimodal information fusion, and evaluating the fusion frameworks for
fusing acoustic and linguistic information. Two fusion methods for acoustic-linguistic
information fusion are studied namely early-fusion approach and late-fusion approach.
At the feature level (FL) or early-fusion approach, two fusion methods are evaluated —
feature concatenation and network concatenation. The FL methods showed significant
performance improvements over unimodal dimensional SER. At the decision level (DL) or
late-fusion approach, acoustic and linguistic information are trained independently, and
the results are fused by support vector machine (SVM) to make the final predictions.
Although this proposal is more complex than the previous FL fusion, the results showed
improvements over the previous DL approach. These studies revealed the necessity to
fuse acoustic with linguistic features for dimensional SER.

This study links the current problems in dimensional SER with its potential solutions.
The fusion of acoustic and linguistic information fills the gap in dimensional SER. The
FL approach improved the performance of unimodal SER significantly. The DL approach
improves the FL approach’s performance by fusing decisions obtained from the bimodal
FL approaches. The results of this research are expected to contribute to gaining better
insights for the future strategy in implementing SER, whether to use acoustic-only fea-
tures (less complex, less accurate), early-fusion method (more complex, more accurate),
or late-fusion method (most complex, most accurate).

Keywords: dimensional emotion, affective computing, speech emotion recognition, in-
formation fusion, acoustic information
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Chapter 1

Introduction

This chapter introduces the necessary background to conduct research on dimensional
speech emotion recognition. The aims, problems, concept, contributions, and structure of
the dissertation are also briefly presented as guide in navigating the following chapters.

1.1 Background

Emotion can be regarded as the major difference between humans and computers. At
the beginning of human-computer interaction (HCI) development, no computer would
understand human emotion. Nowadays, there have been attempted to recognize human
emotion automatically by computers. If a computer could correctly recognize emotion,
HCI would be benefited greatly. For example, vehicle could detect driver’s mood (long
time emotion) to ensure safety. In other applications, the satisfaction and performance of
user and operator through call center applications can be measured using speech emotion
recognition technologies.

Speech emotion recognition (SER) is an emerging technology that is resulted from
science in multi-discipline area, including psychology, physiology, acoustics, and affective
computing. The psychology of emotion focuses on how a human reacts to certain stimuli
and how these stimuli affect both mentally and physically of humans. The physiology of
emotion is related to arousal of the nervous system with various states and strengths of
arousal relating to particular emotions. The acoustic of emotion studies on what acoustic
features relate to human emotion. The latter affective computing, according to Picard
[8], is termed as “computing that relates to, arises from, or influences emotion.”

Aside from those disciplines, language also has an impact on the expression of emotion.
Humans communicate emotion through speech and language [9]. Furthermore, language is
argued to shape perceived emotion intrinsically [10]. Thus, utilizing linguistic information
in automatic SER may be useful to make computer accurately recognize human emotions.

Information science aims to solve problems for humanity and society, pioneer un-
explored fields, and produce new innovative basic theories, basic technologies and ap-
plications based on information processing. In information science, a hierarchy of data-
information-knowledge (DIK) is known to model the flow of data. This model can be used
to model emotion recognition. The input to the data is signal, which is an acoustic signal
in SER. The data is the speech dataset. The information is the features (acoustic and
linguistic). The knowledge is the degree of dimensional emotion. This concept correlates
information science with SER or models SER from an information science perspective.

1



CHAPTER 1. INTRODUCTION

Acoustic information science is the study of information science for acoustic phenom-
ena – phenomena relate to sound. Speech is part of acoustic information science; thus,
the study of speech involves concepts used in acoustic information science (e.g., acoustic
signal processing). SER, although multidisciplinary research, involves two main fields,
the acoustics of speech and the psychology of emotion. For automatic SER by computers,
the understanding of speech acoustics and computer algorithms will provide a necessary
foundation for building a better SER system.

This experimental study explores the necessity of fusing acoustic and linguistic in-
formation for dimensional emotion recognition. The study views SER from an acoustic
information science point of view. Speech contains both linguistic (verbal) and acous-
tic (non-verbal) information. While the conventional SER method only uses acoustic
information, fusing both acoustic and linguistic information exists in human-human com-
munication and is feasible for human-computer interaction.

1.2 Research aims and problems

Speech is the primary modality for communication (known as speech communication)
including communicating human emotions. Even if other modalities may influence on
how human communicate emotions (e.g., facial expressions, gesture, posture, body’s mo-
tion/movement, and other physiological signals), in special cases, like in telephone calls or
voice assistant applications, speech is the only modality to determine a speaker’s emotion.

In certain cases, using acoustic information only (e.g., prosody or intonation) to per-
ceive human emotions may be not enough. For instance, happy and angry voices may
have similarities in high intonation, sad and fear may have similarities in low intonations.
In this case, knowing the semantic of the spoken words will increase the probability to
recognize the perceived emotion from speech. If the words have positive meanings and are
uttered with high intonations, then the chance that the speaker was happy is higher than
angry. This bimodal information fusion of acoustic and linguistic could be implemented
in computer algorithms to improve the performance of SER.

Thus, combining acoustic and linguistic information is relevant for improving SER
performance by computers. There is no need to add additional modalities since linguistic
information can be derived from speech. Modern automatic speech recognition (ASR)
can produce text in almost real-time processing. The transcribed spoken text can be
used to extract linguistic information. Both acoustic and linguistic information can be
fused in such frameworks to evaluate the effectiveness of information fusion over unimodal
information.

The main goal of this research is to investigate the necessity of fusing acoustic infor-
mation with linguistic information for dimensional SER. To achieve this main goal, the
following three sub-goals were addressed:

1. maximizing the potency of SER from acoustic information only by investigating the
region of analysis and silence region for feature extraction,

2. studying the fusion of acoustic and linguistic information at the feature level (early
fusion) and its effect, particularly for valence prediction improvement, and

3. studying the fusion of acoustic and linguistic information at the decision level (late
fusion) and comparing the results with the previous approach.

1.2. RESEARCH AIMS AND PROBLEMS 2
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There are five problems to be solved by these goals. The first problem is the region of
analysis for acoustic feature extraction. The second problem is the effect of silent pause re-
gion in dimensional SER. The third problem is the low performance of valence prediction.
The fourth problem is the necessity to fuse acoustic information and linguistic informa-
tion for dimensional SER. The fifth problem is to find the effective fusion framework for
combining acoustic and linguistic information. Figure 1.1 shows the connections between
research aims and research problems. The details of these aims (which is transformed into
research strategies) and problems (issues) are discussed further in Chapter 3.

Region of analysis

Effect of silence

Low valence 
performance

SER from 
acoustic only

Necessity to fuse
acoustic with linguistic

Acoustic-linguistic 
fusion framework

Early acoustic-
linguistic fusion

Late acoustic-
linguistic fusion

Figure 1.1: Connection between research aims (left) and research problems (right)

1.3 Research concept

Speech delivers a message that goes beyond words. In this understanding, word meaning
is not enough to convey a message; acoustic information is needed. Acoustic information
alone is also not enough to deliver a message. It is not only how it is said (acoustic), but
also what is said (linguistic). This concept is the foundation of this research, shown in
Figure 1.2. The concept or philosophy will be explained more details in Chapter 3.

This research concept differs from the previous studies (e.g., [11, 12]). In these studies,
the belief for emotional speech is about how it is said rather than what is said. This
study combines both pieces of “how” and “what” information. Acoustic features contain
information on how it is being said. Linguistic features contain information on what is
being said. Fusing both pieces of information, which are extracted from a speech, will
improve the clarity of the message, including the expressed emotion. The perception
of emotion will also improve by fusing this bimodal information. Figure 1.2 shows the
concept of automatic recognition of dimensional SER by fusing both pieces of information.
This process is also in line with the previous DIK concept in information science.

The process of recognizing emotion from speech consists of two main steps. First is
extracting information from speech data; second is extracting degree of dimensional emo-
tions as knowledge from acoustic and linguistic information. Features extraction extracts
two pieces of information from speech — acoustic and linguistic. Since dimensional SER
is a regression task, a regression process will map extracted features to the ground truth
labels. This process is commonly performed within machine learning or deep learning.
The acoustic and linguistic information are fused in this step, which can be implemented
in various ways.
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Emotion

Acoustic LinguisticSpeech

"how" "what"

Data

Information

Knowledge

Feature
extraction

Regression

Figure 1.2: Research concept of dimensional speech emotion recognition by fusing acoustic
and linguistic information

1.4 Contributions

The contributions of this dissertation can be traced to the published papers. These
contributions can be divided into three areas, as follows.

1. Acoustic feature extraction
In [13] the author evaluated categorical speech emotion recognition from silence-
removed speech region. The result suggests that extracting acoustic features from
the silence-removed region is better than from the whole speech region. In [14],
the author utilized silence as an additional feature to statistical functions. The re-
sults achieved a better score than a baseline raw speech. The author confirmed and
generalized the effectiveness of mean and standard deviations of low-level acoustic
features for SER [14, 15]. In [16], the author showed that acoustic feature aggrega-
tion leads to better performances than output aggregation. These contributions are
explained in Chapter 4. In [17], the author found that the acoustic features that
perform better in SER will also perform better in song emotion recognition.

2. Information fusion
In [18, 15, 16], the author proposed emotion recognition by fusing acoustic and lin-
guistic information at feature level. The results significantly improved unimodal
dimensional emotion recognition from either acoustic or linguistic information. Fur-
thermore, the author discussed the improvement of valence prediction in [19]. While
this contribution is discussed in Chapter 5, the improved version of the proposed
method, the late fusion method, is explained in Chapter 6. The evaluated fusion
methods are expanded not only for acoustic and linguistic fusion but also for acoustic
and visual information fusion [20, 21].
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3. Classification methods
Modern classification methods utilized deep learning models. However, the conven-
tional method, such as support vector machine (SVM) and multi-layer perceptron
(MLP), are still used in many fields. The author showed that traditional MLP with
deeper layers and proper configurations performed better than modern deep learn-
ing architecture [22]. For the SER task with deep learning, the author confirmed the
need for bigger data size to be fed to deep learning models [23]. The choice of the loss
function is a matter in machine/deep learning. The author proposed correlation-
based loss function to improve the performance of dimensional SER [20, 15, 24]. The
author also evaluated multitask learning (MTL) for predicting valence, arousal, and
dominance degrees simultaneously based on this loss function [15, 25]. Further-
more, the author found that recurrent-based neural networks (RNN) are effective
for the SER task [26]. More improvements were obtained when this RNN model is
combined with the attention model [13].

1.5 Dissertation structure

This dissertation is organized in eight chapters. The rest of these chapters is organized
as follows.

• Chapter 2 presents a literature study on speech emotion recognition from bimodal
acoustic and linguistic information fusion. An introduction that motivates the previ-
ous research by fusing acoustic and linguistic information is presented. This chapter
reviews the models, features, classifiers, and fusion methods for the SER task.

• Chapter 3 describes the research methodology — justification for using particular
research methods. This chapter consists of the motivation of researching SER,
research issues, research philosophy, research strategies, datasets, and a description
of an evaluation metric.

• Chapter 4 describes SER by using acoustic features. This chapter investigates the
region of analysis, the effect of silent pause features, and the aggregation methods
for acoustic-based SER.

• Chapter 5 describes the fusion of acoustic and linguistic information at the feature
level. This chapter evaluates the concatenation of features and networks for bimodal
emotion recognition from acoustic and linguistic information. A SER evaluation
from automatic transcription is also provided in addition to manual transcription.

• Chapter 6 describes the fusion of acoustic and linguistic information at the decision
level. This chapter evaluates the late-fusion approach by combining both informa-
tion on two steps processing, including some related issues: speaker-dependent vs.
speaker-independent scenarios and effect of lexical-controlled lexicons.

• Chapter 7 compares the results within this study and with other studies.

• Chapter 8 presents the overall conclusions of the dissertation. Some possible future
research directions are proposed from the current research findings.

This dissertation’s organization is summarized in Figure 1.3.

1.5. DISSERTATION STRUCTURE 5
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Chapter 2

Literature Review

This chapter reviews research on speech emotion recognition from two modalities, acoustic
and linguistic information. Four main components of speech emotion recognition from
multimodal fusion are described, including emotion models; features; classifiers; and fusion
methods. Each section after Introduction describes each of these components with their
advancements and current limitations; the last section summarizes this chapter.

2.1 Introduction

Speech emotion recognition (SER) is a part of affective computing that relates to, arises
from, or influences emotions [8] within speech. SER is an attempt to make the computer
to be able to recognize expressed emotion in a given utterance. The earliest reported
research on SER, perhaps, was the work of Dellaert et al. [27]. The study explores
prosodic features with several statistical pattern recognition techniques to classify the
emotional content of utterances. Under a limited number of data (1000 utterances), the
system achieved a comparable performance close to humans.

Utilizing speech to identify humans’ emotions rooted from the correlation between
voice and emotion. There is strong evidences that humans can recognize other’s emotions
from their voices. In addition, given that speech is less private than image and video, using
speech to recognize emotion benefits future implementation. Another milestone conducted
by Petrushin [28] prove a pilot study to implement SER for call center application. This
laboratory-scale study, at that time, showed a potential application for SER technologies.
Nowadays, this SER technology is ly available in the commercial market, while its research
is still ongoing.

The potential application of speech-based emotion recognition triggers the need for
such datasets. During 2000s, several datasets for emotion recognition have been pub-
lished, including the availability of speech data in the datasets. Among many datasets,
the following are commonly used in SER research: EmoDB [29], IEMOCAP [30], MSP-
IMPROV [31], and RAVDESS [32]. The availability of these datasets accelerates research
on the SER area.

The progressive research on SER led to practical implementation in the commercial
industry. Nowadays, SER has been implemented in various applications, both web/cloud-
based applications or standalone applications. Although it is useful to analyze the sub-
ject’s affective state, these emerging affective recognizer technologies have been criticized
by others. Researchers in psychology argued that due to individuals’ high variability, the
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emotional categories do not have an essence. The correlation between particular facial
expression and the corresponding basic emotion was not strongly supported [33].

Among many other issues, multimodal information fusion is a challenging task in pat-
tern recognition. Recent studies (e.g., [34, 15, 20, 18]) confirm that multimodal classifiers
outperform unimodal classifiers. In SER itself, one of the main issues in searching for a
more predictive feature is whether it suffices to explore acoustic features only, or it is nec-
essary to combine acoustic features with other modalities [35]. For speech, both acoustic
and linguistic features can be extracted. Thus, two pieces of information can be fused to
evaluate the effectiveness of information fusion from a single speech modality.

The use of linguistic information for SER is also reasonable from an affective computing
point of view. In task-processing related tasks, linguistic information is extracted from
the text for sentiment analysis. This textual information was also used to detect emotion
in text [36, 37, 38]. In these works, textual information showed encouraging results on
both categorical and dimensional emotion recognition from text. Fusing acoustic and
linguistic information may improve the performance of SER more significantly than other
strategies.

Indeed, bimodal emotion recognition by fusing acoustic and linguistic information
shows significant performance improvement. References [39, 40, 41, 42, 43] show the use-
fulness of fusing acoustic and linguistic in different strategies to improve SER performance.
Different acoustic and linguistic features were fused using different classifiers. Different
fusing strategies were evaluated to investigate the effectiveness of the fusion method.

This chapter aims to review current studies of bimodal emotion recognition by utilizing
acoustic and linguistic information. The scope of this study includes the emotion models,
features, classifiers, and fusion methods used in bimodal SER. In the end of this chapter
is a summary concluding this literature review.

2.2 Emotion models

Before beginning to research emotion recognition, it is important to choose which emotion
model to adopt. According to [44], there are at least three views to model humans’ emo-
tions: categorical emotion, dimensional emotion, and componential appraisal emotion.
However, all SER research employed either first, second, or combination of both views
as target emotion. No research was found on using speech data to obtain appraisal emo-
tion. Thus, the following description describes major models in active affective computing
research.

2.2.1 Categorical emotion

Categorical emotion, also known as basic emotions, is the discrete emotion that is inde-
pendent of one another in its manifestations. Although the original idea is to organize
affective state into their emotion families (rather than discrete emotion); however, most
researchers agree that there are six basic emotions: anger, fear, enjoyment, sadness, dis-
gust, and surprise. The first five emotions are backed by robust and consistent evidence,
while the evidence for the surprise is not as firm [45]. Nevertheless, these six basic emo-
tions have been a standard in categorical emotions.

Before Ekman coined the terms of basic emotions, Plutchik [46] have defined ba-
sic eights bipolar emotions: joy (reproduction), sorrow/sadness (deprivation), accep-
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tance/trust (incorporation), disgust (rejection), surprise (orientation), anticipation (ex-
ploration), anger (destruction), fear (protection). These eight emotions can be illustrated
as a wheel of emotion, as shown in Figure 2.1. Each emotion can mix with other emotion
to make up another emotion, as mixing colors.

disapprovalremorse

contempt awe

submission

loveoptimism

aggressiveness

pensiveness

annoyance anger rage

ecstacy

joy

serenity

terror fear apprehension

admiration

trust

acceptance

vigilance

anticipation

interest

boredom

disgust

loathing amazement

surprise

distractionsadness

grief

Figure 2.1: Plutchik wheel of emotions

Instead of six, recent research suggests that four latent expressive patterns were com-
monly observed in facial expressions [47]. However, instead of mentioning the name of
basic emotions, the research utilized the term basic “action unit pattern” (AU Pattern),
from one to four. Although backed by scientific evidence, this finding did not have any
practical implementation yet.

Ekman revised the characteristics which distinguish basic emotion from 9 criteria [45]
to 11 criteria [48]. The new criteria resulted in 15 emotions: amusement, anger, contempt,
contentment, disgust, embarrassment, excitement, fear, guilt, pride in achievement, relief,
sadness/distress, satisfaction, sensory pleasure, and shame. Du et al. [49] shows 21
categories of facial expressions by a facial action coding system analysis. Furthermore,
Cowen and Keltner [50] found 27 emotional experiences from facial expression by across
self-report methods. The growth of the number of categorical emotions, based on facial
expression measurement, confirms the high variability of humans expressed emotions.
Darwin argued that the biological category, including the emotion category, does not
have an essence; it is hard to map one-to-one facial expressions to emotional states.

2.2.2 Dimensional emotion

Instead of dividing emotion into several categories, a dimensional emotion views emo-
tion as continuous values/degrees of attributes in valence-arousal space (VA) or valence-

2.2. EMOTION MODELS 9



CHAPTER 2. LITERATURE REVIEW

arousal-dominance (VAD) space. Valence is the degree of positive or negative emotion,
arousal refers to the level of activation from sleepiness (low) to awakeness (high), and
dominance is the degree of control over the emotion [51]. In this theory, an emotion or
affective state is not independent of one to another. Rather, they are related one to an-
other in a systemic manner (in VA or VAD space). Russell [52] argued that the previous
categorical emotion could be mapped within VA spaces. An illustration of VA space with
several emotion categories is shown in Figure 2.2.
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Figure 2.2: Graphical representation of circumplex model (VA space)[1]; vertical axis:
arousal; horizontal axis: valence

The search for higher dimensions for dimensional emotion is a worthwhile study. Al-
though Russell argued that all emotion categories could be mapped in 2D valence-arousal
space [52]; however, Fontaine et al. have found that the world of dimensional emotion is
not two or three dimensions, but four dimensions [53]. The fourth dimension is the un-
predictability. In order of importance, the order of dimensional emotions is valence, dom-
inance, arousal, and predictability. Fortunately, the similar fourth dimension is proposed
in an emotion recognition challenge [54]. In this challenge, four-dimensional emotions
were arousal, expectancy, power/dominance, and valence. Expectancy, which represents
the predictiveness of the subject’s feeling, is very similar to predictability/unpredictability
in the previous report.

The third emotion model, hybrid model or appraisal model, can be viewed as an ex-
tension of the dimensional model. In this model, emotion categories are spanned between
bipolar dimensions. For instance, “impatience” is located in the upper part of the arousal
axis (see [55]). This study of appraisal-based emotion theory leads to the development of
the Geneva emotion wheel (GEW) rating study. This hybrid model has two similarities
with the previous 4D dimensional emotion model. First, the hybrid model also uses four
attributes (i.e., dimensions): valence, dominance/power, arousal, and conducive/obstruc-
tive (instead of predictiveness). Second, in version 2.0 of GEW, two axes used to draw
emotion terms are valence and dominance/power, which are the two most important emo-
tional attributes according to [53]. Nevertheless, the use of the hybrid model in SER is
not familiar in the SER research community, perhaps due to these labels’ availability in
the dataset.
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2.3 Features

The input features to the SER system is the most important issue for developing bimodal
information SER. If the input is not informative for predicting emotion or does not cor-
relate to the predicted emotion, the prediction results will suffer from low performance.
In principle: garbage in, garbage out. The following divisions are useful features for SER
from acoustics and linguistics.

2.3.1 Acoustic features

The correlation of acoustic features with emotion has been studied for many years [55, 56].
The main division of acoustic features for SER is the classical and modern approaches, i.e.,
hand-crafted features vs. deep learning-based features. Hand-crafted features employed
acoustic features extracted per frame. These features often called local features or low-
level descriptor (LLD). On the other hand, statistical features computed from LLDs are a
new way to capture the dynamics among frames. This latter feature extraction method is
called global features, suprasegmental features, high-level features, or high-level statistical
function (HSF). Figure 2.3 shows the divisions of acoustic features for SER.

Acoustic
Features

LLD HSF

Features Extracted by 
Machine/Deep Learning

Hand-crafted
Features

● Energy
● Time signal
● Fundamental 
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● Spectral
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quartile ranges
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● Std, variance, 

kurtosis, 
skewness

● Centroid

● BoAW
● DeepSpectrum
● ResNet
● AuDeep
● SincNet
● SoundNet
● AclNet

Figure 2.3: Divisions of acoustic features for SER

Eyben et al. [41] divided LLD and HSF into five groups: signal energy, fundamental
frequency (perception: pitch), voice quality, cepstral, time signal, and spectral. Prosodic
features (fo, duration, intensity, voice quality) have been known to have a strong corre-
lation with emotion [57, 58, 59] from a psychology point of view. In acoustics, prosody is
implemented into several acoustic features, including LLD and HSF. Vayrynen [12] made
a distinction between prosodic and acoustic (non-prosodic) features. His study reported
that a combination of prosodic and acoustic features achieved comparable performance
to human reference on basic emotion recognition.
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Both references [60] and [39] employed fo and energy-based acoustic features for SER.
The former applied both LLD and HSF of fo and energy features, while the latter only
applied HSF of fo and energy features. The latter reference found that fo-based features
correlated to SER performance more than energy-based features.

As a ‘default’ feature on most automatic speech recognition (ASR), MFCC has been
explored for SER. Metze et al. [61] has found that MFCC is the most informative acoustic
features compared to other evaluate acoustic features. Tripathi et al. [62] found that
MFCC performed better than spectrogram features on unimodal acoustic SER.

The shift from MFCC to mel-filterbank (MFB) features in ASR motivates SER re-
searchers to adopt a similar direction. Aldeneh et al. [63] extracted 40 MFB features
for dimensional SER tasks on the IEMOCAP dataset. Zhang et al. [64] employed a
similar MFB with 40-dimensional with z-normalization on categorical IEMOCAP and
MSP-IMPROV datasets. Both research showed fair performances (50% – 65% accuracy)
from MFB features for the SER task.

Phoneme, the smallest unit of speech, has been investigated to be useful for SER
task. Zhang et al. [64] furthermore combined MFB with phoneme for the same SER
task. A combination of phoneme with MFB outperforms MFB-only of phoneme-only
input features. Yenigalla et al. [65] combined phoneme embedding with a spectrogram.
The phoneme embedding is generated from the word2vec model [3] and IEMOCAP speech
data. The combination of phoneme with spectrogram achieves the highest accuracy among
individual features.

Since most classifiers in modern SER systems used deep learning methods, it is rea-
sonable to extract an acoustic representation of speech in an end-to-end manner via deep
learning methods. In INTERSPEECH 2020 ComParE challenge, two deep-learning-based
features were given in the baseline system, DeepSpectrum and AuDeep. The provided
DeepSpectrum features with ResNet50 network achieve the highest unweighted average
recall (AUR) on the elderly emotion sub-challenge test set.

2.3.2 Linguistic features

Linguistic features are the realization of linguistic information. It is also called text fea-
tures, textual features, lexical features, language features, or semantic features. Although
linguistic and lexical terms have different meanings, i.e., language vs. word meaning,
these terms often used interchangeably in computer science (or information processing).
Text features used in this study also have a different meaning from the same term used
in book or article writing. In book or article writing, the text features include writing
components such as a glossary, bold typeface, title, headings, captions, and labels. In in-
formation science, text or linguistic features are features extracted from written or spoken
text. Thus, the term linguistic features is a preferable term than text features to avoid
confusion among readers.

Linguistics features used in emotion recognition represent numerical values related to
the emotional states in a word. The simplest way to build linguistic features for emotion
detection is by emotional keyword spotter [66]. In this framework, every word is assumed
to have a correlation with emotion categories. For instance, the word “disappointed” can
be represented as [(2, 0.2), (3, 0.6)] where 2 represents “angry” emotion and 3 represent
“sadness” emotion. Both 0.2 and 0.3 represent degrees of emotion’s intensity. This
emotional keyword spotter can be expanded into an emotional phrase spotter [39].
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The first systematic linguistic representation of a document, perhaps, is TF-IDF (term-
frequency inverse document frequency). TF is defined as the frequency of a word in a
particular document/utterance. IDF is defined as a logarithm of the total number of
documents’ ratio to the total number containing that word. TF-IDF is the multiplication
of TF with IDF.

Bag-of-Words (BoW) is a numerical feature vector to represent “words in a bag.”
First, a fixed integer is assigned to each word occurring in any documents, i.e., building
a dictionary from a corpus by assigning a word to integer indices. Second, count the
number of occurrences of each word and store it as the value of feature j where j is the
index of word w in the dictionary [67]. These BoW features can be expanded for acoustic
and visual modalities (BoAW and BoVW).

Several lexicon dictionaries have been developed to inform the ’emotion score’ of emo-
tional words. These dictionaries include DAL [68], ANEW [69], VADER [70], and NRC
[71]. Using these dictionaries allows direct measurement of emotional words in the given
utterances. For instance, the word “arose” in DAL has values of 2.11, 2.00, and 1.40
for pleasantness, activation, and imagery. These values are on a 3-point scale; different
dictionaries have different scales.

The search for vector representation from a word led to the research of word embed-
ding or word vector. In this approach, a deep neural network (DNN) is used to train a
large corpus (i.e., a Wikipedia corpus) to generate word vectors based on an algorithm.
This approach has resulted in a new paradigm in the vector representation of linguistic
information of a word. Several models exist, including word2vec, GloVe, FastText, and
BERT. These models are detailed in Chapter 5.

Figure 2.4 shows the division of linguistic features used in SER task. Similar to acoustic
features, there is a tendency to move to deep learning-based features from hand-crafted
features. The choice of linguistic feature is usually based on the task as in other text
processing areas.

2.4 Classifiers

This section reviews the four most used classifiers in speech emotion recognition. One
is a machine learning classifier, i.e., support vector machine (SVM). Others are three
deep learning classifiers, i.e., multilayer perceptron (MLP), convolutional neural networks
(CNN), and long short-term memory (LSTM) neural networks. The brief descriptions of
these classifiers are given below.

2.4.1 SVM

SVM is a useful machine learning classifier for, generally, small datasets. For categorical
emotion recognition, SVM applies acoustic or linguistic features for the given labels. This
SVM applied to the classification task is called support vector classification (SVC). For
dimensional emotion recognition, SVM applies regression analysis to map them to the
given labels. This SVM for regression task is called as support vector regression (SVR).

SVM can accept unimodal or multimodal inputs. In bimodal emotion recognition
from acoustic and linguistic information, SVM can be utilized in two-stage scheme for
evaluation of the emotion recognition system from DNNs outputs. In bimodal information
fusion, each prediction from the acoustic and text networks is fed into the SVM. From two
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Figure 2.4: Divisions of linguistic features used in SER

values (e.g., valence predictions from the acoustic and text networks), the SVM learns to
generate a final predicted degree (e.g., for valence). The concept of using the SVM as the
final classifier can be summarized as follows.

Suppose that two valence prediction outputs from the acoustic and text networks,
xi = [xser[i], xter[i]], are generated by the DNNs, and that yi is the corresponding valence
label. The problem in dimensional SER fusing acoustic and text results is to minimize
the following:

min
w,b,ζ,ζ∗

1

2
wTw + C

n∑
i=1

ζi + C
n∑
i=1

ζ∗i

subject to wTφ(xi) + b− yi ≤ ε+ ζi,

yi − wTφ(xi)− b ≤ ε+ ζ∗i ,

ζi, ζ
∗
i ≥ 0, i = 1, . . . , n,

(2.1)

where w is a weighting vector, C is a penalty parameter, ζ and ζ∗ is the distance between
misclassified points and the corresponding marginal boundary (above or below). Here,
φ is the kernel function. On the use for late fusion approach, the study choose a radial
basis function (RBF) kernel because of its flexibility to model a nonlinear process with
a dimensional emotion model close to this kernel. The function φ for the RBF kernel is
formulated as:

K(xi, xj) = eγ(xi−xj)
2

, (2.2)
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where γ defines how much influence a single training has on the model. All parameters
in this SVM are obtained empirically via linear search in a specific range. Although the
explanation above uses valence, the same also applies for arousal and dominance.

2.4.2 MLP

MLP is a classical feedforward neural network by projecting input data into linearly
separable space using non-linear transformation. A hidden layer is an intermediate layer
between inputs and outputs, containing many perceptrons (also called units or nodes).
An MLP commonly refers to more than one hidden layer. The MLP used here is similar
to the definition of connectionist learning proposed by Hinton [72]. A deeper layer MLP
usually consists of many layers to enable deep learning hierarchically. This neural network
architecture is also known as dense network or fully-connected (FC) network.

MLP is a simple yet powerful tool for combining acoustic and linguistic information via
network concatenation. Mathematically, the combined acoustic+linguistic network could
be formulated as in equation 2.3. Here, f(y) denotes the output of the corresponding
layer; W1,W2 denote the weights from previous layers (a: acoustic; l: linguistic), i.e., a
dense layer after LSTM for each network, and the current hidden layer, respectively; xa
and xl are the acoustic features and word embeddings, respectively; b is a bias; and g is
an activation function. Thus, the output of the that dense layer is

f(y) = W2g([W>
1axa+ b1a;W

>
1lxl + b1l]) + b2. (2.3)

Schuller et al. [39] utilized MLP for combining acoustic and linguistic information.
Their evaluation using MLP showed lower error than the fusion method by means of
logical “OR”. Callejas and López-Cózar [73] compared baseline majority-class method
to MLP for evaluating the effect of context information on categorical SER task. The
result shows that MLP outperforms the baseline method in six out of eight scenarios.
Zhang et al. [64] used MLP in all experiments involving acoustic features, phoneme, and
combination of both; MLP showed its effectiveness on both single-stage and multi-stage
SER tasks.

2.4.3 CNN

CNN is a class of neural networks that contain a convolutional layer. Convolution is a
mathematical operation between two functions by measuring the overlap of both when one
function (“input”) is flipped and shifted by another function (“kernel”). The resulting
output, which is the goal of a convolution layer, is a feature map. This convolution
operation is similar to cross-correlation; cross-correlation does not flip the second function.
Convolution is also can be seen as cross-correlation with a scalar bias. In deep learning
literature, the convolution terminology views cross-correlation as convolution since many
deep learning frameworks did not take bias into account by default.

The convolutional network is often applied to image-like data. Time-series data, in-
cluding acoustic feature vector, can be fed into convolutional networks using 1-dimensional
(1D) CNN. To take the most benefit of CNN, spectrogram and mel-filterbank (MFB) fea-
tures are frequently used to input the SER system. For text processing, the main idea
for CNN is to compute vectors for n-gram (e.g., 2-, 3-, and 4-gram) and group them
afterward. CNN is commonly used for both speech and language processing.

2.4. CLASSIFIERS 15



CHAPTER 2. LITERATURE REVIEW

Apart from convolutional layers, CNN typically still needs a fully-connected layer (FC
or MLP). The feature map as the output of the convolution layer is fed into MLP to obtain
desired outputs. Although recently it is found unnecessary [74], a CNN commonly uses
pooling layers after convolutional layers for mitigating and reducing spatial representation
[2].

Yenigalla et al. [65] experimented with CNN for categorical SER by inputting phoneme,
spectrogram, and combination of both. The combination of both phoneme embeddings
and spectrogram achieved the highest performance. The architecture of each phoneme
and spectrogram networks was convolution layer and max-pooling and FC layer. Both
networks are concatenated by FC layers to obtain the outputs.

Instead of phoneme and spectrogram, Huang et al. [75] proposed to use bag-of-audio-
words for the input of the CNN-based SER system. The architecture was similar to
[65], i.e., convolution, pooling, and FC layer. The result shows that the use of BoAW
outperforms raw acoustic features.

Cho et al. [76] combined acoustic and linguistic information for categorical SER; the
acoustic inputs used an LSTM network while the linguistic inputs used a multi-resolution
CNN. A multi-resolution CNN is utilized to emotion words by employing word embedding,
convolution layer, and global mean pooling. The combination of acoustic network with
LSTM, linguistic network with CNN, and emotion vector (e-vector) achieved the highest
performance compared to unimodal results.

While most bimodal SER research used CNN for linguistic and LSTM for acoustic
information processing, Sebastian and Pierucci [77], used LSTM for text and CNN for
speech. The CNN architecture contains two convolution layers and two FC layers. In this
case, the performance of CNN-based text emotion recognition is the lowest among other
models.

Cai et al. [78] replaced FC layers in most CNN architectures with bidirectional LSTM
with attention. The improved architecture was called CNN-Bi-LSTM-Attention (CBLA).
On both unimodal and multimodal, CBLA outperforms MLP models by considering both
global and temporal information in the data.

2.4.4 LSTM

Long Short-Term Memory (LSTM) neural networks is an extension of a recurrent neural
network. The idea of using LSTM networks comes from an approach that human has
the persistence to keep memory long in a short-term period. Humans do not start their
thinking from scratch every second. When reading a paper, a reader understands each
word based on the understanding of the previous words. Humans do not throw everything
away and start thinking from scratch again. The thoughts have persistence.

Three gates are introduced in LSTMs: the input gate (It), the forgetting gate (Ft),
and the output gate (Gt). In addition to that we introduce memory cells that take the
same shape as the hidden state. A memory cell is just a fancy version of a hidden state,
custom engineered to record additional information. The three gates in LSTM are defined
as:
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It = σ(XtWxi + Ht−1Whi + bi), (2.4)

Ft = σ(XtWxf + Ht−1Whf + bf ), (2.5)

Ot = σ(XtWxo + Ht−1Who + bo). (2.6)

Then the candidate memory cell, memory cell, and hidden state are calculated on the
following equations:

C̃t = tanh(XtWxc + Ht−1Whc + bc), (2.7)

Ct = Ft �Ct−1 + It � C̃t, (2.8)

Ht = Ot � tanh(Ct). (2.9)

Graphical illustration of LSTM explained by equations above is shown in Figure 2.5.

Figure 2.5: Graphical illustration of LSTM [2]

LSTM has dominated the classifiers used in both ASR and SER. Since the data (i.e.,
input features) are sequence, a recurrent neural network is a straightforward way to pro-
cess these data. In addition, LSTM is able to model long-range context in emotional
features to map it with the emotional labels. Tian et al. [79] used the LSTM classifier
to build hierarchical neural networks. In [76], LSTM was used to train acoustic features
before the network was concatenated with a CNN-based linguistic network.

Instead of unidirectional LSTM, bidirectional LSTM (BLSTM) has been utilized to
learn information both from the past and the future inside the network (unidirectional
LSTM only learns from the past). In [78], BLSTM is used for the textual network rather
than the acoustic network. This bidirectional LSTM is often combined with an attention
model to boost the performance of the SER task [13]. However, using BLSTM doubles
the model’s complexity, making the model may be not suitable for real-time applications.

2.5 Fusion methods

Multimodal fusion in technology is the combination of information that comes from dif-
ferent sources [80]. This terminology is similar but different to the human multimodal
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perception. In human multimodal perception, the information comes from different sen-
sory organs; in technology, this requirement is not necessary. Multimodal fusion can
be viewed as multisensor data fusion. In this terminology, the ‘sensor’ is the soft sen-
sor. Acoustic and linguistic feature extractors can be regarded as soft sensors in bimodal
acoustic-linguistic information fusion.

Fusing acoustic and linguistic features have been attempted at the early stage of
speech emotion recognition research. The first work on fusing acoustic with linguistic
information has been performed by Lee et al. [60] by combining acoustic and language
features at the decision level using logical “OR”. If at least one decision corresponds to a
specific emotion, then the result is this specific emotion. This earliest work only involved
negative and non-negative emotion categories.

Fusing acoustic and linguistic information for SER can be accomplished in several
ways, Figure 2.6 shows the classification. Early fusion combines acoustic and linguistic
information at the feature level; late fusion combines results from acoustic and linguistic
information at the decision level. Early fusion, furthermore, can be split into three main
categories: feature concatenation, networks/model concatenation, and hierarchical model.
Hierarchical model, as proposed in [81, 43], can be regarded as early fusion since the
method fuses features at a different level of layers, not at the decision level.

Acoustic
network

Acoustic
features

Linguistic
network

Linguistic
features

Concatenation

Acoustic
features

Linguistic
features

Acoustic+Linguistic features

Classifier/Network

Network #1

Acoustic
features

Network #2

Linguistic
features

Acoustic
network

Acoustic
features

Linguistic
network

Linguistic
features

Acoustic
output

Linguistic
output

Decision

(a) Network/model concatenation (b) Feature concatenation

(c) Hierarchical fusion (d) Decision-level fusion

Figure 2.6: Different scheme of fusing acoustic with linguistic information; (a), (b), (c):
early fusion approaches; (d): a late fusion approach

Eyben et al. [41] proposed an online method to detect not only valence and arousal
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but also the time when those emotion attributes are detected. They used a recurrent
neural network (RNN) based on long short-term memory (LSTM) to recognize a frame-
wise valence-arousal continuum with time. By adding a keyword spotter, they were able
to improve the performance by using regression analysis. The results were measured in
Pearson correlation coefficient (PCC). They also found that keywords like “again,” “an-
gry,” “assertive,” and “very” were related to activation, while typical keywords correlated
to valence were “good,” “great,” “lovely,” and “totally.” Similar to that idea, Karadogan
and Larsen [82] used affective words from Affective Norms for English Words (ANEW) to
determine valence-arousal values and combine them with a result from acoustic features.
The latter paper also obtained similar improvements over any single modality.

Ye and Fan [42] used bimodal features from acoustic and text information to recog-
nize emotion within speech. The acoustic features were trained in two parallel classifiers:
an SVM and a backpropagation network. The text features were trained in two serial
classifiers, which were both Naive Bayes classifiers. The second classifier acted as a filter
for unreliable parts from the first classifier. Decision-level fusion (late fusion) was then
implemented by combining the acoustic and text features with tree-weighting factors for
the SVM, backpropagation network, and text classifiers. The resulting fusion method
obtained 93% accuracy, as compared to 83% from the acoustic features only and 89%
from the text features only. The task was categorical emotion detection from a Chinese
database. Similar to that approach for a categorical task, Jin et al. [83] used the IEMO-
CAP dataset to test combinations of acoustic and text features for SER. The novelty
of their method was the use of an emotion vector for lexical features, which improved
the accuracy in four-class emotion recognition from 53.5% (acoustic) and 57.4% (text) to
69.2% (acoustic + linguistic).

Aldeneh et al. [63] used acoustic and lexical features to detect the degree of valence
from speech. They used 40 mel-filterbanks (MFBs) as acoustic features and word vectors
as linguistic features. Continuous valence values were then converted to three categorical
classes: negative, neutral, and positive. Using that approach, they improved the weighted
accuracy from 64.5% (linguistic) and 58.9% (acoustic) to 69.2% (acoustic + linguistic).

Yoon et al. [84] used audio and text networks to predict emotion classes from the
IEMOCAP dataset. Both networks used RNNs with inputs of mel-frequency cepstral
coefficients (MFCCs) for audio and word vectors for text. The proposed multimodal dual
recurrent encoder (MDRE) improved on the single-modality RNNs from 54.6% (audio)
and 63.5% (text) to 71.8% (audio + text). Atmaja et al. [18] obtained a better re-
sult by using 34 acoustic features after silence removal and combining them with word
embeddings. With LSTM used for the text and dense networks for speech, the latter
paper obtained an accuracy of 75.49% on the same dataset and task (categorical emotion
recognition).

Instead of using lexical features, Zhang et al. [64] used phonemes and combined them
with acoustic features to recognize valence in speech. They used 39 unique phonemes from
the IEMOCAP and MSP-IMPROV datasets and a 40-dimensional log-scale MFB energy
for the acoustic features. Using a scaled version of valence, converted from a 5-point scale
to three categorical classes, they showed that their multistage fusion model outperformed
all other models on both IEMOCAP and MSP-IMPROV.
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2.6 Summary

This chapter reviews research on bimodal speech emotion recognition from acoustic and
linguistic information. The study focuses on four building blocks of SER from bimodal
information: emotion models, features, classifiers, and fusion methods. There are three
emotion models developed in psychological research; however, most SER research focused
on the categorical model. There is a move to extract acoustic features in the feature ex-
traction step by using deep-learning methods, while deep-learning-based linguistic features
already dominated text processing research, including SER from linguistic information.
Four common classifiers for SER are briefly described. Although more advanced DNN
architectures have been developed, bimodal SER still relies heavily on SVM, MLP, CNN,
and LSTM architectures. Finally, the fusion of different information can be performed
in several methods; these methods can be divided into early and late fusions. While this
literature study presents the current state of speech emotion recognition research in these
four blocks, the raised issues in SER research will be highlighted in the next Research
Methodology chapter along with other related sections.
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Chapter 3

Research Methodology

The purpose of this chapter is to introduce the research methodology, the justification
for using particular research methods used in this experimental study on dimensional
speech emotion recognition by fusing acoustic and linguistic information. This approach
allows the examination of the contribution of fusing bimodal information for more accu-
rate dimensional speech emotion recognition. The research issues and philosophies used
to tackle these issues are discussed in this chapter. The implementation of research phi-
losophy through research strategies are highlighted. The experimental methods, includ-
ing datasets and an evaluation metric, are also the primary components of the research
methodology presented to close this chapter.

3.1 Research motivation

3.1.1 Why is SER difficult?

Speech emotion recognition (SER) is a difficult task. It differs from other traditional
tasks like image recognition (cat vs. dog), digit recognition, or speech recognition. For
instance, the features and labels for recognizing cat or dog in image recognition are both
clear. The difference in eyes, ears, skin color, and shape between cat and dog can be
used as informative features. The labels also clear, either cat or dog, with a very high
level of confidence. The digit recognition problem has similar properties; from zero to
nine can be distinguished by their shapes; this input feature is an important factor for
the obtaining high accuracy classification. Automatic speech recognition (ASR) also has
similar properties to both cases. SER is different from both cases.

In SER, both features and labels are not clear. Researchers have attempted to find
useful features related to affective states (e.g., [85, 56]). In annotating labels for categorical
or dimensional emotion, the datasets makers rely on subjective evaluation. This means
that the labels are not exact values (e.g., compared to image labels). However, high
agreements among evaluators show the reliability of the datasets. In this SER problem, it
is almost impossible to obtain perfect accuracy, which is possible to obtain in the previous
image recognition problems.
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3.1.2 Why study dimensional SER?

While most SER research focus on categorical emotion recognition, only a few focuses on
dimensional SER. In contrast, the present evidence about the “fingerprint” in categorical
emotion, particularly based on facial expression, is weak [33]. As Darwin argued that
biological categories, including emotion categories, does not have an essence due to the
high variability of individuals [86], so does emotion categories.

Dimensional emotion may represent humans’ affective state better than categorical
emotion. Humans do not perceive emotion categorically but in continuous space. In this
case, Russell argued that emotion categories could be derived from valence-arousal space
[52]. Given this understanding, dimensional SER is more challenging (since it predicts
degree) and more useful (since categorical emotion also can be derived) than categorical
emotion recognition.

3.1.3 Why fuse acoustic with linguistic information?

The third motivation is about the use of linguistic information. The simplest answer to
this question is that linguistic information is also can be extracted from speech, and lan-
guage is related to emotion. In other words, two pieces of information can be extracted
from speech without adding other modalities to recognize expressed emotion. Hence,
fusing acoustic and linguistic information is reasonable and feasible for future SER im-
plementation.

There are other possible motivations for fusing acoustic and linguistic information for
dimensional SER. One is from human multimodal processing, which uses linguistic infor-
mation as a cue for emotion perception [10]. Another reason is that linguistic information
is widely used in sentiment analysis tasks, which are closely related to emotion recogni-
tion. Sentiment analysis can be viewed as emotion recognition in text, which focuses on
sentiment or valence prediction.

In the speech chain, acoustic and linguistic are connected by a physiological mechanism
[87]. This chain shows a direct correlation between linguistic and acoustic information.
Fusing both pieces of information may improve the prediction of the conveyed message.
Since the message is elicited from the same sources (e.g., thought, information, including
emotion), using both pieces of information is a straightforward way to track the trans-
ported information, in this case, the expressed emotion of a speaker.

3.2 Research issues

There are five issues discussed in this dissertation. The issues appeared from the previous
SER studies [35, 11]. These issues raised in SER from acoustic information, dimensional
SER, and multimodal SER. Although these issues are important, the previous chapter on
literature study has found no thorough study investigated on these five issues. The im-
portance of these issues and the contributions of this study to these issues are summarized
below.

The first issue is the region of analysis used for feature extraction in dimensional
SER, local areas in frames, or whole utterance processing. The importance of addressing
this issue is to determine which region of analysis is informative to extract dimensional
emotion from speech. The traditional way to extract acoustic features in acoustical signal
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processing is frame-based processing. In this way, an utterance is split into several frames
in a fixed duration, e.g., 25 ms. A window function applies to these frames, and the
intended acoustic features are extracted on these frames. This local feature extraction is
known as a low-level descriptor (LLD). In contrast, the newer research on speech emotion
recognition proposed to extract statistical functions based on these LLDs. These global
features are known as high-level statistical function (HSF). Form both features, it is
unclear which one performs better; one claimed that LLDs are enough since it is highly
correlated with emotion (e.g., tone and prosody [59]), others claimed that global features
are better in classification accuracy and classification time (perhaps due to small feature
size) [35]. This study revealed the significant contribution of specific method for solving
the effectiveness of region analysis for acoustic feature extraction.

The second issue is the effect of the silence region in dimensional speech emotion
recognition. This issue is important to know whether such post-processing techniques
contribute to dimensional SER. In conventional ways, acoustic features are extracted from
speech utterance, including the silence region. Some removed silence before extracting
acoustic features (e.g., [13, 88, 56, 89]) and some used silence as a feature (e.g., [14, 90]) or
as an emotion category [91]. Although silent pause is an important cue for human speech
communication [92, 93], it is unclear whether silence contributes to human-computer
communication (HCI). This study contributed to this effect of silent pause region by
predicting the role of the region to dimensional SER.

The third issue is the low score of valence prediction in dimensional SER. Among
the three emotion dimensions, valence always obtained lower scores than arousal and
dominance. The previous study confirms this evidence [11]. Considering valence is the
most important emotion dimension [53], the need to improve valence prediction score is
worthwhile to study. Although there are several attempts to improve valence prediction
[64, 63, 94], the obtained scores are still not comparable to the scores achieved by arousal
and dominance (e.g., in [94]). This study proposed and discussed a method to double the
performance of valence prediction in dimensional SER.

The fourth issue is whether it suffices to use acoustic features for modeling emotions
or if it is necessary to fuse them with linguistic features. Since linguistic information can
be obtained from speech (via ASR), it is reasonable to fuse linguistic information with
acoustic information. In HCI, the simplest method to fuse multimodal information is by
concatenating input features from all modalities. More improvisation can be performed
by concatenating models instead of features. In other study, it was found that linguistic
information helps to improve valence prediction [82]. Fusing acoustic and linguistic in-
formation may improve not only valence prediction but also other emotion dimensions.
This study reveals the necessity of fusing both acoustic and linguistic information for
dimensional SER.

The fifth issue is the scheme or framework to fuse linguistic and acoustic information.
If the linguistic information contributes to dimensional emotion prediction, what the most
appropriate approach to fuse acoustic and linguistic information is. In human multimodal
emotion perception, how multimodal information are fused is not clear yet. Both acoustic
and linguistic information are believed to be processed separately in different regions of
the cortex (right and left hemisphere). This mechanism inspires the late fusion approach
by processing each modality separately and fusing both results at the decision level. This
study showed the effectiveness of late fusion approach over early fusion approach for
combining acoustic and linguistic information for dimension SER.
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3.3 Research philosophy

Research philosophy can be defined as “a belief about the way in which data about
a phenomenon should be gathered, analyzed and used [95].” This research used data-
information-knowledge hierarchy (DIK) concept, which is known as the canon of informa-
tion science [96]. Figure 3.1 shows this DIK concept and its representation in the speech
emotion recognition area. Although some researchers defined these concepts in different
ways [97, 98], the following concepts are the proper and valid explanation used in this
research.

Knowledge

Information

Data

Emotion

Acoustic   Linguistic

Speech

Computer/
machine Dim.

Figure 3.1: The DIK hierarchy and its representation in speech emotion recognition;
information (I) is extracted from data (D); knowledge (K) is extracted from information.

Data: speech

Data is worth nothing. According to Choo [99], signals structure the data. Acoustic signal
composes speech; speech is the data. In human communication, speech by a speaker is
data for the listener. In HCI, the speech dataset is a collection of recorded utterances
from speakers elicited intended expressions. An emotional speech dataset is a type of
speech dataset that provides utterances with their emotional labels in categorical or/and
dimensional emotions.

Information: acoustic and linguistic

Information is know-what. It is the relevant, usable, significant, meaningful, or processed
data [100]. Information is extracted from data. Humans arguably perceive the speaker’s
emotions from their acoustic and linguistic information [101]. How both pieces of in-
formation fused is not clear until now; however, researchers suggest that both perceived
information are processed separately [102, 9], verbal information in the left cortex and
non-verbal information in the right cortex. In HCI, acoustic information can be extracted
directly from speech, while linguistic information needs a mediator, i.e., speech-to-text
system, to extract words from speech. Then, linguistic information can be extracted from
these words. Both pieces of information are represented as features. Feature extraction is
the process of extracting acoustic and linguistic information from the speech dataset and
its transcription.
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Knowledge: dimensional emotion degrees

Knowledge is know-how. It is extracted from the information. Knowledge transforms in-
formation into instructions. In human communication, the knowledge to perceive emotion
is innate rather than learned [103]. In dimensional emotion, the outputs of this knowl-
edge are the degrees of valence (V), arousal (A), and dominance (D) [e.g., V=4, A=4,
D=2]. The process of mapping information (features) to dimensional emotion degree is a
regression task which is performed by such regressors.

3.4 Research strategy

A research strategy is the steps or ways in which research’s goals could be achieved. The
goal of this study is to answer the research issues presented previously. This research
investigates three strategies to answers these research issues. The following are the de-
scription and rationale of the strategies.

3.4.1 Dimensional SER by acoustic information

This study evaluated dimensional SER based on acoustic features to tackle the first and
second issues. This study aims at maximizing the potency of acoustic-based SER. First,
the region of analysis is investigated. A thorough comparison among three conditions
are performed: (1) extracting acoustic features from silence-removed regions, (2) extract-
ing acoustic features from the whole region, including silence, and (3) extracting features
from the whole region and utilizing a silence feature as an additional feature. Second, this
study evaluated which aggregation method performs better: input features aggregation
or outputs aggregation. The common approach in aggregation is output aggregation by
majority voting; however, input aggregation may perform better, particularly dimensional
SER. For instance, humans may perceive emotion from acoustic information aggregation
(e.g., tones) to recognize the emotion based on that information (rather than aggregat-
ing emotions/outputs). As found in other SER research, this study contributes to the
necessity to go beyond acoustic-only SER.

3.4.2 Fusing acoustic and linguistic information at feature level

In certain cases, it may be difficult for a listener to perceive the speaker’s emotion from
acoustic information only. For instance, both joy and angry may have a similar intona-
tion (e.g., high tones); hence it is difficult to differentiate both emotions. By knowing
the semantic of utterances, it may be easier to judge the expressed emotion for both
human-human communication and human-computer communication. This case raises
an opportunity to investigate whether linguistic information contributes to dimensional
emotion recognition. Although the study of this phenomenon has been performed previ-
ously (e.g., in [82]), several limitations still exist. The emotion model, the used linguistic
information, and the classification framework have evolved since the publication.

Apart from the need for multimodal/bimodal information fusion, linguistic information
has been actively developed for sentiment analysis, analyzing text to obtain the affective
state of the writer (positive or negative). This ‘sentiment’ term reflects directly to valence;
hence, one possible solution to improve low valence score in dimensional SER is by utilizing
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linguistic information. Research showed that utilizing linguistic information improves
both categorical [84] and dimensional [82] emotion recognitions. Fusing acoustic and
linguistic information tackles both the third and fourth issues: the low score valence
prediction and the necessity of using linguistic information.

A simple approach to fuse acoustic and linguistic information is by fusing both at the
feature level. In this approach, either features or networks can be concatenated to predict
dimensional emotions. In the first method, all features are inputted to the same classifier,
while in the latter, both pieces of information may have different classifiers (networks). In
the latter method, additional networks are needed to fuse both networks, typically a type
of dense networks (also called as fully connected [FC] networks or multilayer perceptron
[MLP]).

Although there are several studies that focus on the linguistic and acoustic features
fusion for SER at the feature level, this study differs in several aspects. First, this study
evaluated both feature concatenation and network concatenation. Second, this study pro-
posed correlation-based multitask learning (MTL) to predict valence, arousal, and simul-
taneously from both acoustic and linguistic information. Third, this study contributes to
a comparison of manual and automatic transcriptions for acoustic-linguistic dimensional
SER.

3.4.3 Fusing acoustic and linguistic information at decision level

To extend the fourth issue, it is necessary to study the fusion of acoustic and linguistic
information not only at the feature level but also at the decision level. This strategy
is motivated by human multimodal processing. The neural mechanism on how the brain
processes multimodal information suggests that each information is processed in a separate
brain region. Hence, a late fusion approach, i.e., decision-level information fusion, may
work better than feature-level fusion. Apart from investigating which fusion method is
better to combine bimodal information (the fifth issue), this strategy can also be used to
investigate the third and fourth issues.

This last strategy contributes to investigate which framework performs better for fus-
ing acoustic and linguistic information. Although there is an argument that any fusion
approach will perform similarly [104], the opposite also has been argued [105]. Consis-
tency found in this study (that late fusion is better than early fusion) may help the future
research on dimensional SER and trigger more ways to fuse both acoustic and linguistic
information for SER.

3.5 Datasets

The strategies to answer research issues need several instruments to experiment with.
One key component in this dimensional SER research is dataset. Three emotional speech
datasets have been chosen for different experiments. These three datasets are explained
below.

1. IEMOCAP
IEMOCAP, which stands for interactive emotional dyadic motion capture database, con-
tains dyadic conversations with markers on the face, head, and hands. The recordings
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thus provide detailed information about the actors’ facial expressions and hand move-
ments during both scripted and spontaneous spoken communication scenarios [30]. This
research only uses acoustic and linguistic features because the goal is bimodal speech
emotion recognition. The IEMOCAP dataset is freely available upon request, including
its labels for categorical and dimensional emotions. This study uses dimensional emotion
labels (valence, arousal, dominance), which are average scores for two evaluators, because
they enable deeper emotional states analysis. The dimensional emotion scores, for valence,
arousal, and dominance, are meant to range from 1 to 5 as a result of Self-Assessment
Manikin (SAM) evaluation. It has been found that some labels with scores lower than
1 or higher than 5. Either removing those data (seven samples) or converting them into
neutral (a score of 3) was chosen in different experiments. All labels are then converted
from the 5-point scale to a floating-point values range [-1, 1] when fed to a DNN system.

The total length of the IEMOCAP dataset is about 12 hours, or 10039 turns/utter-
ances, from ten actors in five dyadic sessions (two actors each). The speech modality
used to extract acoustic features is a set of files in the dataset with a single channel per
sentence. The sampling rate of the speech data was 16 kHz. The manual transcription in
the dataset without additional preprocessing is used for text data except for comparing
it with ASR outputs (chapter 5).

2. MSP-IMPROV
MSP-IMPROV [31], developed by the Multimodal Signal Processing (MSP) Lab at the
University of Texas, Dallas, is a multimodal emotional database obtained by applying
lexical and emotion control in the recording process while also promoting naturalness.
The dataset provides audio and visual recordings, while text transcriptions are obtained
via automatic speech recognition (ASR) provided by the authors of the dataset. As with
IEMOCAP, the speech and speech+text data with dimensional emotion labels were used
in different experiments. The annotation method for the recordings was the same as for
IEMOCAP, i.e., SAM evaluation, with rating by at least five evaluators. Some data with
missing evaluations were treated as neutral speech (i.e., a score of 3 for valence, arousal,
and dominance). Also, as with IEMOCAP, all labels are converted to floating-point values
in the range [-1, 1] from the original 5-point scale.

The MSP-IMPROV dataset contains 8438 turns/utterances in more than 9 hours.
Similar to IEMOCAP, there are two speakers for each session. The number of sessions
is six. Originally, the dataset is divided into four scenarios: “Target-improvised” and
“Target-read,” “Other-improvised,” and “Natural-interaction.” This allotment was de-
signed to evaluate the effect of target sentences. The whole dataset is used for acoustic-
only emotion recognition. The parts of MSP-IMPROV, excluding “Target-read,” are used
for acoustic-linguistic information fusion. A further explanation about this dataset will
be added in the explanation of the experiment involving this dataset (Chapter 6).

3. USOMS-e
Ulm State of Mind in Speech-elderly (USOMS-e) dataset is the corpus used in the el-
derly emotion sub-challenge in the INTERSPEECH 2020 computational paralinguistic
challenge. The whole dataset subset is used with 87 subjects aged 60 – 95 years; 55 of the
subjects were male, and the rest 32 were female. The dimensional emotion labels were
given in valence and arousal divided into three categories: low, medium, and high.

Table 3.1 shows the number of instances/stories and chunks in all partitions. The
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Table 3.1: Number of instances and chunks in each partition USOMS-e dataset
Partition # Stories (text) # Chunks (audio)

Train 87 2496
Dev 87 2466
Test 87 2816
Total 261 7778

labels are given per each story. The label on the dataset is given on both alphabetic and
numeric symbols, i.e., low (’L’ or ’0’), medium (’M’ or ’1’), and high (’H’ or ’2’). This
research used alphabetic labels as given in the baseline paper. Note that the number of
chunks is different for each story; for instance, there are 34 chunks in the first story and
46 chunks in the second story.

3.6 Evaluation metric

Apart from the datasets, a metric to measure the performance of proposed/evaluated
methods is needed to evaluate the research. Instead of using several metrics, this research
focus on the use of concordance correlation coefficient (CCC) as a single metric to evaluate
the performance of dimensional SER. This metric is proposed to be the standard metric
for dimensional SER previously [106]. The formula to calculate CCC is given as,

CCC =
2ρσxσy

σ2
x + σ2

y + (µx − µy)2
, (3.1)

where ρ is the Pearson correlation coefficient (PCC/CC) between predicted emotion degree
x and true emotion degree y, σ2 is a variance and µ is a mean. This metric is more
challenging than the correlation coefficient since it penalizes the score, even the correlation
is well but shifted. The penalized values are in proportion to the deviation.

3.7 Summary

This chapter presents the research methodology for studying dimensional SER by fusing
acoustic and linguistic information. The motivations to choose this research theme are
discussed, and the raised issues are presented. These five issues are region of analysis
for acoustic feature extraction, effect of silent pause features, low valence prediction,
the necessity for fusing acoustic with linguistic information, and framework for fusing
acoustic with linguistic information. These issues have never been studied thoroughly in
the previous studies. The importance of each issue and the contribution of this study to
each issue are briefly described. Three strategies are highlighted to address these issues,
including the datasets to evaluate the strategies and a metric to measure the performance.
The proposed strategies investigate the necessity of going beyond acoustic information and
the necessity to fuse acoustic with linguistic information for dimensional SER. The next
three chapters discuss each strategy proposed in this chapter, followed by a chapter on
Comparative Analysis and a Conclusions chapter to end the discussion.
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Chapter 4

Speech Emotion Recognition Using
Acoustic Features

The purpose of this chapter is three-fold: (1) to investigate the effective region of analysis
for acoustic feature extraction, whether frame-based region (local features) or utterance-
based region (global features); (2) to evaluate which action is the best with regard to the
silence region in a dimensional speech emotion recognition (SER); and (3) to evaluate
which aggregation method performs better for dimensional SER: acoustic input aggrega-
tion or output aggregation (e.g., majority voting method).

4.1 Which region of analysis to extract acoustic fea-

tures in SER

4.1.1 SER using low-level acoustic features

SER in conventional ways are performed by extracting acoustic features on frame-based
processing and then applied these features to a classifier. Let y(n), with n = 1, 2, 3, . . . , L,
denotes acoustic signal with length L. In frame-based processing, this y(n) signal is
divided into many frames by a fixed length. A typical length for a single frame is 16-25
milliseconds (ms) with 10 ms to 15 ms hop length (stride). For 25 ms frame length and 10
ms hop length, which is equal to 60% overlap (15 ms), a window is applied to this frame
to make the short-time signal behave as a quasistationary signal – near the stationary
signal. In their original length, an acoustic signal varies with the time: non-stationary
property. Windowing processes the acoustic signal in a short-term interval to remove
this property. Figure 4.3 shows the windowing process; short-term windowed signals look
stationary more than the original signal.

Windowing multiplies the spectrum of an input signal with window signal w(n). A
typical window function for an acoustic signal is Hann and Hamming windows (named
after Julius von Hann and Richard W. Hamming). The others are rectangular, Bartlet,
Kaiser, and Blackman. The choice of the window function is based on two aspects: the
width of the main lobe and the additional lobes. Hann and Hamming windows only differ
in weighting factors with similar concept: cosine-sum windows

w[n] = A+B cos

(
2πn

M

)
, n = −M/2, . . . ,M/2, (4.1)
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where A is 0.5 for Hann and 0.54 for Hamming. B is 0.5 for Hann and 0.46 for Hamming.
Both window functions are widely used in speech processing due to a good trade-off
between time and frequency resolution (effect of side lobes). Figure 4.1 shows a Hann
window and its spectrum, while Figure 4.2 shows an example of a Hamming window
applied to a sinusoid signal and its result.
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Figure 4.1: Hann window and its spectrum
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Figure 4.2: An example of Hamming window (middle) applied to sinusoid signal (left);
the resulted windowed signal (right) is multiplication of both.

The length of a window is usually equal to the length of the frame: one window per
frame. If the length of a window is smaller than a frame, each frame will be windowed with
window length and padded with zeros to match the frame’s length. In speech emotion
recognition, a short window is used to capture short dynamics context while a longer
window is used to capture mid and longer dynamics. A common approach used a short
window to extract acoustic features in short-term time while statistical functions model
long-term dynamics. Figure 4.3 shows the frame-based processing of an acoustic signal
(speech), which windows short-term signals using the Hamming window.
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Figure 4.3: Frame-based processing for extracting low-level descriptors of an acoustic
signal; the signal is an excerpt of IEMOCAP utterance with 400 samples frame length
and 160 samples hop length; sampling frequency is 16 kHz.
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The acoustic features extracted from each frame are known as local features or low-
level descriptors (LLD) [107]. The most common LLD for speech processing is mel-
frequency cepstral coefficients (MFCC). MFCC captures different aspects of the spectral
shape of a speech. The following steps compute MFCC in sequences. First, FFT/DFT
transformed a time-domain signal into a frequency domain signal (spectra). Second,
the mel frequency warping function converts spectra in linear scale into the mel scale.
Although several functions have been proposed, a common approach keeps linear scale for
acoustic frequencies below 1 kHz and converts to logarithmic scale for acoustic frequencies
above 1 kHz. This conversion imitates the human perceptual system. Third, convert
a power spectrogram (amplitude squared) to decibel (dB) units (log). Finally, DCT
computes MFCC as amplitude cepstra.

One of the important parameters in MFCC is the number of coefficients. A number
of 13 to 40 coefficients are common for speech processing. For each frame, 13 MFCCs are
extracted. If there are 40 frames in an utterance, the dimension of MFCC features will
be (40, 13). The number of frames corresponds to the number of samples divided by hop
length (in samples). If an utterance comprises 1 second (s) with a 16 kHz sampling rate,
the number of samples is 16000. Using 25 ms (400 samples) window/frame length and 10
ms (160 samples) hop length, the number of frames is 16000

160
, i.e., 100 frames. Figure 4.4

top shows an MFCC spectrogram of an IEMOCAP utterance with 13 coefficients.
Recently, researchers found that mel-spectrogram, also called as (mel) filterbank or

mel-frequency spectral coefficients (MFSC), yields better performance for deep learning-
based automatic speech recognition (ASR) (e.g., [108]). Given that a deep learning system
is less susceptible to highly correlated input, the DCT step in the previous MFCC calcu-
lation is not necessary since it is a linear transformation. DCT discards some information
in speech signals, which are highly non-linear [109]. Furthermore, a log version (in deci-
bel unit) of mel-spectrogram, i.e., log mel-spectrogram, is preferable since deep learning
learns better in this unit. The conversion from mel-spectrogram to log mel-spectrogram
is given by

SdB = 10 log

(
S

ref

)
, (4.2)

where S is the input power spectrogram and ref is reference power. A value of 1.0 is a
common ref value for 32-bit floating-point data type (‘float32’).

Figure 4.4 shows the visualization of MFCC, mel-spectrogram and log mel-spectrogram.
From this figure, it is clear that the log mel-spectrogram is more informative than the
mel-spectrogram and MFCC. This visualization may support the previous argument that
log mel-spectrogram may works better in DNN-based speech emotion recognition.

Apart from the use of one type of acoustic features for speech processing, some re-
searchers have proposed a set of acoustic features for speech emotion recognition. Eyben
et al. [4] proposed Geneva minimalistic parameter set (GeMAPS) as a standard acous-
tic feature set for affective voice research. The proposed acoustic features are based on
(1) physiological changes in voice production, (2) proven significance in previous studies,
and (3) theoretical significance. The proposed acoustic feature set comprises 23 LLDs,
as shown in Table 4.1. This acoustic feature set is extracted on a frame processing basis
with 25 ms frame length and 10 ms hop length.

Giannakopoulos [5] proposed pyAudioanalysis as an open-source Python library for
audio signal analysis. The library supports a wide range of audio analysis procedures
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Figure 4.4: Visualization of MFCC features with 13 coefficients (top), mel-spectrogram
(middle), and log mel-spectrogram with 64 mels (bottom)
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such as feature extraction, classification, supervised and unsupervised segmentation, and
visualization. Different from GeMAPS feature set, pyAudioanalysis targets a wide range
of voice applications like audio event detection, speech emotion recognition, music seg-
mentation, and health application. The short-term feature set, which is extracted on a
frame-based processing, consists of 34 LLDs. These LLDs are shown in Table 4.1.

Table 4.1: Acoustic feature sets: GeMAPS [4] and pyAudioAnalysis [5]. The numbers in
parentheses indicate the total numbers of features (LLDs).

GeMAPs (23) pyAudioAnalysis (34)

intensity, alpha ratio, Hammarberg index,
spectral slope 0-500 Hz, spectral slope
500-1500 Hz, spectral flux, 4 MFCCs, fo,
jitter, shimmer, harmonics-to-noise ratio
(HNR), harmonic difference H1-H2, har-
monic difference H1-A3, F1, F1 band-
width, F1 amplitude, F2, F2 amplitude,
F3, and F3 amplitude.

zero crossing rate, energy, entropy
of energy, spectral centroid, spectral
spread, spectral entropy, spectral flux,
spectral roll-off, 13 MFCCs, 12 chroma
vectors, chroma deviation.

As additional features sets, a temporal difference on pyAudioAnalysis were computed
in the first order, referred to deltas. The addition of the first-order regression coefficients
shows better performances than original LLDs (MFCC and MFSC) in ASR. In dimen-
sional SER, these temporal differences may show the dynamics between frames. Together
with the previous four feature sets, these LDDs are compared to evaluate the effectiveness
of frame-based LLDs in dimensional SER.

Table 4.2 shows the performance of dimensional SER from IEMOCAP dataset in CCC
scores. There is no remarkable difference in the use of different common acoustic features
used in acoustic signal processing. This presented results also challenged the specially
designed acoustic features namely GeMAPS [30] which is proposed to be the standard
feature set for voice research and affective computing [4]. Although it achieves the highest
score in LLD comparison, the general-purpose pyAudioAnalysis (pAA) features set at-
tained a comparable performance to GeMAPS, and in later analysis it will be shown that
this feature set achieve a higher performance than GeMAPS on utterance-based feature
extraction.

4.1.2 SER using high-level acoustic features

In the previous subsection, it is shown that frame-based acoustic features work with
limited performance. In this subsection, the effectiveness of the two statistical functions
is shown. Two high-level acoustic features, i.e., mean values and standard deviations from
LLDs, are evaluated from the previous five acoustic feature sets.

The first high-level acoustic features used for this dimensional SER task are mean
values. The idea of using these mean values is to capture the shared information across
all frames. This arithmetic mean values can be formulated as:
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Table 4.2: Results of frame-based LLDs for dimensional SER in IEMOCAP dataset

Feature Dim V A D Mean

MFCC (3414, 40) 0.148 0.488 0.419 0.352
Log mel (3414, 128) 0.103 0.543 0.438 0.362
GeMAPS (3409, 23) 0.164 0.527 0.454 0.382
pAA (3412, 34) 0.130 0.513 0.419 0.354
pAA D (3412, 68) 0.145 0.526 0.439 0.370

µF =
1

K

K∑
i=1

Fi (4.3)

where K is the number of frames, and i is the frames’ index, and F is the corresponding
feature. For instance, in pyAudioAnalysis, the first feature is a zero-crossing rate (ZCR).
The ZCR feature’s mean value is the arithmetical mean of all ZCR values in all frames
within an utterance.

The second high-level acoustic features are standard deviation (std). This statistical
function shows the dispersion of feature values from its mean. While mean is intended to
capture the commonalities among features values in all frames within an utterance, std
is intended to capture the dynamics of feature values in an utterance. Accordingly, std is
formulated as follows,

σ2
F =

1

K

K∑
i=1

(Fi − µF )2. (4.4)

Both mean and std (Mean+Std) are known as valuable functions in SER. References
[77, 110, 111] have used Mean+Std for categorical SER. However, most references did
not use only Mean+Std, but other statistical functions like median, quartiles, minimum,
maximum, and other features. It is interesting to experiment with Mean+Std only for
dimensional SER given the fact that both high-level features are two most informative
descriptors, among other statistical functions. Besides reducing the size or dimension of
features significantly, using Mean+Std consequently speed up the computation of SER
with regard to their small input features.

Another advantage of using Mean+Std features is no need for zero paddings. Although
zero paddings are useful for FFT calculation (spectral smoothness), it is unclear the
effect of zero paddings on LLDs for acoustic feature extraction. Zero padded values
may impact information represented by features when such processing is performed, e.g.,
standardization or normalization. Hence, acoustic features represented by Mean+Std
features are more informative than LLDs since it only contains information from speech.

An illustration of Mean+Std extraction from LLDs is shown in Figure 4.5. For in-
stance, an MFCC feature set from an utterance consists of 3414 frames with 40 MFCC
coefficients. For each mean and std features, 40 values are calculated. Both mean and std
are concatenated to form Mean+Std features after transposing both statistical features.
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Figure 4.5: Illustration of Mean+Std extraction from LLDs (e.g., MFCCs)

Table 4.3: Results of utterance-based HSF for dimensional SER in IEMOCAP dataset

Feature Dim V A D Mean

MFCC 80 0.155 0.580 0.456 0.397
Log Mel 256 0.151 0.549 0.455 0.385
GeMAPS 46 0.191 0.523 0.452 0.389
pAA 68 0.145 0.563 0.445 0.384
pAA D 128 0.173 0.612 0.455 0.413

4.1.3 Optimizing dimensional SER using different classifiers

In the previous subsections, the study focuses on the search for relevant acoustic features
(regions) for feature extraction. As described in the previous chapter, two important
components of SER are features and classifiers. In this subsection, a study to optimize
dimensional SER using different classifiers is presented.

Long short-term memory (LSTM) networks are used to obtain the previous results
on both LLDs and Mean+Std features. The LSTM network consists of 3 layers with 256
units each. This configuration is based on [15]. Since the input is a sequence of acoustic
features, using a recurrent-based LSTM network is a straightforward approach. The use
of LSTM as a classifier for SER has been found useful for both dimensional [112] and
categorical task [13]. While the previous results used three layers with the same units,
this optimization section varies one to five layers with a different number of units.

Apart from LSTM networks, convolutional neural networks (CNN) and multilayer
perceptrons (MLP) were accommodated. Both CNN and MLP use varying layers and
their corresponding units, as shown in Table 4.4. CNN has been found to be useful for
image-like input. Log mel-spectrogram is an example of this input. MLP, one of the
oldest neural network architecture, remains useful due to its simplicity to model complex
internal representation of their environment [72]. While the implementation of both LSTM
and CNN were performed by using Keras toolkit [113], the implementation of MLP was
performed using the scikit-learn toolkit [67].

Table 4.5 and 4.6 show results of optimizing dimensional SER using different classifiers
from IEMOCAP and MSP-IMPROV datasets. As for the input, all networks take the
previous pyAudioAnalysis with deltas (pAA D). Changing the number of layers and their
units changes their performances, as well as changing the classifiers. Using CNN, an
improvement from the previous LSTM result was obtained with a single layer with 16
nodes. On using MLP, significant improvements were obtained; the highest average CCC
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Table 4.4: Number of layer and corresponding units on each layer

# layers # units

1 (16)
2 (32, 16)
3 (64, 32, 16)
4 (128, 64, 32, 16)
5 (256, 128, 64, 32, 16)
6 (512, 256, 128, 64, 32, 16)

score was obtained using five layers for IEMOCAP and four layers for MSP-IMPROV.
The average CCC score of this architecture is 0.472 for IEMOCAP and 0.433 for MSP-
IMPROV. These high results should be evaluated in the same framework (toolkit) in the
future; this study evaluated LSTM and CNN using Keras with TensorFlow back-end while
MLP is performed using scikit-learn toolkit.

Table 4.5: Average CCC score on IEMOCAP dataset using different classifiers and number
of layers (features: pAA D)

Classifier 1lay 2lay 3lay 4lay 5lay 6lay

LSTM 0.389 0.403 0.385 0.401 0.395 0.399
CNN 0.415 0.399 0.380 0.376 0.390 0.379
MLP 0.450 0.469 0.448 0.462 0.472 0.452

Table 4.6: Average CCC score on MSP-IMPROV dataset using different classifiers and
number of layers (features: pAA D)

Classifier 1lay 2lay 3lay 4lay 5lay 6lay

LSTM 0.350 0.378 0.372 0.343 0.317 0.354
CNN 0.356 0.335 0.326 0.349 0.382 0.296
MLP 0.413 0.420 0.421 0.433 0.359 0.369

To this end, several steps to observe which region of analysis to extract acoustic
features were performed. At first, the common LLDs, like MFCC features, were evaluated.
Later, the Mean+Std of these LLDs were used as input features to the same classifier.
The results clearly show that extracting statistical functions over frame-based LLDs is
better. Mean+Std with small size (80 vs. (3414× 40)) consistently performs better than
LLDs. An optimization using different classifiers shows improvements from the previous
LSTM networks with the same high-level acoustic features.
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4.2 Effect of silent pause features in dimensional SER

In the previous section, analysis of region for acoustic feature extraction was investigated.
This section investigates the second issue in dimensional SER using acoustic features:
which action is better to treat silent pause region in dimensional SER. There are three
actions that can be taken regarding silent pause in SER:

• removing silence: extract acoustic features from speech-segment only,

• keeping silence: extract acoustic features from the whole utterance, including speech
and silence regions,

• utilizing silence: utilize silent pause regions as acoustic features.

The goal of this section is to examine which action from these three serves the best
for dimensional SER. The second action was already evaluated in the previous results;
therefore, only first and third actions will be explained and evaluated in this section. The
baseline uses pAA features (with 68 HSFs) to observe the difference among the silence-
removed region, silence-kept region, and silent pause features as an additional feature.

4.2.1 Dimensional SER on silence-removed region

Removing silence is a common practice in speech processing. ASR avoids recording silent
voice and only uses voiced speech to save power and computational load. In automatic
SER, the contribution of silence in speech is not clear until now. Aguilar et al. [89]
evaluated both removing and keeping silence for unimodal and multimodal categorical
emotion recognition. The result is different. Keeping silences lead to better performance
in unimodal emotion recognition, while multimodal shows that removing silence is better
than keeping silence. Atmaja and Akagi [13] showed that removing silence leads to higher
accuracies score than using whole speech in categorical speech emotion recognition.

A naive way to calculate silence region within speech is by using root mean square
(RMS) energy. Given a threshold τ , if the RMS energy of a speech frame below this τ
threshold, then that frame is categorized as a silence. The RMS energy is given by the
following equation:

xrms =

√
1

n
(x21 + x22 + . . .+ x2n). (4.5)

As shown in Figure 4.6 (b), a threshold of 0.065 is a reasonable choice for given speech
utterance (an excerpt from IEMOCAP dataset). However, this RMS energy curve occa-
sionally fall below the threshold for a moment and these values are not counted as silence.
A better way to detect silence is by probability mapping, a conversion from raw RMS
energy to a likelihood/probability. The probability mapping is formulated as

P [NS = 1|xrms] =
exp(xrms − τ)

1 + exp(xrms − τ)
. (4.6)

The result is shown in Figure 4.6 (c). The final part in the bottom of the figure shows
the result in binary value, an NS of 1 for non-silence and 0 for silence.

In practice, using a threshold τ as a percentage from maximum values is more intuitive
while it gives a similar result. Additionally, (minimum) duration of silence is another
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Figure 4.6: Calculation of silent region in speech
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Table 4.7: Result of using different duration and threshold factor for removing silence on
IEMOCAP dataset; bold-typed scores indicate a higher value than baseline.

Duration (ms) Threshold (%) V A D Mean

10 0.1 0.283 0.640 0.454 0.459
10 1 0.234 0.560 0.418 0.404
10 5 0.205 0.568 0.393 0.389
60 0.1 0.279 0.625 0.453 0.452
60 1 0.255 0.574 0.425 0.418
60 5 0.209 0.567 0.398 0.391
100 0.1 0.281 0.629 0.456 0.455
100 1 0.276 0.571 0.429 0.425
100 5 0.205 0.557 0.393 0.385

Table 4.8: Result of using different duration and threshold factor for removing silence on
MSP-IMPROV dataset; bold-typed scores indicate a higher value than baseline.

Duration (ms) Threshold (%) V A D Mean

10 0.1 0.228 0.575 0.437 0.413
10 1 0.246 0.581 0.431 0.420
10 5 0.148 0.569 0.414 0.377
60 0.1 0.241 0.588 0.442 0.424
60 1 0.259 0.586 0.441 0.429
60 5 0.184 0.569 0.415 0.389
100 0.1 0.239 0.587 0.438 0.421
100 1 0.252 0.580 0.430 0.421
100 5 0.201 0.574 0.422 0.399

important parameter. The minimum number of samples to be removed represents the
duration of the pause in speech communication, which has been studied thoroughly [114].
These two parameters, silence τ and duration d, can be used to experiment with the
removal of silence regions and to extract the acoustic features from these regions.

Three different thresholds and durations were performed to remove silence from the
speech dataset. For the threshold, the values of 0.01%, 0.1%, and 5% were examined,
while for durations were 10 ms, 60 ms, and 100 ms. The results are shown in Table
4.7. As the baseline method, MLP with Mean+Std of pyAudioAnalysis features (without
deltas, 68 dimensions) were used. The baseline method gains 0.458 of the average CCC
score. Among nine combinations of duration and threshold for removing silences where
acoustic features were extracted, only one result shows a higher performance than the
baseline. This result is in line with previous research ([13, 90, 89, 91]), in which special
adjustments are needed to take the benefit of treating silent pause regions in speech.
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4.2.2 Dimensional SER with silent pause features

Tian et al. [90] argued that silence is an effective cue for recognizing emotion. Using
this idea, Fayek et al. [91] used silence as an additional category for detecting emotion
categories from the speech signal. Silent pause length also plays an important role in
ascribing emotions based on psychoacoustics experiment [93]. These assumptions along
with their results are motivations to use silence as a feature for dimensional SER.

There are several ways to count silent pause features in speech. A straightforward way
is by detecting the number of silent regions and compared them to the whole utterance.
The result is a portion of silence region over speech. Although this method may represent
silent pause more precisely, there is more effort needed to align the timing of spoken words
and silence region manually to obtain a more accurate result. Alternatively, silent pause
detection can be done on frame basis calculation with fixed-length samples (of speech
signals). A frame, then, can be categorized as silence or non-silence by a specific rule.

A silent pause feature, in this research, is defined as the proportion of silent frames
among all frames in an utterance. In human communication, the proportion of silence
in speaking depends on the speaker’s emotion. For example, a happy speaker may have
fewer silences (or pauses) than a sad speaker. The proportion of silence in an utterance
can be calculated as

sf =
Ns

Nt

, (4.7)

where Ns is the number of frames categorized as silence (silent frames), and Nt is the
total number of frames. A frame is categorized as silent if it does not exceed a threshold
value (th) defined by multiplying a factor (α) by a root mean square (RMS) energy, Xrms.
Mathematically, this is formulated as

th = α× x̃rms, (4.8)

where x̃rms is the median value of RMS energy. This calculation differs from the previous
study [14] which used mean values. Median value is more similar to the previous silence
removal calculation (by percentage from maximum amplitude) than a mean value.

This silence feature is similar to the disfluency feature proposed in [115]. In that
paper, the author divided the total duration of disfluency by the total utterance length
for n words. Figure 4.7 illustrates the calculation of the silence feature. If xrms from a
frame is below th, then it is categorized as a silence, and the calculation of equation 4.7 is
applied. Two important parameters for this silent pause features then can be investigated:
(1) threshold factor (α), and (2) silent pause duration.

This study evaluates three α values, i.e., 0.1, 0.2, and 0.3 based on the previous finding
[14]. Silent pause duration of 10 ms, 60 ms, 100 ms, 200 ms, 500 ms, and 1 s are also
investigated based on the study of the division of pause [114].

Figure 4.8 shows the use of different threshold factors in determining silent pause
features. The lower threshold factor, the smaller number of silence frames correspond to
silent pause features. Thus, the choice of silence threshold factor is also critical when
calculating silent pause features apart from the silent pause duration. Notice that leading
and trailing silences have been trimmed; hence, the calculated silent pause features are
only within the trimmed region.
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Figure 4.7: Silent pause features calculation
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Figure 4.8: Different silent threshold factors on normalized RMS with trimmed leading
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Table 4.9: Result of using silence as an additional feature on pAA feature set on IEMO-
CAP dataset; bold-typed scores indicate a higher mean value than baseline.

Duration (ms) Threshold V A D Mean

10 0.2 0.273 0.607 0.424 0.435
10 0.3 0.288 0.626 0.448 0.454
60 0.1 0.277 0.606 0.424 0.436
60 0.2 0.273 0.606 0.422 0.434
60 0.3 0.283 0.624 0.447 0.451
100 0.1 0.278 0.604 0.421 0.434
100 0.2 0.284 0.624 0.446 0.451
100 0.3 0.298 0.641 0.460 0.466

Table 4.10: Result of using silence as an additional feature on pAA feature set on MSP-
IMPROV dataset; bold-typed scores indicate a higher mean value than baseline.

Duration (ms) Threshold V A D Mean

10 0.1 0.227 0.601 0.443 0.424
10 0.2 0.211 0.586 0.428 0.408
10 0.3 0.209 0.584 0.427 0.407
60 0.1 0.219 0.601 0.436 0.419
60 0.2 0.209 0.586 0.426 0.407
60 0.3 0.207 0.585 0.430 0.407
100 0.1 0.212 0.585 0.425 0.407
100 0.2 0.208 0.586 0.430 0.408
100 0.3 0.207 0.585 0.430 0.407

Table 4.9 and 4.10 show the result of using silence pauses as a feature on IEMOCAP
and MSP-IMPROV datasets. Both results confirm the improvement of CCC scores from
the baseline. While results on Table 4.9 were obtained using 5 layers MLP, results on
Table 4.10 were obtained using 3 layers MLP.

Finally, Table 4.11 shows a summary of the three strategies to observe the effect of
silence on dimensional speech emotion recognition. In the IEMOCAP dataset, utilizing
silence leads to higher performance than keeping silence. In the MSP-IMPROV dataset,
removing silence leads to higher performance than keeping silence. Both tables show the
advantage of either removing silence or utilizing silence; both lead to better performances
than the baseline score.

4.3 Acoustic feature aggregation

The final issue to be discussed in this chapter is to choose which aggregation method works
best for dimensional SER from acoustic features. It is common in audio processing to split
an utterance (or story) into chunks. The goal is for fast processing as well as for reducing
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Table 4.11: Comparison of three conditions for investigating the effect of silence in di-
mensional SER

Strategy V A D Mean

IEMOCAP
Removing silence 0.283 0.640 0.454 0.459
Keeping silence 0.268 0.641 0.458 0.456
Utilizing silence 0.298 0.641 0.460 0.466

MSP-IMPROV
Removing silence 0.259 0.586 0.441 0.429
Keeping silence 0.217 0.586 0.425 0.409
Utilizing silence 0.227 0.601 0.443 0.424

the size of recorded/analyzed audio data. While the label is only given per utterance,
acoustic features extraction is performed on chunk-based processing, either using LLDs
or HSFs. Thus, two options exist: whether aggregating input features to have single
label per utterance or aggregating outputs with many labels for a single utterance. For
the latter method, the label to represent a single story from many chunk labels can be
performed by a such method, e.g., majority voting.

Seven types of LLDs from LibROSA features extractor [116] were extracted for acoustic
input features: MFCCs (40 coefficients), chroma (12), mel-spectrogram (128), spectral
contrast (7), tonal centroid (6), deltas of MFCCs (40), and deltas-deltas of MFCCs (40).
This feature set is adopted from [17]. In total, there are 273 features on each frame.
Following the previous success in using global features for determining region of analysis,
Mean+Std from these 273 LLDs were extracted, resulting in 546-dimensional functional
features.

Input feature aggregation is a method to choose which features to represent a set
of data (story) given many recordings (chunks). Statistical functions were widely used
to aggregate many measurements. The choice of mean and maximum values for acoustic
feature aggregation is based on the assumption that acoustic features representing emotion
either from mean values (e.g., mean intonation) or maximum values (e.g., high pitch in
specific speech region when expressing fear or happy). In maximum aggregation, the
highest column vector value of acoustic features (Mean+Std from LLDs) for each chunk
on the same stories. By using these methods, each story has the same n-dimensional
feature vector depends on extracted acoustic features. A similar approach was conducted
for mean values feature aggregation. Figure 4.9 shows acoustic input aggregation from
chunks to a story.

Output aggregation is often performed by majority voting. The use of majority voting
in SER has been implemented in various techniques [117, 88, 118]. The majority voting
method was often used to choose the final label over different classifiers (known as en-
semble method). However, the majority voting defined in this study closer to its original
term; the most frequent class is chosen among other classes to represent the data. In
the INTERSPEECH 2020 elderly sub-challenge (ESC), the dataset provided audio files
as chunks, parts of an utterance/story. Acoustic features (frame-based features and sta-
tistical functions) were extracted per this chunk and forwarded to a classifier. Thus, in
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Figure 4.9: Flow diagram of acoustic input feature aggregation
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Figure 4.10: Flow diagram of acoustic output aggregation (majority voting)

a single story, there are many labels with regard to the number of chunks. The majority
voting chooses the most frequent label from chunks to represent a story (Figure 4.10).

In comparing mean vs. maximum aggregation methods, it is found that mean aggre-
gation leads to higher UAR scores than maximum aggregation in development partition.
All results from mean input aggregation attain higher scores than baseline majority vot-
ing. Table 4.9 also shows that mean input aggregation works better than mean output
aggregation. This finding suggests that using all chunks (by averaging) is better than
choosing one value from a chunk (by maximum value). This evidence also supports the
previous global features approach as a solution to choose the region of analysis of acoustic
features.

The use of aggregation methods reduces feature dimension (for input to classifier)
and computational complexity. Using all chunks to process the data, e.g., without feature
aggregation, increase computational load and complexity. The number of samples became
larger according to the number of chunks. However, the UAR score is low. Using feature
aggregation not only reduces complexity and feature dimension but also increases the
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Table 4.12: UAR results on development set: unimodal acoustic feature aggregation vs.
baseline [6] (INTERSPEECH 2020 ComParE Elderly Emotion Sub-Challenge dataset)

Features Majority Voting [6] Mean Input Agg. Max Input Agg.
V A V A V A

LibROSA Mean+Std - - 45.1 38.3 42.7 39.7
ComParE 33.3 39.1 43.4 42.7 45.3 37.0
BoAW-125 38.9 42.0 44.6 45.7 44.6 40.1
BoAW-250 33.3 40.5 43.0 40.8 39.6 37.6
BoAW-500 38.9 41.0 42.6 41.0 42.9 37.9
BoAW-1000 38.7 30.5 43.5 41.5 40.2 39.8
BoAW-2000 40.6 39.7 41.9 44.8 43.4 40.1
ResNet50 31.6 35.0 36.5 36.7 37.1 39.0
AuDeep-30 35.4 36.2 38.4 42.1 42.8 35.6
AuDeep-45 36.7 34.9 39.5 40.5 39.3 33.3
AuDeep-60 35.1 41.6 43.4 42.1 40.7 41.4
AuDeep-75 32.7 40.4 41.9 44.4 40.9 43.3
AuDeep-fused 29.2 36.3 43.6 39.5 42.2 39.3

performance score.
Although this evaluation of the aggregation method for speech emotion recognition is

not intended to mimic human auditory perception, there may be a similarity in human
auditory perception on aggregating different cues. Humans may use the aggregation of
prosodic information from short-term voices for longer-time emotion perception. The
initial goal of this feature aggregation is, indeed, to concatenate acoustic features with
linguistic features, which will be explained in the next chapter.

4.4 Summary

This chapter presents an evaluation of speech emotion recognition from acoustic informa-
tion. Three problems are investigated, including the region of analysis for feature extrac-
tion, the silent pause region’s effect, and the aggregation methods. Table 4.13 presents the
results of these investigations. On the first problem, it was found consistently that high-
level statistical functions obtained better performance than low-level descriptors. This
result shows that small-feature size is not a problem for DNN-based classifiers (instead,
the number of data still a problem). Mean and standard deviation from acoustic features
showed meaningful representation for acoustic-based emotion recognition. The second
evaluation of the silent pause region’s effect showed that either removing silence or utiliz-
ing silence as a feature leads to a better performance than using acoustic features from the
whole speech region. Between the two, it is difficult to choose which one is better based
on the current results. The results predict the important role of silent in emotion. The
third evaluation showed that the input aggregation method showed better performances
than output aggregation by majority voting. Not only improving the performance, this
aggregation technique made the ability for concatenating acoustic features with other fea-
tures. While the first two issues are the major issues in SER research, the finding on the
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third issue needs generalization and confirmation in other datasets and scenarios.
The use of only acoustic features in this study still shows some lacks in dimensional

SER; the major drawback is the low performance of valence prediction. This drawback of
acoustic-based SER leads to the investigation of fusing acoustic information with other
modalities. The next chapter presents fusion of acoustic with linguistic information at
feature level.

Table 4.13: Summary of study on dimensional SER using acoustic features

Issue Proposed method

Region of analysis frames utterance (fixed length)
Silence region removing silence keeping silence utilizing silence
Aggregation method input aggregation output aggregation
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Chapter 5

Fusing Acoustic and Linguistic
Information at Feature Level

This chapter evaluates the fusion of acoustic and linguistic information at the feature level.
Two approaches were evaluated, network concatenation and feature concatenation. A
comparison of manual and automatic transcriptions from the IEMOCAP dataset provides
insight into the current automatic speech recognition system’s contribution to speech
emotion recognition (SER).

5.1 Extracting linguistic information

5.1.1 Word embeddings

A classifier needs a set of input features to model input-output relation. One of the
common features used in text processing is word embeddings or word vectors. A word
embedding is a vector representation of a word. A numerical value in the form of a vector
is used to make the computer to be able to process text data as it only processes numerical
values. This value is the points (numeric data) in the space of a dimension, in which the
size of the dimension is equal to the vocabulary size. The word representations embed
these points in a feature space of lower dimension [119]. A one-hot vector represents every
word; a value of 1 corresponds to this word and 0 for others. This element with a value
of 1 will be converted into a point in the range of vocabulary size.

To obtain a vector of each word in an utterance, first, this utterance in the dataset
must be tokenized. Tokenization is a process to divide an utterance by the number of
constituent words. For example, the text “That’s out of control.” from IEMOCAP dataset
will be tokenized as [“That’s,” “out,” “of,” “control”]. Suppose the number of vocabulary
is 2182 (number of words in IEMOCAP dataset with six emotion categories), then the
obtained word vector is something similar to

text_vector = [42, 44, 11, 471].

An embedding layer will convert those positive fixed integers into dense vectors of
fixed size. For instance, 1-dimensional word vector in the utterance will be converted into
2-dimensional dense vector,

[42, 44, 11, 471]→ [[0.12, 0.3], [0.12, 0.29], [−0.54, 0.2], [0.71, 0.23]].
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Figure 5.1: Two architectures of word2vec: (a) CBOW and (b) skip-gram [3]

The higher dimensions are commonly used to obtain a better representation of a word
vector. A number of 50-, 100-, and 300-dimensional vectors are commonly employed to
build pre-trained word vectors from a large corpus.

A set of zeros can be padded in front of or behind the obtained vector to obtain the
fixed-length vector for all utterances. The size of this zeros sequence can be obtained from
the longest sequence, i.e., an utterance within the dataset which has the longest words,
subtracted by the length of a vector in the current utterance.

5.1.2 Pre-trained word embeddings

A study to vectorize certain words has been performed by several researchers [3, 7, 120].
The vector of those words can be used to weight the word vector obtained previously.
The following pre-trained word embedding models were used in this research.

word2vec
Classical word embedding paradigm used unsupervised (hand-crafted) learning algorithms,
such as LSA, n-gram, and TF-IDF. Due to advancements in neural network theory sup-
ported by computer hardware’s speedup, word vector search shifted to deep learning-based
algorithms. Mikolov et al. [3] developed word representation using the so-called word2vec
(word to vector) using a neural network language model trained in two steps. First, con-
tinuous word vectors are learned by using a simple model, and then the n-gram neural net
language model (NNLM) is trained on top of these distributed representations of words
[3]. Two new model architectures are proposed to obtain word vector: the Continuous-
Bag-of-Word (CBOW) architecture to predict the current word based on the context. The
skip-gram predicts surrounding words given the current word. Figure 5.1 shows those two
different architectures and how they process the input to the output.

From those two approaches, skip-gram was founded as an efficient method for learning
high-quality distributed vector representations that capture precise syntactic and semantic
word relationships [3]. The objective of the skip-gram model is to maximize the average
log probability,

1

T

T∑
t=1

∑
−c<j<c,c6=0

log p(wt+j|wt), (5.1)

where c is the size of the training context (which can be a function of the center word wt).
Larger c results in more training examples and can lead to higher accuracy, at the expense
of the training time. The basic skip-gram formulation of p(wt+j|wt) can be defined using
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Figure 5.2: Illustration of GloVe representation

the softmax function, and computational efficiency can be approached by a hierarchical
softmax [3].

GloVe
Pennington et al. [7] combined global matrix factorization and local context window
methods for learning the space representation of a word. In GloVe (Global Vectors)
model, the statistics of word occurrences in a corpus are the primary source of information
available to all unsupervised methods for learning the word representations. Although
man methods now exist, the question remains as to how meaning is generated from
these statistics and how the resulting word vectors might represent that meaning. Glove
captured the global statistics from the corpus, for example, a Wikipedia document or a
common crawl document.

In GloVe model, the cost function is given by

V∑
i,j=1

f(Xi,j)(u
T
i,jvj + bi + cj − logXi,j)

2, (5.2)

where

• V is the size of the vocabulary;

• X denotes the word co-occurrence matrix (so Xi,j is the number of times that word
j occurs in the context of word i);

• the weighting f is given by f(x) = (x/xmax)
α if x < xmax and 1 otherwise;

• xmax = 100 and α = 0.75 (determined empirically);

• ui, vj are the two layers of word vectors;

• bi, cj are bias terms.

In a simple way, GloVe is a weighted matrix factorization with the bias terms, as shown
in Figure 5.2.

FastText
Mikolov et al. [120] improved word2vec CBOW model by using some strategies including
subsample frequent words technique. This modification of word2vec is trained on large
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text corpus, such as news collection, Wikipedia, and web crawl. They named the pre-
trained model with that modification as FastText. The following probability pdisc of
discarding a word is used by FastText to subsample the frequent words:

Pdisc(w) = 1−
√
t/fw, (5.3)

where fw is the frequency of the word w, and t is a parameter > 0.
FastText also counts the classical n-gram word representation by enriching word vector

with a bag of character n-gram vectors learned from a large corpus. In this computation,
each word is decomposed into its character n-grams N , and each n-gram n is represented
by a vector xn. The new word vector is then simply the sum of both representations,

vw +
1

|N |
∑
n∈N

xn, (5.4)

where vw is the old word vector. The set of n-grams N is limited to 3 to 6 characters in
practical implementation.

BERT
The previous aforementioned word embeddings — word2vec, GloVe, FastText — are gen-
erated word representation in a context-free model. It means, the same word appears in
a different phrase has the same word representation, e.g., word “book” in “mathematics
book” and “book a hotel.” Instead of using a context-free model, BERT (bidirectional
transformers language understanding) was built upon pre-training contextual representa-
tion [121].

BERT is different in many ways from its predecessors. Apart from contextual represen-
tation, the main contribution of BERT is to employ bidirectional pre-training for language
representation. Unlike its predecessors, which model languages in a unidirectional way,
i.e., from left to right as a writing/reading system, BERT used two unsupervised tasks
for pre-training models. The first task is the masked language model; the second task
is the next sentence prediction (NSP). The BERT model’s dimension for each word de-
pends on the number of hidden layers used in the architecture. This number is either
768-dimensions for the base model, or 1024-dimension for the large model.

Apart from the pre-trained model, BERT provides a fine-tuning model. Fine-tuning
allows BERT to model several tasks, single or text pairs, by swapping out the corre-
sponding inputs and outputs. Fine-tuning can be seen as adjusting the pre-trained model
according to the context, i.e., the dataset. Hence, fine-tuning can only be done after
obtaining the pre-trained model and is relatively expensive. Fine-tuning is suitable for a
specific task rather than general linguistic tasks.

5.1.3 CCC loss function

In the Chapter 3, a metric to measure the performance of dimensional emotion recognition
was introduced, namely concordance correlation coefficient. Since the goal is CCC, using
CCC loss instead of conventional regression loss function such as mean square error (MSE)
and mean absolute error (MAE) is more beneficial than both error-based loss functions.
The CCC loss function (CCCL) to maximize the agreement between the true value and
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the predicted emotion can be defined as

CCCL = 1− CCC. (5.5)

In single-task learning, the loss function would be one for either valence (CCCLV ), arousal
(CCCLA), or dominance (CCCLD). In multitask learning (MTL), when the total CCC
loss is used as a single metric for predicting valence, arousal, and dominance simultane-
ously, CCCLtot is the following combination of those three CCC loss functions:

CCCLtot = CCCLV + CCCLA + CCCLD. (5.6)

This MTL equation is referred as “MTL without parameters,” because there is no weight-
ing among valence, arousal, and dominance. In this case, the relation among the three
emotional dimensions is determined by joint learning in the training process. As it has
been stated that these three emotional dimensions are related in a systemic manner [51],
two parameters are introduced to weight the valence and arousal, with the weight for
dominance determined by subtracting those two parameters from 1. This MTL with two
parameters is defined as

CCCLtot = α CCCLV + β CCCLA

+ (1− α− β) CCCLD,
(5.7)

where α and β are the weighting factors for the valence and arousal loss functions, respec-
tively. This proposed MTL is similar to that defined in [122]. While those authors used
the mean squared error (MSE) as the loss function, this study have proposed using this
CCC-based loss function. In addition, a parameter γ is added for dominance to obtain
independent scales among valence, arousal, and dominance. The resulting MTL with
three parameters is defined as

CCCLtot = α CCCLV + β CCCLA + γ CCCLD. (5.8)

For comparison with the previous MTL without parameters; α, β, and γ were set to 1 in
that equation 5.6, which can be seen as a special case in this MTL with three parameters.

These MTL approaches compare the predicted output from the three one-unit dense
layers with the ground truth labels. The training process mechanism relies on the above
loss function. Hence, the performance of the produced model is based on this mechanism,
too. The loss function’s choice is a critical aspect of machine learning, and this study
thus proposed this MTL based on the CCC loss to learn valence, arousal, and dominance
concurrently.

5.2 Early fusion by networks concatenation

A simple way to fuse two different information is by concatenating two DNNs of different
network modalities. Different shape of features is not a problem in this fusion; the con-
catenation branch only requires the same dimension of DNN outputs from each network.
For instance, a 3D vector can solely be concatenated with another 3D vector.

A unimodal feature is a feature set from either acoustic or linguistic (e.g., pAA LLD).
At first, the system trained each feature set on both LSTM and CNN classifiers inde-
pendently. Tables 5.1 and 5.2 summarize the unimodal dimensional emotion results from
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those acoustic and linguistic networks, respectively. Each table lists the scores for va-
lence, arousal, and dominance in terms of the CCC, along with averaged CCC scores to
determine which method performed better. The results were grouped by modality and
architecture. They all used the same metric scale and were obtained under the same
conditions. Hence, these results can be compared directly with each other.

In the acoustic-based modality, the obtained results are consistent among the fea-
ture sets on both architectures. From bottom to top, the performance order was pAA
LLD, GeMAPS LLD, GeMAPS HSF, and pAA HSF. Thus, although GeMAPS performed
better for LLDs, the HSF for pAA performed best on both the LSTM and CNN archi-
tectures. This result supports the previous finding that the mean and standard deviation
outperform the low-level descriptors (LLDs) defined in GeMAPS. Furthermore, this find-
ing can be generalized to the means and standard deviations from the other feature sets.
In this case, the HSF for pAA performed better than the HSF for the affective-designed
GeMAPS.

Comparing the LSTM and CNN architectures, it is found that the LSTM performed
better than CNN did. In terms of three emotional dimensions and an average of three,
the score obtained by the highest-performing LSTM was higher than that obtained by
the highest-performing CNN. The best architecture in the acoustic networks was chosen
to combine with the linguistic networks’ best architectures.

As for the linguistic networks, word embeddings with the pre-trained GloVe embed-
dings performed better than either word embeddings without weighting or word embed-
dings weighted by the FastText model did. The linguistic networks also showed that
the LSTM with GloVe embedding is better than the CNN with the same input feature.
However, in this dimensional emotion recognition, the linguistic network’s highest perfor-
mance was lower than an acoustic network’s highest performance. As with the acoustic
networks, two networks were chosen, GloVe with LSTM and GloVe with CNN, to combine
in the bimodal network fusion.

Table 5.1: CCC scores on the acoustic networks

Feature set V A D Mean

LSTM
pAA LLD 0.0987 0.5175 0.3536 0.3233
pAA HSF 0.1729 0.5804 0.4476 0.4003
GeMAPS LLD 0.1629 0.5070 0.4433 0.3711
GeMAPS HSF 0.1818 0.5306 0.4332 0.3819

CNN
pAA LLD 0.0687 0.3665 0.3382 0.2578
pAA HSF 0.1310 0.5553 0.4431 0.3764
GeMAPS LLD 0.0581 0.4751 0.4203 0.3178
GeMAPS HSF 0.0975 0.4658 0.4170 0.3268
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Table 5.2: CCC scores on the linguistic networks

Feature set V A D Mean

LSTM
WE 0.3784 0.3412 0.3638 0.3611
word2vec 0.3937 0.3811 0.3824 0.3857
GloVe 0.4096 0.3886 0.3790 0.3924
FastText 0.4017 0.3718 0.3771 0.3835
BERT 0.3858 0.3675 0.3722 0.3752

CNN
WE 0.3740 0.3285 0.3144 0.3390
word2vec 0.3692 0.3589 0.3613 0.3631
GloVe 0.3843 0.3646 0.3911 0.3800
FastText 0.3786 0.3648 0.3147 0.3527
BERT 0.3598 0.3479 0.3530 0.3535

5.2.1 Results on bimodal feature fusion

Performance of bimodal networks

According to their unimodal network performance, eight pairs of bimodal acoustic-linguistic
networks were evaluated. Table 5.3 summarizes their performance results in the same way
as the unimodal results. Among the eight pairs, the LSTM acoustic networks and the
LSTM linguistic networks achieved the best performance. This result in bimodal feature
fusion is linear with respect to the obtained results for the unimodal networks, in which
the LSTM performed best on both the acoustic and linguistic networks.

In terms of both emotional dimensions and average CCC scores, the LSTM+LSTM
pair outperformed the other bimodal pairs. Moreover, the deviation of the LSTM+LSTM
pair was also the lowest. It can be stated that, apart from attaining the highest perfor-
mance, the LSTM+LSTM pair also gave the most stable results. This result suggests
that the LSTM not only attained comparable results to the CNN with a similar number
of trainable parameters but also attained better performances, which differs from what
was reported in [123].

One reasonable explanation for why the LSTM performs better is the use of the full
sequence instead of the final sequence in the last LSTM layer. In most applications,
the last layer in an LSTM stack only returns the final sequence to be combined with the
outputs of other layers (e.g., a dense layer). In this implementation, however, all sequences
outputs were returned from the last LSTM layer and flattened before combining them with
another dense layer’s output (from the linguistic network). This strategy may keep more
relevant information than what is returned by the final sequence of the last LSTM layer.
On the other hand, this phenomenon is only observed on the acoustic network. In the
linguistic network case, the last LSTM layer that returns the final sequence performed
better than the LSTM that returns all sequences. In that latter case, the last LSTM layer
was directly coupled with that of a dense layer.

If the highest unimodal score is chosen as a baseline, i.e., the HSF of pAA, then
the highest bimodal score’s relative improvement was 23.97%. A significance test among
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the bimodal pair results was performed. A significant difference was observed between an
LSTM+LSTM pair and other pairs, such as a CNN+LSTM pair, on a two-tail paired test.
The small p-value (' 10−5) indicated the strong difference obtained by the LSTM+LSTM
and CNN+LSTM pairs. While the CNN+LSTM pair obtained the third-highest score, the
second-best performance was by a Dense+CNN pair with CCC = 0.485. The significance
test result between the LSTM+LSTM pair and this pair was p = 0.0006. The more
similar the performance of two acoustic-linguistic networks pairs was, the higher the p-
value between them was. The assertion that the LSTM+LSTM pair had a big difference
from the other pairs was set with p < 0.05.

Table 5.3: Results of bimodal feature fusion (without parameters) by concatenating the
acoustic and linguistic networks; each modality used either an LSTM, CNN, or dense
network; batch size = 8

Acoustic+Linguistic V A D Mean

LSTM + LSTM 0.418 ± 0.01 0.571 ± 0.017 0.5 ± 0.017 0.496 ± 0.01
LSTM + CNN 0.256 ± 0.052 0.531 ± 0.031 0.450 ± 0.036 0.412 ± 0.030
CNN + LSTM 0.401 ± 0.020 0.545 ± 0.016 0.478 ± 0.015 0.476 ± 0.012
CNN + CNN 0.399 ± 0.015 0.541 ± 0.020 0.475 ± 0.014 0.472 ± 0.012
LSTM + Dense 0.274 ± 0.050 0.553 ± 0.019 0.484 ± 0.015 0.437 ± 0.018
CNN + Dense 0.266 ± 0.038 0.497 ± 0.059 0.457 ± 0.047 0.407 ± 0.040
Dense + LSTM 0.368 ± 0.105 0.564 ± 0.015 0.478 ± 0.025 0.470 ± 0.043
Dense + CNN 0.398 ± 0.015 0.570 ± 0.013 0.487 ± 0.015 0.485 ± 0.013

Evaluation of MTL with weighting factors

As an extension of the main proposal to jointly learn the valence, arousal, and dominance
from acoustic features and word embeddings by using MTL, this study also evaluated
some weighting factors for the MTL formulation (equations 4, 5, and 6). In contrast, the
above results were obtained using MTL with no parameters (equation 5.6). Thus, the
following results show the effect of the weighting parameters on the MTL method.

MTL with two parameters is an approach to capture the interrelation among valence,
arousal, and dominance. In equation 5.7, the gains of valence and arousal are provided
independently, while the gain of dominance depends on the other gains. This simple
weighting strategy may represent the relation among the emotional dimensions if the
obtained results are better than the results without this weighting strategy.

Figure 5.3 shows a surface plot of the impact of varying α and β from 0.0 to 1.0
with the corresponding average CCC score. Performance improvement could be obtained
by using proper weighting factors in two-parameter MTL. It is found that α = 0.7 and
β = 0.2 were the best weighting factors, and the linguistic network also used them. In
the unimodal network, the best factors for MTL with two parameters were α = 0.7 and
β = 0.2 for the linguistic networks, and α = 0.1 and β = 0.5 for the acoustic network.
These factors were used to obtain the above unimodal results. In this case, it is difficult
to judge whether these same obtained factors for the bimodal network were contributed
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by the unimodal network or caused by other factors. Investigation on the cause of this
finding is a challenging issue for both theoretical and empirical studies.

Next, MTL with three parameters provided all factors for the three-dimensional emo-
tions, with every emotional dimension’s factor is independent one another. MTL with
no parameters is also a subset of MTL with three parameters, with α = 1.0, β = 1.0,
and γ = 1.0. The experiments optimized the weighting factors with three parameters
by using linear search independently on each emotion dimension. Figure 5.4 shows the
impact of the weighting factors on MTL with three parameters. In this scaling strategy,
the best weighting factors were α = 0.9, β = 0.9, and γ = 0.2. The obtained result of
CCC = 0.497 with these factors was lower than that obtained by MTL with two param-
eters, i.e., CCC = 0.508. While the results in Table 5.3 were obtained with batch size =
8, the results in Table 5.4 were obtained with batch size = 256, to speed up computation
process. The results listed in Table 5.4 show that MTL with two parameters obtained
the best performance among the MTL methods. This result suggests that MTL with two
parameters may better represent the interrelation among the emotional dimensions.

α

β

α=0.7, β=0.2, CCC = 0.51

ccc

Figure 5.3: Surface plot of different α and β factors for MTL with two parameters; the
best mean CCC score of 0.51 was obtained using α = 0.7 and β = 0.2; both factors were
searched simultaneously/dependently.

Table 5.4: Results of MTL with and without parameters for bimodal feature fusion
(LSTM+LSTM); batch size = 256

MTL method V A D Mean

No parameter 0.409 ± 0.015 0.585 ± 0.011 0.486 ± 0.016 0.493 ± 0.01
2 parameters 0.446 ± 0.002 0.594 ± 0.003 0.485 ± 0.003 0.508 ± 0.002
3 parameters 0.419 ± 0.012 0.589 ± 0.012 0.483 ± 0.011 0.497 ± 0.008
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Figure 5.4: CCC scores for MTL with three parameters, obtained to find the optimal
weighting factors; a linear search was performed independently on each parameter; the
best weighting factors for the three parameters were α = 0.9, β = 0.9 and γ = 0.2.

Evaluation of dropout for different modalities

An investigation of the impact of the dropout rate for the acoustic and text networks in
bimodal feature fusion was performed to extend the discussion. In this evaluation, the
dropout rates were varied from each modality before concatenating them. The goal of the
evaluation, at first, was to investigate the dropout rates for the different modalities.

Figure 5.5 shows the impact of different dropout rates and the obtained CCC scores.
From the figure, using dropout rates of p = 0.1 and p = 0.4 for the acoustic and linguistic
networks, respectively, achieved the best score of CCC = 0.510. These dropout rates
were used to obtain the above results on the bimodal network.

From the obtained dropout rates, it is believed that this factor depends on the size
of the feature/input rather than on modality differences. The acoustic network used the
smaller HSF for pAA, a 68-dimensional vector, compared to the word embeddings’ size
of 100 sequences × 300-dimensional word vectors. Because the goal of using dropout is
to avoid overfitting, it is reasonable that, on small data, the dropout rate is low, while on
larger data, the dropout rate increases. Hence, in this research, it can be believed that
dropout rates depend on the input size rather than its modality.

Significant difference between acoustic and bimodal fusion

The significant difference between acoustic analysis and bimodal acoustic-linguistic fusion
is measured using paired t-tests to confirm the effectiveness of the early fusion method.
The measure compares the highest CCC scores from acoustic (pAA HSF) with the highest
CCC score from bimodal fusion (LSTM-LSTM with 2 parameters). For each method,
the number of samples is 20 average CCC scores. For this purpose, the initial random
generators were removed from the computer program. Asserting p = 0.05, the obtained
p-values for two-tail is 4.2 × 10−22. This small value confirms the significant difference
between unimodal acoustic analysis and bimodal acoustic-linguistic information fusion for
dimensional SER.
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Figure 5.5: Analysis of dropout rates applied to the acoustic and linguistic networks before
concatenating them; the dropout rates were applied independently to either network while
keeping a fixed rate for the other network.

5.2.2 Discussion in terms of categorical emotions

This study on dimensional speech emotion recognition using bimodal features is an ex-
tension of a similar categorical method. Similarities and differences as compared to the
previous categorical research were found in this study. Here, the discussion is limited to
the best bimodal pairs and the impact of feature sets from different modalities.

In dimensional speech emotion recognition, more consistent results were attained. This
study observed low variation among the experiments, while the previous categorical re-
search only used the highest accuracy from many experiments. Both the categorical and
dimensional approaches gained performance improvement over unimodal emotion recog-
nition by combining acoustic features and word embeddings. It was found that LSTM
networks on both modalities performed best in dimensional emotion recognition. This
result was also supported by a small standard deviation and significant differences with
respect to other results. In the categorical research, a Dense+LSTM pair attained the
highest result, followed by a Dense+CNN pair. High performances in some of the 20 ex-
periments with the Dense+LSTM pair were observed. Their average performance ranked
fifth, however, among the eight acoustic-linguistic networks pairs. The Dense+CNN pair,
which was the second-best in the categorical emotion research, also ranked second in this
dimensional emotion approach. This result from dimensional emotion recognition was
supported by the fact that the LSTM also attained the highest performance on unimodal
emotion recognition. Similar unimodal results were also observed in the categorical ap-
proach, in which the LSTM architecture performed the best among all the architectures.

The second important finding is the different results between categorical and dimen-
sional emotion recognition from the feature/modality perspective. Feature set/modality,
which attained the highest performance in the categorical approach, is different from
the dimensional approach. In the categorical approach with the IEMOCAP dataset,
word embeddings gave the highest performance in the unimodal model, as reported in
[18, 124, 125, 126]. In contrast, in the dimensional approach, acoustic features’ average
performance gave better performance over linguistic features. This phenomenon can be
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explained by the fact that linguistic features (word embeddings) contribute to valence
more than acoustic features do (see Tables 5.1 and 5.2). Though the authors in [63] found
this result, the authors in [127, 41, 82] extended it to find that, for arousal, acoustic
features contribute more than linguistic features do. The results here further extend the
evidence that linguistic features contribute more in valence prediction, while acoustic fea-
tures give more accuracy in arousal and dominance prediction. Given this evidence, it is
more likely that acoustic features will obtain higher performance than linguistic features
in the unimodal case since they provide better performances for two of the three emotional
dimensions. As suggested by Russell [52], a categorical emotion can be characterized by
its valence and arousal only. This relation shows why linguistic features achieve better
performances than acoustic features do on categorical emotion.

As a final remark for this section, some important findings can be emphasized in
this feature-level fusion of acoustic-linguistic information for dimensional emotion recog-
nition. Dimensional emotion recognition is scientifically more challenging than categorical
emotion recognition. This work achieved more consistent results than what it did in cat-
egorical emotion recognition. The combination of LSTM networks for both the acoustic
and linguistic networks achieved the highest performance on bimodal feature fusion, as the
same architecture did on unimodal emotion recognition. The proposal on using MTL for
simultaneously predicting valence, arousal, and dominance worked as expected, and it is
found that MTL with two parameters represented the interrelation among the emotional
dimensions better than other MTL methods did.

5.3 Dimensional SER with ASR outputs

In the previous section, the linguistic information provided for the fusion with acous-
tic information came from manual transcription. It is difficult to obtain the linguistic
information (i.e., correct transcription of spoken words) from the speech in a real imple-
mentation. Hence, this study evaluates the fusion of acoustic and linguistic information
from ASR outputs to provide insight into the early-fusion method’s achievement with
current ASR technology.

Figure 5.6 shows an architecture of dimensional SER with ASR outputs. While acous-
tic information can be processed directly from speech, the linguistic information must
wait until text transcription are generated by ASR. This bottleneck between acoustic and
linguistic processing is a worth of study for future research direction.

Speech
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ASR Text
Linguistic
Feature

Extraction

Acoustic
Feature

Extraction

Acoustic
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Classifier
 Linguistic
Features

Classifier

Networks/Model
Concatenation

V

A

D

Figure 5.6: SER architecture by fusing acoustic and linguistic features from ASR outputs

An open-source project, namely DeepSpeech, was used to produce ASR outputs: text
transcription [128]. The system was built upon [129], which used well-optimized end-to-
end recurrent neural networks (RNN) to recognize spoken words. The system achieved a
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45% word error rate (WER) on the IEMOCAP dataset. This loss in recognizing original
(manual) transcription impacts on the lower performance of linguistic-based dimensional
SER since some words cannot be obtained correctly.

An evaluation of five word embeddings of ASR outputs from IEMOCAP datasets has
been performed. Table 5.5 shows the performance of linguistic information on dimensional
SER while Table 5.6 shows the performances of these embeddings when fused with acoustic
information. Compared to manual transcription (Table 5.2), it is clear that these results
of ASR outputs are worse than manual transcription. There is no significant difference in
the use of pre-trained models compared to the original word embeddings from these ASR
outputs. In this case, the BERT model achieves the highest performance on linguistic-only
dimensional SER.

The addition of linguistic information from ASR outputs only improves the baseline
acoustic information when it utilized pre-trained models. The fusion of acoustic infor-
mation (pAA D features) with original word embeddings (WE) attain a lower score than
the baseline (average CCC score of 0.4 vs. 0.41). On the use of ASR outputs, pAA D +
FastText is the best pair for Acoustic+Linguistic information from ASR outputs. This
highest score from ASR outputs is 0.05 (10% of relative loss), lower than the highest in
manual transcription (0.453 vs. 0.508).

Table 5.5: Evaluation results on emotion recognition using linguistic information from
ASR outputs

Feature set V A D Mean

WE 0.212 0.303 0.351 0.288
word2vec 0.218 0.293 0.350 0.287
GloVe 0.226 0.279 0.349 0.285
FastText 0.218 0.284 0.350 0.284
BERT 0.220 0.300 0.360 0.293

Table 5.6: Evaluation results on emotion recognition using acoustic and linguistic infor-
mation from ASR outputs

Feature set V A D Mean

pAA D + WE 0.221 0.550 0.428 0.400
pAA D + word2vec 0.286 0.582 0.470 0.446
pAA D + GloVe 0.275 0.582 0.472 0.443
pAA D + FastText 0.277 0.602 0.479 0.453
pAA D + BERT 0.263 0.599 0.469 0.444

5.3.1 Effect of word embeddings’ dimension

Since it is observed that BERT attains the highest performance on linguistic-only di-
mensional SER from ASR outputs, a higher dimension of word embedding may lead to
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better performance for dimensional SER from linguistic information. A BERT model has
768-dimension while others have 300-dimension. An investigation for the effect of word
embeddings dimension has been performed by varying the original word embedding to
768- and 1024-dimension. Table 5.7 shows the difference of word embeddings dimension
on linguistic and Acoustic+Linguistic dimensional SER performances. While the use of
a higher dimension shows no significant differences in linguistic-only dimensional SER,
the use of 768- and 1024-dimension improve the Acoustic+Linguistic pairs (pAA D with
original WE) to surpass the baseline acoustic-only (pAA D) performance. The larger
inputs (WE) may help the network to learn better to achieve these results.

Table 5.7: Evaluation of different word embeddings’ dimensions

Feature set Dimension V A D Mean

WE 300 0.212 0.303 0.351 0.288
768 0.199 0.307 0.352 0.286
1024 0.203 0.293 0.347 0.281

pAA D + We 300 0.221 0.550 0.428 0.400
768 0.255 0.596 0.464 0.438
1024 0.239 0.564 0.450 0.418

5.4 Early fusion by network concatenation

5.4.1 Bimodal acoustic-linguistic feature fusion

To evaluate a different approach for early-fusion dimensional SER by fusing acoustic-
linguistic information, this study employs another dataset, the Ulm State of Mind in
Speech-elderly (USOMS-e) corpus. The dataset is part of INTERSPEECH 2020 ComParE
challenge [6]. The task is to predict categories of valence and arousal, which is converted
from a 0-10 scale to low (0-6), medium (7-8), and high (9-10) classes.

In the previous chapter, an evaluation of acoustic-only valence and arousal predictions
were evaluated. It is shown that feature-based aggregation is better than the outputs-
based aggregation (majority voting). Since the feature aggregation’s goal is to have the
same dimension (n× 1) for both acoustic and linguistic features, it is easy to concatenate
both features to improve valence and arousal prediction. Figure 5.7 shows an approach
on acoustic-linguistic features fusion. Two feature sets are stacked horizontally to build
a new feature vector for the SVM classifier’s input.

5.4.2 Feature concatenation results

Given a set of acoustic-linguistic features pair (xa and xl) with valence and arousal cat-
egory labels (’L’, ’M’, ’H’), the task of SVM is to classify whether a given feature set
belongs to a category of valence and arousal. This classification task is performed using
support vector classification (SVC) in scikit-learn toolkit [67] with a linear SVC kernel,
106 of maximum iteration, and optimized complexities (C) values in the range [10−6, 101]
with 101 step size. For data balancing, imbalanced-learn toolkit was used [130]; however,
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Figure 5.7: Acoustic-linguistic feature concatenation with SVM

Table 5.8: Result of bimodal valence and arousal prediction on development and test
partition: official baselines vs. proposed method

Features Dev Test
Acoustic Linguistic V A V A

ResNet50 [6] - 31.6 35.0 40.3 50.4
- BLAtt [6] 49.2 40.6 49.0 44.0
LibROSA Gmax 58.2 34.6 40.5 34.8
ResNet50 Gmax 58.2 51.0 40.9 50.4
ResNet50 BLAtt 47.6 52.5 56.3 46.4
BoAW-250 BLAtt 58.2 44.4 49.0 47.4

no significant difference was found between balanced and imbalanced data. The other
parameters are left as default. The SVC classification is performed separately to predict
valence and arousal categories for the same feature set.

Table 5.8 shows the results on using acoustic-linguistic feature concatenation for va-
lence and arousal category prediction on development and test partitions. This study
improved the UAR score on development partition from 49.2 to 58.2 for valence and from
40.6 to 52.5 for arousal. On test partition, the UAR scores were improved from 49.8 to
56.3 for valence and from 49.0 to 50.4 for arousal. Although the gain was small, it is
shown that bimodal acoustic-linguistic feature concatenation improved the UAR scores
of valence and arousal in most combinations of acoustic-linguistic feature pairs. Table 5.8
shows that evidence on both development and test partitions.

5.5 Summary

This chapter reports an investigation of using acoustic features and word embeddings for
dimensional speech emotion recognition with multitask learning (MTL). First, it can be
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concluded that using acoustic features and word embeddings can improve the prediction
of valence, arousal, and dominance. Word embeddings help improve valence prediction,
while acoustic features contribute more to arousal and dominance prediction. All the
emotional dimensions gained prediction improvements on bimodal acoustic and linguis-
tic networks; the greatest improvement was obtained using LSTM+LSTM architectures
pair. Second, the proposed MTL with two parameters could improve all emotional di-
mensions’ prediction compared to MTL with no parameters. The weighting factors given
to valence and dominance may represent the interrelation among the emotional dimen-
sions. This formulation only partially represents that interrelation because the obtained
improvement was still small. The formulation can be improved for future research by
implementing other strategies, particularly those based on psychological theories and ex-
periments. Third, a mismatch between categorical and dimensional emotion recognition
can be explained as follows. Linguistic-based emotion recognition obtained better results
than acoustic features did in categorical emotion, but the result was the opposite for di-
mensional emotion. This contrast can be explained by the fact that categorical emotion
only relies on the valence-arousal space. The higher valence prediction obtained by word
embeddings may result in better categorical emotion prediction than the prediction by
acoustic features. Fourth, in comparing manual transcription with ASR outputs, a 10%
loss in CCC score was obtained using a word error rate of 45%. Fifth, the feature con-
catenation of acoustic and linguistic features on the USOMS-e dataset obtained higher
performances than a single modality emotion recognition. This feature concatenation was
performed using acoustic features aggregation explained in the acoustic features side from
the previous chapter.

In summary, a combination of speech features and word embeddings can solve the
drawback of dimensional speech emotion recognition. Word embeddings improve the low
score of the valence dimension in acoustic-based speech emotion recognition. The combi-
nation of both features not just improved valence but arousal and dominance dimensions
too. Multitask learning also works as expected; it can simultaneously predict three emo-
tion dimensions’ degrees instead of predicting one by one dimension using single-task
learning. This strategy may similar to human bimodal emotion perception from voice
and linguistic information. Based on the obtained performances, however, there is room
for improvement, e.g., a fine-tuned BERT model may improve the current results. In the
next chapter, another framework fusion is explored, i.e., a late-fusion based approach.
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Chapter 6

Fusing Acoustic and Linguistic
Information at Decision Level

This chapter evaluates the fusion of acoustic and linguistic information at the decision
level to improve speech emotion recognition (SER) performance. The evaluated method
consists of two stages. First, deep neural networks (DNNs) process the unimodal training
data from each modality to predict the output (emotion degrees) of development/valida-
tion data. Second, the outputs of DNNs from acoustic and linguistic networks are fed
into SVM to obtain the final prediction of emotion degrees.

6.1 Datasets partition

Since this study also evaluates some conditions of the dataset (semi lexical-controlled data,
speaker dependent vs. speaker independent), the datasets are split into four partitions or
scenarios. Two datasets were used in this part of the study. The first is the IEMOCAP
dataset, which was used in the previous chapters. The dimensional labels are valence
(V), arousal (A), and dominance (D) in a 5-point integer scale. However, it was found
that some labels have values lower than 1 (e.g., 0.5) and higher than 5 (e.g., 5.5). These
outliers were removed; the remaining data were converted from a 5-point scale to [-1, 1]
scale.

In addition to IEMOCAP dataset, MSP-IMPROV dataset [31] was used. The MSP-
IMPROV dataset was designed within a dialogue framework to elicit target sentences with
the same semantic content but was produced with different emotional expressions. In one
recording, the target sentences were produced ad-lib; for another recording, the target
sentences were read. These two recordings are referred to as “Target-improvised” and
“Target-read”, respectively. Since the goal is to examine the effect of both linguistic and
acoustic information on emotional ratings at the late-fusion stage, these recordings were
not appropriate for this study. However, two sets of recordings, which did not have the
same semantic content, were used, called “Other-improvised” and “Natural-interaction.”
The former included conversations of the actors during improvisation sessions; the latter
included the exchanges during the breaks. This natural-interaction is recorded while the
actors were not acting. Zhang et al. [64] used a similar protocol, and this study followed
their lead in referring to this subset of the MSP-IMPROV dataset as MSP-I+N (MSP
improvised and natural interaction) or MSPIN. In this work, the same text transcriptions
used by Zhang et al. was used (the authors of the dataset provide transcriptions); for
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Figure 6.1: Proportion of data splitting for each partition of each dataset. In one-stage
LSTM processing, the outputs of the model are both development and test data. In
the second stage, i.e., the SVM processing, the input data is the prediction from the
development set of the previous stage, and the output is the prediction of test data.

the additional utterances not included in the Zhang study, transcriptions were obtained
using Mozilla’s DeepSpeech [128]. This study thus uses 7166 utterances from a total of
8438. The speech data in the dataset was sampled in mono at 44.1 kHz, with one file per
utterance/sentence.

This study split each dataset into two partitions to observe any differences between a
speaker-dependent (SD) partition and a speaker-independent partition made by leaving
one session out (LOSO) for each dataset. For example, for the IEMOCAP dataset, the
last session (i.e., session 5), recorded from two different actors (out of 10), is only used
for testing. Similarly, all utterances from session 6 (two speakers out of 12) are used for
the MSP-I+N test set. The rule for data splitting is to divide between the training +
development and test sets in a ratio close to 80:20. This rule applies to both the SD and
LOSO partitions. Then, of the training + development data, 80% is used for training,
and the remaining 20% is used for development, as shown in Figure 6.1. Both methods
are evaluated with the same unseen test sets to compare the performance and measure the
improvement. Note that the dataset was not validated using a cross-validation technique
(but instead divided into training and test data) for evaluation since the number of samples
for both datasets is adequate (10039 and 7166 samples). This strategy is also utilized to
keep the same test set for LSTM (one-stage processing) and SVM (two-stage processing)
which is difficult if the samples are shuffled/cross-validated.
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Table 6.1: Acoustic feature sets derived from the GeMAPS features by [4] and the statis-
tical functions used for dimensional SER in this research

LLDs HSF1 HSF2

intensity, alpha ratio, Hammar-
berg index, spectral slope 0-500
Hz, spectral slope 500-1500 Hz,
spectral flux, 4 MFCCs, F0, jit-
ter, shimmer, harmonics-to-noise
ratio (HNR), harmonic difference
H1-H2, harmonic difference H1-
A3, F1, F1 bandwidth, F1 ampli-
tude, F2, F2 amplitude, F3, and
F3 amplitude.

mean (of LLDs),
standard deviation (of
LLDs)

mean (of LLDs),
standard deviation (of
LLDs), silence

6.2 Two-stage dimensional SER

6.2.1 LSTM network for unimodal prediction

Acoustic emotion recognition

Based on the results on the previous early fusion method, it was found that LSTM is more
beneficial than CNN to model both acoustic- and linguistic-based emotion recognition.
The DNN at the first stage of the late fusion approach adopts this LSTM network. The
acoustic network receives input in different acoustic features for evaluation. Not only
differs in feature sets, this evaluation continues the previous work [14] in the use of dif-
ferent datasets. Apart from the acoustic features used in the previous chapter, this study
evaluates three acoustic different feature sets: LLDs of GeMAPS, Mean+Std features at
the utterance level from these LLDs (HSF1), and an additional silence feature with these
statistical functions (HSF2).

The LLD features are the 23 acoustic features listed in Table 6.1. For each frame
(25 ms), these 23 acoustic features are extracted. With a hop size of 10 ms, the maxi-
mum number of sequences is 3409 for the IEMOCAP dataset and 3812 for the MSP-I+N
dataset. Hence, the input size is 3409 × 23 for IEMOCAP and 3812 × 23 for MSP-I+N.
The extraction process uses the openSMILE toolkit [131].

Figure 6.2 shows an overview of the acoustic network. DNN with LSTM architecture
is chosen because the number of training samples is adequate (> 5000 samples). Further-
more, it shows promising results in the previous research [112]. Before entering the LSTM
layers, the LLD features at the input layer are fed into a batch normalization layer to
speed up the computation process. The three subsequent LSTM layers are stacked with
256 nodes in each layer, following one of the configurations in [132]. Instead of returning
the last LSTM layer’s final output, the networks were designed to return the full sequence
and flatten it before inputting it to three dense layers representing valence, arousal, and
dominance. The outputs of these last dense layers are then the predictions for those
emotional attributes, i.e., the degrees of valence, arousal, and dominance in the range [-1,
1].
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Figure 6.2: Structure of acoustic network to process acoustic features
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Table 6.2: The hyper-parameter used in experiments

Hyper-parameter Acoustic network Linguistic network

network type LSTM LSTM
number of layers 3 3
number of units 256 256
fourth layer Flatten Dense
hidden activation linear linear
output activation linear (LLD) / tanh (HSF) linear
dropout rate 0.3 (LLD) / 0 (HSF) 0.3
learning rate 0.001 0.001
batch size 8 8
maximum epochs 50 50
optimizer RMSprop RMSprop

The tuning of hyper-parameters follows the previous research [18, 15]. A batch size
of 8 was used with a maximum of 50 epochs. An early stop criterion with ten patiences
would stop the training process if no improvement was made in 10 epochs (before the
maximum epoch) and used the last highest-score model to predict the development data.
An RMSprop optimizer was used with its default learning rate, i.e., 0.001. Table 6.2
shows the setups on acoustic and linguistic networks. These setups were obtained based
on experiments with regard to the size of networks. For instance, the smaller acoustic
networks with HSF features employed tanh output activation function did not use the
dropout rate while the larger acoustic (with LLD) and linguistic networks employed linear
activation function and dropout rate.

For the HSF1 and HSF2 inputs on acoustic networks, the same setup applies. These
two feature sets are very small as compared to the LLDs: HSF1 has a size of 1 × 46,
while HSF2 has a size of 1 × 47. This big difference in input size (1:1800) leads to faster
computation on HSF1 and HSF2 than on the LLDs. Note that, although Figure 6.2 shows
HSF2 as the input feature, the same architecture also applies for the LLDs and HSF1.

The idea of using LSTM is to hold the last output in memory and use that output as
a successive step. For instance, LLD with (3409, 23) feature size will process the first time
step 1 to the last time step 3409. For HSF1 and HSF2, which contains a single timestamp,
the data is processed only once ([1, 46] and [1, 47] for HSF1 and HSF2). Here, the only
difference, from multiple time steps, is that the network performs three passes (forget
gate, input gate, and output gate) instead of a single pass (see [41]). This information
will include all information from the networks’ memory.

Linguistic emotion recognition

The linguistic network, shown in Figure 6.3 for the MSP-I+N dataset, use the same input
size for the three different linguistic features. The WE, WE with pre-trained word2vec,
and WE with pre-trained GloVe embedding were used on the basis of the previous results
with 300 dimensions for each word. The longest sequence in the IEMOCAP dataset is
100 sequences (words), while for MSP-I+N, the longest is 300 sequences. Hence, the
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input feature sizes for the LSTM layers are 100 × 300 for IEMOCAP and 300 × 300 for
MSP-I+N with its corresponding number of samples. The same three LSTM layers are
stacked as in the acoustic network, but the last LSTM layer only returns the last output.
A dense layer with a size of 128 nodes is added after the LSTM layers and before the last
three dense layers. Between the dense layers is a dropout layer with the same probability
of 0.3 to avoid overfitting.
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Figure 6.3: Structure of linguistic network to process word embeddings/vectors

6.2.2 SVM for results fusion

The choice of an SVM (in this case, support vector regression, SVR) as the final classifier
to fuse the outputs of the acoustic and linguistic networks is due to its effectiveness in
handling smaller data (compared to a DNN) and its computation speed. The data points
produced by LSTM processing as the input of SVM is small; i.e., 1600, 1538, 1147, and
1148 for IEMOCAP-SD, IEMOCAP-LOSO, MSPIN-SD and MSPIN-LOS0, respectively.
The SVM then applies regression analysis to map them to the given labels. Figure 6.4
shows the architecture of this two-stage emotion recognition system using DNNs and an
SVM. Each prediction from the acoustic and linguistic networks is fed into the SVM.
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Figure 6.4: Proposed two-stage dimensional emotion recognition method using DNNs and
an SVM. The inputs are acoustic features (af) and linguistic features (lf); the outputs are
valence (V), arousal (A), and dominance (D).

From two values (e.g., valence predictions from the acoustic and linguistic networks), the
SVM learns to generate a final predicted degree (e.g., for valence). The concept of using
the SVM as the final classifier is summarized as Chapter 2.

6.3 Results and discussion

6.3.1 Results from single modality

Before presenting the bimodal feature-fusion results, it is important to show the results of
unimodal emotion recognition. The goals here are (1) to observe the (relative) improve-
ment of bimodal feature fusion over using a single modality, and (2) to observe the effects
of different features on different emotion attributes.

Tables 6.3 and 6.4 summarize the single-modality results of dimensional emotion recog-
nition from the acoustic and linguistic networks, respectively. In general, acoustic-based
SER gave better results than the text-based SER in terms of the average CCC score.
For particular emotion attributes, the linguistic network gave a higher CCC score for
valence prediction than those obtained by the acoustic network, except on the MSPIN
datasets. These results confirm the previous finding by [82] that valence is better esti-
mated by semantic features, while acoustic features better predict arousal. It is also found
that acoustic features better predicted the dominance dimension than linguistic features.
This finding can be inferred from both tables, in which the CCC scores for the domi-
nance dimension are frequently higher from the acoustic network than from the linguistic
networks.

The exception to a higher valence score on the MSPIN-SD dataset by the acoustic
networks can be seen as the effect of either the DNN architecture or the dataset’s char-
acteristics. In [127], the obtained score was higher for valence than for arousal or liking
(the third dimension, instead of dominance) with their strategy on acoustic features. In
contrast, [132] obtained a lower score for valence than for arousal and dominance by
using their proposed domain adversarial neural network (DANN) method on the same
MSP-IMPROV dataset (whole data, all four scenarios). Given this comparison, it can
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be concluded that the higher valence score obtained here was an effect of the DNN ar-
chitecture, because of the multitask learning. The result on a single modality (acoustic
network) outperformed the DANN result on MSP-IMPROV, where their highest CCC
scores were (0.303, 0.176, 0.476) as compared to the obtained scores of (0.404, 0.605,
0.517) for valence, arousal, and dominance, respectively.

Table 6.3: CCC scores of dimensional emotion recognition using an acoustic network.
The best results on the test set are in bold. LLDs: low-level descriptors from GeMAPS
[4]; HSF1: Mean+Std of LLDs; HSF2: Mean+Std+Silence

Feature set V A D Mean

IEMOCAP-SD
LLD 0.153 0.522 0.534 0.403
HSF1 0.186 0.535 0.466 0.396
HSF2 0.192 0.539 0.469 0.400

MSPIN-SD
LLD 0.299 0.545 0.441 0.428
HSF1 0.400 0.603 0.506 0.503
HSF2 0.404 0.605 0.517 0.508

IEMOCAP-LOSO
LLD 0.168 0.486 0.442 0.365
HSF1 0.206 0.526 0.442 0.391
HSF2 0.204 0.543 0.442 0.396

MSPIN-LOSO
LLD 0.176 0.454 0.369 0.333
HSF1 0.201 0.506 0.357 0.355
HSF2 0.206 0.503 0.346 0.352

A linear search algorithm was performed on the scale [0.0, 1.0] with 0.1 step to find
the optimal parameter values for α and β. Using this technique, four sets of optimal
parameters were found for the acoustic and text networks for two datasets. Note that,
while only the improvised and natural scenarios (MSP-I+N) were used to find the optimal
linguistic network parameters for the MSP-IMPROV dataset, the whole dataset was used
to find the optimal acoustic-network parameters. Table 6.5 lists the optimal parameter
values for α and β.

To summarize the single-modality results, average CCC scores from three emotion
dimensions can be used to justify which features perform better, among others. The results
show that HSF2 was the most useful of the acoustic feature sets (in two of four datasets),
while the word embeddings (WE) with pre-trained GloVe embedding was the most useful
of the linguistic feature sets. The performance of dimensional emotion recognition in the
speaker-independent (LOSO) case was lower than in the speaker-dependent (SD) case,
as predicted. Note that both acoustic and linguistic emotion networks used a fixed seed
number to achieve the same result for each run; however, the linguistic network resulted
in different scores. Hence, standard deviations were given to measure fluctuation in 20
runs.
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Table 6.4: CCC scores of dimensional emotion recognition using linguistic network; each
score is an averaged score of 20 runs with its standard deviation. WE: word embeddings;
word2vec: WE weighted by pre-trained word vectors [3]; GloVe: WE weighted by pre-
trained global vectors [7]

Feature set V A D Mean

IEMOCAP-SD
WE 0.389 ± 0.008 0.373 ± 0.010 0.398 ± 0.017 0.387 ± 0.010
word2vec 0.393 ± 0.012 0.371 ± 0.018 0.366 ± 0.024 0.377 ± 0.016
GloVe 0.410 ± 0.007 0.381 ± 0.013 0.393 ± 0.016 0.395 ± 0.010

MSPIN-SD
WE 0.120 ± 0.047 0.148 ± 0.023 0.084 ± 0.024 0.105 ± 0.026
word2vec 0.138 ± 0.031 0.108 ± 0.024 0.101 ± 0.024 0.116 ± 0.017
GloVe 0.147 ± 0.043 0.141 ± 0.019 0.098 ± 0.017 0.128 ± 0.015

IEMOCAP-LOSO
WE 0.376 ± 0.008 0.359 ± 0.018 0.370 ± 0.020 0.368 ± 0.013
word2vec 0.375 ± 0.058 0.357 ± 0.058 0.365 ± 0.065 0.366 ± 0.059
GloVe 0.405 ± 0.009 0.382 ± 0.020 0.378 ± 0.021 0.389 ± 0.014

MSPIN-LOSO
WE 0.076 ± 0.013 0.196 ± 0.011 0.136 ± 0.015 0.136 ± 0.009
word2vec 0.162 ± 0.008 0.202 ± 0.005 0.147 ± 0.003 0.170 ± 0.000
GloVe 0.192 ± 0.004 0.189 ± 0.007 0.129 ± 0.004 0.170 ± 0.003

Table 6.5: Optimal parameters for multitask learning

Dataset Modality α β

IEMOCAP acoustic 0.1 0.5
linguistic 0.7 0.2

MSP-IMPROV acoustic 0.3 0.6
linguistic 0.1 0.6
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6.3.2 Results from SVM-based fusion

The main proposal of this research is the late-fusion approach combining the results from
acoustic and linguistic networks for dimensional emotion recognition. This subsection
presents the results for the late-fusion approach, including the obtained performances,
comparison with the single-modality results, which pairs of acoustic-linguistic results per-
formed better, and the overall findings.

For each dataset (IEMOCAP-SD, MSPIN-SD, IEMOCAP-LOSO, MSPIN-LOSO),
nine combinations of acoustic-linguistic pairs of results could be fed into the SVM system.
Tables 6.6, 6.7, 6.8, and 6.9 summarize the respective CCC results for these datasets. Gen-
erally, the proposed two-stage dimensional emotion recognition improved the CCC score
from single-modality emotion recognition. The pair of results from HSF2 (acoustic) and
word2vec (linguistic) gave the highest CCC score on speaker-dependent scenarios.

On the speaker-independent IEMOCAP dataset (IEMOCAP-LOSO), the result from
the pair of HSF2 and GloVe gave the highest CCC score. This result linearly correlated
with the single-modality results for that dataset, in which HSF2 obtained the highest CCC
score among the acoustic features, and GloVe was the best among the linguistic features.
On the four datasets, the results from HSF2 obtained the highest CCC score for two out
of four datasets while GloVe obtained the highest CCC score for all four datasets. Hence,
it can be concluded that the highest result from a single modality, when paired with the
highest result from another modality, will achieve the highest performance among possible
pairs.

Table 6.6: CCC scores of the late-fusion SVM on the IEMOCAP-SD test set

Inputs V A D Mean

LLD + WE 0.520 0.602 0.519 0.547
LLD + word2vec 0.552 0.613 0.524 0.563
LLD + GloVe 0.546 0.606 0.520 0.557
HSF1 + WE 0.578 0.575 0.490 0.548
HSF1 + word2vec 0.599 0.590 0.491 0.560
HSF1 + GloVe 0.595 0.582 0.495 0.557
HSF2 + WE 0.598 0.591 0.502 0.564
HSF2 + word2vec 0.595 0.601 0.499 0.565
HSF2 + GloVe 0.598 0.591 0.502 0.564

An average CCC score from three emotion dimensions can be used as a single metric
to evaluate the improvement obtained by SVM-based late fusion. The right-most column
in Table 6.6, 6.7, 6.8, and 6.9 shows the average CCC scores obtained from the nine pairs
of acoustic and linguistic results on the four different datasets. Comparing these bimodal
results to unimodal results (Chapter 4 and Chapter 5) shows the difference. All results
from SVM improved unimodal results. In speaker-independent (LOSO) results (which are
more appropriate for real-life analysis), the scores resulted from pairs of HSF with any
word vector obtain remarkable improvements, particularly in the MSPIN-LOSO dataset.
For any other pair involving LLDs, the obtained score was also lower as compared to other
pairs. Considering all low scores involved LLD results, improving dimensional emotion
recognition by using LLDs is more complicated than using HSF1 and HSF2 due to the
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Table 6.7: CCC scores of the late-fusion SVM on the MSPIN-SD dataset

Inputs V A D Mean

LLD + WE 0.344 0.591 0.447 0.461
LLD + word2vec 0.326 0.586 0.439 0.450
LLD + GloVe 0.344 0.585 0.439 0.456
HSF1 + WE 0.461 0.637 0.517 0.538
HSF1 + word2vec 0.464 0.634 0.518 0.539
HSF1 + GloVe 0.466 0.630 0.510 0.535
HSF2 + WE 0.475 0.640 0.522 0.546
HSF2 + word2vec 0.486 0.641 0.524 0.550
HSF2 + GloVe 0.485 0.638 0.523 0.549

Table 6.8: CCC scores of the late-fusion SVM on the IEMOCAP-LOSO test set

Inputs V A D Mean

LLD + WE 0.537 0.583 0.431 0.517
LLD + word2vec 0.528 0.580 0.421 0.510
LLD + GloVe 0.539 0.587 0.430 0.518
HSF1 + WE 0.565 0.565 0.453 0.528
HSF1 + word2vec 0.536 0.559 0.434 0.510
HSF1 + GloVe 0.559 0.570 0.452 0.527
HSF2 + WE 0.524 0.566 0.452 0.514
HSF2 + word2vec 0.531 0.571 0.445 0.516
HSF2 + GloVe 0.553 0.579 0.465 0.532

Table 6.9: CCC scores of the late-fusion SVM on the MSPIN-LOSO test set

Inputs V A D Mean
LLD + WE 0.204 0.485 0.387 0.358
LLD + word2vec 0.267 0.487 0.386 0.380
LLD + GloVe 0.269 0.482 0.375 0.376
HSF1 + WE 0.224 0.565 0.410 0.400
HSF1 + word2vec 0.286 0.558 0.411 0.418
HSF1 + GloVe 0.282 0.555 0.409 0.415
HSF2 + WE 0.232 0.566 0.421 0.406
HSF2 + word2vec 0.287 0.562 0.411 0.420
HSF2 + GloVe 0.291 0.570 0.405 0.422
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larger feature size and the longer training time. The large network size created by an LLD
input as a result of its much bigger feature dimension (e.g., 3409 × 23 on IEMOCAP)
did not help either the single-modality or late-fusion performance. In contrast, the small
sizes of the functional features (HSF1 and HSF2) enabled better performance on a single
modality, which led to a better performance for the late-fusion score. To obtain func-
tional features, however, a set of LLD features must be obtained first. This problem is
a challenging future research direction, especially for implementing dimensional emotion
recognition with real-time processing.

In addition to the fact that a speaker-independent dataset is usually more difficult than
a speaker-dependent dataset, the low score on MSPIN-LOSO was due to its low scores on a
single modality. In other words, lower pair performance from a single modality will result
in low performance in late fusion. In particular, these low results derive from low CCC
scores from the linguistic modality. The average CCC score for the linguistic modality
on the MSPIN-LOSO dataset was less than 0.16, compared to an average score higher
than 0.34 for the acoustic modality. All nine pairs in late-fusion approaches improved on
the single-modality results because of the two-stage DNN and SVM regression analysis.
Thus, out of 36 trials (9 pairs × 4 datasets), the proposed two-stage dimensional emotion
recognition outperforms any single modality result (used in a pair).

The low score on MSPIN for the linguistic modality can be tracked to the origin of the
dataset. There may have been a number of sentences semantically identical to the target
sentences in the dataset used in this study. Although this study already chooses sentences
from the improvised dialogues and the natural interactions only, some of the sentences
were identical to that of the target sentences in the “Target-Improvised” data set. This
evidence was confirmed retroactively by manually checking the provided transcription
and the automatic transcription. Given the nature of the elicitation task in a dialogue
framework, this is not surprising. A similar low result for the linguistic modality on this
MSPIN dataset was also shown in [64]. In general, compared to the IEMOCAP dataset,
the MSPIN dataset suffers from low accuracy in recognizing the valence category by using
acoustic and lexical properties. Interestingly, however, those authors also did not show
improvement on the IEMOCAP scripted dataset, another text-based session in which
linguistic features do not contribute significantly.

A relative improvement can be calculated to measure the performance of the proposed
two-stage late fusion and by single modalities. For example, the pair of LLD + WE used
the results from the LLDs in the acoustic network and the WE in the linguistic network.
This study compared the result for LLD + WE with that of the LLDs, as it had a higher
score than the WE did. Figure 6.5 thus shows the relative improvement for all nine pairs.
All of 36 trials showed improvements ranging from 5.11% to 40.32%. Table 6.10 lists the
statistics for the obtained relative improvement. The obtained results show higher relative
accuracy improvement as compared to those obtained in [64] for valence prediction, which
ranged from 6% to 9%. Nevertheless, their multistage fusion method also showed benefits
over the multimodal and single-modality approaches. These findings confirm the benefits
of using bimodal/multimodal fusion instead of single-modality processing for valence,
arousal, and dominance predictions.
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Figure 6.5: Relative improvements in average CCC scores from the late fusion using an
SVM as compared to the highest average CCC scores from a single modality

Table 6.10: Statistics of relative improvement by late fusion using an SVM as compared
to the highest scores for a single modality across datasets; the scores were extracted from
the data shown in Figure 6.5.

Statistic IEMOCAP-SD MSPIN-SD IEMOCAP-LOSO MSPIN-LOSO

Average 39.73% 7.01% 34.15% 15.23%
Max 41.45% 8.22% 40.32% 19.93%
Min 35.80% 5.11% 29.69% 7.64%
Std 1.90% 0.93% 3.84% 3.90%
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Table 6.11: Significant difference between speaker-dependent and speaker-independent
scenarios on the same linguistic feature set; statistical tests were performed using two-tail
paired t−test with p−value = 0.05.

Feature IEMOCAP MSPIN

WE Yes Yes
word2vec No Yes
GloVe Yes Yes

6.3.3 Speaker-dependent vs. speaker-independent linguistic emo-
tion recognition

While speech-based emotion recognition is performed with a fixed random seed to generate
the same result for each run, linguistic-based emotion recognition resulted in different
scores for each run. The different results on linguistic emotion recognition probably is
caused by the initiation of weightings on embedding layers. In this case, statistical tests
can be performed on linguistic emotion results to observe the difference between speaker-
dependent and speaker-independent scenarios. In contrast, statistical tests cannot be
performed between acoustic results and bimodal acoustic-linguistic results due to the
differences in the data (deterministic vs. non-deterministic).

Table 6.11 shows if there is a significant difference between speaker-dependent and
speaker-independent results on the same feature set. The p−value was set at 0.05 with a
two-tail paired t-test between mean scores of speaker-dependent and speaker-independent
results. This paired t-test was based on the assumption that there are no outliers (after
pre-processing), and two different inputs are fed into the same system. Only one re-
sult from linguistic emotion recognition shows no significant difference in the IEMOCAP
dataset. In contrast, all results from the MSPIN dataset shows a significant difference be-
tween speaker-dependent and speaker-independent results. This result reveals a tendency
for a difference in evaluating speaker-dependent and speaker-independent data. The re-
sults from speaker-dependent data did not represent speaker-independent data. In other
words, results from speaker-dependent data cannot be used to justify speaker-independent
or whole data.

6.3.4 Effect of removing target sentence from MSP-IMPROV
dataset

Since this research aims to evaluate the contribution of both acoustic and linguistic in-
formation in affective expressions, it is necessary to have sentences in the dataset that
are free from any stimuli control. However, the original MSP-IMPROV dataset contains
20 “target” sentences, the same sentence that is elicited for different emotions (lexical-
controlled data). These parts of MSP-IMPROV dataset are irrelevant to this study;
hence, it can be removed from the dataset, i.e., Target - improvised and Target - read
parts. Nevertheless, it was found that the results show low CCC scores, particularly on
valence prediction, indicating the influences of the target sentence. These results may be
explained, as mentioned in section 6.3.2, that some of the utterances in the data ana-
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lyzed in this study also inadvertently included sentences semantically same as or similar
to those in the improvised target sentences (semi lexical-controlled data). Hence, it is
necessary to compare the contribution of linguistic information in lexical-controlled and
lexical-uncontrolled datasets, including the threshold between these datasets.

6.3.5 Final remarks

A benchmark comparing this study with others is an ideal way to evaluate the proposed
method; however, no study has been found using the same dataset, scenario, and metric
for comparisons. Comparing to an early-fusion described in the previous chapter, which
reports an early fusion method on the IEMOCAP dataset, this study improves the average
CCC score from 0.508 to 0.532. This higher result suggests that the late fusion is better
than early fusion to model bimodal acoustic-linguistic information fusion, which is in
line with how humans fuse multimodal information. This late-fusion approach can be
embedded with current speech technology, i.e., ASR, in which the text output can be
processed to weigh emotion prediction from acoustic features.

AbdelWahab and Busso [132] used MSP-Podcast [133], collection of natural speech
from audio-sharing website, as a target corpus and IEMOCAP with MSP-IMPROV as
source corpora to implement their DANN for cross-corpus speech emotion recognition.
Although the goal is different, it was observed similar patterns between theirs and the
acoustic-only speech emotion recognition int this study. First, it was observed that the
order of the highest to the lowest CCC scores is arousal, dominance, and valence. This
pattern is also consistent when IEMOCAP is mixed with MSP-IMPROV as reported by
[122] (in Table 2). Second, it was observed that the CCC scores obtained in IEMOCAP
are higher than those obtained in MSP-IMPROV; this lower score in MSP-IMPROV was
due to the smaller size of the dataset.

Along with the SVM architecture, this study also explored the parameters C and
γ, because both parameters are important for an RBF-kernel-based SVM architecture
[67]. Linear search was used in the ranges of [10−2, 1, 102, 2 × 102, 3 × 102] for C and
[10−2, 10−1, 1, 10, 102] for γ with a fixed value of ε, i.e., 0.01. The best parameter val-
ues were C = 200 and γ = 0.1. A repository has been made to include the detailed
implementation of the SVM architecture [134].

Per the stated objective in this chapter, this study applied two-stage processing by
using DNNs and an SVM for dimensional emotion recognition from acoustic and linguistic
features on four different datasets. It is found that the combination of Mean+Std+Silence
from the acoustic features and word embeddings weighted by pre-trained GloVe embed-
dings achieved the highest result among the nine pairs of acoustic-linguistic results from
DNNs trained with multitask learning. When the performance in obtaining one input
to the SVM is very low, the resulting relative improvement due to the SVM is also low.
For instance, the lowest improvement on MSPIN-LOSO was from LLD + WE features,
in which WE obtained a low score (CCCavg or CCC = 0.136) on the linguistic network.
This phenomenon suggests a challenging future research direction for dealing with very
little information, particularly linguistic information, in the fusion strategy. One strategy
applied in this research was to use a pre-trained GloVe embedding on linguistic features
with HSF2 on acoustic features, which improved the CCC score from 0.358 (relative im-
provement = 7.64%) to 0.422 (relative improvement = 19.93%). Other strategies should
also be proposed, such as how to handle the data differently when the same sentence
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elicits different emotions (i.e., whole MSP-IMPROV dataset). In contrast, the current
word-embedding feature treats the same sentence as the same representation, even when
it conveys different emotions. Although BERT was used in the previous chapter, the
configuration only utilized a pre-trained model instead of fine-tuned model.

6.4 Summary

This chapter presents a late-fusion approach for acoustic-linguistic emotion recognition.
Several findings can be emphasized in this chapter. First, it was found a linear correlation
between the single-modality and late-fusion methods in dimensional emotion recognition.
The best result from each modality, when they were paired, gave the best fusion result.
Similarly, the worst result obtained from each network, when they were paired, gave
the worst fusion result for bimodal emotion recognition. This finding differs from that
reported in [18], which used an early-fusion approach for categorical emotion recognition.
In their work, the best pair differs from the best methods in single modalities.

Second, linguistic features strongly influenced dimensional SER’s score on the valence
dimension, while acoustic features strongly influenced arousal and dominance scores. Ac-
cordingly, the proposed two-stage processing can take advantage of linguistic features,
which are commonly used in predicting sentiment (valence) for the dimensional emotion
recognition task. The proposed fusion method improves all three emotion dimensions
without attenuating the performance of any dimension. The proposed method elevates
scores of valence, arousal, and dominance, subsequently from the highest to the lowest
gain.

Third, the combination of input pairs does not matter in the proposed fusion method,
as indicated by the low deviation in relative improvement across the nine possible input
pairs. What does is the performance of the input in the DNN stage. If the performance
in the DNN stage is low (CCC ≤ 0.2), it will also result in low performance when paired
with another low-performance input in the SVM stage.

Future research can be directed to generalize the evaluated method presented in this
chapter for cross datasets — different datasets are used for training and test. While the
SVM stage in this study only performed once, it can be extended to be performed many
times to observe such improvements. These broad research directions are open challenges
for researchers in speech emotion recognition.
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Chapter 7

Comparative Analysis

This chapter aims at summarizing the results obtained in this research and comparing
with others.

7.1 Comparison within this study

The summary of the results within this study could be used to evaluate the research
progress and its trend. Comparing one method to another, either from the feature side
or classifier/model side, could be used to judge the effectiveness of the method. The use
of a single metric CCC permits to track the performance of different methods precisely.

Improvements in CCC scores were obtained using different methods described from
Chapter 4 to Chapter 6. Table 7.1 shows the averaged CCC scores among valence, arousal,
and dominance using different acoustic features, linguistic features, and classifiers on the
IEMOCAP dataset. Clearly, it shows the gradation of the performance scores (average
CCC [CCCave]) from unimodal acoustic SER to bimodal acoustic-linguistic SER.

The first eight rows in Table 7.1 shows dimensional SER from acoustic features only.
HSF consistently obtained higher CCC scores than LLD. An optimization of this feature
set can be achieved using MLP architecture with a deeper layer (a maximum score was
obtained using five layers). A comparison of ignoring (keeping) silence, removing silence,
and utilizing silence as an additional feature showed that the latter two methods are
better than the first. Since linguistic-only dimensional SER is not the focus of this study,
the discussion of linguistic-only dimensional SER is not discussed thoroughly.

Instead, the use of linguistic information, in addition to acoustic information, improved
the performance scores. Using pAA feature set with LSTM as the baseline, the early fusion
method improved the average CCC score from 0.400 to 0.508. Furthermore, the late fusion
method improved the early fusion method from 0.508 to 0.532. As suggested in the next
chapter, there is a bottleneck between acoustic and linguistic processing in bimodal SER
fusion; the process needs to wait for ASR outputs in real application for information
fusion. However, bimodal fusion consistently gains higher scores than acoustic-only SER.
Although there is a room for improvement, this study limits the discussion to this point
since the goal is studying the fuse of acoustic and linguistic information for dimensional
emotion recognition. Further investigations are recommended in the next chapter’s Future
research direction section.
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Table 7.1: Reported results on the IEMOCAP dataset test set (Session 5); the number
inside bracket represents the number of layers; sil: silence

Acoustic Linguistic Classifier CCCavg

GeMAPS LLD - LSTM (3) 0.382
pAA LLD - LSTM (3) 0.354

pAA D LLD - LSTM (3) 0.370
GeMAPS HSF - LSTM (3) 0.389

pAA HSF - LSTM (3) 0.384
pAA D HSF - LSTM (3) 0.413
pAA D HSF - MLP (6) 0.452

pAA D HSF sil-removed - MLP (6) 0.459
pAA D HSF + sil - MLP (6) 0.466

- WE LSTM (3) 0.361
- word2vec LSTM (3) 0.386
- GloVe LSTM (3) 0.392
- FastText LSTM (3) 0.384
- BERT LSTM (3) 0.375

pAA HSF GloVe LSTM (3) – LSTM (3) [early fusion] 0.508
pAA HSF + sil (HSF2) Glove LSTM (3) – SVM [late fusion] 0.532

7.2 Comparison with other studies

One of the motivations to use the dimensional model over the categorical model is that
only a little research has been conducted using this emotion model. This small number
of research leads to the difficulties of comparing this research to similar studies. In
INTERSPEECH 2020, 11 papers proposed bimodal acoustic-linguistic fusion for SER.
Among these papers, only four papers evaluated dimensional SER. However, no paper
reported the results in CCC score.

Table 7.2 compares this research with others. Although the exact condition cannot
be performed for ideal comparison, the performance of valence (V), arousal (A), and
dominance (D) in CCC scores can be used to judge the rough performance among several
methods. The first four rows are the results obtained in this study. The rest are from
other research with different datasets and methods.

The closest comparison can be made between this research and the ones proposed by
Zhao et al. [135, 64]. In both papers, the authors proposed to fuse acoustic features with
gender and age information. Using the other non-linguistic information, they improved
the CCC scores of dimensional SER except for valence prediction. The fusion of acoustic,
age, and gender information is performed in a hierarchical manner. Since the scenario of
the IEMOCAP is not explained; it is assumed the results obtained by Zhao et al. (rows
fifth and sixth) are in speaker-independent (SI) scenarios. In [136], the authors copied the
parts of the dataset for augmentation or balancing, since they also evaluated categorical
emotion. The addition of these data improved the CCC scores; however, this technique
should be avoided since the model learns the same data twice.

To overcome the problem of mismatch among datasets, AbdelWahab and Busso [132]
proposed domain adversarial neural network (DANN) for acoustic emotion recognition.
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Table 7.2: Comparison of this study with others; SD: speaker-dependent; SI: speaker-
independent; Ac: acoustic, Li: linguistic, Vi: visual

No. Dataset Authors Modalities V A D

1 IEMOCAP SD Atmaja Ac+Li 0.596 0.601 0.499
2 IEMOCAP SI Atmaja Ac+Li 0.553 0.579 0.465
3 MSPIN SD Atmaja Ac+Li 0.486 0.641 0.524
4 MSPIN SI Atmaja Ac+Li 0.291 0.570 0.405
5 IEMOCAP Zhao et al. [135] Ac 0.715 0.392 0.539
6 IEMOCAP Zhao et al. [136] Ac 0.590 0.689 0.591
7 IEMOCAP (train) & AbdelWahab & Ac 0.140 0.305 0.181

MSP-Podcast (test) Busso [132]
8 MSP-Podcast (train) & Parthasarathy & Ac 0.235 0.623 0.441

IEMOCAP (test) Busso [137]
9 MSP-Podcast SI Sridhar et al. [94] Ac 0.291 0.711 0.690
10 SEMAINE Yang & Ac 0.506 0.680 -

Hirschberg [138]
11 RECOLA Bakhshi et al. [139] Ac 0.314 0.660 -
12 SEWA (DE) Schmitt et al. [112] Ac 0.489 0.499 -
13 SEWA (DE+HU) Atmaja & Akagi [20] Ac+Vi 0.656 0.680 -
14 SEWA (DE+HU) Chen et al. [127] Ac+Vi+Li 0.755 0.672 -

They obtained low CCC scores by using different datasets for training and test, as shown in
Table (row No.7). These results were achieved using three layers of DANN. Parthasarathy
and Busso [137] also took into account the problem of generalization across datasets by
proposing a semi-supervised method with the reconstruction of intermediate feature rep-
resentation that does not require labels. One of the results, using opposite datasets for
testing and test as used by AbdelWahab and Busso, shows significant improvement on
CCC scores. However, both research [132, 137] showed low valence prediction perfor-
mance, which is tackled in this study.

Another way to improve valence prediction is by utilizing different regularization for
different emotion attributes, as proposed by Sridhar et al. [94]. However, as shown in
row No. 9, the improved valence prediction for valence is not comparable to arousal and
dominance. In this study, we achieve comparable performances among valence, arousal,
and dominance.

Using other datasets, SEMAINE and RECOLA, comparable CCC scores were observed
between the results in these datasets and this study. Yang and Hirschberg [138] combined
waveform and spectrogram for predicting valence and arousal from speech. Although the
results are shown for SEMAINE (row No. 10), similar scores were observed for RECOLA.
Using similar methods, Bakhshi et al. [139] combined time and frequency information
using different networks for predicting valence and arousal. In this case, the score of
valence is about half from that of arousal.

SEWA is another dataset designed for emotion and sentiment research. Using this
dataset Schmitt et al. [112] revealed the importance of mean and standard deviation
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from GeMAPS feature set for dimensional SER. Significant improvements were observed
in the German (DE, Deutsch) sub-corpus. Atmaja and Akagi [20] added visual features
in addition to acoustic features to improve CCC scores. Finally, the last row in Table 7.2
shows that the fusion of acoustic, linguistic, and visual information attained the highest
average CCC score for dimensional SER.

The proposed methods in this study showed advantages among those other methods.
First, the bimodal acoustic-linguistic fusion doubles the amount of information from the
unimodal acoustic analysis. More data improves the effectiveness of the SER system since
the system can learn from more resources. The results proved this hypothesis. Second,
there is no need to add other modalities. Since linguistic information could also be ob-
tained from speech, the proposed method only relies on speech data. Unlike audiovisual
emotion recognition and addition of age and gender information, additional modalities
are needed for the fusion method. Third, the fusion approach is performed automatically
based on the data (bottom-up approach). Although this approach has several disadvan-
tages, the implementation is less complicated than model-driven approach, and the results
show modest improvement from other methods.

Several drawbacks of the evaluated methods have been found during this study. A bot-
tleneck between acoustic and linguistic processing is the major shortcoming of this study.
This drawback triggers a future study to predict linguistic information from acoustic in-
formation only without the need for the transcription. Another challenge is to reduce
the complexity of the proposed two-stage processing. In practice, the SER system should
be able to recognize emotion within a speech in almost real-time. This requirement is
difficult to be accomplished within the current late fusion approach.

Aside from the comparison among different methods, Table 7.2 shows other trends
in dimensional SER. First, the addition of other non-linguistic information significantly
improved the performance. This significant improvement is the evidence for the existence
of the relations among non-linguistic information. Second, there is a mismatch among
SER datasets, which are currently being tackled by SER researchers. This problem is a
challenging opportunity for testing the proposed SER method for future research. Finally,
more modalities tend to improve SER performance. However, per the stated objective
of this study, some cases cannot provide the measurement of other modalities. This
study is intended to maximize the performance of emotion recognition by fusing acoustic
and linguistic information. The result shows a substantial improvement for dimensional
emotion recognition from speech.

7.2. COMPARISON WITH OTHER STUDIES 83



Chapter 8

Conclusions

This closing chapter is divided into two sections, General summary and Future research
directions. Both sections are described below.

8.1 General summary

This dissertation demonstrates the necessity of fusing acoustic with linguistic information
for dimensional speech emotion recognition (SER), particularly for valence prediction
improvement purpose. The results of acoustic-only SER showed the necessity to go beyond
unimodal acoustic analysis. The two evaluated fusion methods, early and late fusions,
confirm the effectiveness of fusing acoustic with linguistic information over acoustic-only
dimensional SER.

Aside from that main goal, three sub-goals were transformed into three strategies to
investigate the potential solutions of partial problems in dimensional SER. These strate-
gies were dimensional SER using acoustic information only, fusing acoustic with linguistic
at the feature level, and fusing acoustic with linguistic information at the decision level.
These strategies yield answers to the following five issues:

1. region of analysis for feature extractions: high-level statistical function (HSF) using
mean and standard deviation consistently show more meaningful representations for
emotion in speech than low-level descriptors (LLD);

2. effect of silent pause regions: silence regions are predicted to contribute in dimen-
sional speech emotion recognition; either removing silence or using silence feature as
an additional feature slightly improves the performance score of the baseline whole
speech regions;

3. low valence prediction score on dimensional SER: fusing linguistic information with
acoustic information could improve the performance of valence prediction;

4. the necessity of fusing acoustic with linguistic information: consistent and significant
performance improvements by fusing both acoustic and linguistic information shows
the necessity of fusing both pieces of information;

5. framework for fusing acoustic with linguistic information: the late-fusion (decision-
level) approach obtained slightly better performance than an early-fusion (feature-
level) approach.
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Furthermore, this research not only contributes to solve these issues. Several new
insights are also gained including the following findings.

In the first strategy, the research is extended to evaluate the aggregation methods for
chunks to a story, the many-to-one problem. It is found that input feature aggregation,
either by mean or maximum values, consistently obtained better performance than output
aggregation by majority voting. This result reveals the importance of statistical functions
as feature representation. Similarly, the analysis of region for feature extraction showed
that statistical function on fixed length or utterance could represent emotional contents
in speech better than frame-based acoustic features.

The second important insight is the importance of correlation-based loss function.
Since the goal is concordance correlation coefficient (CCC), this research is developed by
inverting CCC as loss function and then accommodating three dimensional emotions by
summing up them. This straightforward flow, as expected, improved the performance of
dimensional SER.

Speaker independent scenario is different from speaker dependent scenario. The results
in Chapter 6 reveal this finding. The significant different between speaker dependent
and speaker independent should guide the future research on SER to choose speaker
independent scenario for evaluating the model. Speaker independent scenario may be not
enough. The repetition of linguistic information (word or phrase) may make the model
shows the higher performance than its original performance. A SER model should be able
to recognize emotion from speech regardless the speaker information.

The previous research showed the strong correlation between linguistic information
and valence, acoustic information and arousal. This research adds the finding of strong
correlation between acoustic and dominance. However, adding more information, i.e.,
linguistic information, not only improves the prediction of valence, but also arousal and
dominance. The contribution from each modality to each dimensional emotion is worth to
study for future, particularly on psychological side. The cross relation between different
modalities and dimensional emotions should also be studied from neuroscience side.

Although several solutions have been proposed and several insights have been gained,
it is known that current understanding on dimensional emotion is limited. Fusing acoustic
with linguistic information may reflect how humans’ multimodal perception works. How-
ever, extracting the “real” emotion from speech measurement is a long journey research.
As stated in the philosophy of this research, it is impossible to reach perfect accuracy to
recognize human emotion. The possibility is to maximize the recognition rate from the
given information, acoustic and linguistic.

8.2 Future research directions

While this research contributes to several areas, the following issues are suggested for
future research on automatic speech emotion recognition based on this study.

Accelerating high-level feature extraction for speech emotion recognition

In this research, it was found that HSF consistently obtained higher performance score
than LLD. However, to obtain HSF, LLD must be extracted first. In practice, this is not
an efficient method. A strategy to avoid this time lag should be proposed. For instance,
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dividing frames into chunks and aggregating these HSF (as evaluated in Chapter 4). The
computation time must be considered apart from the performance score.

Bimodal late-fusion approach by output aggregation

In chapter four, it was found that input aggregation is better than output aggregation
by majority voting. The goal of the input aggregation for the acoustic features is to
be able to concatenate with linguistic features. The acoustic and linguistic information
can be processed separately through different classifiers. The output prediction by both
modalities can be fused by output aggregation methods such as majority voting. Since
a late fusion showed a better performance than an early fusion, the obtained score may
improve the previously reported score in bimodal feature concatenation (Chapter 4).

Bimodal acoustic-linguistic fusion by two spaces resultant

In this research, the best results were obtained by late fusion with SVM. It means that
the decision function is taken automatically by measuring the distance of the prediction
from support vector line. In Chapter 5, the optimization has been performed to find
the optimum parameters for α, β, and γ. Instead of concatenating models for finding
optimum parameters, two spaces (acoustic and linguistic) can be modeled statistically/-
mathematically. Another approach is by a late fusion. Each acoustic and linguistic model
will predict vector of valence, arousal, and dominance. The fusion decision can be taken
by adding both vectors from the same space (e.g., dominance space from acoustic and
linguistic) by some weightings or modifications, if necessary.

Lexical controlled vs. lexical uncontrolled emotion recognition

While this study performed an evaluation on parts of MSP-IMPROV datasets, it was
found that these parts of the dataset (lexical uncontrolled) has been influenced by other
parts (lexical controlled). This proposal will evaluate the necessity of linguistic infor-
mation for SER: does linguistic information always be needed for SER? In some cases,
linguistic information may not be needed (e.g., in the condition in which the intonation to
express the emotion is clear in short utterance). The trade-off between the performance
improvement and model complexities should be carried out to judge “when is linguis-
tic information needed?,” “in what condition?,” and “what is the cues to use linguistic
information?.”

In addition to the lexical-controlled sentence, it is necessary to consider the polarity
of sentence. If a polarity of a sentence, which is positive; neutral; or negative, the weight
of linguistic information contribution should be adjusted. This additional information
arguably could improve the performance of the current fusion method.

Bottleneck between acoustic and linguistic processing

The goal of engineering research is to advance technology for humanity in practice. While
this study focuses on a proof-of-concept of fusing acoustic and linguistic information for
emotion recognition, the real problem may appear on its implementation. One of the
spotted problems is the bottleneck between acoustic and linguistic processing. Acoustic
features can be extracted directly from speech, while linguistic information must wait
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for ASR output in practice. This processing time difference will make the (emotion
recognition) system occupies a longer time if no strategies are proposed to minimize this
bottleneck.

Model generalization

A common view in emotion recognition has been challenged, particularly based on fa-
cial expression. The weak evidence and model-specific results have raised the need for a
generalization for automatic emotion recognition. The models and their results reported
here can be applied to other datasets. For instance, to check the consistency of efficient
high-level features, removing silence for feature extraction, and comparing early fusion
to late fusion approaches. While this research evaluated English, an extension to other
languages should be made within the minimum effort since many linguistic models for
these languages are available. The solution to the problem appeared in these multilin-
gual approaches, for instance, “when is the linguistic information needed?,” should be
evaluated in future research.
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A. Malek, D. Lee, F. Zalkow, K. Lee, O. Nieto, J. Mason, D. Ellis, R. Yamamoto,
S. Seyfarth, E. Battenberg, V. Morozov, R. Bittner, K. Choi, J. Moore,
Z. Wei, S. Hidaka, Nullmightybofo, P. Friesch, F.-R. Stöter, D. Hereñú, T. Kim,
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