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Abstract

The past few decades have seen a rapid growth of robotic research in many fields in-

cluding, for example, industry, medical care, entertainment and education. Conventional

robots are typically fabricated with metals and plastics that are resistant to deformation.

While these robots can perfectly complete their jobs in closely structured environment be-

cause of speed, precision and predictability, they raise severe challenges in those scenario

characterized by human interactions due to concerns about safety.

Soft robotics has been expected to compensate the situations where their rigid cousin-

s fail to function, as they usually employ compliant and adaptive materials that could

potentially serve as a safety layer when interacting with humans. Therefore, safety, adapt-

ability and autonomy have long been preferred to achieve with soft robotics. However,

despite the ubiquitous research on soft robotics during last decade, there is yet an effec-

tive principle or methodology to design soft robots with adaptive behavior. Embodied

intelligence, or embodiment, in this situation delivers profound insights on robot intelli-

gence. It considers that the intelligence of robotics lies not merely in the control domain

(“brain”), but in the combination of brain, body, and the interaction with environment.

In this sense, the morphology of robotic body is a source of intelligence that can poten-

tially shape the functionality of soft robots. Consequently, morphology that is adaptive,

coined as adaptive morphology, has been a popular theme for soft robotics.

Adaptive morphology has the potential to enable adaptive behavior of soft robots. It

can either optimize the performance or add new functions to existing robotic agents. De-

spite the numerous successful demonstrations, adaptive morphology has been dominantly

investigated in terms of robotic actuation. The kingdom of robotic sensing, however, has

remained largely unexplored. Even within the actuation, there are still many questions to

be answered, for example, the role of adaptive behavior in improving the energy efficiency.

To this end, this thesis attempts to bridge the gap by studying how adaptive morphology

can influence, or facilitate in specific, sensing and grasping of soft robotics, based on our

work on two prototypes, “WrinTac” and “RetracTip”.

WrinTac is a soft tactile sensor that has been formed in wrinkle morphology. When

actuated by stretching or bending, the wrinkle morphology can change its wavelength

and magnitude continuously thus varying the sensing property of the sensing element em-

bedded in the wrinkle bump. The fabrication process was simulated using finite element
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method (FEM) to show the effectiveness, and the morphological changes were charac-

terized by analytic and FEM modeling. It was found that the more it is stretched or

bent, the longer the wavelength is and the stiffer the overall structure becomes, which

all affecting the sensing ability of the sensor. In order to find out how the morphological

changes influence the sensing functionality, we examined the sensitivity to normal and

tangential force. Further, we implemented two tasks, shape discrimination and texture

detection, to study the influence by the adaptive morphology. In shape classification,

we adopted machine learning (decision tree, k nearest neighbors and supporting vector

machine) and deep learning techniques (convolutional neural network) as the “brain” to

perceive the difference. In texture detection, we used Fast Fourier Transform (FFT) to

analyze the performance and found the optimal morphology for this task. Finally, we

found out that there is always an optimal morphology for different task and the adap-

tive morphology offers promising opportunity to adapt the sensor morphology to different

tasks and environments based on the specific performance.

RetracTip is an universal and energy-efficient gripper coupled with sensing functionality.

It is capable of gripping objects of arbitrary size and shapes. The design was initially

inspired by the sea anemone while can find its artificial ancestor that is a tactile sensor

with dome shape fingerprints on the external surface. By comparing RetracTip with its

artificial predecessor, we demonstrated that how the morphology can be utilized and op-

timized in order to augment the original design with gripping functionality. Additionally,

we demonstrated how the energy efficiency was improved by integrating a bistable mor-

phing dome structure thus eliminating the requirement for continuous power input during

object-holding action that is a common posture for pick and place scenario. Specifically,

we investigated the sensing and gripping functionality individually by implementing tasks

including self-state sensing, direction and terrain detecting, and gripping force testing

and object gripping testing. Then, by implementing an autonomous gripping system, we

validated the potential of this design towards future autonomous robots.

The findings in this thesis demonstrate the potential of adaptive morphology in shaping

the sensing behavior, maximizing the information gain, and bringing about autonomous

and energy efficient gripping functionality of soft robotics. It is shown that adaptive

morphology could be utilized to design future soft robotics with adaptive sensation and

energy efficient actuation.

Keywords: Adaptive morphology, Soft robotics, Tactile sensors, Soft grippers, Morpho-

logical computation
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Chapter 1

Introduction

Robots are autonomous machines capable of sensing their environments, computing to

make decisions, and actuating to act in the real world [4]. They are usually designed to

serve human beings [5] in a variety of fields and scenarios, such as industry, healthcare,

and entertainment [6–8]. Despite the fact that, after a few decades of development, many

intelligent and capable robots can execute various tasks and outperform human beings

in terms of speed, accuracy and precision in well structured environments, outside there

they are still not able to complete basic tasks that humans can perform with ease and

elegance, for example unlocking doors with keys. Conventionally, robots are made of rigid

materials (metal or plastic) that are resistant to deformation. This, on the one hand, is

beneficial as so robots can achieve high level of load capability, repeatability, predictability

and precision, but on the other hand is potentially dangerous to humans and other assets

around the robots, which is a key consideration in humans oriented situations such as

medical and educational applications [9]. Therefore, robots are increasingly required to

be able to work alongside humans in unknown and dynamic environments with improved

safety, adaptivity, and autonomous capability.

Soft robots provide a promising solution towards development of future multi-functional

and energy efficient robotic systems with adaptivity and robustness [9, 10]. They are

soft and compliant intrinsically, thus safe during interaction with surrounding humans

and other animals. They are usually lightweight such that they need less energy for

actuation. They exploit novel functional materials, which enables functional diversity

and behavioural adaptivity rarely seen on their conventional rigid counter parts. The use

of soft materials offers new opportunities for seamless integration of sensing, actuation,

computation and even communication within basic materials and simple structures [11,

12], creating more lift-like intelligent robots with enhanced functional diversity while with

reduced control complexity [13]. For example, the universal jamming gripper surprisingly
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simplified the gripping of a wide range of objects with arbitrary sizes and shapes, which,

otherwise, would be only possible with very closely coupled sensory motor coordination

in rigid gripper systems [14].

Despite a number of successful and interesting demonstrations, soft robotics is still in

its infancy thus there are still many challenges to overcome [9]. One is that, due to

the distinguishing differences between soft and rigid robotics, for example the inherent

softness, the existing design framework for traditional robotics is no more suitable for the

newcomer. Novel design approaches and insights are needed.

Embodiment has been demonstrated to be an effective design principle for soft robotic-

s [13]. Typically, it sees robotic components not separately but jointly as a whole for

designing, and considers that the properties and performance of the functional compo-

nents, such as sensors and actuators, are strongly influenced and shaped by the physical

body scheme they are incorporated as well as by the interaction between them and their

environments. Further, as a branch notion of embodiment, morphological computation

views morphology of an agent as a source of intelligence in that smartly designed soft

robots can “offload” part of the computational burden from the central controllers to the

physical body [15]. These notions are particularly useful for designing future environmen-

tally adaptive robots as they both emphasize that the morphology and the interaction

with environment should be considered.

Many morphological exploitations have been done in soft robotics, including those for

sensors, actuators and whole robots [16–19]. One robotic component, when in different

morphology, can usually have either optimized, shifted or altered functionality that de-

pending on the level of the difference. It has been increasingly recognized that there is

a coupling relationship between morphology and functionality. From this point of view,

a robot with a uniquely fixed morphology would somehow lose its functional diversity,

thereby compromising in its behavioural adaptivity to the environment. In this case,

variable and adaptive morphology enabling the robustness of soft robots in large task

space and dynamic environment is highly required [20].

1.1 Adaptive Morphology

Living creatures manoeuvre adaptive and variable morphology actively in their daily

activities to tackle uncertainties and optimize performance in the open and ever-changing

world [21]. Humans, for example, tune their postures during motion on different terrains

in order to obtain optimal body dynamics. Birds change their wing morphology (e.g.

the degree of extension) to aid the shift among different flying patterns. In sensing and
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perception, eyes, as sensors, can actively regulate the amount of light that enters into it

in order to fit to environment with different lightness. To trace sound from various direc-

tions, ears actively reorientate themselves for better sensation and perception. Adaptive

morphology is crucial for living beings to optimize their behavioural performance, extend

their operational space, and improve their multi-functionalities.

Inspired by these biological insights, scientists are beginning to incorporate changeable

and adaptive morphology in robotics with the hope to bring these intelligent machines

to a new level in terms of robustness, adaptivity and autonomy [21]. Initial explorations

have been done in such fields as compliant, modular, swarm, evolutionary as well as soft

robotics. While each field has its particularly unique approaches, shape-changing and vari-

able stiffness are two common technologies that have been applied overall [22–24]. Here,

it is not trivial to clarify the definition and scope of the term, morphology. This notion, in

initial works, was applied to refer to the geometrical characteristics such as shape of body

and placement of sensors, excluding those material properties [13]. Nonetheless, it is now

increasingly utilised to describe property about geometry and material [16, 17], which,

in the author’s belief, is more suitable for the generalization of the idea, morphological

computation, thereby is adopted through out this thesis.

1.2 Motivations

The majority of research about adaptive morphology sit in the area of conventional

robots [21]. Despite a few number of morphological investigations in soft robotics [25],

adaptive morphology that purposively adjusts itself and fits to specific workload has

remained largely untouched. To bridge this gap, thus drawing insights for designing

future soft robots that are more intelligent, adaptive, robust and autonomous, this study

concentrates on the adaptive morphology in soft robotics and to investigate how it can

benefit the sensing and gripping functionality.

1.3 Contributions

Based on works on two soft robotic prototypes (“WrinTac” and “RetracTip”) that have

been proposed and developed with adaptive morphology, this study contributes to the field

in mainly two aspects that are described below. Note that the two models are different

and separate in design and function, but are same in terms of the main theme, adaptive

morphology. They both have been designed with variable morphology which has a role

to play in tuning the main functionality of each, sensing for WrinTac and gripping for
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RetracTip.

1.3.1 Adaptive morphology facilitating sensing functionality

Research on soft sensor morphology in the literature prevailingly took the binary ap-

proach investigating how a particular morphology can aid achieving better performance

of the sensor, thus to provide guidance for future sensor design. Sensors with adaptive

morphology are very rare. Here, inspired by the water-induced wrinkle morphology on

human fingers, we developed a soft tactile sensor with wrinkle morphology that is ca-

pable of adapting itself in shape and size to a given task. By integrating the adaptive

morphology, the operational space was largely extended because the adaptive morphol-

ogy enables multiple sensitivity options and it affects the performance in tasks such as

shape classification and texture detection. Therefore, this study contributes to the early

investigation of adaptive wrinkle morphology in soft tactile sensing. It is expected to pave

the way potentially for active sensing with a novel methodology, that is, morphological

adaptation, which is believed to be cheaper computationally, instead of sensory motor

coordination.

1.3.2 Adaptive morphology facilitating gripping functionality

Pick and place is an common task for soft robotic manipulation. Most soft grippers need

continuous energy input when holing an object before placing, which is less efficient in en-

ergy. RetracTip overcomes this challenge by integrating an adaptive morphing membrane

in its compact pin-patterned design. The membrane is bistable so that it can settle at

either of its two stable configurations. The gripping and releasing functionality is realized

by the snapping-through and snapping-back process of the pinned membrane. Compared

with its predecessor, TacTip which is a tactile sensor based on visual information, this

gripper is enabled by the embedding of the adaptive morphology, demonstrating that the

adaptive morphology can extend the functionality of soft robotics, as well as optimize the

functional performance.

1.4 Structure of Thesis

Followed the introduction, next chapter provides a brief review of the technology and

early investigation of adaptive morphology applied in soft robotics. Prevailing technologies

and existing models are presented in a comparative manner, providing some background
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knowledge in this theme. Subsequently, the following chapters concentrate on the main

contributions claimed above. Chapter 3 and Chapter 4 present the work on WrinTac

based on stretching and bending actuation, respectively, demonstrating the potential of

adaptive morphology to benefit sensing functionality. Chapter 5 introduces the develop-

ment and evaluation of RetracTip to show the beneficial effect of adaptive morphology

on achievement of energy-efficient gripping functionality. Based on the aforementioned

content, chapter 6 discusses the pros and cons and points out some improvement to be

implemented in the future before briefly concluding the thesis.
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Chapter 2

Adaptive Morphology

This chapter presents a review of recent progress for soft robotic research on adaptive

morphology. The enabling technologies in general will be identified, then the implemen-

tation in sensing, actuation and computation will be summarized and the benefits of each

category highlighted.

2.1 Introduction

Embodied intelligence suggests that morphology is of crucial role in shaping the func-

tions of agents [26]. In this perspective, morphology that is variable and adaptable, coined

as adaptive morphology, offers agents a series of functional variations, thereby providing

the opportunity to adapt their functions to different environments and tasks. Biologi-

cal beings actively exploit the morphological variance for different purposes. Birds, for

example, morph their wings and tails to obtain different aerodynamics when switching

over among multiple flying modes [27]. Elephants, as shown in Fig 2.1, selectively stiffen

their trunks for different exerting forces. Mammals, such as rats, reorientate their sensory

organs for optimized sensing and perception, as in Fig. 2.1. The adaptive morphology

has been key to their adaptivity and robustness.

Adaptive morphology has been applied to intelligent robotics design in order to ob-

tain additional functions and optimize performance [21]. A flying drone equipped with

adaptive morphology (foldable arms) can enter and navigate narrower spaces where fix

morphology drone could not enter because of the body size [28]. A walking robot with

shape morphing joint embedded in legs presents multiple trajectories with simple actu-

ation [29]. Actuators with variable stiffness or impedance were investigated to achieve

functional adaptivity, such as energy efficiency [30, 31]. In order to obtain adaptive mor-
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phology, these previous research usually involves with integration of components that are

morphologically variable and adjustable.

Soft materials are potential to bring robotics to an unprecedented level of adaptivity

because of the intrinsic softness which enables their morphological diversity [21]. Com-

pared with rigid materials, soft materials deform more easily, thus requiring less driving

energy for morphing. Therefore, soft technologies have been prevailingly exploited for

adaptive morphology. The enabling technologies, materials and existing models are re-

viewed herein. Note that morphology, as stated in last chapter, refers to, in a more general

perspective, both the geometrical, such as size and shape, and the material properties.

Figure 2.1: Illustrations of adaptive morphology with examples in computation, sensing

and actuation. It indicates the properties of each category that can be influenced by the

adaptive morphology. The sample illustration in computation is adapted from [1].

2.2 Enabling Technology

Biological beings employ different approaches and mechanisms to acquire complex be-

haviours for survival from dynamic environment. One prevailing strategy is shape chang-
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ing [23, 32]. For example, octopuses reshape their body in order to enter or squeeze out

from openings much narrower than their normal size. In this category, the term “shape”

contains not only the physical shape of the agent, but also the other geometrical param-

eters such as orientation of key elements within a system, which have an effect on the

overall shape. Rats, for example, alter the orientations of the whiskers to better sense

the world [33]. Here, the whiskers as a whole can be seen as a tactile sensor and its

shape varies because of the orientation changes. Another approach commonly adopted

is variable stiffness, in which through adjusting the stiffness agents can achieve desired

kinematic and dynamic behaviour [24]. One typical example is the selective stiffening

in elephant trunk, a hydrostatic structure, mentioned earlier. The two categories do not

exclude each other completely because one can be triggered by the other passively, for

example shape changes always lead to stiffness variations. Nonetheless, they provide a

framework to effectively classify the existing designs and materials in the literature.

2.2.1 Shape changing

The shape changing research of soft robotics have been concentrated on the functional

materials and mechanisms [23]. Among the quite a few interesting examples, the stimuli-

responsive materials have stayed at the center. For example, Robert et al. developed

a morphing limb with thermoset material and flexible fluidic actuator (FFA), capable

of shape morphing in order to suit to different locomotion, swimming or walking [34].

Another example is the robot by Shah and colleagues [35]. They combined a morphing

skin made of cable stitched fabric and a FFA locomotion skin to generate a robot that

can morphing in order to avoid obstacles during motion. As with novel mechanisms and

structure, origami is an interesting approach. In [36], the authors reported an origami

morphing skin capable of changing the structure dramatically by folding. Lee el al.

proposed an origami wheel structure enabling the vehicle equipped with it moving across

a wide range of distinct terrains [37].

2.2.2 Variable stiffness

There are mainly two prevailing strategies to realize variable and adjustable stiffness

[24]. One is to implement active actuators in an antagonistic arrangement, and the other

is the usage of functional materials and mechanisms.

The former category usually involves a combination of a active actuator and at lease

one other component, active or passive, and exploits the equilibrium position of the w-

hole structure. For example, Suzumori et al. proposed a structure that consists of a
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bundle of McKiben actuators arranged antagonistically [38]. By selectively pressurizing

or vacuumizing each particular actuator, the structure can vary its stiffness effectively.

Another example adopted the active-passive combination was presented in [39]. Here, the

authors fabricated octopus arm with variable stiffness by integrating shape memory alloy,

that is the active part, into a passive hollow tube. A variety of actuating technologies

have been employed, including flexible fluidic actuator (FFA), shape memory materials

(SMM), electro-active polymers (EAP) and tendon-driven actuators. Literately each can

be utilised with another one jointly, enabling numerous opportunities.

As for the second strategy, a variety of functional materials and mechanisms have been

investigated, which includes jamming, SMM, magneto- (MR) and electrorheological (ER)

and low melting point materials [24]. As exemplified in [14], the jamming structures

change the stiffness significantly enabled by the pressure changes. Different jamming

mechanisms have been developed, including fibre jamming [40], layer jamming [41], and

tubular jamming [42]. Shape memory effects on SMM are realized due to their phase or

glass transitions which can vary the mechanical property [24]. The transition is usually

triggered by temperature and other energy sources such as light, electric field. Variable

stiffness structures with MR and ER technology usually employ the MR and ER material

together with other soft materials which constrain the movement of MR and ER materials

[43, 44]. Similar to SMM, the low melting point materials are another category that

changes elastic modulus considerably because of the glass transition phenomenon [45].

2.3 Adaptive Morphology in Actuation

Adaptive morphology has been applied to robotic actuation either to optimize perfor-

mance or to gain new functions [21]. For example, a soft crawling robot can change its

dynamic posture when passing over different terrains [46], which otherwise would be im-

possible with fix body morphology. In this section, a brief review of such application in

soft actuation will be presented with a focus on what benefits could possible be obtained

from adaptive morphology. Note that the complete robots whose function are mainly

enabled by actuation, for example the crawling robot, will be included as well.

2.3.1 Stability, damping and impact response

Adaptive morphology can be explored to achieve improved static and dynamic stabil-

ity and the damping property for soft actuation. Aktas and colleagues composed layer

jamming beams in a flexure structure that is promising to provide precise motion control

without friction and wear issues [47]. By modulating the pressure of the layer jamming
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beams, the impedance of the flexure can be adjusted dramatically, thus the characteristics

of damping and impact response tuned effectively. Further, these property variations have

been demonstrated to influence the control and positioning accuracy.

2.3.2 Load capacity

Adaptive morphology, variable stiffness in particular, can tune the profile of exerting

force to meet different requirements. For example, Yang et el. developed an actuator

with variable stiffness enabled by two actuators, one pneumatic actuator and the other

supercoiled polymer (SCP) actuator, arranged antagonistically [48]. The SCP actuator

contracts when heated, thus providing the diving power. When different force profile

is required, the soft actuator can selectively actuate the pneumatic actuator and the

SCP to modulate the overall stiffness, thus the load-bearing characteristics. Another

example combined the pneumatic and layer jamming actuation to create soft actuators

with variable stiffness capability [49]. The actuator can adjust its stiffness significantly

when the jamming layers are vacuumized. Further, two actuators, as gripping fingers,

were implemented in a gripper which was found to be able to provide multiple gripping

force options. A similar structure can be found in [50], where instead of layer jamming,

they utilized a chain-like structure to generate the granular jamming for stiffening.

2.3.3 Energy efficiency

Sun et el. introduced a soft morphing actuator with variable stiffness, which can bend

and hold its position without the need for continues power input [51]. Within a soft

material body, they integrated a twisted and coiled actuator (TCA) for bending and a

polylactide (PLA) element for stiffness varying. When the PLA is soften, the TCA will

drive the actuator to desired configuration. The PLA is then cooled down to stiffen until

it is enough to hold the actuator in position. Depend on the specific application, the

adaptive morphology enables the actuator to hold the posture with improved power effi-

ciency by eliminating the holding energy input. A bending actuator with similar approach

was presented by Buckner and co-workers [52]. Here, the two coupling components are

pneumatic artificial muscles (PAMs) and synthesis of SMP for actuating and changing

softness, respectively.
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2.3.4 New functionality

Ruotolo et el. proposed a spiny paw structure with a particle jamming palm embedded

[53]. When in its low stiffness state, the paw can comply to surfaces of arbitrary shapes,

thus allowing the pins to extend to the concave details on the surface. The paw then stiffen

the palm, thereby freezing the pin rotation to distribute the shear load more evenly to

every contact pin. This design was implemented in a climbing robot and enabled the

ability to climb steep rocky surface, which otherwise would have been impossible.

2.4 Adaptive Morphology in Sensing

Tactile sensing has been in the focus of soft robotics as it most typically involves touch

or collision that is key for safety. In human, tactile sensing is mediated by the skin

and the mechanoreceptors underneath [54, 55]. Tactile sensors for soft robots follow the

same analogy, where usually sensing elements composed in a sensor body is involved. This

scheme offers a role for morphology to play in shaping the functions of tactile sensor. There

have been research studying how tactile sensors with different morphology lead to distinct

performances [56–58]. While most existing research investigated discrete morphology,

fewer have focused on morphology that is variable and adaptable comparatively.

2.4.1 Sensing range and sensitivity

Among the few research, quite an outstanding example is the work presented by Nurza-

man and colleagues [59]. They implemented a active tactile sensing system that can adjust

the morphology to suit for specific environments. To be specific, the sensor uses hot melt

adhesive (HMA), a thermoplastic material, as sensing probe and a camera to convert

deformation into other perceivable information such as force. When put in unstructured

environments, the sensor can remove and reprint the probe with another shape and size,

thus tuning the morphology to obtain enhanced performance including extended sensing

range and adjustable sensitivity. Because of the thermoadhisive characteristic of HMA,

the sensor can also detect temperature difference. Therefore, though simple function was

demonstrated, this work presents an intuitive example to show that adaptive morphology

is effective to tune the sensor characteristics.
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2.4.2 Perception performance

Another morphology that is promising to be adaptive is the whisker sensor, which has

been inspired by the vibrissae of rodents such as rats. Since the early demonstrations

[60,61], there have been a variety of solutions which typically include a physical whisker,

rigid or soft, to contact targets, and a transduction mechanisms based on different sensing

technologies such as capacitance and resistance [62, 63]. While early works focused on

static and passive sensing, the concentration has been shifted to active sensing inspired by

the fact that rats explore the environment with an active movement of their whiskers [64].

As an analogue, the artificial whisker with adaptive morphology is often enabled by a

rotational mechanism that usually is located at the base [65, 66]. The morphology here

refers to the orientation of the whiskers. Although it was most often studied in the

perspective of sensori-motor coordination, the active process has been demonstrated to

be able to improve the sensing and perception performance in tasks such as noise filtering,

target localization and object exploration [64, 67]. Here, the active process was indeed

realized because of the variable morphology, but further investigations in terms of adaptive

morphology particularly are still needed to identify and characterize the benefits.

2.5 Adaptive Morphology in Computation

While conventionally research on computation or control of soft robotics remain domi-

nantly in the algorithmic scope, of which the implementation always involves rigid comput-

ers and electronics, this review focuses on soft computers that can potentially be carried

on by soft robotics and perform on-board computation and decision making. Such com-

puters are envisioned to have flexible and compliant electronics embedded in soft bodies

with variable morphology. An early such implementation was presented by Garrad et el.

in [1]. In here, inspired by how animals use the vascular system, the authors demonstrat-

ed the concept of soft matter computers (SMCs) that consist of a vascular system for

conductive fluid, a pumping system for liquid circulation, and a series of conductive fluid

receptors (CFRs). By varying the length, offset and space of the CFRs, the soft computer

is capable of switching, amplifying, filtering and digital logc computing. Further, they

implemented this prototype to control a range of common soft robots including a worm

robot, a soft gripper and a bending actuator, demonstrating outstanding performance and

enormous potential of this computing mechanism.

Strictly speaking, Garrad et el. has yet essentially incorporated adaptive morphology

in the SMC. Nonetheless, they included a soft body in the loop of computation, providing

many chances to further introduce morphology that can be tuned to suit for different
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scenarios and to optimize performance. With these being said, a series of famous work by

Nakajima et al. investigated the possibility of using soft material body for information

processing and as robotic controllers [68–72], in which they found that the morphological

property of the soft material, stiffness for example, has significant influence on the property

of controllers. Similarly, another on-board control example was introduced by Mahon and

co-workers in [73], in which they implemented a simple on-board controller / computer

capable of switching between walking mode and gripping mode.

2.6 Summary

Compared with the investigations for actuation, the research of adaptive morphology

in sensing and computation are far behind the schedule. The reasons, in part, might be

that the adaptive behaviour in actuation is more effective tuning the actions of complete

robot. For example, the modulated impedance find its role in affecting the body dynamics

more than other aspects. In part it might because of the enabling technology such as

manufacture and material development. Consider the case for computation. Fabricating

a soft matter computer prototype is already ultra difficult, letting alone to let them meet

the functional performance that are required for the soft robotics. However, each of the

three components are essential for future autonomous robots to better suit for dynamic

environment and open tasks. More attentions need to be put on sensing and computation.
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Chapter 3

Adaptive Morphology Facilitating

Sensing : WrinTac Based on

Stretching Actuation

Abstract

This chapter presents the soft tactile sensor with adaptive wrinkled morphology, coined

as “WrinTac”. Inspired by the water induced wrinkle structure on human fingertips,

the wrinkle morphology on WrinTac is enabled by a multilayer structure, which, when

stretched, varies in terms of magnitude, wavelength and overall stiffness. The morpholog-

ical variation leads to some beneficial influences on the sensing functionality. A series of

experiments to verify and evaluate this function-morphology relation are introduced and

results presented. By doing so, it argues that adaptive morphology is beneficial for tactile

sensing functionality, in that it extends the working range of the sensor, and improves the

signal stability.

3.1 Introduction

Soft robots and their interaction behaviour with surroundings (objects, humans and

environment) have been emerging in the field of robotics. The intrinsic characteristics

of soft robots, infinite degree of freedom and great compliance, benefit such tasks as

perception and manipulation on one hand, and on the other hand increase difficulties to

apply traditional actuation and sensation methods [9]. For example, the embedded sensing

element in soft body for tactile sensation responds to not only external interaction but
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Figure 3.1: Wrinkle-based morphology inspired soft sensing system with tactile percep-

tion: (a) By stretching and releasing, embedded strain gauge’s posture, as well as electrical

response change, resulting in self-deformation response. (b) The sensor in various mor-

phology (wrinkle magnitude and wavelength) responds differently to even same sliding

stimuli.

also self-deformation, making it hard to distinguish them [74]. Most of recent work in

this field attempted to solve each part separately [75] - [76].

Morphological computation has been utilized for recognizing novel mechanisms. Au-

thors in [77] pointed out that geometrical shape and its mechanical properties may play a

vital role for benefiting different perceptions, especially tactile sensing. However, sensing

systems that can actually utilize their own morphology for different sensing tasks were

barely found. Our previous work used pneumatic actuation for inflating a chamber cov-

ered by a skin layer to generate different morphology. Nonetheless, it introduced bulky

external devices (compressor and its regulating circuit) [78]. Andrew et al. proposed a

WormTIP design that adopts a dielectric elastomeric actuator (DEA) to make a senso-

ry membrane capable of extending itself onto an object and conforming to the surface

for better sensation. One concern is that DEA requires a large input voltage, thus not

suitable for common applications [79].

This paper introduces the idea of Variable Afferent Network Morphology (referred as

“VANmorph”) to describe the phenomenon that soft sensor’s morphological change (geo-

metrical and mechanical properties) varies the sensing capability, and presents the imple-

mentation of VANmorph on a sensorized soft body inspired by the water-induced wrinkle

on human fingers. The morphology of the sensor can be readily modulated by simply

stretching and releasing in order to obtain different sensing capabilities as illustrated in

Fig. 4.1, thus to benefit perception. The actuation mechanism is improved in that it can

be possibly realized by less bucky actuator compared with previous work. Preliminary

evaluation of the soft sensor reveals promising advantages of such design in facilitating

tactile sensing and in implementing active sensing system.

15



3.2 Related Works

3.2.1 Sensorized soft body

Current designs of sensorized soft body focus on feedback of deformation information

during operation of robots. These involves either smart selection of sensing element or

dedicated application. Magnet sensor and light sensor were adopted repectively in [80]

and [81] for detection of local curvnture of soft finger. Conductive fluid was selected

in [82] and [83] to sense deformation of large body. Culha et al. proposed a method for

realization of different deformation patterns, such as serpentine or twisting [84]. There are

tons of promising approaches for specific feedback of deformation, yet no generic strategy

for such sensorized soft body design. Hughes and Iida attempted to construct a framework

for calculation of localized deformation based on differential outputs of embedded strain

gauges. Nonetheless, the scalability of this framework is uncertain [74].

3.2.2 Bio-inspired active tactile sensing system

Tactile sensing is inspired by nature through mimicking not only anatomy of the touch

organs, but also the combination of motory and sensory complex in active sensing of di-

verse stimuli [17]. For example, manatees can actively adjust the tactile hair follicle-sinus

complexes for different sening environment [85]. In order to acomplish such task in robotic

agents, both sensation and actuation are needed. A mobile robot was reported in [86]

to be capable of actively adjusting its whiskers for better feedbacking location/vibration

in different terrains. The self-actuating sensor of dielectric elastomeric actuator (DEA)

in [79] can achieve active sensing by forming a sensory membrane, extending itself to an

object and conforming to the surface for better sensation. These studies involve active

sensing from the stance of motion control and processing algorithms.

3.2.3 Variable afferent network morphology

Current researches on sensing deformation are limited to static analysis for matching em-

bedded sensor response and deformation amount. Since deformation of soft robot bodies

have diverse patterns (bending, twisting, traction, localized deformation, and so on) and

ambient environment is changing, static analysis might not be eligible for complex cases.

We hereby propose the idea of VANmorph to describe the phenomenon that by changing

the morphology of the soft body, sensing capability could be adjusted accordingly. VAN-

morph considers the ambient environment as illustrated in Fig. 3.2. Self-deformation and
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Figure 3.2: Imagination of variable afferent network morphology (VANmorph). Embedded

sensor inside soft body does not need to be fixed, instead it can vary its relative posture.

Interaction with sensor under various postures leads to different dynamic responses. (a),

(b) and (c) illustrate posture changes (angular) of embedded sensor in three modes.

external environment cause static and dynamic response of the embedded sensor respec-

tively. By studying the mechanism of VANmorph, we expect to propose sensing systems

with multiple sensing capabilities.

3.3 Wrinkle Morphology

3.3.1 Mimicking abstraction

Natural morphology provides a great source of hints and ideas for development of ar-

tificial applications. Wrinkle morphology as one of the most common phenomenon has

been utilized in various ways in scientific and engineering researches, such as adhesion

analysis of soft structures [87], measurement of mechanical properties [88], stretchable

electronic devices [89] and so on. In this paper, we utilized the morphology of wrinkled

surface to change the posture of the embedded sensing element with the purpose to vary

the sensibility of the sensing element.

The mechanism of the wrinkle formation has long been considered to be due to the

mismatch of expanding and shrinking ratio of different materials in a multi-layered struc-

ture [90]. A common way to generate this pattern is to compress inward two ends of a

multi-layered structure that consists of a soft, thicker substrate and a thin, stiffer layer

as illustrated in Fig. 3.3. The wavelength of the wrinkle patten (λ) decreases upon com-

pressing, thus resulting in steeper edge of each bump and vice versa. Imagine that if a

sensing element is embedded right under the skin layer near a bump edge, the posture
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Figure 3.3: An implementation example of VANmorph: a multi-layered structure consists

of a thick, soft layer covered by a thin, inextensible, flexible film with a strain gauge sand-

wiched in between. Slope of the bump changes in response to the actuation (compression

in this case)and so do the posture and sensitivity surface of the strain gauge.

of the sensing element will change accordingly upon compressing. In this research, we

chose strain gauge as the sensing element, but one can exploit other sensing elements

such as pressure sensor, accelerator, magnet (with Hall sensor), and so on. When the

wrinkle morphology changes, strain gauge’s sensitive surface also varies, and so does its

sensitivity with respect to the direction of applied external loads (normal indention or

tangential traction). In this way, the sensing system possesses multiple sensing abilities

which be selected among by changing the wrinkle morphology.

3.3.2 Understanding wrinkle morphology through modeling

There are quite a number of attempts to describe the wrinkles qualitatively or quanti-

tatively on multi-layered structures. Wang and Zhao [90] introduced a phase diagram of

surface instabilities for estimation of various wrinkle patterns induced by mismatch strain

and they validated successfully this method with a finite element model using Abaqus.

Cerda and Mahadevan build an analytical model wto depict the wrinkle patterns [91].

However, these models are complicated to understand for researchers in different areas.

In this section, we attempted to build a simplified model for easier understanding the

wrinkle’s mechanism based on basic physics of bending and stretching, under the light of

energy stability.
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Figure 3.4: Illustration for derivation of wrinkle numbers over a substrate with length l,

and a film layer with length L. It is assumed that, at the stable state, the height from

the tip of the wrinkle to the original surface (before formation) decreases correspondingly

to the increased number of wrinkle over a certain length.

The modelling was based on two assumptions: First, the structure stabilize where the

energy in the system is minimal; Second, all wrinkle bumps in one configuration are

identical in terms of geometry and each is with uniform curvature. Further, we assume

that the wrinkle state has a length l with a number of sinusoidal wrinkles n. The value of

n is an argument that minimizes the potential energy of the wrinkled surface as follows:

N = arg min
n

U = arg min
n

(Un
flex + Un

sub), (3.1)

where Un
flex and Un

sub are flexural energy of the thin film and deformation energy of the

soft substrate respectively.

In order to estimate flexural energy, we started with n = 1. The flexural energy of of

the film can be calculated as follows:

Un=1
flex = Kbend

∫ L

0

(
dθ1(s)

ds

)2

ds, (3.2)

where Kbend is the stiffness of the film material, and ds is an infinitesimal length along

the film, and θ1(s) is the function that defines the shape of the flexural film with respect
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to the length of the film L (see Fig. 3.4). When n = 2, corresponding flexural energy

Un=2
flex is estimated similarly as:

Un=2
flex = Kbend

∫ L

0

(
dθ2(s)

ds

)2

ds. (3.3)

Since the substrate’s length l is unchanged, and the film is inextensible with L = const,

it is sufficient to assume that θ2(s) = θ1(2s). Flexural energy Un=2
flex is then calculated as:

Un=2
flex = Kbend

∫ L

0

(
2
dθ1(s)

ds

)2

ds = 22Un=1
flex . (3.4)

Similarly for other case of wrinkle number, a generic estimation of flexural energy at n

wrinkle is derived as follows:

Un=N
flex = N2Un=1

flex . (3.5)

We also attempted to estimate the energy of the substrate’s deformation of n wrinkles

based on mathematical induction from derivation of Un=1
sub . Let peak height of a wrinkle

when n = 1 be y0, then deformation amount at a location y1(s) be y1(s) − y0/2. The

potential energy related to this morphology is estimated as :

Un=1
sub = Ksub

∫ L

0

1

2

(
y1(s)− y0

2

)2

cosθ1(s)ds, (3.6)

where Ksub is the stiffness of the substrate material. When n = 2, we assumed that the

peak heigh of the wrinkle in this case was half of the previous case’s height, i.e. y0/4.

Then, energy accumulated in this case is derived by the following equation (note that

θ2(s) = θ1(2s) as aforementioned):

Un=2
sub = Ksub

∫ L

0

1

2

(
1

2
y1(2s)− y0

4

)2

cosθ1(2s)ds. (3.7)

Let 2s = r, then Eq. (3.7) is re-arranged as:

Un=2
sub =

(
1

2

)2

Ksub

∫ 2L

0

1

2

(
y1(r)− y0

2

)2

cosθ1(r)
dr

2
. (3.8)

By integrating from [0, L] and [L, 2L], Eq. (3.8) is re-written as

Un=2
sub =

(
1

2

)2

Ksub

∫ L

0

1

2

(
y1(r)− y0

2

)2

cosθ1(r)dr. (3.9)

or:

Un=2
sub =

(
1

2

)2

Un=1
sub . (3.10)

By doing the similar derivation, the generic formulation for estimation of the substrate’s

energy is followed:

Un=N
sub =

(
1

N

)2

Un=1
sub . (3.11)

20



Replacing Un
flex and Un

sub in Eq. (3.1) by Eq. (3.5) and Eq. (3.11), number of wrinkles N

can be calculated based on minimization of total wrinkle energy U as:

dU

dN
= 2KflexU

n=1
sub N − 2KsubU

n=1
sub N

−3 = 0 (3.12)

or:

N = 4

√
Ksub

Kflex

Un=1
sub

Un=1
flex

. (3.13)

As a result, the balance between film’s flexural energy and the substrate’s energy decides

the generated number of wrinkles on the surface. Based on Eq. (3.13), N depends on

both mechanical property (ratio Ksub/Kflex) and geometrical property (ratio Un=1
sub /U

n=1
flex ),

which is similar to derivations in [91]-Eq. (6). Computation of Un=1
sub and Un=1

flex could be

conducted using information of l and L and related work of Wakamatsu and Hirai [92].

Equation (3.13) suggests that with the same geometrical property, number of wrinkles

can be varied by selection of appropriate materials of the substrate and thin film.

3.4 Design and Fabrication

Based on the mimicking abstraction and understanding of the wrinkle morphology, we

proposed a process for fabrication of a wrinkle-inspired sensorized soft body. The sensing

system is a wrinkled sandwich structure: namely a strain gauge embedded in between a

soft substrate and a stiffer thin film. When the soft body changes its length, the wrinkle

morphology varies, leading to static change of strain gauge output. Meantime strain gauge

posture also alters, resulting in different sensitivities to stimuli from different directions.

In order to create the soft wrinkled surface, we glued a stiff, thin film with length L =

120 mm onto a pre-stretched relatively thick, soft substrate (the substrate was stretched

from original length l = 100 mm to L = 120 mm), then released as illustrated in Fig. 3.5.

The reason why we pre-stretched the substrate rather than compressed after attachment

of the film is that the compression causes elastic instability, which is common when

compressive load is applied to slender object. In this preliminary research, we chose

Ecoflex 00-50 (by SmoothOn, USA) for making soft layer, and a Kapton (by Teraoka

Seisakusho, Japan) film as the stiff layer. The fabrication process is summarized as

follows:

1. First, Ecoflex 00-50 was poured into a mould with basic size of 100 mm×15 mm×20 mm.

We also designed two pads at two ends for clamping in the experiment afterwards.

Then, the mould was put in a vacuum chamber with temperature of 50 oC, and the

soft substrate was cured in about 2 hours.
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Figure 3.5: The fabrication setup. (a) Ecoflex 00-50 is poured into a mould, vacuumized

and cured to form the soft substrate with length l. (b) The substrate is clamped on a

motorized linear stage and stretched to length L. (c) A thin film with length L is glued

to the substrate.

2. The cured substrate was fixed by two clamps attached on a motorized linear stage

whose translational movement could be controlled at resolution of 5µm.

3. The substrate was stretched to length L = 120 mm. After this stage, strain gauges

were directly attached on the pre-stretched surface of the soft substrate using a

silicon-compatible glue (PPX) before attachment of the Kapton film on the entire

surface of the substrate using the same glue. After 2 mins when the glue was cured,

wrinkle pattern appeared on the surface upon releasing the pre-stretch.
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Figure 3.6: The experimental setup for preliminary evaluation: The X linear stage stretch-

es and releases the soft body and X-Z stage performs indention and sliding. A loadcell

was installed on the X-Z stage to measure the force and data was transmitted to computer

through an ADC data acquisition box. The strain gauge output was measured by a strain

measurement device with a built-in Wheaston bridge.

3.5 Experiments and Results

Since both self-deformation and external interaction cause strain gauge output change,

it is worthy of verifying this in separate cases. We set up an experiment platform as

illustrated in Fig. 3.6 to evaluate the response of wrinkle-based sensing system to self-

deformation and interaction test (indention and sliding action). The X linear stage was

used to stretch and release the soft body and the X-Z linear stage to drive the indenter for

expected motions. The indenter was installed on a loadcell (Nano 17, by ATI Industrial

Automation, USA) so as to record the force information which was transmitted to com-

puter through an ADC data acquisition device (NI USB-6343, by National Instrument,

USA). The strain gauge output was measured by an integrated strain measurement device

with a built-in Wheaston bridge (EDX-10B, EDX15A and UI54A-120, by Kyowa, Japan).

This device directly recorded the resistance and strain change.
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3.5.1 Self-deformation

As aforementioned, self deformation (i.e. not caused by interaction with surroundings)

of soft body with wrinkled surface results in change of embedded sensing element (strain

gauge) posture. We set up an experiment for evaluation of this conclusion with a mov-

ing camera taking consecutive images from side of the wrinkled surface and the strain

gauge. The inclined angle information was extracted by image processing techniques with

MATLAB. Fig. 3.7(a) shows the processing process of the figures. The original figure

was cropped to focus on only the middle wrinkle where the strain gauge is installed. It

was then converted into gray-scale intensity image to eliminate the effect of the colour

information on the edge detecting. Edge detection with ”Sobel” filter was performed to

extract the edge information from which the inclined angle information can be derived

by calculating the gradient of the wrinkle bump. Fig. 3.7(b) plots the inclined angle

information versus the stretching strain. Inclined angle of the embedded strain gauge

changes significantly during the elongation, thanks to morphological change of the wrin-

kled surface. The relationship in between is quite linear, which implies that the sensitive

direction of the strain gauge can be varied for better assessing external force from different

directions.

Figure 3.7: Verification of the embedded strain gauge’s posture during self-deformation,

extracted from consecutive images of the strain gauge: (a) The original, grey-scaled and

edged images of the wrinkled soft body. (b) Inclined angles of the strain gauge during

self-deformation, implying remarkable change in orientation of the sensing element during

morphological change of wrinkles.

We conducted a measurement of the strain gauge output under elongation of the soft

body. In this experiment, the soft body was stretched from l = 100 mm to L = 120 mm

then released, and the strain gauge output was recorded meantime using the experiment
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setup in Fig. 3.6. The driving speed was 3 mm/s and data acquisition frequency was

1kHz. The trial was conducted three times back and forth, and the result average and

deviation are plotted in Fig. 3.8(a). Note that the output was presented in the unit of

“µm/m” which is an option offered by the strain gauge measuring device to reflect the

resistance change of the strain gauge. The relation could be described by the equation

“ε = ∆R/R
GF

”, where ε is the output in strain, ∆R and R are the resistance change and

gauge resistance respectively, and GF stands for the gauge factor specified by vendor.

(In this case, R = 120.4 ± 0.4% Ω, GF = 2.21 ± 1%.) The output, as can be noticed,

increases linearly with the stretching rate and decreases upon releasing. The relatively

small hysteresis in between was considered to be due to the viscoelasticity effect of silicone

rubber that is typical and readily observable in the constitutional relationship of strain

and stress. The variance of the output is quite small demonstrating high repeatability

and stability, which makes it possible to discriminate the static response caused by self-

deformation from that caused by interactive stimuli.

The stability of the self-deformation output can be further demonstrated by the step

response in Fig. 3.8(b), where the dynamic response of the strain gauge under a sudden

stretching input was presented. The soft body was stretched at 3 mm/s from l = 100 mm

to l = 102 mm, then released to initial state after 4 secs. In general, the strain gauge

responds correspondingly at the same time as the elongation and relaxation starts. After

the stretch stopped, the response remains relatively steady around 150µm/m, which

agrees with the result shown in Fig. 3.8(a). The slight decrease at the beginning is

considered to be due to the stress relaxation effect in that viscoelastic material presents

stress decrease when kept in a constant strained position. Consequently, as investigated,

the inclined angle of the strain gauge and the response to self-deformation change linearly

upon varying morphology of the wrinkled soft body, through which each can be readily

mapped from insight of the other.

3.5.2 Interaction

As mentioned in the previous section, the inclined angle of the strain gauge can be varied

by adjusting the morphology of the wrinkle. It was assumed that the strain gauge would

be sensitive to external stimuli perpendicular to its surface, which makes it possible to

actively change its sensitive surface according to stimuli from various directions in order to

achieve higher, or lower where it is preferred, sensitivity. In this experiment, we attempted

to evaluate responses of the sensor during variation of wrinkle morphology under two

common interactive tasks, normal indention and tangential traction/sliding using the

setup shown in Fig. 3.6. A hemispherical indenter attached to a 6-dof (degrees of freedom)

loadcell is mounted on a 2-dof motorized linear stage that provides precise movement

25



Figure 3.8: Strain gauge output in form of strain [µm/m]. (a) Under self-deformation

(stretching and releasing) condition. It shows approximately linear relation with stretch-

ing strain of the substrate. The output hysteresis is considered to be due to the viscoelas-

ticity of silicone rubber. Inset graph shows enlarged view of data mean and standard

deviation. (b) Under step stretching (up to 2%) and releasing condition. The response is

rather timely and steady even though there is a gradual output decreasing because of the

stress relaxation behaviour viscoelastic material.

(with resolution of 2µm) in both vertical (z-axis) and horizontal (x-axis) directions. The

loadcell is used to monitor the actual contact force and moment generated.

Normal Indention

In this experiment, the soft body was stretched from l = 100 mm to L = 120 mm by

10 steps and at each step, vertical indention of 1 N was applied. The detailed process is

as followed: (a) Stretch the soft body by 2 mm with X linear stage; (b) Apply vertical

indention (1 N) at the top of the wrinkle bump where the strain gauge is located, then

remove the indenter; (c) Repeat steps (a)-(b) 10 times. The strain gauge output was

recorded before starting (a) and was presented in Fig. 3.9(a).

As clearly illustrated, both stretching and indention contribute to the sensor output.

Each stretching prior to indenting causes increased response from previous state. The

stretching response remains steady when no further stretching is applied, and returns to

same level when indenter is removed, even though stress relaxation induced output drop

remains here but negligible. This agrees with previous result in Fig. 3.8. The indention

induces dynamic response, which peaks when reaching the maximum force, on the basis of

stretching response. The sensitivity to indention can be evaluated by examining the peak

values after subtracting the static stretching response. As observed, the sensor presents

various sensitivities to indention of same force, where sensitivities at steps 6, 7 and 8
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are much greater than the others thanks to the combined effect of both the strain gauge

inclined angle and stiffness change of substrate. The stiffness increases upon stretching

thus provides larger resistance to external stimuli. Note that the stiffness is different from

elastic modulus that is an intrinsic property of a material whereas stiffness is generally

referred as the resistive ability of a structure to external stimuli. Change of the structure

may introduce variance of the stiffness.
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(a) Normal indention under step stretching input (low steps relate to 

bigger wrinkles)
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Figure 3.9: (a) Normal indention (1 N) test under step stretching input. Response consists

of two parts, stretching and indention. Static response to each step stretching agrees with

previous section and that to indention can measure the sensitivity to normal indention,

where steps 6, 7 and 8 show larger sensitivity than the rest. (b) Illustration of two trade-

off factors on sensitivity variance. The effect of stain gauge (positive) is dominant in

small stretching strain while stiffness change effect (negative) is in charge after a critical

stretching strain.

Fig. 3.9(b) illustrates the trade-off relation between effect of two factors, strain gauge

angle and stiffness change, on the sensitivity variance. The angle change tends to increase

the sensitivity since that the strain gauge becomes vertical to the indenter. While the

stiffness affects the sensitivity negatively because the stiffer the sensor is, the smaller

deformation the soft sensor needs to generate in response to same indention. When the
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stretching strain is small, the positive effect of the strain gauge posture is dominant,

thus the overall sensitivity increases upon stretching. The negative effect of stiffness

change increases with stretching and at some critical stretching strain (14% in our case)

it becomes large enough to balance off the strain gauge angle effect. From here after, the

negative effect takes the charge and results in decreased sensitivity.

Figure 3.10: (a) Normal indention test with various forces at two stretching strains, case

1 with 14% and case 2 with 20%. Case 1 performs better sensitively than case 2 at

lower forces. Inset graph shows enlarged view of data mean and standard deviation.

(b) Illustration of normal indention in two cases. When larger force is applied, Case

1 undergoes a combination of indention and constraint from both sides while case 2 is

subjected to combination of stretching and indention.

We performed normal indention test with multiple larger forces for the same sensor in

two different stretching rates, namely 14% (with best sensitivity verified earlier, referred as

“case 1”) and 20% (maximum rate when no wrinkle formed, referred as “case 2”) in order

to find out how the soft sensor would response to different indention forces. Indention

with forces from 1 N to 5 N was performed for the two cases and each was repeated for

5 times. The sensor output at each peak force was recorded, averaged and plotted in

Fig. 3.10(a). Note that the static stretching response has been eliminated so as to better

evaluate the reaction to indention. As can be seen, case 1 performs better sensitivity and

linearity dominantly at lower force range (below 4 N) as expected. Case 2 is likely to

outperform case 1 if larger force applied considering the trend of two curves. This can be

understood by considering the typical indention processes in two cases illustrated in Fig.

3.10(b). When lower force applied, strain gauge in case 1 undergoes indention induced

bending , which causes positive output, and tiny constraints from both sides, which causes

contraction to strain gauge leading to negative feedback (compressive stress). However,

it can be neglected due to its tiny effect. In contrast, case 2 is subjected to indention

and tiny stretching effect, which causes positive feedback (tensile stress), thanks to its
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stiffness. In this stage, case 1 outperforms case 2 with respect to sensitivity and linearity.

When larger force applied, the compressive stress in case 1 and tensile stress in case 2 can

no more be ignored, thus case 2 has a trend to outperform case 1.

Tangential Sliding Action

In this experiment, we clarified the dependence of the strain gauge output on wrinkle’s

morphology under sliding action. In each trial, the hemispherical probe was controlled by

the linear stage to traverse over two wrinkles, including the wrinkle where strain gauge was

located (referred as “wrinkle 2”) and the one in front (referred as “wrinkle 1”), forward

and backward for three times. The probe had been adjusted to make contact with the

surface at roughly 0.1 N before the sliding action started. Fig. 3.11(a) shows the responses

of the soft sensor in different stretching rates, 10%, 14% and 20%, which stand for cases

of high wrinkle, low winkle and no wrinkle respectively.

Figure 3.11: Response of soft sensor to forward and backward sliding. (a) The response

of sensor with various state of wrinkle is different, where wrinkle with stretching rate at

14% outperforms the others. (b) Illustration of a typical forward sliding mechanism.

We first examine the typical response to a back-and-forth sliding action, as shown in

Fig. 3.11(a). The underlying mechanism is as Fig. 3.11(b), characterizing the process

qualitatively rather than quantitatively since that the sensor interacts with the probe in

a complex manner during sliding, making it hard to formalize a genetic way to describe

quantitatively. Generally, when sliding over wrinkle 1, the soft body is compacted by the

probe and the stiff film tends to move rightward to compress the bottom end of wrinkle 2.

Since there is no constraint on wrinkle 2, the compressing causes elongation and bending

of strain gauge as shown, resulting in tensile stress. This explains the first small bump in

the response curve. When on the uphill of wrinkle 2, the probe deforms the strain gauge
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and causes compressive stress. When it slips over the top of wrinkle 2, the wrinkle inside

causes tensile force as illustrated. The backward process is quite symmetric to the counter

process but with a higher peak thanks to different directions of friction in between the

contact. The sensor output generally follows this output pattern when low or no wrinkle

formed, while fluctuates for high wrinkle case because of the large non-linear deformation.

Additionally, the low wrinkle case performs better than when there is no wrinkles with

respect to sensitivity, as observed in the indention case as well. However, the high wrinkle

case does not perform better. In this case, the soft body is said to be sensitive to not

only the sliding distance since it can capture the number of wrinkles it passes over, but

also the direction considering the symmetric response pattern it generates.

From the qualitative description of the sliding process where the dedicated contact in

between the probe and soft sensor is vital, we assumed that shape of the probe might be a

factor affecting the output. We then investigated the sliding response to probes of different

shapes by repeating the sliding test with three different shapes of probe, namely spherical,

flat and cone, for the low wrinkle case. Note that only forward sliding was performed due

to the fact that symmetric response would not provide more information than merely

one-way sliding. Thirty times each were performed. The responses were plotted in Fig.

3.12(a). Note that data for each shape have been shifted 15s for clearer presentation. The

spherical and cone probes perform quite similar in term of time span with that of the

cone probe being slightly shorter due to the smaller contact area. Besides, the spherical

probe responses have negative peaks with larger absolute values. Compared to these two

cases, time span of flat probe responses are larger thanks to its larger contact surface,

and it gives more stable responses when sliding over wrinkle 1. We avoid to analyze the

underlying mechanics for such differences because of the complexity of the sliding process

discussed earlier, but one can do the same as how we did the qualitative explanation

earlier.

We considered these differences would benefit the task of discriminating various shapes,

which can be observed from Fig. 3.12(b) presenting simply mean and standard deviation

of each trial. We then investigated this possibility by implementing a machine learning

task to classify different probe shapes. For all the three probes, we performed the forward

sliding for 30 times in each of two cases, low wrinkle and no wrinkle, and collected all the

data for implementation in MATLAB. In total, for each case, there were 90 observations

with 30 for each probe. We abstracted the mean and standard deviation of each observa-

tion as the input augments to train and validate the classifiers. In order to demonstrate

the intrinsic advantages of this sensor in such task, we selected three common machine

learning classifiers including Decision Tree (DC), K-Nearest Neighbours (KNN) and Sup-

port Vector Machine with Gaussian kernel (Gaussian SVM). Considering relatively small

dataset size, the statistical method of 10-Fold Cross-Validation was applied, in that the
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following steps are executed: (1) Divide dataset into 10 subsets randomly and equally,

(2) Select 1 subset as the testing set and remaining as training set, (3) Perform classifi-

cation trial, (4) Repeat (2)-(3) by selecting 1 subset other than previous one until each

subset has been used as testing set for once, (5) Average the results from 10 trails. The

classification accuracy for both cases was listed in Table 3.1. As presented, the wrinkled

case outperforms the counterpart for all the three classifiers and each classifier takes less

than 1 second to train and validate.

Table 3.1: Shape Classification Results

Cases DC KNN Gaussian SVM

With wrinkle 99.2% 100% 100%

Without wrinkle 97.8% 97.8% 94.2%

3.6 Discussion

The soft sensor was demonstrated preliminarily to possess multiple sensibilities to both

normal indention and tangential sliding interaction and among these multiple options

preferred sensibility can be switched by simply stretching and releasing the soft sensor

for different sensing tasks. This property enable the future implementation of active

tactile sensing system. In this sense, a thoroughly trained brain that actually decides

which wrinkle morphology optimally suit for specific sensing task is required. Dataset for

training would be strain gauge response under different postures of itself, morphologies of

the soft body, and diverse interaction conditions with surroundings. Both time-domain

and frequency-domain data obtained from the strain gauge would be taken into account

for best inclusion of static and dynamic properties in self deformation and interaction of

the sensorized soft body.

Proper actuation need to be integrated to accomplish the sensor and actuary combi-

nation. One promising method is to integrate this sensing system as a skin covering a

robotic fingertip which is driven by servo motor and twisted string [93]. By rotating the

servo motor, twisted string is able to pull or release the skin resulting in variation of the

morphology of the wrinkle.

One limitation with the sensor is to differentiate the sensor signal resulted by self-state

change and by external stimuli. For example, when both stimuli happen at the same time,

the single sensing element might not be able to tell the difference. This concern need to
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be solved before it can actually be implemented in real application, such as the active

sensing system in the future.

3.7 Conclusion

This paper introduced the idea of VANmorph and presented an implementation proto-

type inspired by water-induced wrinkle morphology. The fabrication of wrinkle pattern

was analysed based on an analytical model to show the repeatability and controllability

of the fabrication process. For thorough evaluation of the model, both actual fabrica-

tion with various material combination and Finite Element Analysis simulation using

ABAQUS are scheduled for next stage research.

This proposal of wrinkle-based sensing system is our first step toward different robotic

applications. Thanks to introduction of the wrinkle morphology, the sensor can capture

both the location of the contact and shape of probe during sliding, which makes it possible

for such applications as contact localization and texture discrimination coupled with ma-

chine learning techniques. More evaluation on such property will be conducted in future

research.
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Figure 3.12: (a) Repeated response to forward sliding with different shapes of probe in

the case with wrinkle (30 times each). The spherical and cone probes are similar in term

of time spanning while the former has a negative peak with larger absolute value. The

time span of flat probe response is larger than the others thanks to its larger contact

surface, and it gives a more stable response when sliding over the wrinkle 1. (b) Mean

and standard deviation of each trial. It gives a glimpse that how distinguishable each

shape is.
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Chapter 4

Adaptive Morphology Facilitating

Sensing : WrinTac Based on

Bending Actuation

Abstract

Based on the same prototype, “WrinTac”, this chapter proposes another actuation

approach for the soft sensor. The design was slightly modified to better fit such actuation.

When bended, the sensor exhibits a series of morphological variations which are further

investigated in terms of the function-morphology relation. It was further tested in two

tasks, shape classification and texture detection, and found that, for each different task,

there is always an optimal morphology that optimizes perceptual performance. It sheds

light to novel active sensing system design in that the “active” part can be achieved

by varying the sensor morphology, which conventionally was always exploited from the

sensory motor coordination aspect.

4.1 Introduction

Sensor morphology has been recognized as a source of “intelligence” in that it shapes the

external stimuli to usable afferent signal and that variation of it results in different per-

ceivable signal [13,16]. This interdependent relationship of morphology and function has

inspired researches investigating how particular sensor morphology influences the sensing

property and perception performance. Two popular tactile morphological structures in

this regard are whiskers [94–96] and wrinkles (or fingerprints) [56–58,97, 98], where both
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robotic finger

joints

texture

sensor

(A)  Scenario of texture palpation using robotic 
       finger equipped with wrinkled sensor 

(B)  Morphological variation of 
       sensor by joint rotation 

Figure 4.1: (A) An envisioned future application scenario: texture exploration with the

wrinkled tactile sensor on a robotic finger. (B) The morphological variation of wrinkles is

actuated by joint rotation mimicking joint movement of human fingers. When it rotates

clockwise, the sensor is bent thus wrinkle magnitude shorten, wavelength prolonged, over-

all stiffness increased. All contribute to variation of sensor property, offering the chance

to optimize perception by adapting sensor morphology.

morphologies were found effective tuning sensor performance in tasks such as force sens-

ing, obstacle avoidance and texture detection. These findings are particularly important

in active tactile sensing systems where agents, in order to get better perception, purpose-

fully adapt either the sensor morphological state or the sensorimotor control strategy to

specific tasks [99].

While most previous researches focused on changing control algorithm, this research

attempts to answer whether it is possible to realize active tactile sensing by adapting

tactile sensor morphology. This was done by testings on a wrinkled tactile sensor with

changeable morphology in three common tactile sensing tasks, including force sensing,

shape discrimination and texture detection. It was found that, for each task, the sensor

presented an uniquely optimal morphology elicited by its bending state. This finding

offer an opportunity to adapt morphology to different tasks if the morphology-function

relationship is known, enabling novel active sensing mechanism, thus contributing to the

field.

4.2 Related Works

4.2.1 Active tactile sensing

Human master active touch sensing in that they change sensing strategy to best fulfill

perception tasks. Consider the process we stroke a surface with fine but detectable texture
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for texture detection, as illustrated in Fig. 4.2. We first lean the finger slightly against the

surface, and slide forth and back to feel the roughness with the contact force monitored.

Within an initial force range, the magnitude of contact force determines the sensing

performance. The higher the force is, the clearer we can feel the texture. The process

here is active in two perspectives. One is the sensorimotor control strategy, the other the

morphological change of finger that is not commonly aware of. In term of this aspect

there is a series of changes as illustrated in Fig. 4.2 (B): upon pressing harder, the soft

skin complies more closely with texture details, and the tissue in between the surface and

underlying mechanoreceptors becomes locally thinner, denser and stiffer, thus facilitating

vibration detection [17]. While the perception of fine texture mainly relies on vibration

sensed by Pacinian Corpuscles [100], the morphological variation here is key for this

purposive palpation [101]. An artificial active sensing system by Nurzaman et al. [59] was

capable of detecting different physical quantity, i.e. softness and temperature, by varying

the sensor morphology. The sensing probe, made of Hot Melt Adhesive (HMA) was

fabricated, extended for sensing, melted and then re-fabricated to update its morphology

for a different sensing task.

(A) Palpation with slight pressing force

skin
bone
nail

soft tissue

mechanoreceptor

(B) Palpation with larger pressing force

pressing
palpation

morphology change

texture

Figure 4.2: Illustration of scenario when human stroke with finger a surface of fine while

detectable texture. (A) Palpation with slight pressing force. (B) Palpation with larger

force. As observed, upon pressing harder, the soft tissue between textures and mechanore-

ceptors becomes locally thinner, denser and stiffer, benefiting vibration detection.

4.2.2 Biomimetic researches of fingerprints on tactile sensor

Biomimetic tactile sensors with wrinkles mimicking fingerprints structure have been de-

veloped to investigate the enhancement effect of tactile sensing. Scheibert et al. demon-

strated the spectral selection and amplification of tactile information [97]. Oddo et al.

found that curvature of fingerprints can enhance the directional isotropy in detecting tac-

tile stimuli with structural anisotropy [56]. Vasaarhelyi et al. aimed to increase sensitivity

of tactile sensing by adding elastic cover on taxel sensor [57], and Yamada et al. utilized
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skin ridges for grasping force control [58].

4.2.3 Texture and shape detection with tactile sensation

Texture and shape detection are two common areas where tactile sensing dominates

especially when vision is constrained [102]. Considering the complex contact situation

that makes it impossible for precise modeling, learning methods based on large data set

are common approaches to discriminate different textures and shapes [103, 104]. Sev-

eral learning algorithms are clustering (K Nearest Neighbour), Bayesian-based (Naive

Bayesian), and tree-based (Decision Tree) classifiers. While common machine learning

methods highly rely on domain expertise for feature representation, Artificial Neural Net-

works, especially Convolutional Neural Networks (CNN) has been popular recently as it

extracts feature within the algorithm itself [105].

4.2.4 Comparison with previous design

The present study was motivated by a wrinkled tactile sensor design previously proposed

by Qi et al. [2]. There are important differences in order to make the sensor more compact

as this design was expected for a future application on robotic finger as envisioned in

Fig. 4.1. In detail, previous dimension was l= 100 mm, w= 15 mm, h= 20 mm while

present is l= 100 mm, w= 10 mm, h= 8 mm. The substrate material has been modified

from Ecoflex-0050 (Shore Hardness 00-50, 100% Linearized Tensile Modulus 82.74 kPa) to

Ecoflex-0020 (Shore Hardness 00-20, 100% Linearized Tensile Modulus 55.16 kPa) that is

much softer. Apart from the top film, another tape was attached to the bottom for easy

integration in experimental platform. Most importantly, the previous design was based

on stretching actuation while the present design on bending actuation.

4.3 Fabrication, Characterization and Finite Elemen-

t Modeling

4.3.1 Fabrication

The fabrication process was initially detailed in [2] and summarized here along with

modifications that have been made to suit for bending actuation. As illustrated in Fig.

4.3, Ecoflex00-20 (Smooth-On, USA) was thoroughly mixed with the weight ratio of Part

A:B being 1:1, modeled into rectangular shape (l= 100 mm, w= 10 mm, h= 8 mm) with
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a 3D printed mold, then degassed and cured in an oven. The cured soft material was

pre-stretched from original length to l= 120 mm before a commercially available strain

gauge and stiffer kapton tape were attached to the top surface in sequence using silicon-

compatible glue (PPX). Wrinkle structure formed automatically upon releasing the pre-

stretching. Another tape was then attached to the bottom.

(A)

(E)(D)

(C)(B)

mould

oven

  kapton film

prest
retc

hed

rele
ased

ecoflex00-20

attach with glue

degas & cure

(60 min)

(5 min)

substrate
strain gauge

(F)

attach with glue

Figure 4.3: Sensor fabrication process. (A) Ecoflex00-20 was mixed with the weight ratio

of Part A:B being 1:1, then poured into a 3D printed mold. (B) The whole model was

degassed and cured at room temperature in a vacuum oven. (C) The sensing element

and kapton tape were attached in sequence to the pre-stretched substrate. (D) After 5

minutes for glue drying, the pre-stretch was released. (E) Wrinkle structure formed on

top with sensing element located at one wrinkle bump. (F) Another tape was attached

to the bottom for easy integration into experimental platform.

4.3.2 Geometrical characterization of wrinkle structure

The morphological variation of the proposed sensor will be provided by bending actu-

ation, which is a mimicking abstraction of bending behavior of human finger. It is then

worthy of modeling how the wrinkle structure changes upon bending in order to char-

acterize this structure. Symbols used for modeling are listed in Table 4.1. In addition,

following assumptions are made:

• Wrinkles over whole structure are identical. The bending is circular and uniform,

thus θ = N ∗ θ′, L = N ∗ L′, l = N ∗ l′ and lw = N ∗ l′w.

• Thickness (t) remains constant during bending.
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• As in Fig. 4.4, the wrinkles are sinusoidal and the basic features of each can be

approximated by that of the isosceles triangle, namely, α = α′, l′ = ltb and l′w = lts.

Figure 4.4: Geometrical modeling of sensor, where geometrical property of wrinkle struc-

ture can be approximated by that of the characterization triangle marked in red. Symbols

and definitions are listed in Table 4.1.

At the beginning, wrinkle number N , wrinkle height h and length of sensor bottom line

L are determined by fabrication, thus known at initial state when no bending happens.

Moreover, N and L remain constant since the kapton tape is inextensible whereas h varies

during bending. As assumed, basic features of wrinkle wave can be approximated by that

of the isosceles triangle, following relationship holds based on Pythagoras’ Theorem,

lts =

√
h2
ini + (

ltb
2

)2 (4.1)

Bending platform in here was design as circular, where the radius R and bending angle θ

change while perimeter L remain constant, thus, L = R ∗ θ and l = (R+ t)∗ θ. According

to Cosine Formula,

l2ts + l2tb − 2ltsltb cos(α′) = l2ts (4.2)

Therefore, geometrical structure of wrinkle can be determined by following equations,

which are derived by solving assumptions equations, Eq. 4.1 and Eq. 4.2,
l′ = (L+θt)

N

h =
√
h2
ini − Lθt

2N2 − θ2t2

4N2

α = arccos( L+θt√
4N2h2ini+L

2
)

(4.3)

that indicate bending actuation θ can directly vary wrinkle’s geometrical morphology.

Upon bending increases, l′ increases, h and α decrease, and vice versa.

4.3.3 Finite element modeling

In here, the wrinkling and bending behavior of the sensor were simulated and analyzed

with the commercial software ABAQUS. As can be readily and intuitively inferred, the

proposed sensor design was symmetrical w.r.t x-axis and z-axis. Therefore, all simulations

here were simplified to two-dimensional (2D) analysis with in xy-plane.
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Table 4.1: Nomenclatures (refer to fig. 4.4)

Symbols Definitions

N Number of wrinkles over structure (constant)

L Length of bottom line/arc over wrinkles (constant)

L′ Length of bottom line/arc over one wrinkle

l Length of arc tangential to valleys over whole structure

l′ Length of arc tangential to valleys over one wrinkle

ltb Length of bottom side of approximation isosceles triangle

lts Length of equal sides of approximation isosceles triangle

lw Length of sinusoidal wave over wrinkles

l′w Length of sinusoidal wave over one wrinkle

t Thickness between valley and bottom line

h Amplitude of wrinkle structure at initial state

hini Value of h at initial state (known)

θ Bending angle over wrinkles

θ′ Bending angle over one wrinkle

α Inclined angle of embedded sensing element

α′ Inclined angle of approximation triangle

Simulation of wrinkling behavior

The wrinkling behavior was modeled as 2-step analysis that simulated the real fabrica-

tion process [106]. In the first step, a rectangular substrate of 80 mm long and 8 mm thick

was stretched to 120 mm and the stress distribution was recorded over the whole process.

A symmetrical Boundary Condition (BC) on left, a planar deformation BC on bottom

and a displacement BC on right were constrained. The second step was shown in Fig. 4.5.

The deformed geometry together with stress output from last step was imported before

the thin film of 120 mm long and 0.2 mm thick was added and tied to the substrate. The

BCs are two symmetrical constraint on left surfaces of substrate and film, and a planer

deformation constraint on the bottom surface. The imported stress acted as a predefined

field. Wrinkle structure appeared when the stress was released, as in Fig. 4.5 (B). Note

that colormap in Fig. 4.5 (A) indicated no numerical difference because the pre-stretching

was simulated as a static process, causing uniform stress distribution in substrate.
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Figure 4.5: The wrinkling process of proposed sensor in Finite Element Modeling. This

is a two-step analysis, where step - 1 is the pre-stretching of the substrate and step - 2

includes attachment of film and strain gauge, and release of pre-strteching. It shows

merely step - 2 as wrinkle forms in this stage. The stress is expressed in Mpa. (A) Initial

state of step - 2 where three boundary conditions were set. (B) Wrinkling process with

two insets, one showing node displacement along vertical direction from initial state and

the other the stress distribution. It shows that where there is no vertical displacement in

Inset - 1, there is minimum stress in Inset - 2.

Simulation of bending behavior

Bending behavior was simulated here to demonstrate that bending actuation can sig-

nificantly vary the wrinkle structure as shown in Eq. 4.3. In here, the circular bending

was introduced by a platform, which is much stiffer than any other part this model, under

pure bending moment. Specifically, there were three parts including the deformed film,

substrate and bending platform. Similar to last simulation, both substrate and film were

imported as orphan mesh with stress field. Three parts were tied together in sequence.

Four BCs included symmetrical BC on left of film, substrate and platform, and a momen-

t constraint on the right of platform. Different bending states could be achieved when

various moment was applied. Fig. 4.6 shows the geometrical change of wrinkle structure.

Note here that each sub-figure was mirrored by y-axis to show the whole structure of the

sensor. As can be seen here, the more the sensor is bent, the smaller the wrinkle height

and the inclined angle are. This agrees with the trend by Eq. 4.3, indicating that the

geometrical model can well predict the bending behavior. The same trend can also be

observed in Fig. 4.7 that presents the experimental setup as well as the morphological
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variation in real experiment.

Figure 4.6: Simulation of sensor bending behavior. (A) - (H) Morphological difference

when bent by different angles. As observed, the more the bending is, the shorter the

wrinkle magnitude and longer the wavelength. Note that the modeling was performed as

a symmetric structure while visualized as a whole. The colormap was expressed in mm.

4.4 Experiments and Results

The experiments were inspired by how human use the sense of touch. We press to

determine softness, palpate edges to judge shape and stroke a surface to detect texture.

As an analogue, three tasks that are normal indention, shape discrimination and texture

detection were conducted for the sensor under multiple morphological states.
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4.4.1 Normal indention

Setup

As shown in Fig. 4.7, the sensor was attached to a series of platforms with different

bending angles. A semi-cylinder indenter was connected with a loadcell (Nano 17, ATI

Industrial Automation, USA) to perform indention so that force can be monitored. The

horizontal and vertical movement were provided by a X-Z linear stage. Furthermore, for

integrated control, a Python script was developed to synchronize motor control, sensor

signal reading and force recording. The sensor signal and force data were recorded by

an integrated strain measurement device (EDX-10B, EDX15A and UI54A-120, Kyowa,

Japan) and a data acquisition device (NI USB-6343, National Instrument, USA), respec-

tively.

(A)  θ = 0 (B)  θ = �/6 (C)  θ = �/3

(F)  θ = 5�/6(E)  θ = 2�/3(D)  θ = �/2

θ

linear stage loadcell&indenter

sensor
Z

X

Figure 4.7: Experimental setup and wrinkle morphological variation under different bend-

ing states. (A) - (F) Different bending states showing the same trend of morphology change

as in Fig. 4.6. Since the strain gauge was embedded at one side of wrinkle bump, its

orientation changes during bending as well. θ indicates the bending angle.

Method

The indention test was performed for every one of the bending states characterized by

following angles [0, π/6, π/3, π/2, 2π/3, 5π/6, π]. Specifically, at one bending state, the

exact wrinkle bump with strain gauge was pressed with force up to each of the values [0.1,

0.2, 0.3, 0.4, 0.5] N. Each indention was repeated 10 times, thus 350 recordings in total
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were derived from this testing. Note that the force range was selected since larger forces

may trigger highly nonlinear contact behavior, same as the reason in [2].

Results

Fig. 4.8 (A) showcases different responding profiles when the sensor was bent by π/3.

Note that curves were shifted 1 second along time for clearer presentation. Inset-1 shows

a closeup of the case of 0.1 N, indicating that the sensor reached maximum output in a

step manner. The step profile was due to the loading process as shown in supplement

video. Further, it demonstrated a good dynamic response as it reacted to the short pause

induced by control strategy. Fig. 4.8 (B) plotted the mean and standard deviation of

all the data. The sensitivity to normal indention of small force range was tuned by a

trade-off effect of two factors that are the inclined angle of strain gauge and the overall

stiffness [2]. Here, this effect can be observed when indention force is smaller than 0.3 N.

Take loading case of 0.2 N for example, the sensitivity increases from θ= 0 to θ=π/2

mainly because of inclined angle change, then decreases from θ= 2π/3 to θ=π due to

stiffness increase which provides more resistance to normal stimulus. Then, when sensor

was exposed to force range larger than 0.3 N, the stiffness change dominantly tuned the

sensitivity. This is the reason that sensitivity decreases along the bending extent for

loading cases of 0.4 N and 0.5 N. In summary, wrinkle morphological variation introduces

orientation and stiffness changes thus varying sensitivity to normal stimuli.

4.4.2 Shape discrimination

Setup

The same equipment setup as the indention test was adopted, except that three indenters

of different shapes was used here. The three shapes are semi-cylinder referred as “C”,

wedge as “W” and square as “S”, as shown in Fig. 4.10 (B).

Method

Each indenter was controlled to slide over the wrinkle with strain gauge such that the

maximum vertical force was 0.1 N. In detail, the procedures are as followed (a) The inden-

ter was pressed down to the wrinkle until force threshold. (b) Slide leftward horizontally

for 5 mm to the initial place starting from where the data was to be recorded. (c) Slided

the indenter rightward for 10 mm at one of preset speeds [2, 4, 6, 8, 10] mm/s, meantime
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Figure 4.8: (A) The loading cases while sensor was bent by θ=π/3. The sensor was

pressed up to a normal force threshold while reading recorded. The same pressing was

repeated for each of [0.1, 0.2, 0.3, 0.4, 0.5] N. Inset - 1 is a closeup showing step response

manner. (B) The response profiles to a series of normal forces as in (A) when sensor is

under various bending angles [0, π/6, π4/3, π/2, 2π/3, 5π/6, π]. The sensitivity to stimuli

under 0.3 N was affected by a combination of two factors that are the inclined angle of

strain gauge and the overall stiffness, as verified in [2]. While sensitivity to larger force

was dominantly tuned by the latter.

recorded the sensor response. (d) Each sliding was repeated 50 times. It is emphasized

that (a) and (b) were performed to control the vertical force during sliding so as to make

sliding condition constant. Here, the experiment were performed for sensor under three

bending states that are θ=0, θ=π/3 and θ=π. Accordingly, dataset for each bending state

contains 750 samples and within each dataset there are 250 samples for one indenter.

As for classification, four supervised learning algorithms including Decision Tree (DT),

K-Nearest Neighbor (KNN), Support Vector Machine (SVM) and logistic regression (LR)

were implemented. The original data, before feature extraction, were scaled to range

between -1 and 1 with Maximum Absolute Normalization method (MAN). Mean and

standard deviation of each sample were extracted as classification feature. At last, 30%

of all data were selected as testing dataset. The classifiers and data pre-processing were

performed with scikit-learn 0.20.1 [107]. While the performance of supervised learning

highly depends on extracted features, it may undermine any conclusion derived from those

results. Thereby, CNN was constructed for this classification task as it extracts features

within own algorithm and requires no special domain expertise [105]. The structure

of CNN is detailed in Fig. 4.9. In there, features of training data were extracted by
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four convolutional layers and four pooling layers before they were fed to a fully connected

networks with one hidden layer for class output. Note that original data was downsampled

to fixed length (1200) with scipy 1.3.1 [108] first. CNN was implemented in Tensorflow

1.14.0 [109]. All classifications were implemented on a computer with a CPU @ 2.40 GHz

(Intel Core i5-9300H) and a RAM @ 16.0 GB.

The detailed parameters and settings of each classifier are as below. Note that I have

tried to use the default setting by the package (scikit-learn) as it is the difference of

performance on each data set that is of my care.

• DT: In this classifier, the “gini” impurity was used as the criteria to measure the

quality of one split .

• KNN: KNN chooses k nearest neighbours to the classifying point from the training

data and determines the label based on the label of these k training points [107]. In

this classification, k is set as 5.

• SVM: The SVM was implemented with a Radial Basis Function (RBF) kernel. Two

important parameters are key affecting the performance, that is C and γ, where C

trades off the training accuracy and the margin of the hyper-plane, and γ tunes the

influence of a single training sample [107]. In this task, C = 1.0, and γ= 0.01.

• LR: The solver of the “One-vs-One” multinomial LR model was selected as “newton-

cg” with L2 regulation method [107]. In this model, the parameter C was set to be

1.0 by default.

• CNN: As shown in Fig. 4.9, the CNN consists of four convolutional layers with

ReLU as activation function, and four pooling layers using maxpooling and “same”

padding method. Each experiment was performed 100 epochs with learning rate

being 0.0001.

Results

Fig. 4.10 shows typical sensor response during sliding at two different speeds, 8 mm/s

in (A) and 4 mm/s in (B). The solid line indicates the average of 50 samples, and the

shading area is the standard deviation. As clearly presented, the sliding pattern within

each shape is quite constant, and unique compared with other shapes. Changing the

sliding speed resulted in the same profile in different time scale, which indicates that the

sliding pattern contains information unique to that indenter of particular shape. Further,

mean and standard deviation of each sample were extracted and visualized in Fig. 4.11
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Figure 4.9: Architecture of the convolutional neural network, in which feature of signal

was extracted by four convolutional layers and four pooling layers before it was flattened

and fed to a fully connected network with one hidden layer for final classification. The

overhead number indicates the data structure of that layer.

in order to examine the separability. (A) - (C) are data for bending cases θ=0, θ=π/3 and

θ=π respectively in both 3D and 2D space. Note that the 3D panels are same data as

2D panel that were scattered by item number since some overlapping data in 2D space

are not fully visible. Intuitively, sensor without bending shows most separable data, as

in Fig. 4.11 (A). This remained true with the learning experiments where for all the

four classifiers (DCT, KNN, SVM and LR), the case with largest wrinkles performed the

best in term of classification accuracy presented in Table 4.2. Interestingly, while it does

not rely on feature extraction, CNN showed the same performance trend as the common

machine learning results. Therefore, it is fair to conclude that the changeable morphology

offers this selectivity of the shape perception performance. Regarding the computation

time, DCT, KNN, SVM and LR finished the training within 0.01 s, and CNN took about

20.38 s to complete 100 epochs.

Table 4.2: Learning Results (Classification Accuracy)

Bending Angles DT KNN SVM LR CNN

0 0.991 0.991 0.959 0.991 0.996

π/3 0.898 0.893 0.671 0.671 0.984

π 0.796 0.671 0.668 0.711 0.792
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Figure 4.10: Sensor reading when indenter of different shapes slides on it with two speed

options, 8 mm/s in (A) and 4 mm/s in (B). C, S and W indicate the shapes, namely

semi-Cylinder, Square and Wedge, respectively. The solid line indicates the average of 50

samples, and the shading area the standard deviation. The response patterns are quite

constant within each shape, and unique compared with other shapes. Different speeds

resulted in the same profile but in different time scale, indicating that the response pattern

contains information unique to that indenter of particular shape.

4.4.3 Texture detection

Setup

Same equipmental setup with two textured indenters as shown in Fig. 4.12 were utilized

in this experiment. There are four grooves evenly distributed (10 mm apart) on each

interacting surface. One indenter is with grooves of 0.1 mm wide (referred as “Texture 1”)

and the other of 0.2 mm (referred as “Texture 2”). Both were printed using a standard

resin material (Clear FLGPCL04, formlabs, USA) with 3D printer (Form 2, formlabs,

USA) that has minimum layer thickness of 25 microns. Closeup views of the texture

grooves, illustrated in Fig. 4.12(C) and (D), were taken by a laser microscope (VK-9700,

KEYENCE). Three measured sections for Texture 1 are 127.143, 127.979, 99.720µm and

for texture 2 are 183.097, 201.105, 181.158µm.
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Figure 4.11: Feature representation of sliding data with indenters of different shapes.

Here, mean and standard deviation of each sliding data were extracted to represent one

sliding sample. Panel (A), (B) and (C) show data points derived from sensor under θ= 0,

θ=π/3 and θ=π in 3D (left) and 2D (right) spaces. Note that data in 3D coordinates

are same data as those in 2D space but scattered by item number in order to visualize all

the data points. Intuitively, sensor without bending shows most separable responses, as

in panel (A).

Method

The indenter was adjusted so that the wrinkle with strain gauge was right under middle

of the textured surface. The data were collected during sliding the textured surface over

the wrinkled sensor. For each of the two indenters, following procedures were performed

(a) Pressed the indenter against sensor until vertical force reached 0.1 N. (b) Slided the

indenter leftward by 20 mm so that two grooves would pass over the sensor. (c) Slided

rightward by 20 mm. (d) Repeated (b) and (c) once again before restoring indenter

position. Each sliding test was repeated 3 times. The sliding speed was 4 mm/s.

For data evaluation, both temporal and frequency domain analysis were conducted. In

detail, the distance from the minimum signal peak to signal mean value was compared
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with the standard deviation. Then the Fast Fourier Transform (FFT) was performed

over the signal in order to find main frequency components. Specifically, for temporal

analysis, it is assumed that the more obvious the target information is, the higher the

accuracy of texture perception [98]. Thereby a good perception should (1) detect all the

texture details it passes over. (2) has signal peak far away from the mean indicating the

perception is more obvious. (3) has smaller standard deviation since signal fluctuation

confuses target signal. For spectral analysis, the expected dominating frequency was

calculated as Eq. (4.5),

f =
1

s
v

+ tdelay
≈ 0.363Hz (4.4)

where s (10 mm), v (4 mm/s) and tdelay (0.25 s) denote the distance between grooves, the

sliding speed and the delay time of control, respectively. Further, the amplitude ratio of

the target frequency over sum of the range frequency as calculated as below for evaluation.

R =
Atarget∑

Ai
, i ∈ [0.2, 0.4] (4.5)

where R is the ratio and A is the amplitude value.

Results

The sliding data were normalized with MAN and plotted in Fig. 4.13. Since two grooves

slided over the wrinkled sensor for 4 times, it is expected to see 8 peaks detected in each

sliding. As observed, the sensor could not find grooves on Texture 1 while all were able

to detect those on Texture 2 with different sensitivity. Further, it shows a trend that

the more the sensor is bent, the less variation the signal is. This was due to the stiffness

change of the whole sensor. In order to evaluate the performance quantitatively, several

parameters were listed in Table 4.3, where Signal Mean corresponds to red dotted line

in Fig. 4.13, Signal Std. evaluates the signal overall fluctuation, Item No. marks the

series number of lowest peak from left to right in Fig. 4.13, and distance measures the

distance between the minimum peak and the signal mean. From here, bending state by

π/3 outperforms others with largest distance. While bending state by π is most stable

with least variation of signal. Based on the criterion aforementioned, bending state by

π/3 is believed to be best in term of perception generally.

Additionally, the FFT was performed on the normalized signal after average has been

removed for Texture 2, and the frequency components were plotted in Fig. 4.15, where

(A), (B) and (C) show data from three bending cases by θ= 0, θ=π/3 and θ=π, re-

spectively. It shows that sensor when in all three bending states can detect the preferred

frequency though the detected frequency is not the dominant component, which may re-

quire more sliding cycles for enhancement. Nonetheless, it is argued that the sensor when

50



2 2

3

1 1

3

(A)

(D)

(B)

(C)

Mean: 118.281µm
Std:       16.079µm

Mean: 188.453µm
Std:       10.999µm

Figure 4.12: Indenters with grooves of 0.1 mm (Texture 1) in (A) and of 0.2 mm (Texture

2) in (B). (C) & (D) show closeup views of Texture 1 & 2 by a violet laser microscope.

Dotted lines with item number indicate sections of measurement, where widths in (C)

are 127.143, 127.979, 99.720µm and in (D) are 183.097, 201.105, 181.158µm. Note that

the groove edges are blurred since laser beam goes through transparent indenters, causing

less reflection for clearer boundaries.

bent by π/3 performed better than other states for three considerations, (1) Compared

with bending case by 0, the ranking of the true sliding frequency in (B) is higher than

that in (A), making the true frequency more obvious among other components within the

signal itself. (2) Compared with bending case by π, true frequency has higher magnitude

which indicates sensitive detection of the true frequency. (3) The amplitude ratio under

this state is maximum (R0 = 0.41, Rπ/3 = 0.50, Rπ = 0.46). Therefore, among all three

bending cases the bending by π/3 stands out in both temporal and spectral analysis.

4.5 Discussion

A few remarks need to be further discussed. First, compared with previous material

combination, the present design showed a smaller range of vertical force because a softer

substrate was utilized. Nonetheless, this would not be our concern as one can always
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Table 4.3: Information about Lower Peak

Bending Angles Signal Mean Signal Std Item No. Distance

0 - 0.293 0.123 4th 0.228

π/3 - 0.486 0.091 4th 0.274

π - 0.575 0.078 1st 0.135

manipulate this by using an alternative material combination, which had been modeled

and elaborated in [2].

The tunable ability of texture detecting found can infer the function of human finger-

prints. As shown in Fig. 4.14, when there is no or very small wrinkle, no local deformation

will be caused during sliding. On the contrary, when the wrinkle exists, it can then extend

itself to find the texture detail on the surface.

The bending actuation was implemented in a discrete manner, namely by an array of

static platforms. However, for the purpose of a future application in an active tactile

sensing system, an actuator capable of continuous bending is then required. A promising

solution is an robotic finger as illustrated in Fig. 4.1, where the bending state of the

sensor can be tuned by the joint rotary motion.

A limited number of morphological options were tested for shape classification and

texture detection. The integration of continuous bending actuator will enable an online

optimization process thus offering an unlimited number of sensor morphology in order to

get best performance. Once this interdependence relationship is thoroughly known, only

a simple controller with less expensive computational power will be needed for realization

of active sensing process, as part of the computational work that would have been done

to vary the sensorimotor strategy for better perception has been “offloaded” to sensor

morphology.

4.6 Conclusion

We have presented that the wrinkle structure and overall stiffness of the proposed

sensor could be changed significantly by simple bending actuation. These morphological

variations were demonstrated to be effective in tuning the performance of sensing and

perception in different tasks, by implementing three tests including vertical force sensing,

shape classification and texture detection for the sensor in different bending states. Within

the range of morphological variation tested, there was an uniquely optimal state for each
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Figure 4.13: Sensor responses to sliding with two textures when sensor is under three

banding states, θ= 0 in (A), θ=π/3 in (B) and θ=π in (C). Since two grooves slided

over the sensor for 4 times, it is expected to detect 8 peaks. Obviously, the sensor can not

find grooves on Texture 1 while was able to detect those on Texture 2. While it performed

best when sensor was bent by π/3 as the distance between minimum peak and signal mean

is most obvious, which limits the best sensitivity to that groove. This conclusion will be

further justified by spectral analysis.

task, indicating the possibility of enhancing tactile perception by, rather than changing

sensorimotor control strategy, adapting the sensor morphology to specific tasks, which is

computationally much cheaper. These findings are believed to shed light for novel active

sensing system design that alleviates the needs for high computational power and large

integration complexity of the central control system.
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Figure 4.14: Illustration of texture detection scenarios. (A) When there is no wrinkle

on sensor, no local deformation happens in between object and sensor. (B) Wrinkle of

feasible size can extend itself and interact with texture more closely in order to respond

during sliding.
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Figure 4.15: FFT analysis of texture sliding signal when sensor is under three different

bending states, θ= 0 in (A), θ=π/3 in (B) and θ=π in (C). While the sensor in all

three bending states can find the real sliding frequency, the sensor bent by π/3 is argued

to perform the best based on two observations, (1) compared with case of no bending,

the ranking of the true sliding frequency in (B) is higher than in (A), making the true

frequency more obvious among other components, (2) compared with bending case by π,

true frequency has higher magnitude which infers sensitive detection of the true frequency.
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Chapter 5

Adaptive Morphology Facilitating

Gripping Functionality : RetracTip

Abstract

This chapter introduces a new prototype called “RetracTip” which is a multifunctional

and energy-efficient gripper. RetracTip consists of a pinned gripper for gripping and an

embedded camera for sensing functionality. The gripper is enabled by an adaptive mor-

phing dome membrane with pins on its outer surface. The morphing dome is bistable in

that it can stay at either of the two stable states “natural” and “retracted” with further

energy input. This property is potentially very helpful in that during holding an object,

the gripper costs no power regardless of the operating time. This chapeter includes a se-

ries of evaluations on the functions separately and then jointly for characterization. From

the viewpoint of the mechanical design, RetracTip was evolved from its early predeces-

sor, “TacTip” which is a visual tactile sensor, by fitting the pinned morphing membrane

into the structure, offering the extra gripping functionality. This provides another argu-

ment that adaptive morphology can potentially extends functionality of soft robotics and

optimized the gripping function by improving the power efficiency.

5.1 Introduction

Soft robotics has been directed to augment the ability of robots to function more se-

curely, adaptively and autonomously with reduced system complexity in unstructured

environments [5, 10, 110]. This trend embraces those robots that are multifunctional and

energy efficient [10]. Biology has long been a source of inspiration for robotics. From

this perspective, sea anemones are enormously potential. Extremely simple as they are
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since neither visual capacity nor centralized nervous system but four main components

(tentacles, a mouth, an internal cavity and a hydraulic skeleton with retract muscles as

in Fig. 5.1 Inset 1) exist, they can effectively detect, immobilize, catch and transport

for ingestion preys of arbitrary sizes and shapes [111], which have been enabled by the

efficient coupling of sensing and actuation. The sea anemones deliver remarkable enlight-

enment towards compact and multifunctional soft robotic grippers capable of self-sensing,

detecting, and grasping unknown objects with enhanced security, reliability and energy

efficiency, and the trend has been proposed in review articles [19,112,113].

Figure 5.1: Conceptual design of RetracTip and its engineering setup of an autonomous

gripping system. Inset 1 is the biological structure of sea anemone and inset 2 is the

bio-inspired structure of RetracTip. Insets 3 and 4 indicate the two states (“natural” and

“retracted”) that enable the grip and release functionality.

By mimicking the body structure of sea anemones, we propose a compact, multifunc-

tional and energy efficient universal gripper design as in Fig. 5.1. As an analogy to the

predation behaviour of sea anemones, the gripper can self-sense, detect and grip various

objects with arbitrary sizes, shapes and weights. The energy efficiency is improved by

eliminating the need for continuous actuation during the holding process with creative

implementation of a bistable spherical dome membrane. Moreover, because of the bista-

bility, the gripper is augmented with friction modulating capability that can potentially

be useful for applications such as active manipulation.

The article starts with an introduction of the concept and the background. Then it is
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followed by an elaboration of conceptual design and fabrication. The threshold geometry

of transition from monostability to bistability is decided based on finite element method

simulation. The gripper is then verified in terms of its separate multiple functions in-

cluding sensing (proprioceptive and exteroceptive), gripping (grasping and pinching) and

friction modulation. After, a case study is presented to demonstrate the potential to

serve as an intelligent sensorized gripper. The discussion is followed before the conclusion

finally.

5.2 Related Works

5.2.1 Robotic grippers

Robotic grippers often appear in three common morphological designs, that is, multifinger-

based, suction-based and pin-based. The pioneer anthropomorphic multifinger grippers

are represented by the work of Suzumori et al. consist of four fluidic elastomer actuators

yielding the ability to grasp and manipulate a variety of objects even metal handtool-

s [114]. Since then, there have been a substantial number of examples that either diversify

materials [115] and principles in design [116], specify application [106, 117] or augment

functionality [118]. Provided the success in animals, this design obviously has many ad-

vantages. Yet, fast gripping of small items remains challenging as precise synchronization

of all fingers is vital. The suction-based grippers usually include a membrane-chamber

structure enabling envelop of objects by various actuation approaches such as pneumat-

ic [14,119,120], tendon-driven [121], gravity-induced [122]. The jamming grippers, within

the pneumatic category, have attracted much attention because of rapid reaction, in-

creased adaptability and reduced system complexity [14]. Apart from the representative

design of granular jamming, new mechanisms are being exploited such as tubular jam-

ming [42], fibre jamming [40] and layer jamming [41]. However, as a pre-gripping envelop-

ing is required, such design may struggle in soft and flat material handling. The pin-based

design often adapts to the shape of objects by vertical and exert force by lateral movement

of an array of pins. Since the early demonstration [123], there have been a number of

updates that contribute to optimization [124], bioinspiration [125] and new application-

s [126, 127]. Compared with the other two morphological forms playing important roles

in soft robotics, the pin-based designs remain active dominantly in conventional robotics,

offering great research potentials for soft robotic grippers.

57



Figure 5.2: Demonstration of preying process of sea anemones and the gripping and

sensing functionality of RetracTip. (A)-(E) show the preying behaviors of sea anemone,

and filming courtesy of Erlendur Bogason [3]. (F) - (J) present the spring-gripping process

of RetracTip. The gripping is enabled by pressing RetracTip against the target to activate

the snap-through behavior of RetracTip along which the wrapping movement of pins

happens. (K) - (O) show the distribution of markers during the spring gripping process,

demonstrating the sensing capability of RetracTip.

5.2.2 Tactile sensing in robotics

Tactile sensing enables the agents, biological or artificial, into which it is incorporated

the ability to understand both themselves and environment [113]. It is vital towards intel-

ligent and autonomous grippers. Various tactile sensing technologies have been developed,

including those that are piezoelectric [128], resistive [129, 130], capacitive [131], magnet-

ic [132], and optical [133]. For soft robotic integration, tactile sensors must be compliant

to not affect the intrinsic property of the soft body, and resilient to provide reliable signals

over many cycles [134]. Given all these needs mentioned, one promising technology pro-

vides tactile knowledge, such as deformation, force and material property, by visual infor-

mation, and representative examples include Gelforce [135], GelSight [136], TacTip [137].
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The TacTip is particularly interesting because of its compact and biomimetic design that

was inspired by the mechanoreceptors in human fingertips making it possible to provide

abundant tactile information [137]. Sensorized grippers with TacTip integration include

M2 [138] and TacEA [139].

5.2.3 Energy efficiency and bistable structures

Improving energy efficiency is a preferable trend towards unleashing the full potential

of soft robotics [110, 140]. All the aforementioned grippers, however, require continu-

ous energy input to maintain holding objects thus intuitively are less efficient in power.

Bistable structures are potentially promising to reduce the energy consumption because

they seek to settle in either of the equilibrium configurations without the need for con-

tinuous actuation [141]. Specifically, spherical caps, as recognized among the simplest

examples of bistability [142], can snap through from the ”natural” (initial) state to the

”retracted” state and stabilize there when loading is removed. They can as well snap

back in the reversed direction when properly actuated. Once the material is specified,

bistable spherical caps can be monostable or pseudostable [143] depending on the pa-

rameter variations such as depth, thickness and boundary condition [144]. By leveraging

the stability of bistable structures, extraordinary performance can be achieved for soft

robots with examples including autonomous control [145], rapid locomotion [146] and en-

ergy efficient actuation [147, 148]. Based on different applications, the actuation can be

pneumatic [147], piezoelectric [146], magnetic [149], and thermal [150], among which the

pneumatic approach is straightforward to fabricate and implement.

5.3 Concept, Simulation and Design

5.3.1 Concept

As aforementioned, sea anemones demonstrate a compact and elegant design of body

structure that couples sensing and actuation functionality, enabling their autonomous and

effective predation behavior. As illustrated in Fig. 5.1 Inset 1, the body mainly consists of

four components, that is the tentacles, the mouth, the membrane with retract muscles, and

the internal cavity. When preying, sea anemones detect targets with extended membrane

and tentacles, then catch and transport them to the mouth for ingestion by retracting

the membrane and tentacles to envelop the targets before swallowing (as shown in Fig.

5.2 A - E) [3].
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Figure 5.3: FEM simulation results of bistability of spherical caps and of RetracTip. (A)

indicates the dimension of spherical caps. (B) and (C) present the typical behavior of

monostability (H< 3.3 mm) and bistability (H> 3.3 mm), respectively. The colormaps

show the displacement along Y-axis. (D) verifies the bistability of RetracTip before

fabrication.

Inspired by this retracting-characterized predation mechanism and sensing behavior,

we propose a compact and multifunctional universal gripper with sensing (proprioceptive

and exteroceptive) and gripping (grasping and pinching) integrated. The conceptual de-

sign is presented in Fig.5.1 Inset 2. As an analogy to the biological structure, RetracTip

consists of an array of rigid pins distributed on a spherical membrane with an open area

in the middle to offer space for objects. The internal chamber generates adequate space

for membrane to retract for griping. Here, the membrane is bistable offering two equilib-

rium configurations referred to as “natural” and “retracted” state shown in Inset 3 and

Inset 4, respectively. When forced to push against objects or pneumatically vacuumed,

the gripper can retract from the “natural” state to the “retracted” state and settle there

without continuous loading required. The gripping functionality is realized by the cen-

tripetal gathering movement of the pins because of the local-lever effect along with the

membrane retraction (as demonstrated in Fig. 5.2 F - J). Because of this, the gripper is

coined as “RetracTip”. To further equip RetracTip with sensing capability, one overhead

camera is adopted to track the movement and distribution of markers printed inside the

membrane thus to realize both proprioceptive and exteroceptive sensing. Fig. 5.2 K - O

demonstrate the exteroceptive sensing potentials. Additionally, compared with peer grip-

pers, RetracTip is energy efficient in that it can settle in either of the stable states and

no further energy input is required.
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Figure 5.4: Mechanical design of RetracTip. 54 tapered pins and 61 markers are printed

on a bistable membrane. The rigid core inside the pins is to stiffen them and the white

cap on top of markers is for the tactile information tracking by the overhead camera

sensor. External pneumatic source is used to trigger the snap-through and snap-back by

vacuuming and pressurizing RetracTip via the tube joint.

5.3.2 Design and simulation

The bistability of the spherical membrane is essential in this design. As reviewed in

the introduction, it depends on several factors including the depth (H), the thickness

(T) and the boundary conditions (as shown in Fig. 5.3 A). The dome membrane with

specified material can be either monostable or bistable depending on these parameters.

For instance, when the boundary condition and thickness are specified, there is a threshold

depth in that caps “deeper” than this threshold are bistable, otherwise are monostable. In

an effort to minimize the trial-and-error design and fabrication process, we first ran a series

of Finite Element Method (FEM) simulations for dome membranes with a predefined

thickness to decide the threshold depth. Then we came up with the mechanical design

of RetracTip as illustrated in Fig. 5.4. Finally we simulated the bistability of RetracTip

before fabrication in order to verify that the bistability would not be affected by the

added pins and markers. The simulation was performed with Abaqus/CAE, a professional

software for FEM modelling.

Simulation of dome membranes. The bistability was simulated by vacuuming the
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internal surface of the dome membrane with a fixed rim as shown in Fig. 5.3 A. Here,

we fixed the radius (R) and thickness (T), and varied the depth (H) from 2 mm to 8 mm

with a step increment of 0.2 mm. The material was set to be Tango Black+ with a

linear constitutional model (Young’s modulus: 0.1 MPa, Poisson ratio: 0.48) [151]. It was

modeled as a two-step quasi-static process (dynamic, implicit) as the dynamic response

is beyond our concern. We first vacuumed the membrane with a negative pressue (P)

to trigger the snap-though, then released the vacuum after it stabilized in the retracted

position. As illustrated in Fig. 5.3, the threshold depth was found to be 3.3 mm. A typical

monostate example is present in Fig. 5.3 B (Monostable, H = 3 mm, P = 0.5 kPa) and a

bistable result in Fig. 5.3 C (Bistable, H = 4 mm, P = 0.5 kPa). As can be seen, both

membrane snap through from the natural state to the retracted state when activated.

When deactivated, the monostable structure snaps back to the original state while the

bistable remains at the retracted position.

Design. With the threshold depth being determined, the mechanical design of the

gripper was then settled as shown in Fig. 5.4. To mimick the tentacles of sea anemone,

we printed an array of 54 tapered pins on the outer surface of the membrane. The pins

consist of rigid cores to increase the stiffness and soft skins to increase friction force for

gripping. Inside the chamber, we printed a total number of 61 cylindrical markers on the

internal surface for tactile information extraction. The markers were designed to have

white caps on top for the purpose of easier tracking their movement and distribution.

The dimensions were designed to not affect the bistability of the dome membrane. For

fabrication, the whole structure was 3D printed with a dualmaterial 3D printer (Stratasys

Ltd, USA). The rigid components (marked as light colour in Fig. 5.3) were printed in hard

plastic material (Vero White) while the soft parts (marked as dark color) were in a rubber-

like material (Tango Black). A USB camera (640× 480 pixels, Inspection Cameras, UK)

with tunable LED illumination was mounted overhead to extract the tactile information

during action.

Simulation of RetracTip. As the pins and markers would increase the overall stiffness

thus influence the bistable property, we simulated the complete membrane structure with

pins and markers to verify the bistability of the design before fabrication. Instead of

the method of “dynamic, implicit”, “dynamic, explicit” was adopted because the former

struggled with an infinite long calculation time. The rigid material was set to be Vero

White with a linear constitutional model (Young’s modulus: 2495 MPa, Poisson ratio:

0.4)51, the soft material was the same Tango Black +. In order to improve the efficiency

of analysis, the mass during the simulation was scaled up by a factor of 1,000,000. The

quasi static process was achieved by increasing the step time, that is, 40 s for vacuuming

and 120 s for releasing. The result is finally presented in Fig. 5.3 D and the bistability

was found to remain with the added pins and markers, justifying the feasibility of our
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design.

Figure 5.5: The experimental setup. (A) overviews the system setup including control,

power, pneumatic and motor systems. The control system consists of one main controller

and two local controllers (DS 102 for the motor system and Arduino for the pneumatic

system). The main controller synchronizes the sensing of RetracTip and the control of

two local controllers. (B) illustrates the pneumatic system which is capable of vacuuming

and pressurizing RetracTip by switching off/on the solenoid valve. A distributed control

algorithm is implemented in local controller 2 (Arduino) which receives a control signal

from the main controller.

5.4 Experiments and Results

RetracTip has multiple functionalities including sensing (proprioceptive and exterocep-

tive), multimodal gripping (grasping and pinching) and friction modulating. Here, we

first conducted a series of experiments to validate all the claimed functions separately.

Then we constructed an autonomous gripping system to demonstrate the potential to

achieve closed-loop gripping control that is all based on the integrated functionalities

within RetracTip.
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Figure 5.6: Two gripping modes and the corresponding characterization of griping capa-

bility. (A) shows the schematic of two gripping modes, that is, grasping and pinching,

depending on the size of objects. (B) indicates the experimental setup for the character-

ization experiments in (C) the gripping size testing and in (D) the gripping force testing.

The gripping size testing was performed by examining the successful rate of gripping a se-

ries of spherical objects with various diameters. The gripping force testing was conducted

for the two gripping modes by selecting the size of targets.

5.4.1 Experimental setup and methodology

System overview. As presented in Fig. 5.5 A, the experimental setup consists of a

control system, a power system, a motor system, a pneumatic system (xz linear stage)

and a loadcell system in addition to RetracTip. The hierarchical control system contains

a main controller in Python and two local controllers, one for motor system and the other

for pneumatic system. The main controller here is used to synchronize control of two

local controllers and sensing of RetracTip. The motor system is A 2-DOF linear stage

(horizontal: PG-650, vertical PZG-615, Suruga Seiki, Japan) with a local controller (DS

102, Suruga Seiki, Japan). The pneumatic system, as shown in Fig. 5.5 B, can be used

to either vacuum or persurize RetracTip by switching off and on the solenoid valve. A

distributed control algorithm is implemented in local controller 2 (Arduino UNO) which

receives the control signal from the main controller (in Python). Additionally, the load-

cell (Nano17 SI-50-0.5, ATI Industrial Automation, USA) can provide force information,

where needed, to the main controller via a data acquisition device (NI USB 6343, National
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Instrument, USA).

Sensing methodology. As shown in Table 5.1, the sensing capability is realized by

examining the distribution and location of markers in images sampled by the overhead

camera (at 20 fps) using OpenCV (www.opencv.org) in Python. Specifically, the RGB

images are filtered, converted into binary colour and cropped to 300× 300 pixels. Each

image is then divided into four regions of interest (ROI), that is top, bottom, left and

right (as shown in Table 5.1 note section). The distribution of markers in each ROI is

extracted by calculating the area of marker in pixels and denoted by T, B, L and R. The

tactile perception can be realized based on the analysis of these marker distributions.

Table 5.1: Results for Proprioceptive and Exteroceptive Sensing
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5.4.2 Sensing

Proprioceptive sensing

Proprioceptive sensing refers to the ability of agents to sense and perceive their own

state. Here, we performed two experiments demonstrate this functionality of RetracTip.

One is to sense the present stable state and the other is to detect its moving direction. In

the first experiment, RetracTip was vacuumed with the pneumatic system to snap through

from the natural state to the retracted state and then was inflated to snap back. In the

meantime, the distribution and movement of the markers on the membrane were recorded

by the overhead camera. This process is demonstrated in supplementary video 1. This

test was repeated for three times, and typical marker distribution for each state is shown

in Table 5.1 self-state sensing section. As can be seen, the markers distributed evenly in

each ROI in the natural state and reduced substantially in the number and the density

in the retracted state (T, B, L, R � Tori, Bori, Lori, Rori, over 10%), enabling the

differentiation of these two state.

In the second experiment, RetracTip was slided on a flat surface rightwards and then

leftwards along x direction (as illustrated in Fig. 5.8 A), with a predefined initial vertical

force of 1 N. Specifically, RetracTip was first pressed agrainst the surface (by the z linear

state) until the force threshold monitored by the loadcell. It was then slid along x di-

rection forth and back (0.5 mm/s) while the membrane deformation was recorded by the

camera. As shown in supplementary video 2, the distribution of the markers in each

ROI when sliding leftwards is quite distinct from that when sliding rightwards, especially

in the left and right regions. For direction detection, the marker areas were quantified

and presented in Table 5.1 self-direction sensing section. While the areas in top and

bottom remained similar for both stokes, those in left and right presented obvious dis-

tribution characteristics, that is L>R (11609± 280 and 10242± 29, respectively) when

sliding towards right and L<R (9544± 255 and 11040± 307, respectively) in the other

direction.

Exteroceptive sensing

Exteroceptive sensing relates to the ability to acquire information about the external

environment, for example shape and texture of objects. Human beings usually tap to feel

softness and press to sense edges and shapes. Inspired by such behaviours, we indented

RetracTip with specified vertical force (1 N) against a surface on which there exist three

different terrains (convex, flat and concave). In each indention, as shown in supplemen-

tary video 3, RetracTip was pressed by z linear stage (0.5 mm/s) and the pressing force
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was monitored by the loadcell. When the pressing force reached the threshold, RetracTip

was then lifted to the original position, then moved to the next terrain by the x linear

stage. The markers information during the whole process was recorded in the meantime,

and presented in Table 5.1 terrain sensing section after analysis. Depending on specific

terrains, the marker distribution exhibited a clear orientation difference in distribution.

Compared with the original state, there are more markers in left and right and less in

top and bottom for convex terrain (T, B<Tori, Bori, L, R>Lori, Rori), while the reverse

trend for concave surface (T, B>Tori, Bori, L, R<Lori, Rori). For the flat surface, the

markers distribute evenly in each region with a slight reduction in all regions than the

natural state (T, B, L, R<Tori, Bori, Lori, Rori). This experiment demonstrates that

RetracTip can effectively detect and differentiate different shapes and terrains.

Figure 5.7: Demonstration of gripping capability. (A) – (H) show the gripping of a series

of printed objects by grasping (A) - (D) and by pinching (E) - (H). (I) – (P) present the

gripping of various daily objects, from those that are rigid to those that are thin, soft and

flexible.
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5.4.3 Gripping

The gripping process of RetracTip is passive. When pressed against the object to

trigger the snap-through behaviour, RetracTip will envelop the object by the centripetal

movement of the pins on the outer membrane. Depending on the size of the objects, it

can form either a complete wrap-up or a partial envelop, inducing two gripping modes

(grasping mode and pinching mode, respectively) as illustrated in Fig. 5.6 A. In this

section, we evaluate the gripping capability regarding the object size that can be gripped

and the gripping force for both gripping modes.

Gripping size and force

In order to determine the minimum and maximum object size, we run a gripping test on

a series of 3D printed spherical objects with a diameter varying from 3 mm to 12 mm by

an increment of 1 mm. We chose spheres here to exclude the influence by different shapes.

The testing scenario is illustrated in Fig. 5.6 B and each test was repeated ten times. The

successful rate of gripping for each category was recorded in Fig. 5.6 C. The minimum

diameter of a successful gripping is 4 mm, and the maximum is 10 mm considering the

rate for 11 mm is relatively low. Moreover, Retractip tends to grip spheres smaller than

6 mm by grasping and those larger than that by pinching. To evaluate the gripping force

for two gripping modes, we chose two spheres to represent the grasping mode (5 mm)

and pinching mode (8 mm). The force was collected by the loadcell and reported in Fig.

5.6 D. The force by grasping is slightly higher than that by pinching, because intuitively

it would take more energy to fall off from the complete wrap-up than from the partial

envelope.

Gripping various objects

We validated the capability to grip objects of a wide range of arbitrary sizes, weights

and shapes in this section, and present the result in Fig. 7. The top four subfigures (A -

D) present the ability to grasp small size objects with various shapes including sphere,

cylinder, cube and cross. Subfigures (E - H) report the pinching cases with larger objects,

where only a small partial envelop was formed in each case. It was also tested on a series

of daily components including screw and nut (1.15 g), a spring (0.18 g), a LED (0.25 g)

and a resistor (0.11 g) (I - L), and on several flat and compliant materials that are a wire

(0.58 g), a plastic bag (0.59 g), and rubber glove (8.9 g) and a piece of fabric (0.25 g)

(M-P). We showed that RetracTip can pick up with ease and elegance all these small,

delicate, compliant and flat objects that could be challenging for conventional universal
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grippers.

5.4.4 Friction Modulating

Figure 5.8: Friction modulation testing. (A) is the experimental setup and (B) presents

the friction rate for two stable states of RetracTip. The friction can be tuned very

effectively by selecting either.

The friction modulation is enabled by actively selecting the interacting material, either

the rubber-like compliant material of dome membrane or the plastic-like rigid material

of the gripper frame, with environment. In order to quantitively verify such possibility,

we performed this test to measure the friction coefficient under both states. Specifically

as shown in supplementary video 3 and Fig. 5.8 A, RetracTip was controled to slide

under two stable states individually against a 3D printed ABS flat surface. The initial

vertical force was specified as 0.2 N, 0.5 N and 1.0 N and controlled by the loadcell, and

the horizontal force was recorded during sliding by the same sensor. Each slikding was

repeated by 3 times. The data is analysed and plotted in Fig. 5.8 B. The average

coefficient values are 0.894± 0.015, 0.741± 0.021 and 0.743± 0.009 for the natural state,

and 0.187± 0.008, 0.204± 0.006 and 0.208± 0.001 for the retracted state, demonstrating

very efficient friction modulation capability which can be potentially useful for scenarios

such as active manipulation.

69



Figure 5.9: The control flowchart of the RetracTip control system.

5.4.5 Autonomous Gripping Control

Up to now, we have tested the main functionalities of RetracTip separately. Here,

we demonstrate a case study for autonomous gripping control, in which we used the

integrated tactile sensor to first sense and perceive the gripping condition and then to

feedback to the controller in order to determine next move. The control flowchart of this

process is shown in Fig. 5.9. The demonstration is presented in supplementary video

4. Specifically, RetracTip was pressed against a cylinder to grip while monitoring the

gripping condition by the sensing functionality. Once a snap-through of the membrane

that assures a firm gripping was detected, the system will stop going down, returned to

the initial position before dropping the object. By such a simple demonstration we showed

the great potential of our compact universal gripper design towards a fully autonomous

gripping system.

5.5 Discussion

The mechanical design is key to shape the functionality of RetracTip. Particularly there

is a trade-off relationship between the functions of gripping and friction modulation, which

exhibit when varying the depth of cap (H) and the length of pins (L). As illustrated in
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Figure 5.10: The trade-off relationship between two functionalities (gripping and fric-

tion modulating) induced by the variance of pin length (L) and membrane depth (H).

Both functionalities can be achieved simultaneously only when a suitable ratio of the two

parameters (L, H) is selected as in (A).

Fig. 5.10, both functionalities can be achieved at the same time when L is approximately

equal to H. The case where L is far greater or far smaller than H will always lose either

of the two functions.

Apart from the passive gripping that has been verified in this article, RetracTip can

potentially realize active gripping as well by vacuuming the gripper when approaching the

target. While the active gripping may yield a safer interaction between the membrane

and the object as no hard contact is required to active the snap-through, it will need a

precise control to ensure a firm grasp with a sufficient part of the object immersed in the

pin envelope.

The design of the makers inside the dome membrane influence the sensing functionality.

For example, the size and layout of the markers determine the separability of them and

stability of data extraction in the image processing. RetracTip has been demonstrated to

be capable of both proprioceptive and exteroceptive sensing. However, to achieve sensing

that is robust and accurate, the marker designs need to be optimized and advanced sensing

algorithms need to be explored.

RetracTip is tested in this article as an end effector capable of sensing, gripping and

friction modulation. Inspired by the terrain sensing capability, RetracTip can also poten-

tially be used as a robotic foot that can provide tactile sensing for terrain based control

strategy.

The energy efficiency of the gripper need to be properly characterzied in order to reveal

the benefit of the bistable design. A possible solution could be to compare the energy

consumption performance with that of a similar but monostable design.
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The bistability of the dome membrane was analyzed in terms of the depth of the struc-

ture. There are more parameters affecting this property actually, for example, the thick-

ness, the dimension of the rim, and the existence of the pins etc. More detailed analysis

need to done thoroughly in the future to understand the bistable behavior.

Compared with the jamming gripper [14, 119], RetracTip overcomes one key limitation

by integrating both proprioceptive and exteroceptive sensing functionality enabling it to

sense the self and external state. Another advantage is the improved energy efficiency

during holding objects. Jamming gripper needs to keep pressurized to maintain the grip-

ping force while RetracTip eliminates this need by using the bistable dome membrane.

One concern, however, is that RetracTip will suffer to control the griping force actively

as it mainly operates in the passive gripping mode, as mentioned earlier. Future plan

involves testing if the active gripping mode can realize the gripping force control.

Regarding the sensing functionality, very preliminary demonstrations have been done

in this thesis. Finer sensing algorithms need to be developed for real applications such as

object localization, object detection, and object shape detection.

5.6 Conclusion

Multifunctionality and energy efficiency are two preferences for autonomous soft robots

as such robots can potentially achieve multiple vital functions with a simple and lightweight

structure and can survive longer with limited power supply. While most previous research-

es on soft robotic grippers (RetracTip) focused on enhancing the multifunctionality, we

proposed a sea-anemone-inspired compact universal gripper with improved energy effi-

ciency and multiple functionalities including sensing (proprioceptive and exteroceptive),

multimodal gripping (grasping and pinching) and friction modulating. The energy effi-

ciency was improved by eliminating the need for continuous energy input to hold objects

thanks to the intrinsic bistability. For verification, we have simulated the bistability of

RetracTip and demonstrated the multiple functionalities both individually and jointly by

separate testing on each and a final demonstration of autonomous gripping control.

The contributions of this work include: (1) the first proposal of a bionic universal gripper

with both augmented multifunctionality and improved energy efficiency, (2) the creative

implementation of a bistable dome membrane to eliminate the continuous energy require-

ment for holding objects, and (3) the construction and demonstration of an autonomous

gripping system with a hierarchical control regime. In summary, this work delivers an

excellent example for bioinspired gripper that mimicking both the structure and action

of the biology analog, and is expected to pave the way for soft robotic design aiming to
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improve multifunctionality and energy efficiency simultaneously.
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Chapter 6

Conclusions and Outlook

This thesis studies the beneficial effect of adaptive morphology on soft robotics via the

research work on two prototypes, a soft tactile sensor “WrinTac” and a multifunctional

soft gripper “RetracTip”. Within both samples, adaptive morphology was incorporated

appropriately in order to enable adjustable behaviour accordingly. A few case studies are

given in Chapter 3 – 5, demonstrating that adaptive morphology are beneficial not only to

sensing and perception, but also to actuation, gripping for example. While the underlying

mechanism for such enhancement remains not fully revealed, it was speculated to be the

stiffness and shape changes that have led to the variations.

In this chapter, it first summarizes the contributions of this study by revisiting some

key points argued in previous chapters. Then the conclusion with insights is drawn in

order to bring this study to the interests of a wider community. Finally, it speculates and

points out the future work that needs to be done.

6.1 Summary of Contributions

Overall, the exploration of adaptive morphology of soft sensors and grippers in this s-

tudy provides a comprehensive and pioneer work looking into how variable and adaptable

morphology can facilitate sensing and gripping function of soft robotics. It demonstrates

the great potential of adaptive morphology to enable soft robots with more complex be-

haviours and optimized performance such as extended sensing range and operational space

and improved energy efficiency, which are all vital requirements for future autonomous

soft machines expected to work in ever-changing, complex and unstructured environment.

Specifically, the numerous contributions of each chapter are summarized in detail here.

Apart from the demonstration of beneficial influence of adaptive morphology on tactile
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sensing, we, for the first time, integrates the wrinkle morphology that is variable into the

design of a soft tactile sensor with a multilayer structure in chapter 3. This adaptive

morphology, once stretched, varies its few key parameters while still remains in the basic

wrinkled form, providing a novel integration of adaptive morphology. In order to un-

derstand the wrinkle morphology, we proposed a simplified analytical model, that differs

from the complex modelling methodology in the literature, to describe the wrinkling be-

haviour of such design. By doing so, the fabrication process was verified and characterized

in terms of repeatability and basic property of the formed wrinkle structure such as the

number of waves.

The effect of adaptive morphology on soft tactile sensing was further evaluated based

on WrinTac actuated by bending in chapter 4. It was found that the performance of two

different tasks, shape classification and texture detection, can be tuned by the changing

morphology, and an morphological optimizing process existed for each task. Moreover,

the adaptive behaviour of the wrinkle structure was modelled analytically by a approx-

imating approach, exhibiting good predictability of the morphing ability. It is proposed

through the work on WrinTac that active sensing could be achieved by adapting the sensor

morphology to specific task, which is believed to be computationally more costly, rather

than by coordinating the sensory motor activity of the sensing systems conventionally.

Having shown that adaptive morphology can be utilised to facilitate sensing functionali-

ty, it was also found to be effective in tuning the actuation of soft robotics [21]. This could

happen in many ways such as enabling new functions and extending operational space.

In chapter 5, this idea was demonstrated by RetracTip, a multifunctional soft gripper

with improved energy efficiency. The gripping capability was enabled by the integration

of an adaptive pinned morphing membrane. Because of the same morphology, the power

required was largely reduced by eliminating the power needed during holding an object.

When applied properly, adaptive morphology could potentially be explored for a larger

variety of behaviours for soft robotics.

6.2 Conclusions

Soft robotics has the potential to be integrated into human life ubiquitously and seam-

lessly. While existing soft robots are predominantly designed with particularly specific

tasks, for example sensing, actuation (locomotion, grasping, transportation etc.), percep-

tion, or computing, those with multiple functions and capabilities are in the need. Such

robots can operate in different environments and do not necessarily need to be constrained

to specific tasks. They show robustness and resilience to the unpredictable surrounding

them, and, even if they fail, cause no detrimental harm to agents within their proximity
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because of their inherent softness.

Adaptive morphology offers a promising design philosophy for such soft robots. It

exploits the embodied intelligence by considering jointly the morphology, by which we

refer to the geometrical and material property, and the environmental interactions in

order to achieve more complex and adaptive behaviours. This has been demonstrated

by the presented work in this study. This framework, however, complicates the design

process as more dimensions are to be considered and co-designed. Nonetheless, the design

complexity would be rewarded by the resultant robots.

Biology always provides a starting point to search for a proper morphology for a given

target function. For example, the wrinkle morphology on human fingertips and the retract

morphing structure of sea anemone in this study. However, no biological samples should

be simply copied artificially without considering the target functions, the material, and

the manufacturing techniques. Care should be paid to the driving methodology to make

morphology adaptive actively in addition to the system actuation. The trade-off between

the multifunctionality realized by adaptive morphology and the complexity induced by

the extra actuation for adaptive morphology needs to be addressed appropriately.

6.3 Outlook

Adaptive morphology has been demonstrated to be effectively beneficial for soft robotic-

s. To further extend this work toward achieving soft robots with robustness, adaptivity,

autonomy, energy efficiency and other life-like functionalities, several directions are dis-

cussed here for investigation in the future.

Sensing, actuation, and computation are three fundamental components functions for

soft robots to operate in the real world. In the integrated view of embodiment, each

and every functionality of soft robotics can be shaped by their body morphology. While

initial investigations of adaptive morphology into the former two components (sensing

and actuation) are beginning lately, more focus on the computing side is needed in order

to understand how morphology affect the behaviours of robot as a whole. Based on the

fundamental understandings about the function-morphology relation, more appropriate

body morphology can be expected for soft robotics that can suits better to the dynamic

environment with improved adaptivity and autonomy.

Advanced understanding for the role of morphology forms the basis in order to master

it in soft robotic design. Although traditional trail and error manner offers a practical

approach for such purpose, it is expensive and even unaffordable in some occasions. Mod-

elling and physical simulation are two cheaper manners. For example, the modelling of
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the body dynamics. The concerns are how the simplification is assumed and to what

extent they reflect the reality. In this sense, the modelling and simulation of adaptive

morphology are required to help for design. For example, modelling of the dynamic be-

haviour of adaptive morphology in soft actuator, and quantification of the information

gain of adaptive morphology in soft sensor.

Actuators are necessary to enable the variation of a specific morphology, for example the

stretching and bending actuation of WrinTac and thee pneumatic actuation for RetracTip.

This requirement, to some extent, increases the complexity and cost of the system. Novel

actuation needs to be investigated for this purpose. A viable solution might be to use

existing actuators in the system for the adaptable morphology. More investigation need

to done in the future.

WrinTac

The wrinkle morphology was found to be an effective adaptive morphology. Different

mechanisms and materials could be explored. For example, dielectric elastomer actuator

(DEA) with fix boundary can generate out of plane wrinkle-like structure.

Sensor morphology as an intelligent source has been explored mainly in two areas, vision

and touch, because both involve environmental interactions frequently. More sensing

modalities could be considered from the viewpoint of embodied intelligence to introduce

adaptive morphology enabling variable sensing capability.

A general calibration system can be proposed for WrinTac to tackle the material degra-

dation problem that all soft sensors are experiencing. The system should be able to run

autonomously to calibration the force stimuli from different directions, for example ver-

tical and horizontal. This will require, as a minimum, a driving subsystem, a loadcell

subsystem, and the corresponding control and data processing algorithms.

A potential application is an active sensing system as envisaged in Fig. 4.1. The Wrin-

Tac will be integrated in a robotic finger that can bend the sensor. When put into different

environments, the system can actively morph for optimal performance. In this case, more

advanced algorithms need to be proposed for WrinTac based on the preliminary investiga-

tion. For example, algorithms for shape classification under more complex situations such

as variable speed and pressing pressure. A very key consideration for such purpose might

be to take the information encoded in the time series signal into account as, for example,

human rely much on the dynamic rather than static signal for tactile exploration.

RetracTip

RetracTip has been tested regarding its basic functionality claimed, that is sensing,

gripping and variable friction. More application scenario will be proposed to demonstrate
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the capability and potential of this design. For example, an autonomous gripping system

that detects and localizes objects, adjusts the self posture, picks objects and places them to

the target place. Another example will be to use RetracTip as a robotic foot for sensorized

locomotion. The foot can vary its friction property according to different requirement by

multiple terrains.

The bistability of the dome membrane has been simulated and analyzed by FEM mod-

eling. It is found that the bistability of the structure is affected by the adding of the

pins. More detailed analysis need to be done for other geometrical factors. The static

and dynamic behaviors of the bistable dome under different actuation will be thoroughly

modeled in the future. These two properties are key to the energy cost of the structure,

which can hopefully be modeled and predicted based on the static and dynamic modeling.

The structure can then be optimized for improved performance in terms of, for example,

energy efficiency.

78



Bibliography

[1] M. Garrad, G. Soter, A. Conn, H. Hauser, and J. Rossiter, “A soft matter computer

for soft robots,” Science Robotics, vol. 4, no. 33, 2019.

[2] Q. Qi, S. Hirai, et al., “Wrinkled soft sensor with variable afferent morphology,”

IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 1908–1915, 2019.

[3] B. Erlendur, C. Michael, and P. Halldórsson, “Sea anemone.”
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[64] D. Kim and R. Möller, “Passive sensing and active sensing of a biomimetic whisker,”

in International Conference on the Simulation and Synthesis of Living Systems,

vol. 131, Bloomington: Indiana University Press, 2006.

[65] G. R. Scholz and C. D. Rahn, “Profile sensing with an actuated whisker,” IEEE

Transactions on Robotics and Automation, vol. 20, no. 1, pp. 124–127, 2004.

[66] M. J. Pearson, B. Mitchinson, J. C. Sullivan, A. G. Pipe, and T. J. Prescott,

“Biomimetic vibrissal sensing for robots,” Philosophical Transactions of the Roy-

al Society B: Biological Sciences, vol. 366, no. 1581, pp. 3085–3096, 2011.

84



[67] M. J. Pearson, B. Mitchinson, J. Welsby, T. Pipe, and T. J. Prescott, “Scratchbot:

Active tactile sensing in a whiskered mobile robot,” in International Conference on

Simulation of Adaptive Behavior, pp. 93–103, Springer, 2010.

[68] K. Nakajima, H. Hauser, T. Li, and R. Pfeifer, “Information processing via physical

soft body,” Scientific reports, vol. 5, p. 10487, 2015.

[69] K. Nakajima, H. Hauser, R. Kang, E. Guglielmino, D. G. Caldwell, and R. Pfeifer,

“A soft body as a reservoir: case studies in a dynamic model of octopus-inspired

soft robotic arm,” Frontiers in computational neuroscience, vol. 7, p. 91, 2013.

[70] K. Nakajima, T. Li, H. Hauser, and R. Pfeifer, “Exploiting short-term memory in

soft body dynamics as a computational resource,” Journal of The Royal Society

Interface, vol. 11, no. 100, p. 20140437, 2014.

[71] K. Nakajima, H. Hauser, T. Li, and R. Pfeifer, “Exploiting the dynamics of soft

materials for machine learning,” Soft robotics, vol. 5, no. 3, pp. 339–347, 2018.

[72] J. Kuwabara, K. Nakajima, R. Kang, D. T. Branson, E. Guglielmino, D. G. Cald-

well, and R. Pfeifer, “Timing-based control via echo state network for soft robotic

arm,” in The 2012 International Joint Conference on Neural Networks (IJCNN),

pp. 1–8, IEEE, 2012.

[73] S. T. Mahon, A. Buchoux, M. E. Sayed, L. Teng, and A. A. Stokes, “Soft robots

for extreme environments: Removing electronic control,” in 2019 2nd IEEE Inter-

national Conference on Soft Robotics (RoboSoft), pp. 782–787, IEEE, 2019.

[74] J. Hughes and F. Iida, “Localized differential sensing of soft deformable surfaces,”

in 2017 IEEE International Conference on Robotics and Automation (ICRA), p-

p. 4959–4964, IEEE, 2017.

[75] H. Zhao, K. O’Brien, S. Li, and R. F. Shepherd, “Optoelectronically innervated soft

prosthetic hand via stretchable optical waveguides,” Science robotics, vol. 1, no. 1,

2016.

[76] B. S. Homberg, R. K. Katzschmann, M. R. Dogar, and D. Rus, “Haptic identification

of objects using a modular soft robotic gripper,” in 2015 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pp. 1698–1705, IEEE, 2015.

[77] V. C. Müller and M. Hoffmann, “What is morphological computation? on how the

body contributes to cognition and control,” Artificial life, vol. 23, no. 1, pp. 1–24,

2017.

85



[78] V. Ho, H. Yamashita, Z. Wang, S. Hirai, and K. Shibuya, “Wrin’tac: Tactile sens-

ing system with wrinkle’s morphological change,” IEEE Transactions on Industrial

Informatics, vol. 13, no. 5, pp. 2496–2506, 2017.

[79] A. D. Hinitt, J. Rossiter, and A. T. Conn, “Wormtip: An invertebrate inspired

active tactile imaging pneumostat,” in Conference on Biomimetic and Biohybrid

Systems, pp. 38–49, Springer, 2015.

[80] S. Ozel, E. H. Skorina, M. Luo, W. Tao, F. Chen, Y. Pan, and C. D. Onal, “A com-

posite soft bending actuation module with integrated curvature sensing,” in 2016

IEEE International Conference on Robotics and Automation (ICRA), pp. 4963–

4968, IEEE, 2016.

[81] R. Xu, A. Yurkewich, and R. V. Patel, “Curvature, torsion, and force sensing in con-

tinuum robots using helically wrapped fbg sensors,” IEEE Robotics and Automation

Letters, vol. 1, no. 2, pp. 1052–1059, 2016.

[82] Y. L. Park, B. R. Chen, and R. J. Wood, “Design and fabrication of soft artificial

skin using embedded microchannels and liquid conductors,” IEEE Sensors journal,

vol. 12, no. 8, pp. 2711–2718, 2012.

[83] J. B. Chossat, Y. L. Park, R. J. Wood, and V. Duchaine, “A soft strain sensor based

on ionic and metal liquids,” Ieee sensors journal, vol. 13, no. 9, pp. 3405–3414, 2013.

[84] U. Culha, U. Wani, S. G. Nurzaman, F. Clemens, and F. Iida, “Motion pat-

tern discrimination for soft robots with morphologically flexible sensors,” in 2014

IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 567–

572, IEEE, 2014.

[85] R. Reep and D. K. Sarko, “Tactile hair in manatees,” Scholarpedia, vol. 4, no. 4,

p. 6831, 2009.

[86] N. F. Lepora, M. Evans, C. W. Fox, M. E. Diamond, K. Gurney, and T. J. Prescott,

“Naive bayes texture classification applied to whisker data from a moving robot,”

in The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–8,

IEEE, 2010.

[87] E. P. Chan, E. J. Smith, R. C. Hayward, and A. J. Crosby, “Surface wrinkles for

smart adhesion,” Advanced Materials, vol. 20, no. 4, pp. 711–716, 2008.

[88] D. Y. Khang, J. A. Rogers, and H. H. Lee, “Mechanical buckling: mechanics,

metrology, and stretchable electronics,” Advanced Functional Materials, vol. 19,

no. 10, pp. 1526–1536, 2009.

86



[89] E. P. Chan and A. J. Crosby, “Fabricating microlens arrays by surface wrinkling,”

Advanced Materials, vol. 18, no. 24, pp. 3238–3242, 2006.

[90] Q. Wang and X. Zhao, “A three-dimensional phase diagram of growth-induced

surface instabilities,” Scientific reports, vol. 5, no. 1, pp. 1–10, 2015.

[91] E. Cerda and L. Mahadevan, “Geometry and physics of wrinkling,” Physical review

letters, vol. 90, no. 7, p. 074302, 2003.

[92] H. Wakamatsu and S. Hirai, “Static modeling of linear object deformation based

on differential geometry,” The International Journal of Robotics Research, vol. 23,

no. 3, pp. 293–311, 2004.

[93] H. Singh, D. Popov, I. Gaponov, and J. H. Ryu, “Twisted string-based passively

variable transmission: Concept, model, and evaluation,” Mechanism and Machine

Theory, vol. 100, pp. 205–221, 2016.

[94] D. Kleinfeld, E. Ahissar, and M. E. Diamond, “Active sensation: insights from

the rodent vibrissa sensorimotor system,” Current opinion in neurobiology, vol. 16,

no. 4, pp. 435–444, 2006.

[95] M. Fend, H. Yokoi, and R. Pfeifer, “Optimal morphology of a biologically-inspired

whisker array on an obstacle-avoiding robot,” in European Conference on Artificial

Life, pp. 771–780, Springer, 2003.

[96] M. Fend, R. Abt, M. Diefenbacher, S. Bovet, and M. Krafft, “Morphology and

learning-a case study on whiskers,” in Proc. 8th Int. Conf. on the Simulation of

Adaptive Behavior, pp. 114–122, 2004.

[97] J. Scheibert, S. Leurent, A. Prevost, and G. Debrégeas, “The role of fingerprints
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