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Abstract

People use a wide range of non-verbal channels, including facial and bodily

expressions, to communicate their emotions or intention during human-human

interaction. Those modalities encourage the communicators’ messages could be

transmitted to interacting partners in a facile and transparent manner. Being

echoed by the influence of human social behaviors, recent studies in human-robot

interaction have investigated how to generate non-verbal behaviors for social robots

in a way that is appealing and familiar to human partners.

However, non-verbal behaviors are ambiguous. The way how humans express

and interpret social behaviors is highly affected by many different factors, includ-

ing individual personality, cultural background, and other environmental settings.

To tackle this problem, the study presented in this dissertation focuses on devel-

oping robots’ social gestures to adapt to interacting partner’s behaviors, allowing

generated robots’ gestures are familiar to the current social norm. The proposed

approach concentrates on the body channel for expressing robots’ emotional states

and supporting semantic contents of robots’ speech. To achieve that, we design

the model for generating emotional gestures, the model for generating commu-

nicative gestures, and the transformation model. The suggested frameworks en-

dow a robot with capabilities of learning from human behaviors obtained through

long-term interaction and transforming generated gestures into the robot’s mo-

tion, being the robot’s social cues supporting for different interaction contexts.

We demonstrated the proposed idea on a target social robot. A series of exper-

iments was conducted to evaluate the designed frameworks considering the hu-

man perception of generated robot’s social cues and the quality of generated ges-

tures. The experimental results also confirmed that different users may interpret

the same robot’s gesture in different ways. Therefore, the problem of behavior

adaption should be addressed when designing non-verbal cues for social robots.

Keywords: social robots, human-robot interaction, non-verbal behaviors, emo-

tional gestures, communicative gestures, imitation learning.
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Chapter 1

Introduction

In human-human interaction, people use a wide range of non-verbal behaviors to

communicate their emotions or intentions to interacting partners. Among those

modalities, facial and bodily expressions play a crucial role. They encourage mes-

sages of the communicators could be transmitted to partners in a facile and trans-

parent manner. The connections between human non-verbal behaviors and emo-

tions or speech have been explored in early works [4, 5, 6, 7]. For conveying

emotional states through non-verbal channels, most of the previous works inves-

tigated the contribution of human facial features to the appearance of emotion.

For instance, Facial Action Coding System (FACS) [4] is a well-known approach

for modeling human facial expressions. In term of emotional bodily expressions,

the association between body movements and emotions are investigated in [5, 6].

Lastly, the use of body channel for supporting verbal communication has been

highlighted in [7]. Understanding the crucial role of non-verbal behaviors in social

interaction, a growing interest has been seen in developing social robots’ non-verbal

behaviors in a way that is appealing and familiar to human interacting partners.

1.1 Research Problem

Social robotics is a subfield of robotics focusing on communicating with people

through social interactions. It is common to consider that the social human-robot

interaction should be treated in a human-like way, where the interaction with

1



robots is like the interaction with another person [8]. Being encoded by human

social behaviors, considerable attention has been paid to generate non-verbal cues

for social robots towards enhancing empathy and user engagement of social in-

teraction. Recently, social robots such as Pepper and NAO are equipped with

capabilities of performing human-like gestures supporting daily interaction. How-

ever, such robots’ gestures are manually designed in advance by animation experts

to ensure familiarity and human-likeness. On the other hand, by implementing

theories of human standardized facial or bodily expressions, robots’ non-verbal

behaviors [9, 10] can also be created in a human-like shape. Finally, through-

out single-shot demonstration or short-term interaction, it is straight forward to

transform human non-verbal behaviors into robots’ motion space [11, 12, 13], being

robots’ social cues. However, it is important to emphasize that human non-verbal

behaviors are ambiguous and affected by user personality, cultural background, and

other environmental settings [14, 15]. Those factors highly influence how people

interpret the messages encoded in others’ facial or bodily expressions. Similarly,

in social robotics, the effects of human traits or cultures on human perception

of robots’ behaviors have been investigated [16, 17, 18]. It is suggested that by

employing non-verbal cues defined from theories of standardized human behaviors

or created by animation experts, messages encoded in robots’ behaviors may not

be recognizable to the interacting social norm. Meaning that interacting part-

ners may misinterpret if they are unfamiliar with such non-verbal cues. Likewise,

using the one-shot demonstration approach, robots’ gestures may not match the

dynamically changing behaviors of interacting partners. Indeed, such stereotyped

behaviors could not positively contribute to the user’s engagement in long-term

interaction [19]. To tackle this problem, it is suggested that robots should be

capable of gathering the interacting partner’s information obtained through long-

term interaction to develop their non-verbal skills. By understanding and sharing

similar behaviors with the interacting partner, empathy, defined as “an affective

response more appropriate to someone else’s situation than one’s own” could be

ensured in social human-robot interaction.

2



1.2 Overview of Research Approach

In order to solve that problem, the proposed approach would endow robots capa-

bility of learning from human behaviors obtained through long-term interaction in

an unsupervised manner. In the end, robots are able to produce their own social

cues reflected information obtained from the interacting partners. Overall, our

approach is inspired by the social development of infants, where the behaviors of

infants are highly influenced by their parents. Similarly, the proposed approach

emphasizes the role of human behaviors towards generating robots’ non-verbal

cues. This approach guarantees the influence of interacting partners on robots’

gestures. Vice versa, generated robots’ behaviors would be familiar to the inter-

acting social norm.

The proposed approach focuses on generating bodily expressions for social hu-

manoid robots. However, it is noticed that bodily movements could be used to

signal a variety of messages during interactions. This research emphasizes the use

of bodily expressions for two common purposes: (1) conveying robots’ emotional

states (in this dissertation, such gestures are called emotional gestures), and (2)

supporting concrete contents (known as iconic in human behavior studies) or ab-

stract meaning (known as metaphoric) of robots’ speech (here, they are called

communicative gestures).

Since emotional gestures are connected to internal states while communicative

gestures are correlated to contents of speech. It is required to design two different

models of gesture generation, allowing each of them could be treated in the most

appropriate way. Indeed, collecting labeled data from human behaviors during

social interaction is a challenging task. Thus, the two designed frameworks are

equipped with the capability of learning a sequence of human behaviors in an

unsupervised manner. At the generation phase, appropriate gestures are outputted

to express certain contexts. Through the designed transformation model, those

actions are transformed into the target Pepper robot, taking into account robot

physical constraints, and being the robot’s social gestures. The generated non-

verbal cues can be used in different scenarios of social human-robot interaction.
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1.3 Contribution to the Non-verbal Behavior Gen-

eration of Social Robots

With the growth of interests in social robotics, it is becoming difficult to ignore the

role of non-verbal behaviors when designing social companion robots. There are

several interesting approaches and promising ideas for generating robots’ social be-

haviors supporting interactive communication. However, taking into account the

problem of behavior adaption that has not been addressed efficiently in previous

works, our proposed approach could positively contribute to this domain. Specifi-

cally, comparing to off-the-shelf modules embedded into social robots such as Pep-

per [20], Nao [21] or several interesting models of behavior generation [22], [23],

[24], [25], [26]. Rather than programming a set of robots’ gestures in advance

(by animation experts to ensure the human-likeness of robots’ actions) and es-

tablishing a set of rules for parameterizing contexts of interaction. Our proposed

frameworks for generating gestures endow robots capability of learning human

social behaviors, collected from interactions, in an unsupervised manner. This

approach does not require prior knowledge of experts to handcraft robot gestures

and parameterize models of behavior generation as previous works. Indeed, our

solution allows generated robots’ gestures are familiar with interacting partners.

On the other hand, comparing to the other interesting ideas allowing humans to

teach robots new gestures through demonstration [27], [12], [28], [29], [30], [31]. In

our proposed approach, rather than using a single shot of demonstration to finalize

the robot’s emotional or communicative gestures, robots are provided capability

of incrementally learning from human behaviors and dynamically adapting their

behaviors throughout long-term interaction. The proposed approach focuses on

the generation of robots’ bodily expressions supporting social interaction. As the

result, it could be used for a wide range of social robots, especially the ones without

dedicated facial articulation such as NAO, Pepper, Romeo, RoboThespian, and so

on.
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1.4 Dissertation Outline

In this dissertation, we focus on generating non-verbal behaviors for social robots

through imitating human behaviors. In chapter 1, we highlight recent research

ideas in this domain and draw several concerns on developing non-verbal cues in

social robotics as the research motivation. Then, we explain an overview of the

proposed approach to address this research problem.

In chapter 2, we present an overview of human non-verbal behaviors, focusing on

the use of face and body channels to signal human intention during communication.

It is followed by discussing the important roles of non-verbal cues in social robotics,

and the influence of social interaction settings on human perception of robots’

behaviors. Finally, the infant social development process is briefly described as an

inspiration to develop robots’ social skills.

In chapter 3, we illustrate the framework to generate emotional gestures.

In chapter 4, we describe the framework to generate communicative gestures.

In chapter 5, we address the problem of transforming generated human-like

gestures into the target social robot.

In chapter 6, a series of experiments is conducted to validate the proposed

frameworks in chapter 3, 4, and 5 as well as integrations among them.

In chapter 7, we summarize the research results, contributions, and future di-

rections to improve and extend the current work.
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Chapter 2

Research Background and

Motivation

In this chapter, we firstly provide an overview of human non-verbal behaviors. In

particular, we focus on the use of gestures to convey human emotion and sup-

port the semantic contents of human speech during communication. It is followed

by emphasizing the role of non-verbal cues in social robotics. However, social

behaviors are ambiguous and affected by many different factors. Rather than im-

plementing theories of human standardized behaviors for social robots, the need of

considering interacting partners’ traits and other factors when generating robots’

social gestures will be addressed in 2.2.2. Finally, psychological perspectives about

infants’ social development are explained in 2.2.3. This idea could be applied to

social robots, providing them capable of interacting with human partners and

develop their social behaviors.

2.1 Human Non-verbal Behaviors

2.1.1 Emotional Gestures

Emotional expression is one of the most important characteristics in human-human

interaction [32]. It has been shown that human emotion and physical expressions

are highly associated with each other. During social interaction, people communi-

cate through facial and bodily expressions [33], messages encoded in their affective
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Table 2.1: Body movements and postures accompanying specific emotions

Emotion Description

Happiness
Jumping, dancing for joy, clapping of hands, during excessive
laughter whole body is throw backwards and shakes

Sadness Motionless, passive, head hangs on contracted chest
Pride Head and body held erect
Shame Turning away the whole body
Fear Head sinks between shoulders, motionless or crouches down

Anger Whole body trembles, intend to push or strike violently away

behaviors are used to convey their emotions that may influence social relation-

ships. In the well-known work of Darwin [5], the authors investigate how specific

emotions could be interpreted via different behavioral modalities such as facial

and bodily features. Table 2.1 presents general movement protocols accompany-

ing specific emotion of Darwin’s work [5], which was summarized by Wallbott in

his article [6]. In term of facial expression, the author [34] draw the first attention

on how human facial muscles change the visual appearance of their face. Based

on those findings, the Facial Action Coding System (FACS) [4] is a well-known

approach for modeling human facial expressions, including several basic emotions

(happiness, disgust, fear, surprise, anger, and sadness). In this coding system, fa-

cial expressions can be broken down into individual components of the movement,

call Action Unit (AU). As the result, a collection of certain AUs provides infor-

mation about which emotion is being expressed. Table. 2.2 shows combinations of

AUs to form basic emotions.

It is noticed that emotions could be expressed by a wide range of non-verbal

channels such as eye movements, facial expressions, and bodily expressions [35].

However, the majority of research on emotional non-verbal has focused on facial

expressions while bodily expressions have been lagged so far behind [36]. Accord-

ing to De Gelder [37], about 95 percent of literature in this domain focus on facial

expressions as a source for emotion analysis. Most of the remaining 5 percent

have been carried out with other modalities while bodily expressions comprising

the smallest number of studies. A question has been raised about the role of body

expression as a reliable non-verbal channel to convey the emotional states of com-

municators. In [38], the experimental results demonstrated that emotions could be
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Table 2.2: Facial expressions and associated Action Units.

Emotion Description
Happiness Cheek Raiser (AU6), Lip Corner Puller (AU12)

Disgust
Nose Wrinkle (AU9), Lip Corner Depressor (AU15)

Lower Lip Depressor (AU16)

Fear
Inner Brow Raiser (AU1), Outer Brow Raiser (AU2)

Upper Lid Raiser (AU4), ...

Surprise
Inner Brow Raiser (AU1), Outer Brow Raiser (AU2)

Upper Lid Raiser (AU5), ...

Anger
Upper Lid Raiser (AU5), Lid Tightener (AU7)

Lip Tightener (AU23), ...

Sadness
Inner Brow Raiser (AU1), Brow Lowerer (AU4)

Lip Corner Depressor (AU15)

determined in videos of body gestures without speech or facial expressions. On the

other hand, when observers are presented with affective displays containing a com-

bination of facial expressions and posture or body movement, the authors [36][39]

concluded that bodily movements may provide more information than facial ex-

pressions for distinguishing between fear and anger or fear and happiness. Indeed,

Mehrabian [40] found that the communicator’s attitude toward interacting part-

ners highly affected by body configuration and orientation. In conclusion, the

above-mentioned studies convince that in addition to facial expression, bodily ex-

pressions can be implemented as an important modality for emotional expressions

as well as interpretation of affect.

2.1.2 Communicative Gestures

During social interaction, people use non-verbal channels not only for conveying

their emotional states, but also supporting for verbal communication. In partic-

ular, gestures allow messages, encoded in communicators’ speech, could be trans-

mitted to interacting partners (listeners) in a facile and transparent manner [41].

At the same time, interacting partners are well-attentive to information conveyed

through such non-verbal behaviors [42]. According to McNeill [7], co-speech ges-

tures and speech are simultaneously generated from a common thought source.

When a communicator produces a message to his or her interacting partners, most
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of the information that they want to share is described in their speech. The rest

of the information is encoded in their gestures. McNeill [7] categorized commu-

nicative gestures into four types: iconic, metaphoric, deictic, and beats as shown

in Table 2.3. Iconic gestures have a close connection with semantic contents of the

communicator’s speech. For instance, when someone says “The ball is very big”,

they may spread out their two hands to convey how big the ball is. Similarly, when

saying “I was driving the car when you called me”, he or she may do a “steering

wheel” gesture while saying “driving car”. Iconic gestures are used to describe

movements/shapes of objects/people in space [43], they are concretely connected

to semantic contents of communicators’ speech. On the other hand, metaphoric

gestures are very similar to iconic gestures. However, they are utilized to express

abstract concepts rather than concrete meaning (as in the case of iconic gestures).

Deictic gestures are also known as pointing gestures. This type of gesture is used

to refer to something by pointing with hands or fingers. For example, when some-

one says “your phone is one that desk”, they may point toward the phone or the

desk. In this context, the deictic gesture is used to concretely express the speaker’s

speech. However, this type of gesture can be applied for pointing abstract con-

cepts. Lastly, beat gestures are defined as rhythmic movements of hands. Rather

than conveying semantic information of speech, beat gestures are used to stress

specific keywords or phrases of speech. This type of gesture is connected to speech

prosody. According to McNeill [7], beat gestures are frequently used by human

speakers. For instance, in a video corpus of people narrating the events from a

Tweety cartoon, the frequency of using beat gestures is 44.7% [7] . Finally, it

is important to notice that the meaning of co-speech gestures is freely designed

by communicators. Co-speech gestures are capable of expressing a full range of

meaning arisen from communicators.
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(a) Kismet’s emotional facial expression. (b) Pepper’s emotional bodily expression.

(c) Wakamaru’s iconic gesture to convey “a wooden or stone surface”.

Figure 2.1: Non-verbal cues displayed on Kismet, Pepper, and Wakamaru robot.

Table 2.3: Four types of co-speech gestures and their functions.

Gesture type Description
Iconic Connect to semantic contents of speech.

Metaphoric Connect to abstract concept rather than concrete context.

Deictic
Refer to something (e.g., around communicators)

by pointing with hand, finger, etc.

Beat
Rhythmic movements for stressing important words

No semantic connection to context of speech
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2.2 Robot Non-verbal Behaviors

2.2.1 Role of Non-verbal Cues in Social Robotics

Social robotics is a subfield of robotics focusing on communicating with people

through social interactions. Here, the social human-robot interaction should be

treated in a human-like way, where the interaction with robots is like the inter-

action with another person [8]. According to the study [44], social robots should

be equipped capability of transmitting signals to interacting partners to provide

feedback of their internal states and allow humans to interact with them in a facile

and transparent manner. For social robots, interactive modalities could be facial

expressions [45, 46], bodily expressions [47, 48, 49], eye gaze [49], proxemics [50],

and so on. In the following part, we highlight the role of social robots’ facial and

bodily expressions in previous studies.

The MIT Kismet robot [45] is a well-known work, which made the robot en-

ter into neutral and intuitive social interaction for learning and interacting. The

Kismet robot is able to observe a variety of stimuli from the surrounding environ-

ment through visual or audio channels. Then, this robot signals their feedback

to interacting partners through eye-gaze and facial expressions. Noticed that this

robot can display a variety of facial movements by blending several basic prototyp-

ical facial expressions along Arousal, Valance, and Stance axes in affect space. On

the other hand, in [47], the authors investigated the role of culture in represent-

ing robot emotions. Similar to the theory of infant social development [51] where

information is injected by humans during the early stage of development and sub-

ject to change through long-term interaction. The study showed that robots can

learn to behave socially in alignment with individual cultural identity. In their

experiment, bodily expressions were utilized to convey robots’ emotional states

generated by the proposed emotion mechanism. As displayed in Fig. 2.1b, the

results conveyed that under different effects of culture, different robots (named

Kira and Mia, respectively) could generate different emotional responses towards

the same environmental stimuli. The messages encoded in the robots’ bodily ex-

pressions well present those differences. In the study [48], the authors designed a

narration scenario to model associations between human narrators’ gestures and
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semantic contents of their speech. It is followed by manually implemented the

collected narrators’ gestures into the target Wakamaru robot. Their experimental

setup enabled the target robot capability of performing deictic, beat, iconic, and

metaphoric gestures in a narration scenario to a group of participants. Taking into

account subjective evaluation results, the authors confirmed that robots’ co-speech

gestures positively affected participants’ information recall, and ability to retell the

robot story. Based on that finding, the authors suggested that robots’ co-speech

gestures could be applied for educational purposes to improve student learning.

A similar result has been reported in [52], where iconic gestures performed by a

tutoring agent have been shown to improve learners’ memory performance.

In short, the aforementioned studies have convinced that it is difficult to ignore

the role of non-verbal cues in designing social robots. By utilizing non-verbal

modalities, especially facial and bodily expressions, for conveying robots’ emotional

state as well as supporting robots’ speech, it is suggested that robots could interact

with users in a facile and transparent manner.

2.2.2 Role of Interacting Partner’s Behaviors on Generat-

ing Robots’ Social Behaviors

It is important to emphasize that social robots should be capable of communicat-

ing and interacting with people in a personalized way, adapting and learning social

behavior throughout their lifetime [8]. During everyday communications, robots

should be able to re-configure their interaction behaviors adapting to environmen-

tal stimuli toward increasing empathy and engagement of social interaction. By

sharing the same patterns of behavior with interacting partners, empathy, defined

as “an affective response more appropriate to someone else’s situation than to

one’s own” [53], could be guaranteed for social human-robot interaction. On the

other hand, it is noticed that human verbal and non-verbal behaviors are highly

affected by many factors, such as personality, which is a set of distinctive charac-

teristics among humans or cultures, which is shared characteristics of a group of

people [14, 15]. Thus, by using theories of human standardized bodily or facial

expressions mention in section 2.1 to generate robots’ non-verbal behaviors, it is

suggested that robots’ behaviors may not be recognizable or familiar to the current
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environmental setting. In [16], cultural factors on the perception of robots’ facial

expressions have been investigated. The experiment was conducted on a robot

equipped with “universal“ and the one with “culturally-derived“ facial expres-

sions. By using the theory of human standardized facial expressions [4], the Fuhat

robot is equipped with skills of universal facial expressions. On the other hand,

facial features derived from East Asian people are transferred to the target robot,

being the robot’s culturally-sensitive expressions. Subjective evaluation conducted

with East Asian participants showed that the robot equipped with skills of cultural

expressions (derived from East Asian) outperformed its comparator robot in terms

of both recognition accuracy and human-likeness.

In human psychological studies, there is evidence, known as the “chameleon ef-

fect“ [54]. It is defined as the tendency to mimic the posture, facial expressions,

and verbal and nonverbal behavior of the interacting partners to conform to social

norms. A similar strategy should be applied for social robots, allowing them to

re-configure their interaction behaviors adapting to environmental stimuli toward

increasing empathy and engagement of social interaction. In the human-robot in-

teraction domain, it is also known as the “law of attraction in HRI” [17]. This

finding was demonstrated by an interesting experiment in [17]. The authors exam-

ined the influence of KMC-EXPR robot personality which was reflected by facial

expression (features of extrovert and introvert were displayed on the robot through

facial movement, size of the robot face/mouth, and eye contact). The experiment

results showed that, in terms of friendliness and social presence, extroverted par-

ticipants considered the extroverted robot more friendly and more socially present

than the introverted robot. Vice versa, the introverted participants preferred the

introverted robot. Based on that finding, the author indicated that partners fee

more comfortable when interacting with the robot having a similar personality

than those with different personalities. A similar finding was confirmed in Aly’s

work [18]. It was shown that extroverts prefer the robot that performing dynamic

gestures than introverts. Based on the experimental results, the authors suggested

that the problem of human-robot personality matching should be addressed in

creating robots’ behaviors. Finally, it is noticed that the capability of dynami-

cally selecting the appropriate behaviors is a strategy for the maintenance of the

social relationship throughout day-to-day interaction [19]. The robot’s novel be-

13



haviors over time can positively contribute to the user’s engagement in long-term

interaction.

Previous studies outlined in this section provide the empirical evidence for the

need of considering the interacting partner’s information obtained through long-

term human-robot interaction to generate the most appropriate social behaviors

for robots. Understanding and reflecting the interacting partner’s traits to alter

the robot’s gestures, it is believed that their behaviors could be more acceptable

in a variety of social interaction settings [55].

2.2.3 Inspiration from Infant Social Development Process

for Developing Robots’ Social Behaviors

According to psychological researches of human behaviors, one of the most com-

mon things that humans do is that gathering their desired information from the

surrounding environment and then utilizing it to form their own interpretation

and behaviors. Once, the individual has become interested in some environmental

events, they are always receptive to information about this event and pay atten-

tion to it as soon as it is provided [56]. In the article [57], the author showed that

human behaviors are often influenced by social referencing, meaning that humans

tend to use the perception and interpretation of another person’s to form their

own knowledge about specific events. That is the typical way how infants acquire

new social skills for their social development. In social referencing, an infant typi-

cally is a referer - the individual who seeks and influenced by referencing messages

which are received from referees - the person doing the influencing, the referees

are always the infant’s parents, especially mother [51]. An infant is rapidly in-

fluenced by the guideline from their parents in acquiring knowledge about typical

events. They generate emotion and behavior in response to the stimuli by an im-

itating mechanism that regulates their own emotions and behaviors to match the

encoded emotions and expressions from their parents. An interesting example was

mentioned in [57] where the 9-month-old infant sees that his father plays with a

novel toy. The infant infers that his father likes the toy because he smiles. Then,

the infant may assimilate this favorable interpretation which can influence her/his

behavior when given an opportunity to play with the toy in the future. The capa-
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bility to learn through imitation becomes a powerful and flexible form for infants

in their social development. Through imitative exchanges, an infant can learn a

wide variety of skills, customs and typical behavior of their culture [58] which plays

a crucial role in helping the infant explore and learn about themselves and others

as a social being. An infant can imitate a wide variety of acts in various scenarios

such as facial expressions, gestures, object-related actions, etc. The infant social

development process is an interesting idea that could be implemented for social

robots, allowing them to incrementally develop their non-verbal behaviors through

social interactions with specific human partners. A robot (play a role as an infant)

observes interacting partners’ social behaviors as their desired stimuli, through

imitative exchanges, the robot learns from the acquired information to form their

own non-verbal behaviors. Using this approach, the influence of interacting part-

ners on robots’ behaviors is guaranteed. Vice versa, generated robots’ behaviors

would be familiar to the interacting social norms.
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Chapter 3

Generation of Emotional Gestures

using Dynamic Cell Structure

In this chapter, the model for generating emotional gestures is illustrated. It is

started by an overview of related works, focusing on the use of body movements for

emotional expression. Then, we highlight several aspects that were not considered

in previous studies and describe the proposed approach to tackle those issues.

Finally, the designed framework is described in detail. Experiments conducted to

validate this framework can be found in section 6.2 of chapter 6.

3.1 Related Works

Facial ad bodily expressions are the two most important modalities to convey the

communicator’s emotion during human-human interaction. Being echoed by the

influence of human social behavior, in social robotics, many studies have focused

on generating robot emotional behaviors by estimating environmental stimuli and

incorporating robot internal states. Concerning studies about robots’ facial ex-

pression, the MIT Kismet [45] is a well-known robot which is able to perceive a

variety of environmental stimulus and then react to interacting partners through

eye gaze and facial expressions. By using the interpolation approach on the three-

dimensional affect space - Arousal -textitValance-textitStance, the Kismet robot

can generate various facial expressions by blending several basic prototype facial
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postures together.

In contrast to the robots’ facial expressions, studies about bodily expressions

have received less attention from the human-robot interaction community [59],

even though the potential of affective gestures had been clearly revealed in human

behavioral studies [6, 60]. Several studies [9, 10] are motivated by the theory-

driven approach. Specifically, by taking into account the contribution of human

body movements to the attribution of emotion [61, 6], robots’ bodily expressions

could be generated, especially for the robots without a dedicated facial articulation.

In [9], emotional gestures for the NAO robot are motivated by Meijer’s work [61]

and other psychological findings [62, 63] on the human expression and perception

of emotions. In their experiment, based on the subjective evaluation conducted on

Pleasure-Arousal -Dominance affect space [64], the authors confirmed that their

designed bodily expressions for the NAO robot are recognizable to the subjects.

The authors suggested that, so far, theories of human standardized or “univer-

sal” bodily expression are applicable for humanoid robots. A similar approach

to generate robots’ affective gestures can be found in [10]. The implementation

of affective gestures for the Brian 2.0 robot is inspired by the previous works of

Wallbott [6], and Meijer [61]. In the experiment, the subjective evaluation was

conducted to validate the feasibility of their designed robot’s emotional bodily

expressions from human perception. Similar to [9], the experimental results sug-

gested that certain messages encoded in human emotional gestures are retained

effectively on a life-size human-like robot.

It should be emphasized that the way people express and interpret social be-

haviors is highly affected by many factors, such as cultures, individual personality

as discussed in chapter 2. As the result, robots’ emotional behaviors [9, 10] imple-

mented from theories of human ‘universal’ affective behaviors may not match the

social norms that robots involve in. This problem could be solved with the data-

driven approach, utilizing motion data of particular users to generate robots’ social

gestures. In [65], by using the emotional postures performed by a professional actor

and a professional director, the authors [11] selected the six expressive key poses

and then matched them into the NAO humanoid robot, being the robot’s emo-

tional poses. The experimental results confirmed that bodily postures displayed by

the robot could be used to convey emotions during child-robot interaction. Indeed,
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it is shown that the positions of the robot’s head highly affected the way humans

recognize the robot’s emotional states. Similarly, the UCLIC Affective Posture and

Motion Database [66] was used to produce robot bodily expressions in [12]. UCLIC

dataset includes a set of human affective gestures recorded by a motion capture

system. In [12], several patterns of UCLIC dataset were selected out based on

the recognition rate. Through the proposed transformation model, those human

affective gestures were mapped into the target robots. The subjective evaluation

through an online survey showed that generated gestures for certain robot config-

urations well resemble human gestures. Rather than using motion data obtained

from human affective behavior datasets, the Tangy robot implemented in [13] can

observe human gestures through a one-shot human demonstration. The obtained

data was injected into the proposed framework to generate the robot’s imitated

gesture. The authors confirmed that the proposed framework endowed the target

robot with the capability of observing the interacting partner’s social gestures and

produce the imitated action taking into account the robot’s joint configuration.

Although the information about interacting partners has been taken into account

in the aforementioned studies [11, 12, 13]. However, it should be noticed that a

single interaction for imitation may not capture the complex of human affective

behaviors which can only be observed through long-term interaction. Instead,

social robots should be capable of communicating and interacting with people

in a personalized way, adapting and learning social behavior throughout their

lifetime [8]. To tackle this problem, rather than using a single instance of human

motion data [11, 12] or one-shot interaction [13] to finalize the robot affective

gestures, our proposed approach provides social robots capability of perceiving

and learning interacting partners’ behaviors through long-term interaction. The

following section will discuss our proposed approach in detail.

3.2 Research Approach

The proposed approach for generating robot emotional body expressions was in-

spired by the infants’ social development. In order to increase the engagement of

the conversation and the empathy between a robot and a human through social

interactions, robot emotional expressions should conform to the social norm. In
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order words, those behaviors should be familiar with users in the current environ-

mental setting. According to human behavioral studies, one of the most common

things that humans do is gathering information from the surrounding environment

and then utilizing it to form their own interpretation and behaviors [56]. That is

the way how infants acquire the new interpretations for their social development

[57]. The infant social development process is an interesting idea that could be

applied to social robots. This approach allows interacting partners to influence

and reconfigure robots’ behaviors through long-term social interaction. During

day-to-day interaction, the robot incrementally perceives the individual partner’s

emotional behaviors as their desired stimuli, and the robot then utilizes the ob-

tained information to form its own interpretation of the corresponding event. More

specifically, the designed framework sequentially collects the individual’s emotional

behaviors corresponding to the specific emotion. Then, by assessing the frequency

of the observed human behaviors, the model outputs the most appropriate pat-

terns of emotional behavior. Finally, through the proposed transformation model,

human behaviors are converted to the robot’s bodily expressions, being the robot’s

emotional gestures. Fig. 3.1 illustrates the overall flow of the proposed process.

This process is continuously repeated throughout everyday interaction as a social

development process of the robot.

3.3 Framework Architecture

The characteristics and types of human affective behavior vary according to the

culture and personality traits of individuals [14]. Therefore, collecting labeled data

from human behaviors during social interaction is a challenging task. Unsuper-

vised learning sidesteps the requirements of labeled data to enable robots to be

capable of learning socially appropriate gestures based on human behaviors. This

idea has been shared across different contexts. In [67], the unsupervised learning

approach is presented for the association between human gestural commands and

robot actions. In [68], the authors validated the performance of different unsuper-

vised learning algorithms such as Self Organizing Maps (SOM), Fuzzy C-Means

(FCM), and K-Means for the recognition of human posture in video sequences.

The capability of robot arm trajectory learning from human demonstrations was
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Figure 3.1: The proposed framework for generating emotional gestures: The
observation part collects information about the interacting partner. The

behavior selection part selects the most frequently observed behaviors. The
transformation part converts the selected behaviors into robot motions.

proposed in [69], where the trajectory clustering and approximation modules take

human demonstrative trajectories as the input and then classify these trajectories

into different groups. For each group, the most consistent trajectory was selected

and a set of generated trajectories can be visualized in a simulated environment,

allowing the human user to finally select the desired trajectory. In summary, for

unstructured scenarios of human-robot interaction with no a priori information

about human behaviors, unsupervised learning is an effective strategy. It allows

robots to acquire new knowledge of the interacting partner’s behaviors by clas-

sifying various types of actions into different groups based on the similarity of

patterns.

On the other hand, through day-to-day social interaction, robots may acquire

new knowledge incrementally. It means that robots should be able to learn new in-

formation incrementally without corrupting the existing knowledge. This strategy

ensures robots to acquire a collection of skills throughout its developmental pro-

cess. In [70], the authors proposed a system that enables robots to incrementally
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learn unlabeled gesture patterns based on the interaction with a human partner.

In [71], the robot is able to improve its visual perception by incrementally learn-

ing from newly detected objects associated with the labels provided by the user

through interactions.

In short, the previous studies mentioned above have shown that unsupervised

learning in an incremental manner is a desirable approach for long-term inter-

action, especially when the number of observed human behaviors continuously

increases. The following sections will detail our designed framework to cope with

such situations.

3.3.1 Feature Descriptor

During social human-robot interaction, the observation module collects human

bodily expression data and associating them with the estimated emotion. Consider

that Ai = [S1, S2, S3, ..., ST ] is the human action collected from the robot’s pose

estimation module. Ai is a sequence of skeleton frame Si (1 ≤ i ≤ T ) performed

in a period of time T . Each frame Si captures k joints of human motion in 3D

space. Before feeding the obtained bodily expression Ai into the training phase,

an appropriate method should be implemented to encode the raw data Ai into a

motion feature vector xi. It is straight forward to use skeleton joint angles, joint

angle velocities, and velocity of joints extracted from the raw motion for calculating

a feature descriptor as applied in [72]. However, this approach requires the number

of skeleton frame T should be equal for all of the obtained actions in order to create

a fixed length of feature vector xi. However, it is important to notice that collecting

a fixed length of motion sequence is a challenging task since human behavior data

vary from one behavior to another. Consequentially, the pose estimation module

may produce different frame lengths for different actions. It is required that the

feature descriptor phase should produce the fixed-length descriptors regardless of

the length of the obtained skeleton frames. The covariance descriptor proposed by

[73] can satisfy such a requirement and achieve higher accuracy compared to the

other approaches [74].

The feature encoding process is started by calculating the covariance matrix

C(S) of the action Ai as described in Eq. 3.1. Here, S is the sample mean of Si
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Figure 3.2: The hierarchy of overlapped covariance matrices.

computed over the time t and ᵀ represents the transpose operator. Si represents

k joints of a human skeleton in 3D space. Consequently, N = 3k elements are

included in the vector Si and the upper triangle of C(S) contains (N × (N + 1)/2)

elements.

C(S) =
1

t− 1

t∑
i=1

(Si − S)(Si − S)ᵀ (3.1)

It should be remarked that by simplify using the covariance matrix C(S) de-

scribed in Eq. 3.1, only the spatial features of action Ai could be presented. By

combining several covariance matrices overlapped to each other over the time se-

quence, the spatial and temporal features of Ai could be determined. As demon-

strated in Fig. 3.2, the matrix C(S) at the level l would cover t = T/2l skeleton

frames. Specially, C00(0) is the covariance matrix calculated at the level l = 0,

it captures motion features of the entire action Ai including T frames. At the

level 2, we calculated 3 smaller overlapping time windows, each of them would

cover T/2 frames. The covariance matrix C10(S), C11(S), and C12(S) is computed

over a period of time [0, T/2], [T/4, 3T/4], and [T/2, T ], respectively. Finally, the

obtained feature descriptors xi of action Ai is extracted from the upper triangles

of four covariance matrices: C00(0), C10(S), C11(S), and C12(S). The vector xi
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consisting of (4 × N × (N + 1)/2) elements efficiently represents the spatial and

temporal information of the entire sequence Ai. This feature descriptor has been

widely used for action recognition [73] and unsupervised learning tasks [75]. At

the end of the action encoding phase, n action A1, A2, ..., An are encoded into n

fixed-length feature descriptor x1, x2, ..., xn.

3.3.2 Training Phase

Self Organizing Map (SOM)

Given sets of n feature descriptors from the encoding phase 3.3.1, as an unsuper-

vised learning approach without a priori knowledge of the number of clusters, Self

Organizing Map (SOM) was implemented for the training phase in our previous

work [76]. SOM was originally introduced by Kohonen [77], this approach creates

a grid of neurons representing the distribution of the original data input. SOM en-

sures the topological property of the input data is preserved on the grip of training

neurons [77]. Meaning that, if two patterns of human behavior are close to each

other on the original motion space, the neurons representing that patterns would

locate close to each other on the space of SOM neurons.

For the n input descriptors released from the action encoding phase, each of

them xi = [xi1, xi2, ..., xid] includes d-dimensional features. The training process is

started by defining a SOM grid, including N = p× r neurons, each neuron repre-

sented by a prototype vector mp = [mp1,mp2, ...,mpd]. During the training process,

an input sample xi is picked up, then the wining neuron mwining is determined by

Eq. 3. mwining is defined as the neuron has the shortest distance to the xi.

||xi −mwining|| = min{||xi −mi||}, 1 ≤ i ≤ N (3.2)

The winning neuron mwining is updated as illustrated in Eq. 3.3, allowing them

to move closer to xi with a highest intense comparing with the other neurons.

Where α(t) defines the learning rate at the time t.

mwining = mwining + α(t)× (xi −mwining) (3.3)

Not only the wining neuron mwining, the neuron mi which located near mwining
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(known as topological neighbor neurons) is also updated by Eq. 3.4, making them

move closer to the input unit xi.

mi = mi + α(t)× φ(mi,mwining)× (xi −mi) (3.4)

Here φ(mi,mwining) is the neighborhood kernel function, it indicates the intensity

of the wining neuron mwining affects its neighbor mi. In the proposed framework,

we used the Gaussian kernel function as illustrated in Eq. 3.5 where rwining and ri

is the location of the winning neuron mwinning and the neuron mi on the grid map,

respectively. It has been shown that by implementing the Gaussian kernel function,

the global topological relationship could be better preserved on the grid of training

neurons [78]. As the result, it encourages the training neurons to better reflect the

distribution property of the original data input. This factor plays a crucial role in

the next step: clustering the training neurons into different groups based on their

similarities.

φ(mi,mwining) = exp

(
−||rwining − ri||2

2σ2(t)

)
(3.5)

Dynamic Cell Structure (DCS)

It should be underlined that topological preservation is the main strength of SOM

for classifying the encoded descriptors into different groups based on the similari-

ties. On the other hand, for the scenarios of daily human-robot interaction, since

the number of observed behaviors will continuously increase, the robot should be

capable of incrementally learning the new gestures without corrupting the existing

model. However, with the SOM network, the number of trained neurons must

be fixed in advance, which makes this approach is inappropriate for incremental

learning. As the number of input patterns incrementally increased, the network

of training neurons should be equipped with the capability of extending its size

in an incremental manner. To satisfy the requirement of incremental learning for

scenarios of day-to-day interactions as well as ensuring topological preservation,

we have employed the Dynamic Cell Structure (DCS) neural architecture [79] for

the training phase [75]. DCS represents a family of artificial neural networks that

could be applied in both supervised and unsupervised learning. It belongs to the
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class of Topology Representing Networks which build perfectly topology preserv-

ing feature maps [80]. DCS inheres Kohonen type learning rule [77] for updating

weight of neural vectors as applied in SOM, while using Hebbian learning rule [81]

to dynamically update lateral connection structure (topology of the graph of neu-

rons). As the result, DCS makes sure that topological properties are maintained in

a similar way as SOM. Indeed, thanks to the capability of extending the network

structure, DCS could learn new patterns in an incremental manner. The other

approaches of growing neural networks by dynamic allocating the feature map are

known as Growing Cell Structure (GCS)[82], Growing Neural Gas [83], and Grow

When Required (GWR) [84]. In [85], GWR has been used as supervised learning

to recognize the affective states of human bodily expression. Among techniques

inspired by SOM, DCS works in a very similar way with GCS except for one es-

sential difference: the lateral connections between neural units are not initially

defined, instead, they are dynamically learned during the training phase [79] by

Hebbian learning rule. DCS has been widely used for online learning purposes,

such as the NASA first-generation Intelligent Flight Control System program [86].

On the DCS network, for the incoming input descriptor xi, Eq. 3.6 is firstly

used to determine the closest mbmu and the second closest msecond neurons to

the descriptor xi. Then, the lateral connection defining the connection strength

between two neurons mi and mj is updated by the Hebbian learning rule [81]

as described in Eq. 3.7, where ε is a forgetting constant and ϑ is a threshold for

deleting lateral connection. It is also noted that the lateral connection Cij between

two neurons mi and mj is defined in the range from 0 to 1. Cij = 1 if they are

completely connected to each other and vice versa, Cij = 0 if they are disconnected

to each other. This lateral connection is always bidirectional and has symmetric

weight.

||xi −mbmu|| ≤ ||xi −mi||, 1 ≤ i ≤ N

||xi −msecond|| ≤ ||xi −mi||, 1 ≤ i 6= bmu ≤ N
(3.6)
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Cij(t+ 1) =



1 , (i = bmu) ∧ (j = second)

0 , (i = bmu) ∧ (j ∈ {Ni} \ {second})

∧(Cij < ϑ)

εCij(t) , (i = bmu) ∧ (j ∈ {Ni} \ {second})

∧(Cij ≥ ϑ)

Cij(t) , otherwise

(3.7)

Similar to SOM, DCS then updates their weight of neuron vectors by Kohonen

learning rule [77] which makes them move closer to the current input as presented

in Eq. 3.8. The neighbor neurons mi is also updated, the intensity of changes is

defined by Gaussian kernel function as illustrated in Eq. 3.5.

mbmu = mbmu + η(t)(xi −mbmu)

mi = mi + η(t)φ(mi,mbmu)(xi −mi)
(3.8)

The resource value τbmu of the closest neuron mbmu is updated by Eq. 3.9. The

new neuron unit mnew could be added into the network and locates between neu-

rons with the largest and second-largest resource value. The training phase is

finished by decreasing the resource value τi of all neuron units, as described in

Eq. 3.11, where λ is defined as the decreasing rate.

τbmu = τbmu + ||xi −mbmu||2 (3.9)

Eq = ||xi −mbmu||2 (3.10)

τi = λτi (3.11)

It can be seen that when the input data xi is fed to the training phase, the
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Kohonen learning rule and the Hebbian learning rule allow the current network

curI to modify the lateral connection Cij and the neuron weights mi. The network

is then grown up in an appropriate manner. This process endows the updated

network uptI with the capability of preserving the topological property of the

whole training data in an incremental way.

3.3.3 Clustering Phase

In the previous section, a grid of neurons could be trained by SOM (as a batch

learning version) or DCS (as an incremental learning version) approach. As the

proposed framework presented in Fig. 3.1, in the clustering phase, a grid of training

neurons will be separated into different groups based on their similar features.

Several approaches have been suggested such as agglomerative clustering or k-

means algorithm [87] [88]. By using k-means for clustering neurons, this involved

making several k-means clustering trials with different values of k [87] and the best

clustering should minimize the value of the Davies-Bouldin index [89]. However,

the minimum value of the Davies-Bouldin index was not always indicating the

appropriate number of clusters. In [90], the authors utilized a distance matrix to

identify cluster centers from a grid of training neurons. Then, the other neurons

are assigned to the corresponding clusters based on distances between them and

the identified centers. It is noticed that a distance matrix indicates distances

between each of the neurons and their neighbors. The distance matrix based

clustering takes the most advantage of SOM - topological preservation. As the

result, distances between neighboring neurons are approximately proportional to

the distribution of the original data [90]. Fig. 3.3 presents an example case of

using distance matrix visualization technique, named the unified distance matrix

(U-matrix), for visualizing distances between training neurons [76]. The following

part will explain the distance matrix based approach in detail.

From a grid of training neurons provided from the training phase, the clustering

phase is started by identifying local minima (representative local neurons) of the

distance matrix by Eq. 3.12. The function f(mi, Ni) = median{||mi − mj||}
presents the median distance between neuron mi and its neighboring neurons mj.
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Figure 3.3: Visualization a grid of training neurons by U-Matrix, dark colors
indicate larger distances between neuron units and their neighbors.

Figure 3.4: The detected local minima neurons (colored hexagons) and the
unassigned ones (gray hexagons) on the training grid.

Figure 3.5: The unassigned neurons are assigned into appropriate clusters based
on the distance between them to the local minima neurons

Fig. 3.4 shows a set of identified local minima mi of the grid of training neurons.

f(mi, Ni) ≤ f(mj, Nj) ∀j ∈ Ni (3.12)

After defining local minima neurons, each local minima represents a cluster.

The unassigned neurons are put into corresponding clusters taking into account
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distances between them and the closest local minima neurons, as shown in Fig. 3.5.

Since each neuron unit mi creates a Voronoi region on the original space of feature

descriptors x given by Eq. 3.13. As the result, each neuron mi and its correspond-

ing input data xi is defined by the Best Matching Unit function given by Eq. 3.14.

The descriptor xi belongs to the same cluster as its corresponding neurons mi.

Vi = {x| ||x−mi|| ≤ ||x−mj|| ∀j 6= i} (3.13)

||xi −mi|| = min{||xi −m||} (3.14)

3.3.4 Behavior Selection Phase

As explained earlier, n action data A1, A2, .., An are encoded into n fixed-length

descriptors x1, x2, ..., xn. Then, during the training and clustering phase, these ac-

tions are clustered into k different groups Cluster1, Cluster2, ..., Clusterk (k ≤
n) based on the similarities of its motions. At the behavior selection phase, con-

sidering the probabilistic distribution of human actions observed by the robot, the

most frequently observed behavior is selected out of the largest cluster Clusteri(i ∈
k). Here, Clusteri contains the highest number of patterns sharing similar fea-

tures compared to other clusters. As those patterns are repeatedly observed by

the framework, they could be seen as the habitual behavior that reflects the inter-

acting partner’s traits. Finally, to ensure that the selected pattern geometrically

represents the majority of elements in the largest cluster, Clusteri, the represen-

tative pattern is defined by Eq. 3.15. Now the descriptor xrep is the one located

closest to the center µ of the Clusteri. Where ||x − µ|| is the Euclidean distance

between the center of Clusteri and the descriptor x. Finally, the corresponding

action of descriptor xrep is selected and denoted by Arep.

||xrep − µ|| ≤ ||x− µ||, ∀x ∈ Clusteri, (3.15)

Overall, for a new input action Ai obtained, the designed framework using the
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Algorithm 1 The proposed framework processes a newly observed action Ai.

Input: observed action Ai, current network curI,
network parameters ε, ϑ, η, φ, λ;

1: do ( action Ai )
2: xi ← ActionEncoder(Ai);
3: mbmu,msecond ← TwoClosestNeurons(curI, xi);
4: updI ← HebbianRule(curI, mbmu, msecond, ε, ϑ);
5: updI ← KohonenRule(updI, η, φ);
6: updI ← UpdateResource(updI, mbmu);
7: updI ← AddNeuron(updI);
8: updI ← DecreaseResources(updI, λ);
9: Clusteri, µ← ClusteringPhase(updI);

10: xrep ← RepresentativeAction(Clusteri, µ);
11: Arep ← ActionDecoder(xrep);
12: end

DCS approach is executed as summarized in Algorithm 1. The robot can utilize

the interacting partner’s habitual action Arep as a reference for generating an

appropriate bodily expression associated with a certain emotion.
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Chapter 4

Generation of Communicative

Gestures using Conditional

Generative Adversarial Network

In this chapter, we address the problem of generating communicative gestures sup-

porting for semantic contents of communicators’ speech. In section 4.1, we provide

a review of previous studies in generating robots’ co-speech gestures inspired by

the rule-based approach. It is followed by discussions about recent studies based

on the data-driven approach. Finally, the proposed approach as well as the frame-

work architecture are presented in detail. Noticed that experiments conducted to

evaluate this framework can be found in section 6.3 of chapter 6.

4.1 Related Works

During social human-robot interaction, communicative gestures provide robots

capability of using bodily expressions for emphasizing their speech or describing

something that they are talking about. This non-verbal channel helps robots’ in-

tentions are more understandable to interacting partners. Especially for the robot

without dedicated facial articulation such as Pepper or NAO robot, communicative

gestures support contexts of robots’ speech that can be transmitted to humans in

a facile and transparent manner [91]. Understanding the importance of co-speech
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gestures in social robots, there has been an increasing interest in the creation of

robots’ actions synthesized with verbal contents of robots’ speech. The studies in

this domain could be broadly categorized into two groups: rule-based approach

and data-driven approach.

It should be emphasized that the majority of existing works on generating com-

municative robot gestures rely on the ruled-based approach. In [22], the authors

proposed Behavior Expression Animation Toolkit (BEAT) which receives the in-

put text to be spoken and releases the non-verbal behaviors. In the BEAT toolkit,

the mapping from text to gesture is based on a set of rules derived from the state of

the art in non-verbal conversational behavior researches. Although this approach

can produce various gestures, the basic motions must be designed manually. The

model proposed in [92] accepts both lexical contents of utterance and audio signals

as the inputs to generate the non-verbal behaviors for virtual agents. Similar to

the BEAT toolkit, the basic behaviors must be designed in advance. Recently, sev-

eral advanced social robots such as RoboThespian, Nao, and Pepper have become

capable of making the communicative gestures synchronized with their speech,

but their gestures are handcrafted by animation experts in order to ensure the

familiarity and human-likeness of the gesture.

Although the handcrafted gestures provide the familiarity and human-likeness

of the robot motions, this approach only allows robots to produce their commu-

nicative behaviors in the pre-designed scenarios. Moreover, the generated gestures

are limited to a set of rules. It should be reported that social robots need to be ca-

pable of interacting with different types of users in a personal way by adapting and

learning its behaviors throughout its lifetime [93]. Thus, social robots should be

endowed with the capability of learning social skills from perceived human behav-

iors. This idea resembles how infants learn social behaviors from their parents that

we have described in chapter 2. Inspired by infant social developments [51], several

studies have been conducted for producing facial [45] and bodily expressions [76]

for social robots. Taking into account theories of human emotion [94], it is well

known that emotion could be categorized into several basic groups (happy, sad,

surprised, disgusted, angry, fearful). Thus, each of the emotions could be treated

in an appropriate manner as the model for generating emotional gestures described

in chapter 3. On the other hand, communicative behaviors are more complex and
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they require a highly sophisticated model. In other words, to generate co-speech

gestures, relations between behaviors and corresponding natural language context

need to be addressed in a variety of communication topics. Recently, this ap-

proach has received increasing attention in the social robotics domain. In [95],

the authors proposed the 3D pose generation model utilizing the recurrent neural

network. The model receives speech audio features and/or text input to generate

the gestures corresponding to certain specific words. The generated upper body

motions are represented by the human joint coordinates. Afterward, they are

converted to the target robot joint angles. In [96], the authors presented a frame-

work for speech-driven gesture generation. The network is designed based on auto

encoder-decoder. The framework receives audio features (MFCCs, spectrograms,

prosodic) as inputs and produces an output body motion sequence. Similarly, a

speech-driven model for facial motion generation can be found in [97], this frame-

work is built upon bidirectional long-short term memory. On the other hand, the

authors [98] suggested the co-speech gesture generation framework which receives

the raw text input. Through the encoder and decoder phases, the upper body

poses are released. Then, the generated motions are re-targeted to the Nao hu-

manoid robot. Although various co-speech gestures could be generated by the

authors’ proposed approach, it is suggested that the model is not able to learn

iconic or metaphoric gestures in an efficient manner [99]. In [100], the bidirec-

tional relation between the human whole-body motion and natural language was

investigated. The authors demonstrated the capability of their proposed frame-

work to generate text descriptions for a variety of human body motions. Vice

versa, with the text description input, the model produces the gestures displayed

on the Master Motion Map (MMM) model. However, generated actions are de-

fined in joint space with respect to the MMM joint configuration, it is difficult to

utilize this approach on the other robots whose kinematic structures are different

from the MMM framework. Recently, Generative Adversarial Network (GAN) has

received considerable attention in a variety of domains, especially for image gener-

ation tasks [101]. To the best of our knowledge, Text2Action [1] is the first paper

using a GAN framework for generating robots’ co-speech actions synthesized with

the input context. It is constructed based on a sequence to sequence network.

Different from Text2Action, our generative framework is built upon convolutional
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neural network (CNN) which has been widely used in many research contexts such

as image [102, 103], video [104], and audio generation [105]. Inspiring by those suc-

cesses, our research investigates the convolution operation toward the autonomous

generation of communicative actions.

4.2 Research Approach

It is noticed that different aspects could be considered when generating gestures

synthesized with communicators’ speech. This proposed approach focuses on gen-

erating co-speech gestures supporting the concrete or abstract contents of users’

speech. Taking into account theories of human communicative gestures as dis-

cussed in chapter 2, those gestures are known as iconic, and metaphoric gestures.

Other types of gestures such as deictic or beat fall outside scope of our work.

The proposed approach uses GAN to learn relations between human communica-

tive gestures and semantic contents of their speech. Although GAN has received

considerable attention across different disciplines. Generating robot motions with

GANs, however, is seldom explored [106]. Our research aims at extending the

application of GAN for generating social robots’ non-verbal actions when syn-

thesizing their verbal content of speech. In a GAN network, the Generator and

Discriminator networks are simultaneously trained and updated. The Generator

tries to create the samples imitating the training data distribution, while the Dis-

criminator tries to distinguish between generated samples and real data of the

training set. Consequentially, Generator G and Discriminator D play a min-max

game as given in Eq. 4.1. In the conventional GAN, the network receives a noise

vector sampled from a prior distribution to generated fake data. Taking into ac-

count our research topic, the generated data would be robots’ co-speech actions.

In order to ensure that robots’ generated gestures are highly connected to their

verbal content of speech, the relation between robots’ actions and synthesizing

text should be carefully considered. Let us assume that the sentences which are

uttered by a robot are the determining factor for generating the robot’s gestures.

This connection can be taken into account using Conditional Generative Adversar-

ial Network (CGAN) approach [107], an extension of GAN with additional input

condition c to control to control output data. As the result, the objective function
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of the min-max game between G and D would be as Eq. 4.2. In our proposed

framework, CGAN is built upon CNN to generate communicative gestures when

synthesizing the verbal content of speech. The following section will explain our

designed framework in detail.

min
G

max
D

V (D,G) = Ex∼pdata [logD(x)] + Ez∼pz [log(1−D(G(z)))] (4.1)

min
G

max
D

V (D,G) = Ex,c∼pdata [logD(x, c)] + Ec∼pdata,z∼pz [log(1−D(G(z, c), c))]

(4.2)

4.3 Framework Architecture

Fig. 4.1 presents the proposed framework for generating robot’s co-speech actions.

In the training phase, ar = [S1, S2, S3, ..., ST ] (ar ∈ R3×8×T ) denotes a real action

from the training data that contains a sequence of skeleton frames S ∈ R3×8

performed over a period of time T . As shown in Fig. 4.4, S consists of 8 joints

defined in 3D space. Through the Action Encoder, ar is encoded to an action

matrix xr ∈ R3×16×T . On the other hand, d = [w1, w2, w3, ..., wk] is a natural

language sentence composed of k words to describe the action ar. It is started

by feeding the description d to the Embedding Description network. The output

e is concatenated with the noise vector z sampled from the normal distribution,

and they are fed to the Generator network. The purpose of the Generator G is

to generate the fake action matrix xf ∈ R3×16×T as much realistic as possible to

beat the Discriminator D while D tries to differentiate between xr and xf taking

into account the embedding vector e. Once the training process is completed,

the generated action matrix xf , synthesized with text description d, is decoded to

af ∈ R3×8×T . Through the Transformation model, the action af , defined in 3D

Cartesian space, is transformed into the target robot’s motion space represented

by joint angles.
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Figure 4.1: The proposed framework for generating fake action af synthesized
with text input d. Through the transformation model, generated action af is

transformed into the target robot motion, being the robot’s social gesture.

4.3.1 Embedding Descriptor

In order to encode the input description into the fixed-length embedding vector e,

which efficiently captures the meaning of the whole sentence, d = [w1, w2, w3, ..., wk]

is fed into the Embedding Description. Here, we use the encoder phase of the skip-

thoughts model [108]. The output vectors from this model effectively represent the

semantics and syntax of the sentence to be encoded [108].

hk = (1− zk)� hk−1 + zk � tanh(Wck + U(rk � hk−1)) (4.3)

The hidden layer hk represents the sequence of words {w1, ..., wk}. hk is calcu-

lated by Eq. 4.3, where ck is the word embedding of wk, W , U are the weight

matrices, � denotes a component-wise product, zk and rk represent the update
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gate and reset gate of Gated Recurrent Unit [109], respectively. The hidden state

hk captures the meaning of the whole sentence d, this value is then compressed

into a smaller dimensional vector e before being fed into the Generator and Dis-

criminator model.

4.3.2 Action Encoder and Decoder

Action Encoder

Convolutional Neural Network (CNN) has a natural ability to learn representation

from 2D matrices [110]. Human actions, defined as a sequence of skeleton frames,

could be represented as 2D matrices containing three channels representing x, y, z

coordinates, respectively. On each channel, the horizontal axis shows the time

sequence of skeleton frames, while the vertical axis represents the spatial distri-

bution of joints at a certain timestamp. Then, CNN based approach is utilized

to jointly capture spatial and temporal information of actions [111, 110, 112]. It

should be emphasized that the chain order of joints in the vertical axis affects

the spatial information represented in the action matrix xf . To efficiently capture

spatial relations of the adjacent joints of the action ar, the Action Encoder puts its

relative joints near each other. With this representation, by feeding the input ar

to the Action Encoder, the encoded matrix xr is released. This can be seen in Fig.

4.2. Specifically, on each channel c ∈ {x, y, z} of the matrix xr, the horizontal axis

covers the time sequence T of the action ar, while the vertical axis is a sequence of

joints in a given order I = [1, 0, 1, 2, 3, 4, 3, 2, 1, 1, 5, 6, 7, 6, 5] (I ∈ R16) at a certain

timestamp. Thus, instead of feeding the raw input ar to the D network, the Action

Encoder allows the spatial-temporal information of the action ar to be presented

as the action matrix xr.

Action Decoder

In order to decode the action matrix xf to the action af as displayed in Fig. 4.1,

our designed Action Decoder calculates the joint value jc,m,t of the action af over

the time sequence as shown in Eq. 4.4 and Eq. 4.5. This calculation allows that

jc,m,t is defined based on the average values of its distribution on xf . Here, jc,m,t
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Figure 4.2: Action Encoder encodes the raw action ar to the action matrix xr

denotes the value of joint index m (m = [0, 7]), on the dimension c (c ∈ {x, y, z}),
at the time stamp t (t ∈ [1, T ]), and n(m) is the number of times the joint index

m in the order I.

jc,m,t =
1

n(m)

16∑
p=1

xf (c, p, t)δ(p,m, I) (4.4)

δ(p,m, I) =

1 I(p) = m

0 I(p) 6= m
(4.5)

4.3.3 Generator

The proposed model is based on the transposed convolutional network which has

been shown to be useful in many different research contexts such as image gener-

ation [102, 103], video generation [104], and audio generation [105]. Initially, the

noise vector z is sampled from the Normal distribution N(0, 1). It is concatenated

with the vector e, encoded from Embedding Description, before being fed to the
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G network. As presented in Fig. 4.1, G is designed with a fully connected layer to

reshape the input vector and followed by four fractionally-strided convolutions to

up-sample the data to an output target xf . On each layer, batch normalization is

utilized for stabilizing the learning process. This operation normalizes the input to

each unit to have zero mean and unit variance. The output values are followed by

the Rectified Linear Unit (ReLU) activation [113] except for the last layer. Here,

the tanh activation function is used before producing xf .

4.3.4 Discriminator

Discriminator D is designed with five convolutional layers similar to the architec-

ture of G. D receives either xr from training data or xf from G as an input. At

the fourth layer, the embedding vector e is concatenated with the output of the

convolutional layer. Here, the embedding e provides conditional information to D

in order to evaluate whether the input action satisfies this condition or not. At

the last layer, the results are passed into a sigmoid function to produce an output

probability.

The training process is summarized in Algorithm 2. The vector e provides

conditional information to the G network in order to generate the action matrix

xf , synthesized with the action description d. The aim of the Generator is to

fool the Discriminator. Thus, the Generator is trained to maximize the output

probability yf . Conversely, D is trained to differentiate between xr and xf based

on (1) the human-likeness of the action, and (2) the synthesis of an action and its

corresponding description. It should be remarked that the second point plays an

essential role, allowing the generated action to effectively express the meaning of

input description. To endow D with the capability of evaluating this synthesis, D

is trained to maximize the output probability yr when receiving a pair of real action

input xr and embedding vector e. On the other hand, given a pair of input xf and

e, the Discriminator is trained to minimize the output probability yf . From the

training data, we also collect the miss-matching description d̂, which incorrectly

describes the action xr. When feeding a pair of the real action xr and ê to the D

network, the Discriminator is trained to minimize the output ym, implying that xr

does not synthesize d̂. The binary cross-entropy is applied to compute the miss-

39



classification error LD, LG of the network D and G, respectively. The parameter of

D is updated while keeping the parameters of G constant. Then, the parameters

of G are adjusted to optimize the error LG while keeping network D unchanged.

Algorithm 2 The proposed algorithm for training the Generator G and the Dis-
criminator D.

Input: real action ar, matching description d, miss-matching description d̂,
training batch steps S.

1: for s=0 to S do
2: xr ← ActionEncoder(ar);
3: e← EmbeddingDescription(d);
4: ê← EmbeddingDescription(d̂);
5: z ← N(0, 1);
6: xf ← G(z, e);
7: yr ← D(xr, e);
8: yf ← D(xf , e);
9: ym ← D(xr, ê);

10: LD ← log(yr) + log(1− ym) + log(1− yf );
11: D ← D − α(∂LD/∂D); {Update Discriminator}
12: LG ← log(yf );
13: G← G− α(∂LG/∂G); {Update Generator}
14: end for
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Chapter 5

Transforming Generated

Human-like Gestures into the

Target Social Robot

In chapter 3 and 4, the frameworks for generating emotional and communicative

gestures were presented. However, they are designed to learn from human behav-

iors, as the results, generated gestures are defined in human motion space. In this

chapter, we will explain the proposed approach to transform generated human-like

gestures into the target Pepper humanoid robot, taking into account the robot’s

physical constraints. Experiments conducted to verify this framework as a stand-

alone function can be found 6.1 of chapter 6. Indeed, the integration of this model

and the ones illustrated in chapter 3 and 4 could be found in section 6.2 and 6.3,

respectively.

5.1 Related Works

Recently, social robots such as NAO, Pepper, and RoboThespian have become ca-

pable of performing human-like gestures towards enhancing the quality of human-

robot interaction. However, it is always in case that such gestures are programmed

and implemented in advance by animation or robotics experts. One of the limita-

tions of this approach is that it does not allows non-expert users to teach robots
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new social behaviors supporting typical scenarios of interactions. There is an in-

creasing need that robots should be able to re-configure their interacting gestures

adapting to interacting environments towards increasing users’ empathy and en-

gagement of social interaction. To archive that target, imitation learning is a

well-established concept. It appears as a promising approach for teaching robots

new motions through demonstration [114, 13], robots then generate human-like

movements similar to demonstrators’ actions.

A common approach for imitation learning is sensing human actions as 3D mo-

tion data using optical marker sensors (Vicon, Phase Space) or markerless sensors

(Kinect Microsoft, Asus Xtion) (further information can be found in Appendix).

Then, through a designed transformation model for solving the problem of in-

verse kinematic, motion data of demonstrators is converted to a set of joint angles

representing robots’ gestures. In [115], the authors proposed a system running

in ROS environment [116] to teleoperate the NAO robot’s arms. A human mo-

tion is captured by the Kinect sensor. Through a transformation model based on

the geometric inverse-kinematic, a human motion is transformed into the target

robot. It is noticed that with legged robots, in addition to the transformation

process for calculating imitated robot’s joint angles, positions of Center of Mass

(COM) [117] should be taken into account to maintain the robot’s balance. This

problem has been addressed when generating imitated gestures for the NAO robot

in [118]. A similar approach can be found in [119] for imitating human motions

during an on-line demonstration. Through a transformation model for solving

inverse kinematic, the upper body motion of the Darwin-OP humanoid robot is

generated while the balance of the robot is guaranteed. In their proposed ap-

proach, this problem is solved by optimizing the robot’s motion around COM.

On the other hand, rather than designing a particular transformation model for a

specific robot’s configuration, the authors [12] introduces a generic transformation

model, allowing human gestures could be imitated by different robot platforms.

The authors demonstrated their proposed approach on a public human bodily

expression dataset [14]. Through the generic model, human affective gestures are

transformed into different robot platforms such as ASIMO, Justin, and NAO robot

while meanings of human bodily expression remained unchanged. In contrast with

the conventional approach, where the problem of inverse kinematic is taken into
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(a) Human joint configuration. (b) Pepper robot joint
configurartion.

Figure 5.1: The availability of DoFs on the upper body of the human model and
the target robot model.

account to determine the mapping between human joint coordinates and angular

position of the target robot’s actuators, recent advantages of deep neuron network

provide an alternative approach to tackle this issue. In [120], the authors firstly

collected paired synchronized movements capturing both human motion data and

the target robot’s actuator data. By training a feed-forward neural network for

each Degree of Freedom (DoF) on the robot, the relations between human joint

coordinates and the corresponding robot’s DoF are detected. Similarly, by utiliz-

ing the machine learning approach, a mechanism for human whole-body imitation

was introduced in [29]. Finally, it should be noticed that because of differences in

joint configurations between humans and robots, self-collision may exist on gen-

erated robots’ gestures. By equipping the imitation learning model capability of

self-collision avoidance, the Tangy robot [13] is capable of producing collision-free

movements imitating the demonstrator’s actions.
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5.2 Research Approach

Fig. 5.1 shows the differences in joint configurations between a human model and

the Pepper robot. It can be seen that the DoFs of the target robot are limited

compared to the human model. As the result, our designed transformation model

presented in Fig. 5.2 converts human actions into a set of joint angles displayed

on the target robot, taking into account the robot’s kinematic structure. For

calculating the Pepper robot’s joint angles, the solutions to the inverse kinematic

problem are computed based on geometric algebra. This approach has been widely

used in previous studies [116, 119, 13] mentioned above. It is also noticed that there

are significant differences in the lower body between humans and the target robot.

As the result, the proposed approach focuses on the imitation of the robot’s upper

body including the movements of hip, head, shoulder, elbow, and wrist on both

the left and right sides. The following section will detail our proposed framework.

5.3 Framework Architecture

Fig. 5.2 illustrates the architecture of the proposed approach. In the designed

model, the robot joint angle calculation phase receives the human joint vectors

Left/Right Knee (l k, r k), Left/Right Hip (l hi, r hi), Central Hip (c hi), Torso

(tor), Neck (neck), Left/Right Head (l he, r he),Left/Right Shoulder (l s, r s),

Left/Right Elbow (l e, r e), Left/Right Hand (l h, r h), and the axes (x ref ,

y ref , z ref) computed from the reference axis calculation phase. A set of robot’s

angles released from the joint angle calculation phase are passed through the col-

lision checking phase before inputting to the robot’s actuators.

5.3.1 Reference Axis Calculation

During social interaction, it is common that robots perform nonverbal commu-

nicative behaviors such as head motions to convey deeper messages and emotions.

Those behaviors affect the orientation of the estimated human pose with respect

to the camera embedded on the robot head. To cope with this problem, it is nec-

essary that the reference axes should be independent of the camera configuration.
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Figure 5.2: Transformation of human joint positions into the Pepper robot’s joint
angles

Thus, we used the reference axes calculated by Eq. 5.1, 5.2, and 5.3 to describe

the orientation of the estimated pose. The calculated axes x ref , y ref , z ref

are combined with the human motion data input for calculating the robot joint

angles.

−−→zref = (
−−→
r hi−

−−→
l hi)× (

−−→
r hi−−→tor) (5.1)

−−→xref =
−−→
r hi−

−−→
l hi (5.2)

−−→yref = (−−→zref ×−−→xref ) (5.3)

5.3.2 Joint Angle Calculation

The join angle calculation phase receives a set of human motion data and the

reference axes x ref , y ref , z ref as the inputs. We applied the geometric algebra

approach for solving the problem of inverse kinematic. In the end, this calculation
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phase releases a set of joint angles Roll (α), Pitch (β), Yaw (γ) corresponding to

the availability of DOFs of the Pepper robot kinematic structure. Depending on

the robot’s home configuration different from that of the human joints, an offset

value is added to the calculated joint.

It is started determining movements of the robot’s hip. In the target robot

model shown in Fig. 5.1b, αHip controls the side-to-side movement while up-and-

down motion is manipulated by βHip. Eq. 5.4 and Eq. 5.5 are used to determine

that two DoFs.

αHip = −arccos

(
(
−→
l s−−→r s) · −−→yref
|
−→
l s−−→r s| · |−−→yref |

)
+
π

2
(5.4)

−→
b =

−−→
c hi−

(−→
r k +

−→
l k

2

)

βHip = −arccos

( −→
b · −−→zref
|
−→
b | · |−−→zref |

)
+
π

2

(5.5)

Concerning the robot’s upper right arm, the side to side movement is illustrated

by αRightShoulder. This value could be determined based on coordinates of the right

shoulder and the right elbow as described in Eq. 5.6. Vice versa, βRightShoulder

describes the up-and-down movement of the robot upper arm. As shown in Eq. 5.7,

βRightShoulder is calculated by taking into account two neighboring vectors r s and

r e, then combining with the reference axis yref .

αRightShoulder = −arccos

(
(−→r e−−→r s) · (

−→
l s−−→r s)

|−→r e−−→r s| · |
−→
l s−−→r s|

)
+
π

2
(5.6)

βRightShoulder = arccos

( −−−→
y ref · (−→r s−−→r e)
|
−−−→
y ref | · |−→r s−−→r e|

)
− π

2
(5.7)

The angle αRightElbow is created by the two links, upper arm, and forearm. Thus,

this angle could be defined by the dot product between that two neighboring links
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as described in Eq. 5.8. On the other hand, γRightElbow is created by rotation

movement of forearm around the upper arm, this value is calculated as given by

Eq. 5.9.

αRightElbow = −arccos

(
(−→r s−−→r e) · (

−→
r h−−→r e)

|−→r s−−→r e| · |
−→
r h−−→r e|

)
+
π

2
(5.8)

−→c = Rz(αRightShoulder) ·Ry(βRightShoulder) ·
−−→zref
|
−−→
zref |

−→
d =

(−→r s−−→r e)× (
−→
r h−−→r e)

|−→r s−−→r e| × |
−→
r h−−→r e|

γRightElbow = −arccos

( −→c · −→d
|−→c | · |

−→
d |

)
+
π

2

(5.9)

Additionally, with the human motion capture Front Head (fr he), Back Head

(ba he), Left/Right Wrist Near Thumb (lw ra, rw ra), Left/Right Wrist Opposite

Thumb (lw rb, rw rb) are given, the robot’s joint angle βHead, γHead, and γRightWrist

can be calculated as the following:

−→a =

(−−→
l he+

−−→
r he

2

)

βHead = arccos

(
(
−→
tor −

−→
c h) · (−→a −

−−→
neck)

|(−→tor −
−→
c h)| · |(−→a −

−−→
neck)|

) (5.10)

γHead = arccos

(
(−→r s−

−→
l s) · (

−−−→
fr he−

−−−→
ba he)

|(−→r s−
−→
l s)| · |(

−−−→
fr he−

−−−→
ba he)|

)
(5.11)
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−→g = −−−→rw ra−
−−−→
rw rb

γRightWrist = −arccos

(
(
−→
−d) · −→g
|(
−→
−d)| · |−→g |

)
+
π

2

(5.12)

Similarly, the following equations are given to show the computation of joint

angles, αLeftShoulder, βLeftShoulder, αLeftElbow, γLeftElbow, and γLeftWrist, on the left

side of the Pepper robot:

αLeftShoulder = −arccos

(
(
−→
l e−

−→
l s) · (−→r s−

−→
l s)

|
−→
l e−

−→
l s| · |−→r s−

−→
l s|

)
− π

2
(5.13)

βLeftShoulder = arccos

( −−−→
y ref · (

−→
l s−

−→
l e)

|
−−−→
y ref | · |

−→
l s−

−→
l e|

)
− π

2
(5.14)

αLeftElbow = arccos

(
(
−→
l s−

−→
l e) · (

−→
l h−

−→
l e)

|
−→
l s−

−→
l e| · |

−→
l h−

−→
l e|

)
− π

2
(5.15)

−→
k = Rz(αLeftShoulder) ·Ry(βLeftShoulder) ·

−−→zref
−−−→
|zref |

−→m =
(
−→
l s−

−→
l e)× (

−→
l h−

−→
l e)

|
−→
l s−

−→
l e| × |

−→
l h−

−→
l e|

γLeftElbow = arcos

( −→
k · −→m
|
−→
k | · |−→m|

)
− π

2

(5.16)
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n =
−−−→
lw ra−

−−−→
lw rb

γLeftWrist = arcos

(
(
−−→−m) · −→n
|(−−→−m)| · |−→n |

)
− π

2

(5.17)

Due to the differences in the lower body between human and the Pepper robot,

the imitation of knee movement is ignored on the Pepper robot. The angle βKnee,

manipulated up-and-down motion of the robot’s knee, is fixed at a constant value

βKnee = 0 (rad). At the end of the joint angle calculation phase, a set of joint

angles θ = { αHip, βHip, βKnee, αRightShoulder, βRightShoulder, αRightElbow, γRightElbow,

αLeftShoulder, βLeftShoulder, αLeftElbow, γLeftElbow, βHead, γHead, γRightWrist, γLeftWrist

} are released.

5.3.3 Boundary Constraint and Collision Check

Each of the robot’s actuators has a limited range of rotation. To ensure that the

calculated joint values satisfy the robot’s physical configuration, joint angles θ are

check with boundary constraint as given by Eq. 5.18. Here, θi min and θi max denote

the lower and upper limits of the actuator θi. Finally, before releasing them to the

Pepper robot, collision detection is conducted using the robot off-the-shelf model

to prevent potential self-collisions.

θi =


θi min, if θi ≤ θi min

θi, if θi min < θi < θi max

θi max, if θi ≥ θi max

(5.18)
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Chapter 6

Experiments and Discussion

In this chapter, we present a series of experiments conducted to evaluate the

model of generating emotional gestures in chapter 3, the model for generating

communicative gestures in chapter 4, and the transformation model illustrated in

chapter 5. It is started by two experiment scenarios, described in section 6.1, in

order to validate the transformation model. In section 6.2, an experiment was

conducted to evaluate the integration between the model for generating emotional

gestures and the transformation model. Finally, section 6.3 explains experiments

conducted to evaluate the model for generating communicative gestures, and the

transformation model.

6.1 Transferring Human Social Gestures into the

Robot

In this experiment, the transformation model described in chapter 5, which con-

verts human actions into the Pepper robot motions, is qualitatively evaluated in

two different scenarios. Firstly, we recruited observers from various cultural back-

grounds who are not familiar with robots. They evaluated whether the demon-

strators’ gestures are appropriately represented by the robot taking into account

the robot’s physical constraints. Secondly, observers evaluated whether the human

emotional expressions were retained by the corresponding robot motions. We per-

formed subjective evaluations widely used to evaluate the robot’s facial expressions

50



(a) Human
demonstration H5

(b) Robot
imitated action R5

(c) Human
demonstration H6

(d) Robot
imitated action R6

Figure 6.1: The users stood in front of the Pepper robot and performed one-shot
demonstration. The demonstrators’ actions were imitated by the robot.

[45] or bodily expressions [12].

6.1.1 Experiment Scenario: Generating Robot Actions

through One-shot Human Demonstration

Experimental Setup

This scenario evaluates the imitated gestures by the robot through a one-shot hu-

man demonstration. More specifically, the users stood in front of the Pepper robot

to perform 6 different actions. The interacting distance between the demonstrator

and the robot was approximately 2 meters. The robot acquired the user’s upper

body motion as a sequence of skeleton frames using its on-board camera. The

pose estimation module receives the human motion as the input, and, through the

VNect model [121], a sequence of 3D skeleton frames represented by 14 markers

is released. Then, the transformation model sequentially converts demonstrated

actions into the robot motion. Additionally, to analyze how similar the actions

were performed by the demonstrators, each of the human demonstrated actions

H was encoded to the corresponding feature vector C given by Eq. 3.1. The en-

coded vector C captures the spatial-temporal information of motions as described

in chapter 3. Then, the similarity between a pair of human actions Ha and Hb can

be determined by measuring the cosine distance between the two encoded feature
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vectors Ca and Cb as in Eq. 6.1. Hence, the closer the cosine distance to 1, the

greater the similarity between the two vectors.

Similarity(Ca, Cb) =
Ca · Cb

||Ca|| ||Cb||
(6.1)

An online survey in English was conducted with 39 observers (28 males and

11 females), ranging in age from 22 to 33 (mean age M = 25.6 years, standard

deviation SD = 2.5 years), from three different cultures (13 Chinese, 14 Japanese,

and 12 Vietnamese). They are graduate students at the Japan Advanced Institute

of Science and Technology who use English in daily life. The selected observers are

mostly not familiar with robots since their educational backgrounds are not related

to robotics and they have not interacted with social robot platforms (such as

Nao, Pepper, and others) before. They were asked to evaluate the demonstrator’s

motions and the Pepper’s imitated ones using online surveys discussed further in

a later section.

Results and Discussion

The three demonstrators performed six actions combining the movements of their

hip and arms, each of them demonstrated two actions. Table 6.1 shows the sim-

ilarity between all pairs of demonstrator’s actions calculated from Eq. 3.1 and

Eq. 6.1. The demonstrators’ actions were imitated by the Pepper robot through

the transformation model. We conducted a survey with a group of observers us-

ing a 23.8-inch color monitor with a resolution of 1920 × 1080 pixels, in order

to evaluate the recognition of demonstrated actions imitated by the robot. The

survey form provides a Graphical User Interface (GUI) that help us collect the

observers’ responses. They were asked to use a keyboard to input their personal

information. It is followed by the six experimental trials corresponding to the six

different types of the robot actions. On each trial, as shown in Fig. 6.2, the ob-

servers used a mouse to trigger the video of the Pepper robot’s imitated action.

After that, they sequentially watched six videos of the human demonstrated ac-

tions by triggering one video at one time. The observers used a mouse to select

the most similar human action to the robot’s one - in a six alternative forced

choice task. Notice that by randomly swapping the positions of the videos, the six
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Figure 6.2: An experimental trial in the survey of the experiment. It is designed
as a six alternative forced choice task where the observers select the most similar

human action to the robot’s action.

human actions were presented to the observers in different temporal orders. This

format prohibits the observers from exhibiting a biased response. The duration

of each demonstrated action is approximately 6 seconds. The stimuli subtended
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Table 6.1: Similarity between all pairs of human actions.

Action H1 H2 H3 H4 H5 H6

H 1 1.00 0.63 0.76 0.45 0.07 0.33
H 2 0.63 1.00 0.50 0.47 0.11 0.21
H 3 0.76 0.50 1.00 0.42 0.12 0.39
H 4 0.45 0.47 0.42 1.00 0.20 0.50
H 5 0.07 0.11 0.12 0.20 1.00 0.25
H 6 0.33 0.21 0.39 0.50 0.25 1.00

Table 6.2: Confusion matrix representing the recognition of six human actions
(H) transformed into the robot model (R), normalized by the number of

observers.

Action H1 H2 H3 H4 H5 H6

R 1 0.85 0.02 0.13 0.00 0.00 0.00
R 2 0.03 0.94 0.03 0.00 0.00 0.00
R 3 0.13 0.08 0.79 0.00 0.00 0.00
R 4 0.00 0.00 0.00 0.92 0.00 0.08
R 5 0.00 0.00 0.00 0.00 0.92 0.08
R 6 0.00 0.00 0.00 0.05 0.08 0.87

a visual angle of 11.17◦ (vertical) and 8.00◦ (horizontal). The viewing distance is

approximately 70 cm. Table 6.2 shows the recognition rate of the imitated actions,

evaluated by 39 observers. It is indicated that the observers could recognize the

demonstrators’ actions imitated by the robot with the high categorization accu-

racy. However, the observers were sometimes confused between the human action

H1 and H3. By analyzing the similarity of demonstrators’ actions using its en-

coded feature vectors, Table 6.1 confirms that the demonstrated actions H1, H2,

and H3 were performed similarly to each other. It should be remarked that the

experimental results only show that (1) the robot is able to perceive the user’s ac-

tion represented using a skeleton sequence collected with its on-board sensor and

(2) the proposed framework can convert the observed user action into the target

robot motion subject to its physical constraints. To evaluate more closely whether

the messages of the user’s actions are retained by the robot’s bodily expressions or

not, the transformation model will be validated with the user’s affective behaviors

detailed in the following experiment.
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6.1.2 Experiment Scenario: Human Emotional Expressions

Retained by Robot Motions

Experimental Setup

We conducted a study to evaluate whether the messages of human emotional ges-

tures are retained by the robot motions using the UCLIC Affective Posture and

Motion Database [66]. The database includes 108 affective gestures recorded by

a motion capture system. It is categorized into four emotion labels (Happy, Sad,

Fear, Angry). The actors conveyed those emotions mostly using their upper body.

The acted gestures were evaluated online by 70 subjects from three different cul-

tural groups of observers (25 Japanese, 25 Sri Lankans, and 20 Caucasian Amer-

icans in the United States). The evaluation results were represented by the label

and the intensity of the emotions. In our experiment, we selected four affective

gestures portraying each of the four emotions, respectively, which were recognized

correctly by the majority of observers across the above-mentioned cultural groups.

Specifically, the selected gestures should satisfy the following two conditions: (1)

the sum of percentages of observers across three cultures who correctly recognized

the emotion of the gesture is the highest of all the other gestures in the database

and (2) on each group, the percentage of observers recognizing the emotion cor-

rectly should be equal to or higher than 40%. Here, the threshold of 40% was used

to filter out gestures showing a significantly low recognition rate within a specific

culture. Finally, the four human gestures were fed to the transformation model to

be converted to the robot motions.

Subjective evaluations were carried out through an online survey designed in

English. It was conducted with 150 observers (101 male and 49 female), ranging

in age from 18 to 45 years old (mean age M = 25.2, standard deviation SD =

4.1 years), from five different cultures (14 Chinese, 11 Japanese, 13 Koreans, 57

Turkish, and 55 Vietnamese). The observers are English speaking students of five

universities and institutes, most of whom are not familiar with social robots. Sim-

ilar to the Experiment 6.1.1, this survey form is designed with a GUI for collecting

the observers’ responses. The first part of the survey includes four experimental

trials corresponding to the different robot’s bodily expressions. The orders of trials

were randomly presented to the observers. On each trial as presented in Fig. 6.3,
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the observers were asked to watch the robot’s bodily expressions and choose the

most appropriate emotion label from the five options (“Happy”, “Sad”, “Fear”,

“Angry”, “Other”) - in a five alternative forced choice task. Here, if the observers

believe that the robot’s gesture may infer a different message, they select the

option “Other” and write their own interpretation. Each of the actions was per-

formed for 7 seconds, and the observers can replay the video as many times as they

wish before completing the experimental trial. Another part of this evaluation is

the assessment of four selected UCLIC human expressions. The motion capture

data were graphically visualized using Autodesk 3ds Max software. Similar to the

first part of the survey, there are four experimental trials where their positions

are randomly swapped across the observers. As shown in Fig. 6.4, the observers

were asked to watch the human skeleton actions and rate the emotion label from

“Happy”, “Sad”, “Fear”, “Angry”, and “Other”- in a five alternative forced choice

task. It should be emphasized that, by additionally evaluating the human bodily

expressions, this approach allows us to collect the subjective results of human and

robot affective gestures which were evaluated by the same group of observers.

Results and Discussion

Figs. 6.5a, 6.5c, 6.5e, and 6.5g show the key poses of the four selected human

emotional gestures (Happy, Sad, Fear, Angry) chosen from the UCLIC dataset.

Through the transformation model, those bodily expressions were converted to the

Pepper robot motions considering the physical constraints as shown in Figs. (6.5b,

6.5d, 6.5f, 6.5h).

Subjective evaluations were conducted for both the human and robot emotional

bodily expressions. Figs. 6.6a and 6.6b show the culture-specific recognition ac-

curacy. Additionally, the average recognition accuracy was calculated by pooling

data of 150 observers across five cultural groups. It can be seen from Fig. 6.6a

that the overall recognition accuracy of human bodily expressions is quite high.

However, only 36% of the Japanese observers correctly recognized the human ex-

pression Happy. The overall recognition accuracy is also high for the robot bodily

expressions (Happy, Sad, and Fear) as seen in Fig. 6.6b. Notably, the bodily

expression Angry has the lowest recognition accuracy.
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Figure 6.3: An experimental trial conducted in Experiment 6.1.2. The observers
were asked to watch the robot’s bodily expressions and choose the most

appropriate emotion label from a list of five emotions - in a five alternative force
choice task.

Fig. 6.5e shows the key pose of the human motion Fear. It consists of bending

the upper body, covering the face with their hands, and stepping backward to

defend themselves. It should be noticed that a coordinated movement of the head,

shoulder, arms, and knees is required as well as the backward step. Due to the

differences in the lower body between the human and the robot, the knee motion

and the backward step were removed in the robot motion. As a result, the robot’s
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Figure 6.4: An experimental trial in the second part of survey of
Experiment 6.1.2. It is designed as a five alternative force choice task.

joint βKnee is set to a constant value of βKnee = 0 rad (as the value at the initial

position). Indeed, Fig. 6.7 indicates the absolute differences between a set of joint

angles calculated from the human motion Fear and angle values collected from the

robot’s sensors. It is noticed that the joint βHip could not reach the desired values

of the human motion, due to the limitation of the robot’s physical configuration.

This error constrains the range of bending motion of the robot’s upper body, failing

to reach the extent as performed by the human skeleton. These reasons affected

the recognition of the robot expression Fear. Thus, the robot Fear was relatively

difficult to recognize with the average recognition accuracy 75% compared to 94%

58



(a) human Happy (b) robot Happy (c) human Sad (d) robot Sad

(e) human Fear (f) robot Fear (g) human Angry (h) robot Angry

Figure 6.5: Selected human postures from UCLIC dataset visualized using
Autodesk 3ds Max: Figs. 6.5a, 6.5c, 6.5e, and 6.5g represent the key poses of

human bodily expressions. Figs. 6.5b, 6.5d, 6.5f, and 6.5h show the
corresponding Pepper expressions.

for the human skeleton Fear.

As shown in Fig. 6.5a, the gesture Happy was performed by raising outstretched

arms over the head. Since there are no facial expressions to accompany bodily

expressions, this expression of the skeleton model sometimes caused the observers

to infer other messages such as Angry, Fear, or Shocked. On the other hand, when

this expression was conveyed by the robot, it was more easily recognizable to the

observers. After completing the survey, the results were shown to the observers

for receiving their feedback. It was self-reported that while watching the robot

bodily expressions, they commonly paid more attention to the robot face. By

looking at the robot face and bodily expressions at the same time, the observers

felt that this behavior might imply Happy or Welcoming. For that reason, the
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(a) Human bodily expressions

(b) Robot bodily expressions

Figure 6.6: The recognition accuracy of bodily expressions rated by observers
within each cultural group. The dark-red bar indicates the average pooled

accuracy of 150 observers across five cultures.

recognition rate of the robot Happy is slightly higher than that of the human

skeleton Happy. It should be underlined that no eye color was used for the robot

emotional expressions. However, the robot face influences the recognition of its

bodily expression. Indeed, the facial expression turns out to be significant for the

robot expression Angry. When transferring this gesture to the robot motion, due

to the limitation of its physical constraints, the robot could not move its arms

close enough to its hip. This problem led to the difficulty in achieving higher

recognition rate of its expression Angry as shown in Fig. 6.6b. On the other
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Table 6.3: Recognition of emotional expressions of human skeleton normalized by
the number of observers.

Emotional
label

Observers
Happy Sad Fear Angry Others

Happy 0.62 0.03 0.12 0.14 0.09
Sad 0.01 0.90 0.01 0.01 0.06
Fear 0.01 0.01 0.94 0.01 0.03

Angry 0.05 0.04 0.01 0.79 0.10

Table 6.4: Recognition of emotional expressions of robot normalized by the
number of observers.

Emotional
label

Observers
Happy Sad Fear Angry Others

Happy 0.73 0.01 0.02 0.04 0.20
Sad 0.01 0.93 0.02 0.01 0.03
Fear 0.03 0.06 0.75 0.05 0.11

Angry 0.23 0.03 0.09 0.39 0.25

Figure 6.7: Absolute differences in joint angle values between the human
expression Fear and the imitated one performed by the Pepper robot.

hand, the robot face caused the observers to infer positive emotions like Happy

or other message such as “Hey, what’s up?”. As a result, 25% of the observers

rated other meanings for the robot expression Angry. The observers also thought
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that the robot somehow tried to convey expression Angry by its bodily movement.

However, they were confused by the robot face. It should be noted that the design

of Pepper’s face was influenced by characters in Japanese animation having big eyes

[122]. That appearance makes the robot look more friendly to humans even when

no animated behaviors are performed by the robot. Accordingly, the Pepper’s face

positively contributes to the recognition of Happy, while it adversely affected the

perception of Angry.

6.1.3 Summary

In this experiment, the transformation model was sequentially evaluated by two

different experimental setups. In the scenario of learning from human demonstra-

tions, the robot was able to perceive the demonstrators’ gestures and imitate them

as closely as possible under the robot’s physical constraints. The robot’s imitated

behaviors were recognized with high categorization accuracy. Secondly, the human

emotional expressions represented by the robot motions were evaluated using the

public dataset. The messages of Happy, Sad, and Fear were well retained by the

robot motions. The robot’s expression Angry was recognized with low accuracy,

mainly due to the robot’s physical constraints and facial expression.
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6.2 Incremental Learning to Develop Robot Emo-

tional Gestures

In the previous experiments mentioned above, the efficiency of the transforma-

tion model to generate the robot’s social cues through one-shot demonstration has

been validated. The following experiment evaluates the integration of the model

of generating emotional gestures illustrated in chapter 3 and the transformation

model described in chapter 5. This integration is demonstrated through a scenario

of three consecutive days of human-robot interaction. This scenario of interaction

allows the target robot capable of learning human behaviors through long-term in-

teraction and transforming them into its motion space, being the robot’s emotional

gestures.

6.2.1 Experimental Setup

The Scenario of Interaction

The experimental setup is given in Fig. 6.8, where the Pepper robot interacted with

a demonstrator to learn from his emotional behaviors. The interacting distance

between the user and the Pepper robot was about 2 meters. The interaction section

was triggered when the robot detected the user through the facial detection API1.

Then, the robot started the conversation by executing several verbal and nonverbal

behaviors from the predefined list of interacting actions. The demonstrator then

responded to the robot with his facial and bodily expressions in his own way since

no constraints were placed on them. The human upper body motion is captured

from the robot’s camera, using the human pose estimation module as described

in the previous experiment, and the demonstrator’s gestures were acquired as a

sequence of 3D skeleton frames represented by 14 markers. At the same time, the

robot estimated the user’s facial expression through the emotion estimation API2.

The user’s emotional behaviors associated with facial expressions Happy, Sad, and

Fear were stored in the robot memory. For each interaction day, the obtained user

data were sequentially fed into the corresponding emotion classes in the model

1http://doc.aldebaran.com/2-5/naoqi/peopleperception/alpeopleperception.html
2http://microsoft.com/cognitive-services/en-us/
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Figure 6.8: The scenario of Pepper’s interaction for 3 consecutive days learning
from the interacting partner’s emotional behaviors.

as presented in chapter 3, which was followed by the transformation process. In

the next day, the robot gained access to the stored knowledge from the previous

day and incrementally learned from the user’s new behaviors. The scenario of

interaction was repeatedly carried out for three consecutive days, considering the

number of interactions obtained and especially the familiarity of the demonstrator

with the experimental protocol.

Evaluation Criteria

This survey investigates the quality of the robot’s emotional gestures aligned with

the interacting user’s culture (Vietnamese) as well as the cultural differences in

the perception of the robot’s behavioral expressions. Specifically, subjective evalu-

ations were performed through an online survey designed in English. We recruited

136 observers (96 males and 40 females), ranging in age from 18 to 45 (mean age

M = 25.2 years, standard deviation SD = 4.1 years) from five different cultures

(13 Chinese, 9 Japanese, 13 Koreans, 44 Turkish, and 57 Vietnamese). The ob-

servers are students from five different universities and institutes. They are fluent
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Figure 6.9: The observers rated appropriate Arousal and Valence values of the
robot bodily expression using the Self-Assessment Manikin (SAM) nine-point

scale

in English and most of them are not familiar with robots.

Firstly, the observers were asked to watch the robot’s emotional gesture and

choose the appropriate emotional label similar to the previous experimental setup

mention in section 6.1.2. Then, the observers rated the appropriate value for

Arousal and Valence using the Self-Assessment Manikin (SAM) nine-point scale [123].

Arousal and Valence are the dimensions on the Circumplex model of affect [124].

This validation allows the observers to assess and express their emotional responses

to the robot’s expression without any constraints on the emotion labels. The ob-

servers’ assessments were then scaled in a range of [-1, 1]. This measurement has

been widely used by other HRI researchers to subjectively validate the robot’s

behaviors [125, 126].
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Table 6.5: SOM versus DCS on MSRC-12 dataset.

SOM DCS

Precision 0.9166 0.8019
Recall 0.9115 0.9141
Fvalue 0.9133 0.8524

(a) Expression Happy (b) Expression Sad (c) Expression Fear

Figure 6.10: The key poses of Pepper emotional gestures produced using Arep of
the behavior selection phase.

6.2.2 Results and Discussion

Robot Bodily Expressions Generated Over Three Consecutive Days of

Interaction

The model of generating emotional gestures incrementally perceived the interact-

ing user’s emotional behaviors. In more detail, on each emotion class, the demon-

strator actions were first encoded to feature descriptors. Those descriptors were

incrementally trained and clustered into different groups during the training and

clustering phase. Through the behavior selection phase, the representative action

Arep was selected. Finally, the transformation model converted the selected expres-
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Table 6.6: The behavior selection phase on the third day. Using Eq. 3.15, the
representative pattern Arep is selected as the closest one to the center µ of the

largest cluster Clusteri.

(a) Clusteri on
emotion class Happy

Pattern
ID

||x− µ||

1 H 39 0.3937
2 H 47 0.3042
3 H 45 0.3794
4 H 40 0.3974
5 H 31 0.3370
6 H 5 0.3889
7 H 7 0.3071
8 H 20 0.3152
9 H 41 0.2002
10 H 23 0.3230
11 H 28 0.2656
12 H 42 0.2992
13 H 50 0.2298
14 H 22 0.3495
15 H 30 0.3342
16 H 13 0.2506
17 H 51 0.2798
18 H 43 0.3533
19 H 32 0.2425
20 H 38 0.2824
21 H 36 0.2440

(b) Clusteri on
emotion class Sad

Pattern
ID

||x− µ||

1 S 24 0.1636
2 S 33 0.1828
3 S 14 0.1600
4 S 20 0.1926
5 S 6 0.1917
6 S 4 0.2249
7 S 29 0.3187
8 S 40 0.1326
9 S 39 0.1428
10 S 23 0.1685
11 S 42 0.2099
12 S 17 0.1373
13 S 27 0.1237
14 S 21 0.1622
15 S 32 0.3039
16 S 18 0.1488
17 S 15 0.1890
18 S 25 0.1900
19 S 38 0.3070
20 S 35 0.4049
21 S 41 0.3948
22 S 30 0.3619
23 S 31 0.3965

(c) Clusteri on
emotion class Fear

Pattern
ID

||x− µ||

1 F 8 0.9811
2 F 5 1.0957
3 F 36 0.5164
4 F 25 0.3147
5 F 6 0.2713
6 F 22 0.3075
7 F 32 0.3386
8 F 37 0.3134
9 F 35 0.2958
10 F 29 0.2819
11 F 4 0.3764
12 F 34 0.3324
13 F 28 0.4791
14 F 2 0.3354
15 F 31 0.2600
16 F 30 0.2451
17 F 24 0.4249
18 F 33 0.4563
19 F 26 0.3133

sions into the robot motions. This process was continuously repeated over three

consecutive days as a part of the robot’s social development. Fig. 6.12 shows the

number of learned behaviors and the changes in the robot’s emotional expressions

over three days. More specifically, Table 6.6 represents the selected patterns from

the behavior selection phase conducted on the last day. Based on the transforma-

tion model, the selected behaviors were converted to the robot motions, being the
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(a) Emotion space Happy (b) Emotion space Sad

(c) Emotion space Fear

Figure 6.11: The trajectories of human left hand created by the patterns of
Table 6.6. Eq. 3.15 selects the representative gesture Arep the most consistent

one in the cluster.

robot’s emotional expressions. Fig. 6.10 shows the key poses of those behaviors.

In our previous work [75], the training and clustering phase described in chap-

ter 3 was evaluated with the Microsoft Research Cambridge-12 Kinect gesture

dataset (MSRC-12) [72]. The experiment results as summarized in Table 6.5 indi-

cated that SOM yielded better performance than DCS. Notably, the accuracy of

DCS was acceptable, whereas the incremental learning gained considerable benefit

on the processing time required compared to SOM. Concerning the long-term in-

teraction scenarios, the robot’s capability of incrementally updating the learning

model without corrupting the existing one is the most demanding requirement as
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(a) Emotion space Happy (b) Emotion space Sad

(c) Emotion space Fear

Figure 6.12: Variational patterns of emotional behavior obtained through 3
consecutive days: Pepper robot incrementally learns and updates their emotional

gestures day by day.

discussed before. Thus, the DCS was finally selected for our training phase.

Through the training and clustering phase, the obtained data were classified

into different clusters based on the similarities. At the behavior selection phase,

considering the probabilistic distribution of human actions observed by the robot,

the largest cluster, Clusteri, was determined. Among the gestures that belong

to Clusteri, instead of randomly picking up one pattern out of the cluster, the

representative pattern is defined as the gesture closest to the center µ of Clusteri

as described in Eq. 3.15. Eq. 3.15 guarantees that the representative gesture

Arep is the most consistent one in that cluster. Tables 6.6a, 6.6b, 6.6c show the
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patterns located in Clusteri on each of the emotion classes. The selected pattern

Arep represents the majority of elements in the largest cluster Clusteri. With the

motion patterns defined in Table 6.6, the trajectories of the human left-hand are

depicted in Fig. 6.11. Here, the movements of the hand were analyzed, since the

hand movements are considered as the richest source of emotional body language

[127]. Concerning the behavior selection phase as described in Table 6.6a, it is

easy to notice that pattern H 41 satisfies Eq. 3.15. Visualizing the trajectories

as shown in Fig. 6.11a, the trajectory created by the gesture H 41 is correctly

located in the center of the cluster. As shown in Table 6.6c, it can be seen that

F 30 is the representative pattern, while the calculated distance of F 5 and F 8

are significantly different to the others in this group. The visualization of their

trajectories in Fig. 6.11c explains the differences. Although inappropriate patterns

could exist in Clusteri due to the performance of DCS in the training phase, the

behavior selection phase ensures that the selected emotional gesture Apre is the

most reasonable one among the others in Clusteri. Those representative actions

Apre were converted to the Pepper robot’s motions through the transformation

model as presented by the key poses in Fig. 6.10.

The Cultural Differences in the Perception of Robot Expressions

While the experiment results in section 6.1.2 confirmed the capability of the robot

conveying its emotion through bodily expressions, in this experiment, we aim to

evaluate the human perception of the robot behaviors across different cultures. The

robot emotional gestures on the last day as shown in Fig. 6.10 were selected for

evaluation. It is reasonable to think that those emotional expressions sufficiently

reflected the interacting partner’s traits. The interacting user agreed that those

expressions are his interested behaviors, as he frequently used such gestures to

convey his emotion. Thus, the user was easily able to recognize the expressions

represented by the Pepper robot. For further investigation on how appropriate

the robot’s emotional expressions would be from the viewpoint of other people,

we recruited observers from five different cultural groups. Table 6.7 shows the

recognition rate of 57 observers who share the same cultural background with the

interacting user (Vietnamese). Then, this group of observers scored the values of
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Table 6.7: The recognition rate of robot expressions rated by 57 observers from
the same cultural group with the interacting partner, normalized by the number

of observers.

Emotion
label

Observers
Happy Sad Fear Others

Happy 0.75 0.05 0.11 0.09
Sad 0.05 0.65 0.11 0.19
Fear 0.19 0.02 0.60 0.19

Table 6.8: The recognition rate of robot expressions rated by 136 observers from
5 different cultural groups, normalized by the number of observers.

Emotion
label

Observers
Happy Sad Fear Others

Happy 0.72 0.03 0.13 0.12
Sad 0.07 0.54 0.13 0.26
Fear 0.13 0.03 0.67 0.17

Figure 6.13: Mean values of Arousal and Valence rated by Vietnamese observers
for robot expressions.

Arousal and Valence for the robot behaviors as shown in Fig. 6.13. Table 6.8 shows

the recognition rate of 136 observers across five different cultures, while Figs. 6.14a

and 6.14b represent the mean of Arousal and Valence assigned by the observers

within individual cultural groups.

Table 6.7 confirmed the high recognition accuracy of the robot expressions Happy

rated by Vietnamese observers. 75% of them believed that Pepper tried to convey

Happy cues by its bodily movements. 11% thought that the gesture means Fear.
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Table 6.9: The differences in Arousal and Valence for expressions Happy, Sad,
Fear rated by Vietnamese observers. The third column indicates significantly

different pairs.

Dimension ANOVA test Post-hoc test

Arousal
significant diffs.

p value = 1.08E−14
Sad-Happy = 4.02E-14
Sad-Fear = 5.27E-09

Valence
Significant diffs.

p value = 3.8E−08
Happy-Sad = 1.36E-07
Happy-Fear = 9.47E-06

9% felt that the gesture might have another meaning such as Excited. The Pepper

robot expressed the emotion Sad by slowly bending its upper body, keeping the

hand positions lower than its Hip. 65% of observers assigned the label Sad to

such Pepper motions. 19% rated it as another label like Sorry. The Pepper robot

suddenly moved backward and raised its arms forward to express Fear which was

recognizable to 60% of observers. On the other hand, such energetic movements

made 19% of observers confused with Happy, or it might cause them to infer

another message such as Shocked.

Table 6.8 shows the recognition rate of 136 observers from five different cultures.

In general, there were no significant differences noticed in the recognition rate of

emotion labels assigned by Vietnamese observers (who share the same cultural

background with the interacting partner) and the others. However, a wide variety

of answers about the possible message of the robot’s expressions were received from

the non-Vietnamese observers. More specifically, the evaluation results indicated

that 26% of observers rated expression Sad by other labels which have the similar

meaning such as Shy, Boring, or Uncomfortable. 12% of observers believed that ex-

pression Happy might be other positive cues such as Thankful, Cheer, or energetic

expressions like Excited or Euphoric. These results suggested that the generated

gestures were not only recognizable to the observers who have the same cultural

background as the interacting partner, but also recognizable to the observers from

different cultural groups.

To address in more detail about the differences in the perception of the robot’s

emotional behaviors, the following discussion focuses on the Arousal and Valence
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(a) Arousal dimension

(b) Valence dimension

Figure 6.14: Mean values of Arousal and Valence rated by people from 5 different
cultures.

dimensions of the Circumplex model of affect. These dimensions allow us to inves-

tigate how the observers perceived the robot’s emotional expressions without being

affected by the interpretation of emotional labels. Firstly, to analyze the differ-

ences within the generated gestures using the Arousal and Valence values assigned

by Vietnamese culture as shown in Fig. 6.13, the one-way analysis of variance (one-

way ANOVA) test was conducted in the Arousal dimension. It was followed by

analyzing the Valence dimension. When the significant differences were detected

from the ANOVA test (p < 0.05), the post-hoc test was carried out to explore the
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Table 6.10: The cultural differences in Arousal and Valence rated by Chinese
(CHI), Japanese (JAP), Korean (KOR), Turkish (TUR), Vietnamese (VIE)

observers. The third column indicates significantly different pairs.

(a) Arousal dimension

Emotion ANOVA test Post-hoc test

Happy
No significant diffs.
p value = 0.1610

No significant diffs.

Sad
Significant diffs.
p value = 0.0001

VIE-TUR = 0.0278
TUR-JAP = 0.0012
JAP-CHI = 0.0019

Fear
No significant diffs.
p value = 0.7197

No significant diffs.

(b) Valence dimension

Emotion ANOVA test Post-hoc test

Happy
Significant diffs.
p value = 0.0171

VIE-TUR = 0.0117

Sad
Significant diffs.
p value = 0.0028

VIE-JAP = 0.0431

JAP-TUR = 0.0018

Fear
No significant diffs.
p value = 0.2992

No significant diffs.

differences. Table 6.9 summarizes the obtained results. The ANOVA test indicated

that there were significant differences (F (2, 168) = 39.188, p = 1.08E−14 < 0.05)

in the Arousal dimension of the three generated behaviors. Then, the post-hoc

test revealed that the Arousal values for Sad was significantly different with Happy

(p = 4.02E−14 < 0.005) and Fear (p = 5.27E−09 < 0.05). Thus, the observers

from this cultural group assigned similarly the Arousal values for Happy and Fear

higher than Sad. Likewise, the significant differences were also found in the Valence

dimension (F (2, 168) = 18.947, p = 3.8E−08 < 0.05). Analyzing the post-hoc test,

these significant differences come from Happy-Sad (p = 1.36E−07 < 0.005) and

Happy-Fear (p = 9.47E−06 < 0.005). Consequently, the results revealed that the
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observers rated similarly higher values of Valence for Happy than Sad and Fear.

It is widely known that Arousal represents the energy of emotion, while Valence

describes the extent to which an emotion is positive or negative. Hence, it can be

inferred that the observers from this culture tended to perceive the robot expres-

sion Happy with a positive emotion than the robot expression Sad and Fear. In

contrast, they thought that Pepper performed Happy and Fear more energetically

than Sad.

Figs. 6.14a and 6.14b represent the mean values of Arousal and Valence, re-

spectively, rated by 136 observers across five different cultures. To analyze how

different the Arousal and Valence values are within these cultures on each emotion

class, the ANOVA test was conducted with the Arousal and Valence dimensions.

Once the significant differences were detected (p < 0.05), further analysis with

the post-hoc test was carried out to determine which pair of cultures are signifi-

cantly different from each other. Tables 6.10a and 6.10b summarize the analysis

on the Arousal and Valence dimensions, respectively. Firstly, the results indicated

that Vietnamese observers were more likely to rate lower Arousal than those who

were Turkish for the robot expression Sad. Also, Japanese observers tended to

assign lower values of Arousal than the Chinese and Turkish observers for Sad. In

the Valence dimension, Vietnamese observers rated higher values than Turkish for

Happy. On the other hand, the Japanese observers were more likely to assign lower

values for Sad than those who were Vietnamese and Turkish. Hence, the differ-

ences in perception of robot emotional behaviors have been clearly distinguished

on the Arousal and Valence dimensions. More precisely, the Vietnamese observers

tended to feel Happy more positively than the Turkish observers. In contrast,

those who were Vietnamese felt that the robot expression Sad was performed less

energetically than the way those who were Turkish perceived. Similarly, Japanese

observers seemingly thought that Sad was expressed less intensively than the Turk-

ish and Chinese cultural groups. At the same time, Japanese observers were more

likely to think that Pepper conveyed more negative emotion than the way Viet-

namese and Turkish observers perceived it. In general, the significant differences

as mentioned above suggested that different cultural groups perceived the same

emotional gestures of the robot in different ways.
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6.2.3 Summary

In this experiment, the scenario of long-term human-robot interaction was con-

ducted to validate the proposed learning frameworks. In the model of generating

emotional gestures, the training and clustering phase was revisited. Then, the role

of the behavior selection phase for selecting the representative patterns was em-

phasized. Through the transformation model, the patterns were converted into the

robot motion. Subjective evaluations were conducted to evaluate how appropri-

ately the emotional expressions were represented by the robot. A series of valida-

tions were conducted in the emotion label categories as well as on the Arousal and

Valence dimensions. The evaluation results indicated that the robot’s emotional

gestures, which reflected the interacting partner’s traits, are easily recognizable to

the group of observers who share the same cultural background with the partner.

The results also support the notion that the robot gestures are recognizable and

perceptible to the observers of other cultural groups in different ways.
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6.3 Generating Communicative Gestures Synthe-

sized with Robots’ Speech

In this experiment, the model for generating communicative gestures illustrated

in chapter 4 is validated on public datasets. It is followed by quantitative compar-

isons with the related works to verify the efficiency of our proposed framework to

generate human actions synthesized with speech text. Finally, using the transfor-

mation model described in chapter 5, generated co-speech gestures are transformed

into the target robot, being the robots’ communicative gestures.

6.3.1 Experimental Setup

Dataset and Preprocessing

The designed framework for generating communicative gestures was firstly vali-

dated on the MSR-VTT dataset [128] as similar as conducted in [1]. This dataset

consists of 2, 822 actions ar and 31, 863 corresponding natural language descrip-

tions d (one action could be associated with more than one description). As shown

in Fig. 6.15, ar ∈ R3×8×32 is a sequence of T = 32 skeleton frames representing the

human upper body motion. Each frame S includes 8 joints defined in 3D Cartesian

space. From the dataset, we filtered the actions whose joint positions are out of

the range [−1, 1]. Concerning the Embedding Description, as mentioned in sec-

tion 4.3.1, we used the encoder phase of the skip-thoughts model trained with the

BookCorpus dataset [129]. As the BookCorpus dataset consists of 11, 038 books in

a variety of topics, it allows the encoded vectors to effectively capture the seman-

tics and syntax of the input sentences, without being biased toward any particular

domain. Totally, 29, 663 pairs of actions ar and corresponding descriptions d were

obtained. For each ar, we also collected the miss-matching description d̂. The

obtained data ar, d, and d̂ were split into 90% for training and 10% for testing.
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Figure 6.15: The action ar consists of T skeleton frames in 3D Cartesian space.
ar is described by description d: “a person dances to a hip hop song”.

Evaluation Metric

Consider that ar = [S1, S2, S3, ..., ST ] is the real action associated with the de-

scription d, and af = [S ′1, S
′
2, S

′
3, ..., S

′
T ] is the fake action synthesized with d. In

order to verify the synthesis between af and d quantitatively, we used covariance

description with temporal hierarchical construction [73] to evaluate how similar

the generated action af and the real action ar are. Given ar and af as the inputs,

Eq. 6.2 encodes them as the corresponding feature vectors Cr and Cf , respectively.

Here, S is the sample mean of Si computed over the time T and ᵀ represents the

transpose operator. This feature vector efficiently captures spatio-temporal infor-

mation of action over the time sequence, it has been used for action recognition

tasks [73] and unsupervised learning tasks [130]. Finally, the similarity between

Cr and Cf is measured by cosine similarity as given in Eq. 6.3.

C =
1

T − 1

T∑
i=1

(Si − S)(Si − S)ᵀ (6.2)

Similarity(Cr, Cf ) =
Cr · Cf

||Cr|| ||Cf ||
(6.3)

6.3.2 Results and Discussion

Variety of Actions Conveying a Certain Context Input

From the training data, the real action ar, the matching description d, and the

miss-matching one d were fed to the designed network with the batch size 100. The

dimension of the noise vector z is 100. The Adam optimizer [131] with the mo-

mentum 0.5, and the learning rate 2×10−5 was applied for both G and D network.
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Figure 6.16: Skeleton sequence of generated action for “a young woman
demonstrates example of lifting exercises.”

Figure 6.17: Generated action for “a girl practices lifting exercise at the gym.”

Figure 6.18: Generated action for “a woman performs weight lifting exercises.”

Figure 6.19: Generated action for “I was practicing lifting exercises at the gym.”

Figure 6.20: Generated actions for“one girl is dancing to music”. Those are
produced from the noise vector z1, z2 and z3, respectively.

The Discriminator and Generator were sequentially trained for 700 epochs.

Once the training process is completed, at the testing phase, we firstly fed

different annotation texts d and a fixed noise vector z to the Generator network.
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The matrix xf produced by G was decoded to af . The generation action af is

defined in 3D Cartesian space, this bodily expression aims to convey the meaning

of context d. Fig. 6.16 illustrates the generated action of the proposed model

by feeding an input “a young woman demonstrates example of lifting exercises”,

which is included in the testing data. The action looks like a person is lifting

two arms over the shoulder two times. Moreover, we also tested the two modified

versions of that sentence such as “a girl practices lifting exercise at the gym” and

“a woman performs weight lifting exercise”. The resulting actions are presented

in Fig. 6.17 and Fig. 6.18, respectively. It is noticed that those actions look

like a person is lifting something by pushing their hands up over the shoulder

several times. A closer look at Fig. 6.16, 6.17, and 6.18 show that skeleton frames

of those actions are not exactly matched to each other at a certain timestamp.

However, generated bodily expressions seem to be similar over the time sequence.

In a second demonstration, the same text description d “one girl is dancing to

music” was given to the Generator network with different noise vectors z1, z2,

and z3. The generated actions are displayed in Fig. 6.20. It can be seen that

those actions are demonstrated by a similar bodily expression over the whole time

sequence. However, the amplitudes of those motions are slightly different at a

certain timestamp. Overall, the results demonstrated above suggests that the G

network does not merely memorize and reproduce the data. It is able to generate a

diverse set of actions to convey a particular meaning of context input. Taking into

account scenarios of human-robot interaction, this capability would allow social

robots to perform novel behaviors over time, which positively contributes to the

user’s engagement during interaction [19].

Quantitative Evaluation of Generated Actions

The real action ar is correctly synthesized with the text description d. Thus, it

is reasonable for evaluating actions produced by the G network by measuring the

similarity between ar and af , since those are synthesized with the same description

d. Notice that ar and af could express the same meaning over the time sequence,

although their corresponding skeleton frames are not exactly matched each other

at a certain timestamp. The evaluation metric suggested in 6.3.1 satisfies such
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Figure 6.21: Comparison with the real action (GT) for “a sprinter is sprinting on
the track with his head down”: Text2Action (T2A) [1], the model without

Action Encoder/Decoder (w/o E/D) [2], and the fully implemented model (full
model) [3].

Figure 6.22: Comparison with the real action (GT) for ‘a man skiing up a hill at
a competition”.

requirement. Here, we sequentially fed text descriptions of the testing data to a

given G network. Both the generated and real actions were plugged into Eq. 6.2

and Eq. 6.3 for measuring their similarity.

To quantitatively verify the differences between our proposed network and the

related approach - Text2Action [1], we trained their proposed network again on

this training data while keeping the same training parameters as suggested by the

authors. Additionally, we also verified the efficiency of the action generation frame-
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Table 6.11: Similarity comparison among Text2Action [1] (T2A), the model
without Encoder/Decoder [2] (w/o E/D), and the fully implemented model [3]

(full model)

Text2Action w/o E/D full model
Average similarity 0.4196 0.5060 0.5287

work without the Action Encoder and Decoder, which is described in our previous

work [2]. Specifically, the raw action ar was fed to the designed network without

encoding. Then, the action af is generated from G without passing through the

Action Decoder. Table 6.11 presents the similarity between the real actions of

testing data and actions generated from Text2Action, our model without Action

Encoder/Decoder, and fully implemented model, respectively.

Table 6.11 indicates that by feeding the same text descriptions, the generated

actions produced by our networks are more similar to the real ones. Thus, our gen-

erated data are more connected to the input sentences. It should be emphasized

that our D network is trained to differentiate between data generated by G and

the real training data taking into account the description d as similar as applied

in [1, 2]. Additionally, D is trained to detect the error when the real action is

associated with the miss-matching text d̂. This strategy enables the Discrimina-

tor capable of evaluating the synthesis between a given action and a conditional

input in a more efficient way. On the other hand, Table 6.11 indicates that the

fully implemented framework yields higher accuracy than the one without Action

Encoder and Decoder. The experiment showed that by feeding the raw input ar

to the framework as applied in [2], the training process was faster since the Action

Encoder encodes ar as xr, which is the higher dimension matrix. However, by

distributing the relative joints near each other as in xr, it allows the spatial and

temporal information of ar to be represented better. Thus, D could detect the

motion properties of the input action faster and more efficiently. Consequently,

D provides more informative feedback to G, for optimizing the generated action.

Fig. 6.21 displays an example of feeding a sentence “a sprinter is sprinting on the

track with his head down“ to the three G networks. The real sample indicates

a person that is pumping two hands up and down while the head is bent down

slightly. Although the posture of bending his/her head down is unsuccessfully ex-
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Figure 6.23: Differences on gestures between the proposed approach and
ALAnimatedSpeech for describing input “one girl is dancing to music”

pressed neither by the three generated actions, those actions look like persons are

pumping two hands up and down several times. Especially with the fully imple-

mented model, the action is more natural and similar to the real one. A similar

finding can be seen on the generated actions to convey “a man skiing up a hill at a

competition“ shown in Fig. 6.22. The ground truth action demonstrates a person

is pumping their right hand several times and leaning forward. His or her two

hands are spreading out for maintaining balance. The result displayed in Fig. 6.22

indicates that such motion features are better presented on our generated actions,

especially the one produced by our fully implemented model.

Transforming Generated Actions into the Pepper robot

The generator G produces the action af defined in 3D Cartesian space. Through

the designed transformation model, which is described in chapter 5, the gen-
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Figure 6.24: Generated actions for “a man is driving his motorbike on the street
”.

erated action is converted to a set of corresponding joint angles, including θ

= {αRightShoulder, βRightShoulder, αRightElbow, γRightElbow, αLeftShoulder, βLeftShoulder,

αLeftElbow, γLeftElbow}, for controlling the upper bodily expression of the target

robot. The robot’s physical constraints were taken into account during this trans-

formation process. Notice that we used the robot’s on-board module ALText-

ToSpeech 3 to enable robot to utter the input sentence d while performing the

action af . Concerning the robot’s off-the-shelf module, the robot’s NAOqi API

ALAnimatedSpeech4 is provided to endows the Pepper robot talk in an expressive

way. As the result, in order to qualitatively discuss the differences between our

proposed approach and the ALAnimatedSpeech, the same speech text d was feed

into the robot’s module. Fig. 6.23, 6.24, 6.25, and 6.26 present the robot’s ges-

3http://doc.aldebaran.com/2-5/naoqi/audio/altexttospeech.html
4http://doc.aldebaran.com/2-5/naoqi/audio/alanimatedspeech-api.html
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Figure 6.25: Generated gestures for “a man rides on the surf board in the water”.

tures produced by our approach and the robot’s off-the-shelf module. As shown in

Fig. 6.23, our generated action could be observed as a person expresses something

by performing energetic movements of their two hands. The same message of bod-

ily expression could be observed in the robot’s action produced by our proposed

approach. Alternatively, it is expressed by slight movements of the robot’s hands

when feeding an input “one girl is dancing to music” into the ALAnimatedSpeech

module. In Fig. 6.24, our generated action is demonstrated by a person constantly

hold something in front of their body. On the other hand, it is difficult to interpret

the meaning of bodily expressions generated by the robot’s on-board module. In

general, our experiments noticed that most of the Pepper robot’s actions generated

by ALAnimatedSpeech are not appropriately fit to the spoken texts, it is always

the case that generated actions are expressed by slight movements of the robot’s

hands. Somehow, those gestures could be understood as a person is describing or
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Figure 6.26: Generated gestures for“a young woman demonstrates example of
lifting exercises”.

presenting something as displayed in Fig. 6.25 and 6.26. It is important to no-

tice that ALAnimatedSpeech consists of a set of actions handcrafted by animation

experts to ensure the human-likeness and familiarity of the robot’s gestures to

human perception. By injecting an input text to ALAnimatedSpeech, a random

action could be produced if certain keywords are not detected from the input. As

the result, taking into account the use of bodily expressions for emphasizing the

verbal content of the robot’s speech, it suggests that the robot’s on-board module

can only produce stereotypical behaviors in a limited number of contexts.
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6.3.3 Demonstration on a High Dimensional Dataset

(a) Raw optical marker data (b) Skeleton visualization

Figure 6.27: The left figure shows the raw motion capture data of the KIT
dataset. We collected 20 markers capturing the motion of upper body and knees,
they are visualized as human skeleton model as shown in the figure on the right

side.

Preprocessing

In this experiment, we used the Karlsruhe Institute of Technology (KIT) whole-

body motion dataset [132], and the corresponding natural language annotations

[133]. The KIT motion dataset provides a rich corpus of human whole-body motion

in a wide range of motion types. The selected data contains 2, 127 motions cap-

tured by 53 optical markers in 3D at the frequency of 100 Hz. Since this research

focuses on generating the motions for the humanoid robot Pepper, only 20 markers

capturing the motion of the human upper body and knees were selected out as the

raw data as illustrated in Fig. 6.27. Noticed that the knees were included in order

to compute the robot’s hip joint angles. Each selected action a = [S1, S2, S3, ..., ST ]

consists of a sequence of skeleton frames over a period of time T . At the frame

i (i ≤ T ), Si = [x1, x2, .., x20, y1, y2, .., y20, z1, z2, .., z20] (Si ∈ R60) is the 60 dimen-

sional vector that defines the positions of 20 joints in Cartesian space. Fig. 6.27b
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shows the visualization of 20 selected motion capture data. The Autodesk 3ds Max

is used to visualize human motion in a skeleton model. On the other hand, spelling

errors in natural language annotations describing the demonstrative actions were

corrected. With the 5, 136 usable annotation samples from the dataset (one ac-

tion could be associated with more than one annotation), each description d was

associated with the corresponding motion a. Similar to the previous experiment

setup, we used the encoder phase of the skip-thoughts model, which was trained

with the BookCorpus dataset [129], for generating the embedding description. In

terms of the demonstrative actions, as they were recorded by the optical-based

motion capture systems, the positions of markers highly depend on the camera

coordinates. Thus, the joint positions were constructed with respect to the top-

chest coordinates. On the other hand, the sizes of demonstrators are different

from the training samples. Therefore, the actions were normalized to have the

variance 1. Afterward, the motions were downrated to 10 Hz and padded to have

an equal length of 240 frames. Totally, 51, 360 pairs of motions and descriptions

were obtained. We split it into 90% for training and 10% for testing.

Identification of Human Joint Spatial Configuration

The motions and the corresponding natural language annotations from the train-

ing set were fed into the designed model with the batch size 100. The Adam

optimizer [131] was used at the learning rate 2 × 10−5 for both the Generator

and Discriminator network. The model was trained until Epoch 1, 200. During

the first 30 epochs, only the Discriminator was trained. After that, both D and

G were sequentially trained. In order to monitor intermediate motions of x, the

same description d and noise z were given to G during the training process.

Different to the co-speech action af ∈ R3×8×32 trained with MSR-VTT dataset

[128] that illustrated in the previous experiment. Here, the generated action af ∈
R3×20×240 consists of 240 skeleton frames, each frame contains 20 joints defined in

3D Cartesian space. It is revealed that the designed framework is able to cope

with such high “resolution” actions, as illustrated in Fig. 6.28. At the beginning

of the training phase, G could not capture the spatial configuration of the training

samples. Because of that, the generated gestures at Epoch 10 and Epoch 20 do not
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Figure 6.28: Throughout the training process, the Generator model imitated the
human joints distribution so the generated poses looked more human-like.

look like the shape of the human body. Starting from Epoch 100, G ameliorated

the human joint configuration coordination problem and produced more natural

human-like poses. At Epoch 300, the generated pose was well-proportioned as seen

in Fig. 6.28. Hence, throughout the training process, the Generator was able to

learn the coordination of human joint configurations. By the end of the training

phase, G could generate the human body properly and symmetrically.

Generated Gesture Synthesized with Input Descriptions

Figs. 6.29a, 6.29b, 6.29c, and 6.29d show the generated gestures produced by G

network be feeding corresponding text descriptions as the input. Those sentences

are included in the testing data. It is clear that by generating co-speech actions

defined in a higher dimension, sophisticated contexts of input sentences could be

expressed transparently. A closer look at the action “A human is playing a guitar”,

and “A human is playing violin” shown in Fig. 6.29a and Fig. 6.29b, it is suggested

that without the head movements for holding a violin as displayed in Fig. 6.29b,

to some degree, such two gestures would be similar to each other. Indeed, by

equipping the hip and knee joints on the action output, locomotion actions as in
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(a) “a human is playing a guitar”

(b) “a human is playing violin”

(c) “a person walks and turns to the right”

(d) “a human walks in a circle counterclockwise“

Figure 6.29: Generated human-like gestures synthesized with input sentences.
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(a) “a person waves with its right hand“

(b) “a person waves with the left hand“

Figure 6.30: Comparison between the ground truth actions (GT) and the
generate ones produced by our fully implemented model (full model).

Fig. 6.29c, and 6.29d could be expressed in a transparent manner. Noticed that

at the preprocessing step, the human joint positions were constructed reference

to the top-chest coordinates. This configuration makes the Generator G always

tries to keep the position of the top-chest at the same position over the time

sequence. As the results, it could be observed that actions presented in Fig. 6.29c,

and 6.29d, look like a person is turning around while the position of their top-chest

remained unchanged. Fig. 6.31 shows the 2-dimensional tSNE projection of af ,

each plot presents a generated motion. Based on the given description d, af could

be categorized into several different motion types. In general, it can be seen that

generated actions belong to a same motion type are grouped into a same cluster.

However, the separation of locomotion actions (e.g. walking, running, etc.) is less

clear. It is suggested that lower-body movements are ignored in the generated

actions af , thus, bodily expressions of such motions are less accurate compared to

the generated upper body motions (e.g waving, dancing, etc.).

Fig. 6.30 display two actions generated from our fully implemented model [3]

as described in section 6.3, and the ground truth actions (GT). As presented in

Fig. 6.30a, with the input text ”A person waves with its right hand”, the real

action and the generated one from our model are similar to each other. On each

of the two actions, the first frame shows a human pose at the upright position,
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Figure 6.31: 2-dimensional tSNE projection of generated action af , colored by
their motion types.

and the arms positioned along the body. Then, the right hand is gradually raised

up while the left hand position remains unchanged as appeared in the initial po-

sition. This gesture is ended by putting down the right hand to the original pose.

Overall, the sequence of frames on both the real and generated motion looks like

a person is waving the right hand. However, the corresponding pair of poses on

each individual frame is different. This result suggests that our G model does not

simply memorize and reproduce the training data. Similarly, to synthesize with

the annotation ”A person waves with the left hand”, the real sample starts with

putting the left hand in front of the chest, while the generated action begins with

the initial position as in the previous example. In Fig. 6.30b, it can be clearly

seen that the motion produced by our proposed network is similar to the training

data. Both the real and generated action represent the movement of the left hand

while the position of the right hand remains unchanged over time. For quantitative

evaluation, again, we measured the average similarity between motions produced

from proposed approaches and real ones using evaluation metrics as similar as

applied in section 6.3. Table 6.12 presents the average similarity conducted in
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Table 6.12: Average similarity between generated actions and ground truth
actions: a comparison among 1 Channel [2], 3 Channel without Encoder/Decoder

phase [2] (w/o E/D), and fully implemented model [3] (full model) approach.

1 Channel w/o E/D full model
Average similarity 0.5931 0.6364 0.6603

(a)

(b)

Figure 6.32: Fig. 6.32a shows the generated action by giving the input “someone
over their is waving with their both two hands“. Through the transformation

model, the action is performed by the target robot as in Fig. 6.32b.

testing data. The experimental results, again, confirm that actions produced from

the fully implemented model are more similar to the ground truth actions.

Fig. 6.32, and 6.33 show the actions synthesized with “Someone over there

is waving with their both two hands” and “They are taking a deep bow to show

their respect”. Noticed that those sentences are not available in the dataset. In-

stead, those speech texts were modified while keeping the original meaning of

“waving both hands” and “make a bow”. The produced motion in Fig. 6.32a

can be observed as someone wave with his or her two hands. Similarly, the re-

sult in Fig. 6.33a presents a sequence of frames as a person is collapsing their

body downward while the arms are kept lower than the hip. Using the pro-

posed transformation model illustrated in chapter 5, the generated human ac-
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(a)

(b)

Figure 6.33: The generated action by feeding the input “they are taking a deep
bow to show their respect“.

tions were transformed into the Pepper robot’s motion, representing by θ = {
αHip, βHip, βKnee, αRightShoulder, βRightShoulder, αRightElbow, γRightElbow, αLeftShoulder,

βLeftShoulder, αLeftElbow, γLeftElbow, βHead, γHead}. As displayed in Fig. 6.32b, the

action performed by the Pepper robot preserves its original meaning as displayed

on the human skeleton in Fig. 6.32a. In order to synchronize with the text descrip-

tion ”Someone over there is waving with their both two hands”, from the initial

pose, Pepper is gradually moving its two hands over the shoulder and then waving.

Fig. 6.33b shows the generated robot’s gesture from the proposed approach by fill-

ing the input ”They are taking a deep bow to show their respect”. The result shows

that the action looks like Pepper is collapsing its upper body while its two hands

remained unchanged. It should be noted that when transforming human-like ac-

tions into Pepper, the robot’s joint angles are checked with the joint boundary

constraints before releasing. Thus, the generated motion displayed on the target

robot in Fig. 6.33b shows that the Pepper could not bend their upper body as

much as performed by the human skeleton in Fig. 6.33a. It can be observed in

the robot’s bodily expressions that at the same time with bending its hip, Pepper
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also turns its head down as similar as displayed in the human action. Here, by

additionally equipping the head’s movement, the message “taking a deep bow”

is more recognizable. Compared to the experiment conducted in section 6.3, in

this experiment, robot actions have been defined by a higher number of DoF. This

extension allows the target robot to execute generated actions in a more efficient

way. As a result, sophisticated contexts of the robot’s speech could be expressed

in a transparent manner.

6.3.4 Summary

In this experiment, we demonstrated the validity of the framework for generating

communicative gestures on public datasets. At the generation phase, the Gener-

ator receives a speech text represented by an embedding vector as an input. The

generative network produces a co-speech gesture conveying the meaning of the

input sentence. Taking into account the human behavioral studies mentioned in

chapter 2, such gestures are known as iconic or metaphoric gestures. To verify

this approach, a series of experiments was conducted on the generated co-speech

actions. Firstly, it is indicated that the designed model could imitate human joint

distribution from the training data, and generate human-like gestures supporting

the context of input speech. An evaluation metric was established to quantitatively

confirm the synthesis between input sentences and the corresponding generated

actions. The comparative results with related works verified that our produced

actions are more natural and similar to the real ones. Furthermore, by utilizing

the transformation model illustrated in chapter 5, generated human-like actions

were transformed into the target robot taking into account the robot’s physical

constraints, and associated with the robot’s speech. The experimental results sug-

gested that compared to the action produced by the robot’s off-the-shelf module,

the robot’s gestures created by our approach are more appropriately fit the se-

mantic contents of the robot’s speech. Finally, it is confirmed that the generative

framework does not merely memorize and reproduce training data. It is able to

produce a variety of gestures expressing the same meaning of input sentences. This

promising result would encourage robots to perform novel gestures over time to

support a certain context of their speech during interactions.
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Chapter 7

Conclusion

7.1 Dissertation Summary

Non-verbal behaviors have an indispensable role in human-human interaction. Be-

ing encoded by the influence of human social behaviors, the generation of non-

verbal cues is a growing interest research topic in the social robotics domain.

Although non-verbal modalities are powerful tools, allowing humans to interact

in a facile and transparent manner. However, non-verbal behaviors are somewhat

ambiguous and highly affected by individual personality, cultural background, and

so on. Those factors influence the way how people express and interpret non-verbal

behaviors. Not only in the context of human-human interaction, but that influence

has also been observed in social human-robot interactions as discussed in chap-

ter 2. Taking into account the aspect of behavior adaption when generating robots’

behaviors, this dissertation suggests an alternative approach to create robots’ so-

cial behaviors through imitating interacting partners. Specifically, our approach

endows robots capable of learning from human behaviors, obtained through long-

term interaction, in an unsupervised manner. This approach emphasizes the use

of bodily expressions as a reliable channel for (1) conveying emotional states, and

(2) supporting concrete and abstract contents of speech. Consequentially, the

frameworks for generating emotional and communicative gestures were proposed

in chapter 3 and 4, respectively. The two models produce gestures defined in

human motion space, through the designed transformation model in chapter 5,
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human-like gestures are transformed into the target robot, being robots’ social

gestures.

A series of experiments was conducted in chapter 6 to verify the effectiveness

of the proposed frameworks. In the first experiment, the transformation model

allowed the robot to learn from the interacting partner’s one-shot demonstration.

Then, the model was validated using a publicly available human affective pos-

ture and motion dataset. The experimental results revealed that the robot was

able to generate imitated human behaviors. Furthermore, the message of human

emotional expressions was well retained by the robot’s behaviors.

In the second experiment, the model of generating emotional gestures, and the

transformation model were integrated into a scenario of long-term social interac-

tion. Through the interaction over three consecutive days, the robot produced the

emotional bodily expressions which reflected the interacting partner’s behaviors.

These expressions were evaluated by observers from different cultural groups. The

experimental results confirmed that the robot’s emotional expressions were widely

recognizable to the people sharing the same cultural background with the inter-

acting partner. Likewise, the robot expressions were recognizable and perceptible

to different cultural groups in many different ways. The current results also sup-

port the psychological findings that social behaviors are affected by many different

factors such as individual personalities and cultural backgrounds.

In the third experiment, the model of generating communicative gestures was

validated on public datasets. The experimental results indicated that this ap-

proach could imitate human joint distribution from the training data and generate

neutral human-like gestures. We have established an evaluation metric to quan-

titatively verify generated gestures. Compared to related works, generated mo-

tions produced by our framework are more natural and similar to the real human

actions. Indeed, by integrating with the transform model, gestured human-like

gestures were transformed into the Pepper robot and associated with the robot’s

speech. The experimental results indicated that compared to the action produced

by the robot’s off-the-shelf module, gestures created by our approach are more

appropriately fit the semantic contents of the robot’s speech.
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7.2 Contributions

In this dissertation, the proposed approach emphasizes the role of human behav-

iors towards generating robots’ non-verbal behaviors through imitation learning.

Generated robots’ social gestures could be used in different contexts of interac-

tion. This research’s outcomes could positively contribute to the development of

non-verbal cues for social robots. In particular, the ones without dedicated facial

articulation such as NAO, Pepper, Romeo, and so on. The main contributions of

this dissertation are:

The framework for generating emotional gestures: this model provides

robots a capability of learning human affective behaviors in an unsupervised man-

ner. The generated gestures are used to convey robots’ emotional states. Since

the output actions are human joint coordinates defined in Cartesian space. The

other studies could inherit this framework to create emotional gestures for different

humanoid robot platforms.

The framework for generating communicative gestures: this approach

allows robots to learn relations between human gestures and speech. The output

actions are used for supporting semantic contents of robots’ speech. Similar to the

above-mentioned model, with this framework, generated human-like actions are

defined in Cartesian space. It is straightforward to utilize this approach for other

studies in social robotics and other related domains.

The transformation model: this framework is employed to convert human

actions to the Pepper robot’s motion space, taking into account the robot’s physical

constraints. Without integration with the framework for generating emotional or

communicative gestures mentioned above, this model can also be used as a stand-

alone function. In this case, through a one-shot demonstration, this function allows

non-robotics users to teach the Pepper robot new social skills supporting different

scenarios of daily interaction.

Implementation: To demonstrate the proposed approach on the Pepper robots,

several external modules were implemented and integrated with the robot’s built-in

modules towards strengthening the robot’s functionalities. Those extensions en-

able the Pepper robot a capability of entering into different interaction scenarios

for collecting users’ behaviors in an efficient manner. Indeed, the data of human
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affective behaviors collected from the robot’s point of view in our experiments

could be used for other studies in the field of gesture recognition or generation.

7.3 Future Research Directions

Despite the given contributions, the work presented in this dissertation is just a

small step towards enhancing the quality of social human-robot interaction through

re-configurations of robots’ nonverbal cues. Several interesting directions should

be explored in the future to strengthen and extend the current work, some of them

are the followings:

The proposed transformation model addresses the inverse kinematics problem

based on geometric algebra. However, the exponential growth of social robots leads

to the need of considering a more abstract approach, minimizing the workload for

analytical modeling of the transformation process. Indeed, social robots are not

necessarily designed in humanoid forms. It is interesting to explore how human

social behaviors could be transformed into such robots while ensuring the human

perception of robots’ social cues. It is suggested that CycleGAN [134], and other

similar techniques should be investigated for this transformation process.

In the designed model for generating emotional gestures, emotional bodily ex-

pressions are represented by discrete categories (happiness, sadness, anger, and so

on). However, emotions can also be represented in affect space (e.g. Circumplex

model of affect [124], PAD emotion model [64]). For instance, an emotion can be

represented on a two-dimensional surface, including Arousal (ranging from deacti-

vation to activation) and Valence (displeasure to pleasure). Using this approach,

generated emotional gestures can be defined by continuous input values rather

than discrete ones.

Concerning the framework for generating communicative gestures, our current

work focuses on capturing relations between human gestures and the semantic

contents of human speech. Generated gestures are employed to support concrete

or abstract meanings of communicators’ speech. Taking into account theories of

human behaviors [7], those gestures are known as iconic and metaphoric gestures.

However, the last two types of gestures known as deictic, and beat have not been

investigated yet. It is important to remark that deictic gestures (e.g. pointing
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gestures) are heavily connected to environmental information surrounding com-

municators. On the other hand, beat gestures (e.g. rhythm movements of hands)

are correlated to communicators’ speech prosody (audio features), rather than se-

mantic contents. As the result, in order to enhance the gesture diversity towards

supporting various contexts of communication, further signals should be equipped

as the inputs to the current framework

Finally, in this study, emotional gestures are applied to express robots’ emotional

states, while communicative gestures are employed to support robots’ speech. It is

interesting to explore the combination of emotional and communicative gestures.

In other words, robots’ non-verbal behaviors should be able to support the contents

of their speech, at the same time, signal their emotional states to the interacting

partners. A possible approach to address this goal could be to manipulate sev-

eral features (speed, amplitude, emotion, and so on) of generated communicative

gestures while keeping action identity remained unchanged.
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Appendix: Implementation of

Observation Modules on the

Pepper robot for Collecting

Interacting Partners’ Data

The experiments illustrated in chapter 6 was conducted with the Softbank hu-

manoid Pepper robot. During experiments, most of the robot’s off-the-shelf mod-

ules1 have been utilized for demonstrating the proposed approach. Additionally,

several external modules have been implemented and integrated with the robot’s

built-in modules. The main reason is that either because the function was not

available on the robot, or the efficiency of that function was not meet our re-

quirements for experimental setups. In this Appendix, we explain our practical

implementations of the two extension modules: human pose estimation and human

facial expression estimation.

Human Pose Estimation

Overview

In human action recognition and generation domains, it is common to present hu-

man actions as sequences of skeleton frames (known as motion data). Instead of

presenting actions as raw input images, motion data requires less amount of mem-

1http://doc.aldebaran.com/2-5/index_dev_guide.html
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ory while features of action are better presented in the form of skeleton frames.

Here, a human skeleton frame is a schematic model of the locations of the torso,

head, and limb of a human body. Overall, there are two main approaches for es-

timating a sequence of skeleton frames from a human action: marker sensors and

markerless sensors. For collecting interacting partners’ information through sce-

narios of social human-robot interaction, rather than equipping the users with a set

of marker sensors, we have decided to use the markerless sensors based approach.

The main reason is that the marker sensors based approach requires complicated

setups before conducting an interaction section. Indeed, the interacting partners

may feel uncomfortable when equipping external sensors on their bodies during

social interactions. Those reasons suggest that the use of marker sensors based

approach may reduce the quality of interaction. Vice versa, with the markerless

sensors based approach, external cameras are utilized for capturing the interact-

ing partners’ actions and presenting that motion as sequences of skeleton frames.

Thus, this approach would not influence scenarios of interaction, especially, when

such cameras are embedded in the target robot. The following parts will explain

our implementation in more detail.

Implementation on the Target Robot

For collecting users’ motion data using the markerless sensors based approach, the

Microsoft Kinect sensor has been used in our preliminary works. The accuracy

of human pose estimation from this sensor was acceptable for our requirements

of experimental setups. However, taking into account the scenario of day-to-

day human-robot interaction, rather than using external devices that cause the

data-privacy issue, it is recommended that robots should be able to perceive en-

vironmental stimuli by their on-board sensors. To tackle this problem, different

solutions have been tested and evaluated by taking into account the available sen-

sors2 embedded in the Pepper robot. First of all, as an unofficial function provided

for the robot3, this module collects images captured from the robot’s Asus Xtion

camera4. The experiments noticed that due to limitations of the robot’s com-

2http://doc.aldebaran.com/2-5/family/pepper_technical/video_overview.html
3http://protolab.aldebaran.com:9000/protolab/SkeletonDetector
4http://doc.aldebaran.com/2-5/family/pepper_technical/video_3D_pep.html
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putation resources, several functionalities of the Asus Xtion sensor had been cut

down or modified when embedding into the target robot. Such modifications sig-

nificantly reduced the accuracy of the pose estimation module. Another approach

is that utilizing the images captured from the robot’s 2D camera5 for estimating

human pose [121]. It is reported that the performance of skeleton estimation is

qualitatively comparable with other monocular RGB-D sensors based approach

such as Kinect or Asus Xtion. Thirdly, both RGB and depth images obtained

from the robot’s on-board module were fed to pose estimation mechanism [135].

It is started by extracting a 2D skeleton frame from an RGB image. The 2D pose

is then combined with the associated depth image for estimating the 3D human

pose. Except for the first approach which shows the low performance as discussed

above, the last two approaches were implemented in the target robot as the human

pose estimation modules. Figs. 7.17.27.3 show an example case of human RGB

images, the corresponding depth images and the ground truth skeleton, respec-

tively. Fig. 7.4 presents the estimated pose by receiving RGB images as the inputs

while Fig. 7.5 displays the results of the pose estimation mechanism by feeding

both RGB and depth images. Finally, the differences between the ground truth

pose and the estimated poses are qualitatively illustrated in Fig. 7.6. Fig. 7.7

demonstrates the operation of human pose estimation module in the scenario of

human-robot interaction conducted in Experiment 6.1.2 of chapter 6.

5http://doc.aldebaran.com/2-5/family/pepper_technical/video_2D_pep.html
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(a) (b) (c) (d)

Figure 7.1: The RGB images of the demonstrator.

(a) (b) (c) (d)

Figure 7.2: The depth images of the demonstrator.

(a) (b) (c) (d)

Figure 7.3: The ground truth skeleton of the demonstrator.
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(a) (b) (c) (d)

Figure 7.4: The estimated skeleton from the RGB images.

(a) (b) (c) (d)

Figure 7.5: The estimated skeleton from the combination between depth and
RGB images.

(a) (b) (c) (d)

Figure 7.6: The differences between estimated the skeleton frames and the
ground truth ones.
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(a) The user stands in
front Pepper robot for

social interaction

(b) The user image
captured from the

robot’s filed of view

(c) The user
image captured
from the robot’s

filed of view

Figure 7.7: Operation of the pose estimation module in a scenario of interaction.

Human Facial Expression Estimation

Overview

By estimating the users’ emotions, robots can assess the effects of their behav-

iors and modify them adapting to the users’ mental states. Emotions can be

recognized through a variety of means such as voice intonations, body language,

facial movements, or electroencephalograpy (EEG). Among these modalities, the

face channel is one of the primary means for conveying human emotions, leading

thereby to a practical approach to recognizing the user’s emotion. Taking into

theories of human emotion [136], emotions could be categorized into several basic

groups, those are recognized across a wide range of cultures such as anger, disgust,

fear, happiness, sadness, surprise, and contempt. Several scenarios of social inter-

actions discussed in chapter 6 requires robots capable of estimating user emotions

through facial expressions. In addition to the robot’s off-the-shelf module, dif-

ferent approaches using publicly available APIs have been implemented, allowing

the Pepper robot to estimate the interacting partners’ emotions from their facial

expressions in an efficient manner.
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Implementation on the Target Robot

It is noticed that interacting partners’ emotions could be estimated by using the

robot off-the-shelf module ALFaceCharacteristic6. This API releases an array of

the confidence value of 5 expressions: neutral, happy, surprised, angry, and sad.

Additionally, the Microsoft Azure Emotion API7 and the Kairos Emotion Analysis

API8 were implemented on the target robot. The Microsoft Azure API takes a

human facial expression as an image input and returns the confident value of anger,

contempt, disgust, fear, happiness, neutral, sadness, and surprise as an output

array. In practice, the NAOqi ALPeoplePerception API9 is firstly subscribed.

Once an interacting partner is detected, the user’s facial expression is sent to one

of the available APIs as an emotion estimation request and receives emotional

values as a response.

In order to quantitatively evaluate performances of APIs (Kairos Emotion Anal-

ysis API, Microsoft Azure Emotion API, and the NAOqi ALFaceCharacteristic

API) for the user’s facial expressions, an experiment was conducted on the Karolin-

ska Directed Emotional Faces (KDEF) public dataset [137]. KDEF contains 7

different emotions: afraid, angry, disgust, happy, neutral, sad, and surprise of 140

subjects. Firstly, the experiment was carried out with the Kairos API whose per-

formance was described in Table 7.1. Next, the Microsoft Azure API was tested

on the same dataset. This API classifies human facial expressions into 8 different

labels: anger, contempt, disgust, fear, happiness, neutral, sadness, and surprise.

It was noticed that the emotional label “contempt” was not available in the KDEF

dataset. Therefore, any images estimated as “contempt” were ignored. The perfor-

mance is summarized in Table 7.2. Finally, the NAOqi ALFaceCharacteristic API

was tested on the KDEF dataset. The facial images from the KDEF dataset were

sequentially presented to Pepper. Specifically, the facial images detected by the

ALPeoplePerception API were analyzed by the ALFaceCharacteristic API. Finally,

the corresponding emotion was received from the ALFaceCharacteristic API that

6http://doc.aldebaran.com/2-5/naoqi/peopleperception/alfacecharacteristics.

html#alfacecharacteristics
7https://azure.microsoft.com/en-us/services/cognitive-services/emotion/
8https://www.kairos.com/emotion-analysis-api
9http://doc.aldebaran.com/2-5/naoqi/peopleperception/alpeopleperception.html
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returns an array of the detection score of five expressions: neutral, happy, sur-

prised, angry, and sad. In other words, this test was conducted on the KDEF

images with 5 such emotion labels. The performance of ALFaceCharacteristic was

summarized as the confusion matrix illustrated in Table 7.3.

Table 7.1: Precision, Recall and F1-score of Kairos API with KDEF dataset

Precision Recall F1-score
joy 0.70 0.62 0.66
surprise 0.78 0.53 0.63
disgust 0.72 0.69 0.70
sadness 0.71 0.73 0.72
anger 0.69 0.79 0.74
fear 0.82 0.91 0.86
Average 0.74 0.74 0.73

Table 7.2: Precision, Recall and F1-score of Microsoft Azure API with KDEF
dataset

Precision Recall F1-score
happiness 0.86 0.57 0.68
surprise 0.96 0.71 0.82
fear 0.96 0.18 0.30
neutral 0.93 1.00 0.96
disgust 0.60 1.00 0.75
anger 0.70 0.86 0.77
sadness 0.68 0.96 0.80
Average 0.81 0.76 0.73

Table 7.3: Precision, Recall and F1-score of NAOqi ALPeoplePerception with
KDEF dataset

Precision Recall F1-score
angry 0.48 0.74 0.58
happy 0.55 0.53 0.54
neutral 0.53 0.53 0.53
sad 0.48 0.36 0.41
surprised 0.68 0.51 0.58
Average 0.54 0.53 0.53
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Figure 7.8: Performance of Kairos, Microsoft Auzre, and NAOqi for emotion
estimation task.

It is difficult to make a fair comparison of Kairos, Microsoft Azure, and NAOqi

ALFaceCharacteristic with the KDEF dataset due to the differences in labeling

estimated emotions among those approaches, as addressed before. Therefore, the

score of precision of 4 emotion labels Happiness, Surprise, Anger, and Sadness that

commonly available among the 3 APIs was considered. It is clear from Fig. 7.8

that the Microsoft Azure API shows the best performance in most cases. It is also

noted that the Naoqi ALFaceCharacteristic shows the best performance in terms of

processing time since it does not require any communication overhead. Finally, this

comparison can only be considered as a reference due to the difference in emotion

labels across different APIs and a different experimental setup for the NAOqi API

as described above which also affects the performance of ALFaceCharacteristic.

Fig. 7.9 demonstrates an example case of estimating users’ emotions through

facial expression. Noticed that, this module can be used as a stand-alone function.

In that case, the estimated emotions are displayed on the robot table as emojis.
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Figure 7.9: The robot tracks human facial expression. The estimated emotion is
displayed on Pepper’s tablet. The small boxes indicate images from the robot’s

field of view.

On the other hand, by integrating this module with the human pose estimation

mentioned in section 7.3, the Pepper robot could collect the user’s social behaviors

through a scenario of interaction as discussed in section 6.2 of chapter 6.
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