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Chapter 1

Introduction

1.1 Background of the thesis

Around a century ago, formal logic was undergoing its formative years. Many im-
portant logical systems have their origins in the first three decades of the century,
including many-valued logic, modal logic and intuitionistic logic. There were many
competing views of what the correct logic should be. Enquiries concerning the inter-
relationship of such logics also grew along with these developments.

Two of the well-known examples of such enquiries would be the so-called negative
translations [73, 52, 48, 76] of classical logic into intuitionistic logic, as well as the
translation of intuitionistic logic into the modal logic S4 [51, 81]. It was perhaps not
coincidental that both investigations concerned intuitionistic logic; the system has
since been known for its close relationship with many logics, the whole framework
of substructural logics [37, 46, 107] being one prime example. Intuitionistic logic
is therefore established to be one of the reference points when considering various
logical systems.

When we turn our attention to intuitionistic logic itself, we are soon made aware
of the essential rôle negation plays in its characterisation. One may, for exam-
ple, understand the difference between classical and intuitionistic logic as that of
whether it allows a sui generis status to a double negation of a proposition. In
classical logic, a double negation of a proposition is equivalent to the proposition
itself, whereas in intuitionistic logic, a double negation of a proposition is in general
strictly weaker than the proposition. This may be contrasted with a triple negation,
which is equivalent to a single negation even in intuitionistic logic, hence no further
complications arise. This difference between classical and intuitionistic negations is
essentially capitalised in the above-mentioned negative translations, where atomic
formulae are replaced with their double negations.

Negation therefore becomes a pivotal point in the analysis of intuitionistic logic.
And here the subject can be tackled from many different angles. One can investi-
gate the properties of negation comparatively, with references to other logics such as
classical logic. It is also possible to take a more revisionary approach; one may for
example look at intuitionistic-type logics with stronger or weaker negations. Or one
can introduce a new negation to intuitionistic logic that is of fundamentally different
character. There have been countless contributions from these perspectives in the
investigation of intuitionistic logic, but there still remain many aspects which are
left unexplored. A fuller understanding of intuitionistic negation and its variants has
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1.2. Structure of the thesis

the potential to lead to fruitful applications in mathematics, philosophy, linguistics
and computer science.

The present thesis therefore aims to fill some of these unexplored aspects of in-
tuitionistic and related logics, with a particular emphasis on negation. Although
each topic we shall treat in this thesis is mostly independent of others, the topics
do share a similar motif. It may be explained as the focus on the rôle of logical
principles (or axioms) in logical systems. Such principles often have decisive impor-
tance in judging whether a logic is acceptable from a philosophical point of view.
Although this thesis will not make extensive discussions on philosophical matters,
our investigation should be of non-negligible value in this regard as well.

1.2 Structure of the thesis

We have the following structure for the present thesis.
In Chapter 2, I shall introduce the proof theory (Hilbert system, sequent calcu-

lus) and semantics (Kripke semantics, Beth semantics). We shall also discuss the
notion of negation in intuitionistic logic, and describe negative translations.

In Chapter 3, we investigate the relationship between classical and intuitionistic
logic. Our main concern is the problem posed by Ishihara [68], namely what class
of atomic instances of the law of excluded middle is sufficient to conserve classical
theorems in intuitionistic logic. Such a class helps us to better understand cer-
tain aspects of the relationship between classical and intuitionistic negation than
is provided by negative translations. In particular, in some cases we can identify
classical propositions which are also intuitionistically derivable, by inspecting their
shapes. One solution to the above problem was offered by Ishii [69]. This solution
was obtained through Glivenko’s theorem, and is in general not comparable to the
class obtained by Ishihara [69]. In the first part of the chapter, we shall note that
the class given by the solution has a room for improvement, by considering weaker
logical principles than the law of excluded middle. Such a direction in addition will
allow us to extend the range of analysis to logics weaker than intuitionistic logics.
This is particularly important, as such logics are often contended to be the alterna-
tive constructive logics to intuitionistic logic. This chapter also discusses expansion
of this result to predicate logic (with additional non-constructive axioms), as well
as to minimal logic by considering an additional class of atomic instances of double
negation of ex falso quodlibet. Overall, the results of this chapter shall significantly
broaden our understanding of the relationship between non-constructive principles
and constructive logics. The contents of this chapter are based on the author’s work
[88].

In Chapter 4, we shall discuss the framework of subminimal negation [24, 25]
by Almudena Colacito, Dick de Jongh and Ana Lucia Vargas, which gives a general
method to obtain logics with weaker negation than minimal logic. A motivation
in considering such negations can be argued as the fact that they are generally
paraconsistent, in the sense that not all, and desirably not any counterintuitive,
propositions follow from a contradiction. Thus subminimal negation is purported to
be a framework that makes constructivity and paraconsistency compatible. Submin-
imal negation will be utilised to analyse the logic SUBMIN [126, 127] of Dimiter
Vakarelov. The logic is identical to intuitionistic logic, except for the negation. The
sense of the negation may be interpreted as that one cannot assert a negation un-
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1.2. Structure of the thesis

less he has in advance another negation at hand. In other words, a negation can
be asserted only relatively to other negations. Such a negation can be helpful if
one is sceptical of the demonstrability of the truth of a negation except via another
negation. In the first section of this chapter, we shall formulate a system An−PC
corresponding to SUBMIN in the framework of subminimal negation. Then the
Kripke semantics of the two approaches are compared and translations between them
are defined. As a result of these enquiries, we shall acquire a clearer view of the
interrelationship between the two frameworks. This is followed by the formulation
of a sequent calculus corresponding to An−PC; it will be shown that the calcu-
lus enjoys the admissibility of the Cut rule, and consequently it satisfies properties
like decidability and Craig Interpolation Property. This enquiry complements the
knowledge about the proof-theoretic properties of Vakarelov’s logic, which was not
very-well understood. Finally, we introduce a new countable class of logics with sub-
minimal negation, which shall be of interest to the study of the structure of logics
with subminimal negation. The contents of this chapter are based on the author’s
publication [91].

In Chapter 5, we shall study negations which support inferences underivable with
the intuitionistic negation. The benefit of such negations is that they provide more
flexibility to intuitionistic systems. We first look at empirical negation, which is
defined by the negation at the root of a kripke model. Informally, the root is under-
stood to represent the present moment. Empirical negation is then to be viewed as
the negation in non-mathematical contexts, in contrast with intuitionistic negation,
which is more suited to mathematical contexts. Empirical negation defines a logic
called IPC∼ [29, 30], with respect to which we shall observe that when a different re-
lational semantics of Evert Willem Beth [6] is considered, the resulting logic changes
to another system TCCω by Andrei Borisovich Gordienko [54]. This shall point to
a the significance of Beth semantics as an alternative semantics to Kripke semantics.
We shall then look at the proof-theory of IPC∼ and TCCω. There exists a problem
in comparing the pair in that these systems are axiomatised with different rules of
inference. To improve this situation, we shall give uniform axiomatisations for the
two logics as well as the logic daC of Graham Priest [100] and CCω of Richard
Sylvan [116]. This also allows to extract frame conditions for these axioms with the
Kripke semantics of CCω as the basis. The chapter then concludes with the formu-
lation of labelled sequent calculi [84], extensions of the standard sequent calculi, of
the above systems. We shall then prove the admissibility of cut for the calculi, and
as a consequence show that the calculi correspond to the axiomatic systems. The
contents of this chapter are based on the author’s publications [89, 90].

Chapter 6 discusses what happens when empirical negation is seen from the
opposite viewpoint. We shall introduce an operator that signifies the notion of
actuality in intuitionistic setting. Such an operator is useful when one wishes to
assign a privileged status to a world in a Kripke model. Actuality has in the past
been considered in the classical setting [26, 28, 55]. In addition, a semantical idea
for intuitionistic actuality is sketched in [66], but a proof system was lacking. The
first objective of this chapter is to obtain a proof system that becomes sound and
complete with the semantics. We shall introduce the kripke semantics described
in [66], and then introduce an axiomatic system which we shall call IPC@. We
shall show the strong completeness of the logic with the Kripke semantics. This is
followed by comparisons with various logical systems, including the system of em-
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1.2. Structure of the thesis

pirical negation, classical actuality [26], projection operator in fuzzy logic [2], global
intuitionistic logic [118]. The contents of this chapter are based on a joint work of
the author with Hitoshi Omori [92].

The thesis will be concluded by offering some remarks about the possible future
directions and prospectives.
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Chapter 2

Intuitionistic logic and the role of
negation

2.1 Overview of intuitionistic logic

The Mathematical movement of intuitionism was initiated by the Dutch mathemati-
cian Luitzen Egbertus Jan Brouwer (1881-1966)1. The central tenet of intuitionism
states that mathematics is concerned with mental construction [121, p.4]. In par-
ticular mathematical objects are not to be understood as some mind-independent
entities; this is for instance illustrated by the following passage of Brouwer’s high
disciple Arend Heyting (1898-1980):

The idea of an existence of mathematical entities outside our minds
must not enter into the proofs (...). Maybe they would better do avoid
completely the words “to exist”; if they continue, nevertheless, to use
them, these words would have no other meaning for them than “to be
constructed by reason”. [61]

Another important viewpoint of intuitionism is that logic is dependent of mathe-
matics, rather than the other way around [16, pp.72–75]. Logic is therefore not to
be presupposed before mathematics. Brouwer asserts:

[T]he function of the logical principles is not to guide arguments con-
cerning experience subtended by mathematical systems, but to describe
regularities which are subsequently observed in the language of the ar-
guments. [14]

Consequently we cannot use logic blindly as rules for mathematical activity; we at
least have to be aware that such rules turn out to be inadequate upon closer in-
spection. This point in particular lead Brouwer to arrive at the conclusion that the
law of excluded middle (LEM), which states that every proposition is either true or
false, has to be rejected in mathematics when infinity is involved, on the ground
that unsolvable mathematical problem may exist in such cases [14].

LEM is a logical principle that has been long-accepted, and is valid in the stan-
dard formalisation of classical logic [96]. This meant that in order to formalise the
intuitionistic mathematics one would need another type of formal logic. Brouwer

1For a detailed accounts of Intuitionism and Brouwer, c.f. [67, 130, 131].
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2.2. Proof theory of intuitionistic logic

himself, however, did not proceed to an explicit formalisation of such a system, prob-
ably stemming from his above-mentioned view regarding the relationship between
logic and mathematics, in addition to his scepticism towards language and formal-
isation [15, 18]. Therefore the task fell to the hands of other people to formulate a
logical system that reflects the insights offered by Brouwer. This has been carried
out [129] by Alexsander Nikolaevich Kolmogorov (1903-1987)[73], Ivan Efremovich
Orlov (1886-1936?) [97], Valery Ivanovich Glivenko (1897-1940) [50] and A. Heyting
[60] albeit with slight differences in the treatment of negation, a point which we shall
discuss in more detail later. The details of the resulting intuitionistic logic, based
essentially on Heyting’s formalisation, are explained in the next section.

Concurrently to the formalisation of intuitionistic logic, an informal interpreta-
tion for its logical connectives has been explored [72, 61], eventually crystallising
into what is now known as the Brouwer-Heyting-Kolmogorov interpretation [121],
or BHK interpretation for short. In BHK interpretation, the meaning of each propo-
sition is explicated by its proof condition, so that

• A proof of A ∧B is a pair of a proof of A and a proof of B.

• A proof of A ∨B is either a proof of A or a proof of B.

• A proof of A→ B is a construction which transforms a proof of A into a proof
of B.

• Nothing is regarded as as a proof of ⊥.

BHK interpretation is not to be taken as the formal semantics for intuitionistic logic;
however this interpretation is made precise later by the realizability interpretation
of Stephen Cole Kleene (1909-1994) [71] and Nels David Nelson (1918-2003) [85].
we shall see in a later section some other semantics for intuitionistic logic.

2.2 Proof theory of intuitionistic logic

We shall now give a formal account for intuitionistic logic, first proof theoretically
(i.e. in terms of syntactic derivation of formulae by rules) and then semantically
(i.e. in terms of validity of formulae based on assignments of truth). In order to
perform this, we need to specify the language to be used in the formalisation of
logical propositions (formulae) as the initial step.

• p, q, r . . . : countable supply of propositional variables.

• ⊥ : a constant.

• A,B,C, . . . : metavariables for formulae.

• Γ,∆, . . . : metavatiables for sets of formulae.

We shall occasionally call a propositional variable as an atomic formula. A formula
that is either atomic or ⊥ will be called a prime formula. A non-atomic formula will
be called a compound formula. There are some possible choices in how to construct a
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2.2. Proof theory of intuitionistic logic

compound formula; in this thesis, we shall mainly use the following two propositional
languages L⊥ and L¬, respectively given by:

A ::= p | (A ∧ A) | (A ∨ A)| (A→ A)| ⊥,
A ::= p | (A ∧ A) | (A ∨ A)| (A→ A)| ¬A.

In practice, we shall drop parentheses whenever it aids the readability. In L⊥, we
shall use ¬A as an abbreviation for A → ⊥. In addition, in both L⊥ and L¬ we
shall use the abbreviation A↔ B for (A→ B) ∧ (B → A).

2.2.1 Hilbert-style presentation of intuitionistic logic

There are several alternatives in the types of proof systems for intuitionistic logic,
each with distinct advantage. We shall first look at the so-called Hilbert system for
intuitionistic logic, named after David Hilbert (1862-1943) (though he is not the sole
originator of this approach [120, p.57]), which consists of many axiom (schemata)
and one rule of Modus Ponens. We shall call the system IPC.

Definition 2.2.1. The below gives the axiomatisation of IPC.

• A→ (B → A)

• (A→ (B → C))→ ((A→ B)→ (A→ C))

• A→ (B → (A ∧B))

• (A1 ∧ A2)→ Ai

• Ai → (A1 ∨ A2)

• (A→ C)→ ((B → C)→ ((A ∨B)→ C))

• ⊥ → A

• A A→ B (MP)
B

where i ∈ {1, 2}. We say a formula A is provable (or derivable) from a set of
assumptions Γ (denoted Γ ` A), if there is a finite Γ0 ⊆ Γ and a finite list A1, . . . , An

of formulae such that each Ai is either:

• an axiom;

• a member of Γ0; or

• obtained from Aj and Ak for j, k < i by (MP).

and An ≡ A. When Γ = ∅, we write ` A.

When we need to be explicit, we use the notation `i as well. On the other
hand, whenever the context makes it clear, the derivability for other systems will be
denoted by ` as well.

Occasionally, we shall look at the predicate extension IQC of IPC. For this
purpose we introduce some preliminary notions. First, to the language of IPC we
add quantifiers ∀,∃ and
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2.2. Proof theory of intuitionistic logic

• countable supply of variables x1, x2, . . ..

• countable supply of n-ary functions fn
1 , f

n
2 , . . . for each n.

• countable supply of n-ary relations Rn
1 , R

n
2 , . . . for each n.

We shall call an 0-ary function as a constant and denote by meta-variables c1, c2 . . ..
Propositional variables will be identified with 0-ary relations.

A term, denoted by t1, t2, . . ., is defined by the next clauses.

1. A variable is a term.

2. If t1, . . . , tn are terms, then fn(t1, . . . , tn) is a term.

Then an atomic formula has the form Rn(t1, . . . , tn).
We next define the notion of the free occurrence of a variable x in a formula A, by
the following clauses.

1. If A is atomic, then any occurrence of x in A is free.

2. If A ≡ ⊥, then x does not occur free in A.

3. if A ≡ B ◦ C where ◦ ∈ {∧,∨,→}, then x occurs free in A if it does so in B
or C.

4. if A ≡ QyB where Q ∈ {∀,∃}, then x occurs free in A if it does so in B and
x 6≡ y.

We shall then denote the result of substituting all free occurrences of x in A by t as
A[x/t].

Definition 2.2.2. The axiomatisation of IQC is defined by adding the next axioms
and a rule to that of IPC.

• ∀x(B → A)→ (B → ∀yA[x/y]) where x does not occur free in B, and either
y does not occur free in A or y ≡ x.

• ∀xA→ A[x/t]

• A[x/t]→ ∃xA

• ∀x(A→ B)→ (∃yA[x/y]→ B) where x does not occur free in B, and either
y does not occur free in A or y ≡ x.

• A (Gen)∀xA where x does not occur free in the assumption.

The notion of deduction in IQC also follows that of IPC, except that we allow
formulae obtained by (Gen) in the sequence along with (MP).

When required, we shall use the notation `qi for the derivability.
Hilbert systems for classical logic is obtained from IPC or IQC by adding A∨¬A

as an axiom. We shall henceforth call them CPC and CQC. We shall use `c and
`qc for the explicit notations for the systems.

The following property holds in IPC (IQC) and CPC (CQC).

Theorem 2.2.1 (Deduction Theorem). Γ, A ` B if and only if Γ ` A→ B.

Proof. By induction on the depth of deduction.
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2.2. Proof theory of intuitionistic logic

2.2.2 Sequent calculus

Another type of proof system is the sequent calculus introduced by Gerhard Gentzen
(1909-1945) [47]. In this type of system, the basic unit in an inference is not a
formula but a sequent, which is a pair of a finite multiset and a singleton of formulae,
expressed as Γ ⇒ C. (note here and afterwards, Γ,∆ and denote multisets when
talking about sequent calculi.) Γ and C are to be called the antecedent and succedent
of the sequent, respectively.

Here we shall introduce the sequent calculus G3i for intuitionistic logic [120,
p.77]. G3i is in the style of so-called G3-systems, whose characteristic is the lack
of structural rules which introduce or eliminate ’excessive’ formulae. This feature
allows the analysis of deductions in sequent calculus much easier.

Definition 2.2.3 (G3i).

Γ, p⇒ p (Ax) ⊥,Γ⇒ C (L⊥)

A,B,Γ⇒ C
(L∧)

A ∧B,Γ⇒ C
Γ⇒ A Γ⇒ B (R∧)

Γ⇒ A ∧B

A,Γ⇒ C B,Γ⇒ C
(L∨)

A ∨B,Γ⇒ C
Γ⇒ Ai (R∨)

Γ⇒ Ai ∨ A2

A→ B,Γ⇒ A B,Γ⇒ C
(L→)

A→ B,Γ⇒ C
A,Γ⇒ B

(R→)
Γ⇒ A→ B

where i ∈ {1, 2}.

A proof/derivation/deduction in G3i is a tree whose leaves are instances of (Ax)
and (L⊥), and each node is a sequent obtained by the previous nodes by applying
one of the nodes. We shall denote the derivability in G3i by ` Γ ⇒ C. When
necessary, we shall also denote it `g3i, in order to make explicit the system we are
working with. A principal formula in the conclusion of a rule is a formula not in Γ,
C; formulae in Γ ∪ {C} are in turn called the contexts.

In using the sequent calculus, it is practical to use the next structural rules.

Γ⇒ C (LW)
A,Γ⇒ C

A,A,Γ⇒ C
(LC)

A,Γ⇒ C

Γ⇒ A A,Γ′ ⇒ C
(Cut)

Γ,Γ′ ⇒ C

Although these rules are not derivable in the sense that one can obtain the con-
clusions from the corresponding premises within the same derivation, they are still
admissible, meaning that the derivability of the premises imply the derivability of
the conclusion. (essentially this amounts to the constructibility of a separate deriva-
tion which proves the conclusion). We refer to [120, Chapter 3,4] for the details.
The admissibility of (Cut) in particular has many useful consequences; for example,
the following subformula property holds in G3i.

Theorem 2.2.2 (subformula property). If ` Γ⇒ A, then all the formulae occurring
in the derivation occurs in Γ ∪ {A} as a subformula.
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2.3. Semantic of intuitionistic logic

Proof. Cf. [120, Proposition 4.2.1].

A consequence of subformula property is the decidability of G3i: given a sequent
Γ⇒ A, one can decide whether G3i derives the sequent.

Corollary 2.2.1 (decidability of G3i). G3i is decidable.

Proof. Cf. [120, Theorem 4.2.6].

Finally we observe that the derivability in IPC and G3i coincide, as desired.
Hence the two calculi represent the same logic.

Proposition 2.2.1. Γ ` A in IPC iff ` Γ⇒ A in G3i.

Proof. By induction on the derivation of A. For the left-to-right direction, we prac-
tically need to appeal to the admissibility of (Cut). For details, cf. [120].

2.3 Semantic of intuitionistic logic

Next we shall look at the semantics of intuitionistic logic, which is the other side of
the coin in understanding a logic. The archetypical example of a semantics is truth-
table for classical logic, according to which each propositional variable is assigned
a truth-value of either T (true) or F (false). Then the truth-value of compound
formulae is determined inductively. If for any assignment of truth-values a formula
turns out to be true, then the formula is said to be valid. (Cf. for instance [79,
Chapter 2.3] for details.)

For intuitionistic logic, we would wish to capture it similarly by validity stem-
ming from the assignment of truth-values to each formula. This approach however
is not directly transferable; as the famous result of Kurt Gödel shows, intuitionistic
logic cannot be characterised by many-valued truth-tables [53]. Indeed, such a re-
quirement necessitates the so-called Gödel-Dummett axiom (A→ B)∨ (B → A) to
be provable, Cf. [38, 136].

A modification of truth-table approach is to consider multiple truth assignment
at the same time, with each assignment related by some ordering. This type of se-
mantics is called relational semantics. Here we shall look at two relational semantics,
Kripke semantics [74] and Beth semantics [6].

2.3.1 Kripke semantics

Let (W,≤) be an inhabited pre-ordered set, i.e. a reflexive and transitive set with
∃w(w ∈ W ). We may require ≤ to be anti-symmetric, in other words a partial
ordering, but the difference is inessential. We shall call each element of W as a
world or a state. (W,≤) gives us an (intuitionistic) Kripke frame or simply a frame.
Frames allow us to construct a (Kripke) model M = (F ,V), where F is a frame and
V is an assignment which assigns a subset V(p) ⊆ W for each propositional variable.
This assignment has a restriction that

w ∈ V(p) and w ≤ w′ implies w′ ∈ V(p).
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2.3. Semantic of intuitionistic logic

That is to say, V(p) is upward closed or monotone. V then uniquely determines the
forcing of a formula A at a world w, denoted by w  A, with the following clauses.

w  p⇔ w ∈ V(p).

w  A ∧B ⇔ w  A and w  B.

w  A ∨B ⇔ w  A or w  B.

w  A→ B ⇔ ∀w′ ≥ w(w′  A implies w′  B).

w  ⊥ ⇔ never.

In certain cases, we may denote the model explicitly, and write M, w  A or
(F ,V), w  A.

If for a modelM, A is forced at all worlds in W , then we writeM � A and say
A is valid in M. If M � B holding for B ∈ Γ implies M � A then we write Γ � A,
and say A is a logical consequence of Γ. If Γ is empty, then we simply write � A and
say A is valid. We will often restrict M relative to a fixed frame F ; in such a case
F � A will mean A is valid in all M whose frame is F .

Proposition 2.3.1. If w  A and w′ ≥ w then w′  A.

Proof. By induction on the complexity of A.

It turns out that if a formula is provable (under assumption) in IPC then it is
valid, and vice versa: we call these relations soundness and (strong) completeness.
Since soundness is usually easier to prove than completeness, the word “complete-
ness” is often abused to signify that both relations hold.

Theorem 2.3.1 (completeness of IPC with respect to Kripke semantics.). Γ ` A
in IPC if and only if Γ � A.

Proof. Cf. [121, section 2.6].

2.3.2 Beth semantics

Beth semantics differs from kripke semantics chiefly in the extra conditions the frame
and the model satisfy, and the forcing of disjunction. Informally, the difference may
be understood as temporal, of whether one can stay in a world indefinitely (Kripke)
or not (Beth). We shall discuss on thi point in Chapter 5. More formally, one can
see Beth semantics as a generalisation of Kripke semantics, as the embedding we
shall use in the following completeness proof should clarify.

Before introducing Beth semantics, we need some preliminary definition. We
shall employ the following notations (taken from [121, Chapter 4.1] with slight al-
ternations) for sequences and related notions.

• α, β, . . .: infinite sequences of the form 〈b1, b2, . . .〉 of natural numbers.

• 〈〉: the empty sequence.

• b, b′, . . .: finite sequences of the form 〈b1, . . . , bn〉 of natural numbers.

• b ∗ b′: b concatenated with b′.

• lh(b): the length of b.

14



2.3. Semantic of intuitionistic logic

• b � b′: b ∗ b′′ = b′ for some b′′.

• b ≺ b′: b � b′ and b 6= b′.

• ᾱn: α’s initial segment up to the nth element.

• α ∈ b: b is α’s initial segment.

We define a tree to be a set T of finite sequences of natural number such that
〈〉 ∈ T and b ∈ T ∧ b′ ≺ b → b′ ∈ T . We call each finite sequence in T a node
and 〈〉 the root. A successor of a node b is a node of the form b ∗ 〈x〉. By leaves of
T , we mean the nodes of T which do not have a successor, i.e. nodes b such that
¬∃x(b ∗ 〈x〉) ∈ T . A spread then is a tree whose nodes always have a successor, i.e.
∀b ∈ T∃x(b ∗ 〈x〉 ∈ T ).

A clarification: whilst 〈b, b, . . .〉 denotes an infinite sequence consisting just of
bs, 〈b, . . . , b〉 denotes a finite sequence consisting just of bs.

Definition 2.3.1 (Beth model). A Beth frame is a pair F = (W,�) that defines
a spread. Then A Beth model M is a pair (F ,V), where V is an assignment of
propositional variables to the nodes such that:

b ∈ V(p)⇔ ∀α ∈ b∃m(ᾱm ∈ V(p)). [covering]

(The left-to-right direction is trivial, and it is straightforward to see that a covering
assignment is monotone.)

The forcing relation  A for a Beth model is defined by the following clauses.

b  p ⇐⇒ b ∈ V(p).

b  A ∧B ⇐⇒ b  A and b  B.

b  A ∨B ⇐⇒ ∀α ∈ b∃n(ᾱn  A or ᾱn  B).

b  A→ B ⇐⇒ for all b′ � b, if b′  A then b′  B.

b  ⊥ ⇔ never.

Proposition 2.3.2.
(i) b  A if and only if ∀α ∈ b∃n(ᾱn  A). (covering property)
(ii) b′ � b and b  A implies b′  A. (monotonicity)

Proof. Cf. [122, Lemma 13.1.2].

We first look at how to embed Kripke models into Beth models, in accordance
with the method outlined in [122].2

Given a Kripke model MK = (WK ,≤,VK), we construct a corresponding Beth
model MB = (WB,�,VB) with the following stipulation.

• WB is the set of finite nondecreasing sequences in (WK ,≤) of length ≥ 0.

• � is defined accordingly.

• Define an auxiliary valuation V̄B(p) s.t. 〈w0, . . . wn〉 ∈ V̄B(p) if and only if
wn ∈ VK(p).

2Also cf. [119] for some corrections.
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2.3. Semantic of intuitionistic logic

• Then VB(p) = V̄B(p) ∪ {〈〉} if VK(p) = WK ; otherwise VB(p) = V̄B(p).

Lemma 2.3.1 (embeddability of Kripke models to Beth model).
(i) MB is indeed a Beth model.
(ii) MK � A if and only if MB � A.

Proof. In the following, we shall occasionally write 〈b0, . . . , b−1〉 to mean 〈〉. (This
is purely a conventional notation to simplify the exposition, and should not be con-
fused with the notation in the definition of V̄B(p), in which n cannot be −1.)

(i) We need to show that the assignment is covering. Suppose 〈b0, . . . , bn〉 ∈ VB(p).
If n = −1, then 〈〉 ∈ VB(p). So by definition of VB, w ∈ VK(p) for all w ∈ WK .
Hence for each α = 〈w, . . .〉 ∈ 〈〉, 〈w〉 ∈ VB(p); so ∃m(ᾱm ∈ VB(p)). If n > −1,
then 〈b0, . . . , bn〉 ∈ VB(p) immediately implies ∀α ∈ 〈b0, . . . , bn〉∃m(ᾱm ∈ VB(p)).

Conversely, suppose ∀α ∈ 〈b0, . . . , bn〉∃m(ᾱm ∈ VB(p)). If n = −1, then
for any w ∈ WK , 〈w,w, . . .〉 ∈ 〈〉. By our supposition, either 〈〉 ∈ VB(p) or
〈w,w, . . . , w〉 ∈ VB(p). In both cases, w ∈ VK(p). Hence WK = VK(p). Thus
〈〉 ∈ VB(p), as required. If n > −1, then 〈b0, . . . , bn, bn, . . .〉 ∈ 〈b0, . . . , bn〉. So either
〈〉 ∈ VB(p), 〈b0, . . . , bi〉 ∈ VB(p) for i < n, or 〈b0, . . . , bn, bn, . . . , bn〉 ∈ VB(p). In
the first case, bn ∈ VK(p). In the second case, bi ∈ VK(p), so by the monotonic-
ity of VK , bn ∈ VK . In the last case, bn ∈ VK(p). So in any case, 〈b0, . . . , bn〉 ∈ VB(p).

(ii) It suffices to show:

1. 〈〉  A if and only if MK � A.

2. 〈b0, . . . , bn〉  A if and only if bn  A. (where n > −1)

We prove these by simultaneous induction on the complexity of A.

If A ≡ p, then 1. and 2. follow by definition. If A ≡ ⊥, then A is never forced
in either of the models, so the statement holds vacuously.

If A ≡ A1 ∧ A2, then for 1. 〈〉  A1 ∧ A2 if and only if 〈〉  A1 and 〈〉  A2 By
I.H. this is equivalent to MK � A1 and MK � A2, which in turn is equivalent to
MK � A1 ∧ A2. For 2., 〈b0, . . . , bn〉  A1 ∧ A2 if and only if 〈b0, . . . , bn〉  A1 and
〈b0, . . . , bn〉  A2. By I.H. this is equivalent to bn  A1 and bn  A2, which in turn
is equivalent to bn  A1 ∧ A2.

If A ≡ A1 ∨ A2, then for 1., 〈〉  A1 ∨ A2 if and only if ∀α ∈ 〈〉∃m(ᾱm 
A1 or ᾱm  A2). For each w ∈ WK , 〈w,w, . . .〉 ∈ 〈〉, so either 〈〉  A1, 〈〉  A2,
〈w, . . . , w〉  A1 or 〈w, . . . , w〉  A2. If one of the former two cases holds, then by
I.H. MK � Ai, for one of i ∈ {1, 2}; so w  A1 ∨ A2. If one of the latter two cases
hold, then by I.H. w  Ai for one of i ∈ {1, 2}; so w  A1 ∨A2. Hence we conclude
w  A1∨A2 for all w ∈ WK , i.e. MK � A1∨A2. For the converse direction, assume
MK � A1 ∨ A2 and let α = 〈w, . . .〉 ∈ 〈〉. Then since w  A1 or w  A2, 〈w〉  A1

or 〈w〉  A2 by I.H.. Thus ∀α ∈ 〈〉∃m(ᾱm  A1 or ᾱm  A2). Hence 〈〉  A1 ∨A2.
For 2. If 〈b0, . . . , bn〉  A1 ∨ A2, then for all α ∈ 〈b0, . . . , bn〉 there exists m s.t.

ᾱm  A1 or ᾱm  A2. As 〈b0, . . . , bn, bn, . . .〉 ∈ 〈b0, . . . , bn〉, we have, for i ∈ {1, 2},
either 〈〉  Ai, 〈b0, . . . , bl〉  Ai for l ≤ n, or 〈b0, . . . , bn, bn, . . . , bn〉  Ai. In each
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2.4. Negation in intuitionistic logic

case bn  Ai by I.H.; so bn  A1 ∨ A2. Conversely, if bn  A1 ∨ A2, then bn  A1

or bn  A2. So by I.H. 〈b0, . . . , bn〉  A1 or 〈b0, . . . , bn〉  A2. Hence immediately
∀α ∈ 〈b0, . . . , bn〉∃m(ᾱm  A1 or ᾱm  A2), i.e. 〈b0, . . . , bn〉  A1 ∨ A2.

If A ≡ A1 → A2, then for 1., suppose 〈〉  A1 → A2. Let w ∈ WK and w′ ≥ w.
If w′  A1, then 〈w′〉  A1 by I.H.. So 〈w′〉  A2 and thus w′  A2. Consequently
w  A1 → A2 and so MK � A1 → A2. Conversely, suppose MK � A1 → A2.
Let 〈b0, . . . , bn〉  A1. If n = −1, then by I.H. MK � A1, so MK � A2. Hence
〈b0, . . . , bn〉  A2 again by I.H.. If n > −1, then bn  A1, so bn  A2. Hence
〈b0, . . . , bn〉  A2. Thus 〈〉  A1 → A2.

For 2., suppose 〈b0, . . . , bn〉  A1 → A2 and let bn′ ≥ bn. If bn′  A1, then by I.H.
〈b0, . . . , bn, bn′〉  A1; so 〈b0, . . . , bn, bn′〉  A2. Thus bn′  A2. Hence bn  A1 → A2.
Conversely, suppose bn  A1 → A2. Assume 〈b0, . . . , bn, . . . , bn′〉  A1. Then
bn ≤ bn′ and bn′  A1. So bn′  A2. Thus 〈b0, . . . , bn, . . . , bn′〉  A2. Therefore
〈b0, . . . , bn〉  A1 → A2.

This lemma immediately leads the weak completeness (i.e. completeness in cases
of no assumptions) of IPC with respect to IPC.

Theorem 2.3.2 (weak completeness of IPC with Beth semantics.). ` A in IPC if
and only if � A in Beth model.

Proof. It is routine to check that the soundness holds. Then the weak completeness
readily follows from the previous lemma and the Kripke completeness of IPC.

2.4 Negation in intuitionistic logic

As have been mentioned, the rejection of the law of excluded middle plays a pivotal
role in the characterisation of intuitionistic logic. Hence, one may view that the
main difference between classical and intuitionistic logic consists in the difference in
negation. 3 From this perspective it is of little surprise that the early controversies
surrounding intuitionistic logic — as the correct formalisation of Brouwer’s ideas
— stem from the disagreements in its treatment of negation. Indeed, such disputes
often initiated the formal, less opinionated investigation today of negation in intu-
itionistic contexts. Here we shall introduce a few important variants of intuitionistic
logic with different negation.

One objection to intuitionistic negation is that the notion of negation is at ten-
sion with the notion of construction, as proposed by George François Cornelis Griss
(1898-1953) in e.g. [56]. 4 The central idea of the critique is the following [58, 59]:
if the concept of a mathematical object is given by its construction, then it is un-
clear what concepts those mathematical objects that do not have a construction
possess. In particular, when it comes to negation, to assert ¬P (a) for a mathe-
matical object a and a predicate P , in the orthodox view one has to be able to
construct (as supposition) a that satisfies P , and then derive a contradiction. But if
the above critique is correct, then it is not apparent what this supposition amounts

3However, this is not the whole story, as even for the negation-less fragment, classical logic is
distinguished from intuitionistic logic by e.g. Pierce’s formula ((A→ B)→ A)→ A.

4Cf. also [42, 57] for related discussions.
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2.4. Negation in intuitionistic logic

to. For instance, in order to demonstrate the proposition a square circle does not
exist, one ought to first give a (mental) construction of a square circle; is this really
possible? On this ground Griss espoused the rejection of negation altogether from
mathematics, giving the alternative negationless intuitionistic mathematics. The
logic for this mathematics has been studied by a number of people in later years:
cf. [49, 137, 128, 86, 87, 80].

Another type of objection to intuitionistic logic concerns more specifically the
validity of the formula called ex falso qoudlibet (EFQ): ⊥ → A. The rejection of
EFQ is motivated by dubious inferences it allows, like ¬A → (A → B) [134]. The
elimination of EFQ from the list of axioms in IPC leads to the system christened
minimal logic (MPC) by Ingebrigt Johansson (1904-1987) [70], which was partially
anticipated by the formalisation of intuitionism by Kolmogorov [73]. In consequence
of the rejection of EFQ, the absurdity symbol ⊥, having no axiom related to it, be-
haves like a propositional variable. Yet the strength of MPC is not too decreased
by such a change. Indeed, the famous Gödel-Gentzen translation ()g [48, 52] and
again the pre-dating Kolmogorov translation ()k [73], each given by the following
clauses, give faithful embeddings of classical logic into minimal logic.

Definition 2.4.1 (Gödel-Gentzen and Kolmogorov translation).

pg ≡ ¬¬p pk ≡ ¬¬p
⊥g ≡ ⊥ ⊥k ≡ ⊥

(A ∧B)g ≡ Ag ∧Bg (A ∧B)k ≡ ¬¬(Ak ∧Bk)

(A ∨B)g ≡ ¬(¬Ag ∧ ¬Bg) (A ∨B)k ≡ ¬¬(Ak ∨Bk)

(A→ B)g ≡ Ag → Bg (A→ B)k ≡ ¬¬(Ak → Bk)

Let us write Γg for {Ag : A ∈ Γ}: similarly for Γk. MPC (MQC) is defined
from IPC (IQC)by eliminating the axiom ⊥ → A. We will use the notations `m
and `qm when we try to be explicit. Then the translations achieve the following
equivalences.

Proposition 2.4.1. Γ ` A in CPC iff Γg ` Ag in MPC iff Γk ` Ak in MPC.

Proof. Cf. [121, Theorem 2.3.5, Proposition 2.3.8]

The class of logics between classical and intuitionistic logic, called intermediate
or superintuitionistic logics5 are also investigated, and these logics have much to do
with negations as well. An intermediate logic is defined by additional axioms to
IPC, which usually corresponds semantically to a class of Kripke frames which sat-
isfy certain conditions. For instance, the axiom ¬A∨¬¬A (WLEM) corresponds to
Kripke frames that satisfy the property ∀w, x, y(x ≥ w∧y ≥ w → ∃z(z ≥ x∧z ≥ y)).
For more information on intermediate logics, cf. for example [63, 22].

Similarly to intermediate logics, one may also consider the logics between min-
imal and intuitionistic logic. Such logics have been studied by Krister Segerberg.
[109] (also Cf. [94]). What is of particular interest for us is a logic named JP’
(called Gliveko’s logic in [94]), which is defined by adding ¬¬(⊥ → A) to MPC. An

5A slight difference between the two is that superintuitionistic logic include CPC; this frame-
work is introduced by Toshio Umezawa [123, 124]
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2.4. Negation in intuitionistic logic

important characteristic of this logic is that it is the smallest extension of MPC,
in which Glivenko’s theorem — Γ ` ¬¬A in the system if Γ ` A in CPC — holds.
This fact will be relevant in the investigation of Chapter 3.

19



Chapter 3

Conservation of classical
propositions and non-constructive
principles

Ishihara [68] proposed the following problem for propositional logic:

If Γ ` A classically, then what class V of propositional variables are
sufficient to conclude EV ,Γ ` A intuitionistically, where EV = {p ∨ ¬p :
p ∈ V }?

One answer to the problem, offered in the same paper, is to take

V = (V−(Γ) ∪ V+(A)) ∩ (V+
ns(Γ) ∩ V−(A)).

Here V+,V− and V+
ns designate the sets of positive/negative/non-strictly positive

propositional variables in formulae. This result is shown via induction on the depth
of deduction in classical cut-free sequent calculus.

Another answer to the problem was given by Ishii [69]. In this case, the class is
any V ∈ V ∗(A), where V ∗(A) is defined inductively, by:

V ∗(p) = {{p}},
V ∗(⊥) = {∅},

V ∗(A ∧B) = {V1 ∪ V2 : V1 ∈ V ∗(A), V2 ∈ V ∗(B)},
V ∗(A ∨B) = {V1 ∪ V(B) : V1 ∈ V ∗(A)} ∪ {V(A) ∪ V2 : V2 ∈ V ∗(B)},
V ∗(A→ B) = V ∗(B).

(where V(A) denotes the set of all propositional variables in A.)
In this section, we shall concentrate on refining this latter class by Ishii. The

refinement proceeds in two directions. One is to consider not the instances of LEM,
but of weaker weak excluded middle (WLEM) ¬¬A∨¬A and double negation elim-
ination (DNE) ¬¬A → A. This allows us to avoid invoking the full LEM in some
cases where it is not required. For the second direction, we observe the alternation to
WLEM and DNE also allows to extend Ishii-style result to a weaker system, namely
to Glivenko’s logic, which as we recall is defined by weakening the intuitionistic ax-
iom of ex falso quodlibet (EFQ) ⊥ → A into its double negation ¬¬(⊥ → A). We
will call the axiom Avoidability of Q (AVQ) for a reason we shall explain. We shall
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also extend our analysis to minimal logic, by additionally considering the class of
atomic AVQ/EFQ.

Although Ishihara and Ishii treated the problem for propositional logic, we can
generalise it into predicate logic, by asking the class of sufficient atomic formulae
rather than propositional variables. Our main concern remains propositional, but
for the sake of a wider scope, we shall treat predicate case at the same time. This
however requires the additional axioms of

• double negation shift (DNS) ∀x¬¬A(x)→ ¬¬∀xA(x)

• constant domain (CD) ∀x(A(x) ∨ C)→ (∀xA(x) ∨ C) [x not free in C]

We note that DNS is the axiom required for Glivenko’s theorem for predicate logic
[121, p.106], and CD is provable once we add the missing connective of co-implication
to intuitionistic logic [104]. If we look at the propositional fragments, then our proofs
do apply to intuitionistic/Glivenko’s/minimal logic, without any extra axioms. We
shall use `qi+ ,`qg+ and `qm+ for the derivability in the predicate logics with DNS
and CD, and `qi,`qg and `qm for the logics without DNS and CD, as we introduced
in the previous chapter. When we talk about propositional logic, we shall write
`i,`g and `m. Recall also that classical derivability is denoted by `qc and `c.

3.1 Preliminaries

Here we shall define some basic classes of formulae for later use. For our purpose, in
this paper we shall only concern literal subformulae [120, pp.4-5]; so the subformulae
of ∀xA/∃xA are those of A, and not those of all substitution instances of A.

We define the sets V+(A)/V−(A) of atomic formulae occurring positively/negatively
in A by the following clauses.

V+(P ) = {P} V−(P ) = ∅
V+(⊥) = ∅ V−(⊥) = ∅

V+(A ∧B) = V+(A) ∪ V+(B) V−(A ∧B) = V−(A) ∪ V−(B)

V+(A ∨B) = V+(A) ∪ V+(B) V−(A ∨B) = V−(A) ∪ V−(B)

V+(A→ B) = V−(A) ∪ V+(B) V−(A→ B) = V+(A) ∪ V−(B)

V+(∀xA) = V+(A) V−(∀xA) = V−(A)

V+(∃xA) = V+(A) V−(∃xA) = V−(A)

We shall also write V(A) to denote the set of atomic formulae that occur in
A. Further, we define the sets Vs+(A)/Vs+

nd (A) of propositional variables occurring
strictly positively/non-deterministic strictly positively in A by the following clauses.

Vs+(P ) = {P} Vs+
nd (P ) = {P}

Vs+(⊥) = ∅ Vs+
nd (⊥) = ∅

Vs+(A ∧B) = Vs+(A) ∪ Vs+(B) Vs+
nd (A ∧B) = Vs+

nd (A) ∪ Vs+
nd (B)

Vs+(A ∨B) = Vs+(A) ∪ Vs+(B) Vs+
nd (A ∨B) = Vs+

nd (A) or Vs+
nd (B)

Vs+(A→ B) = Vs+(B) Vs+
nd (A→ B) = Vs+

nd (B)

Vs+(∀xA) = Vs+(A) Vs+
nd (∀xA) = Vs+

nd (A)

Vs+(∃xA) = Vs+(A) Vs+
nd (∃xA) = Vs+

nd (A)
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⊥

¬p p

p ∨ ¬p ¬¬p

¬¬p→ p ¬¬p ∨ ¬p

¬¬p ∨ (¬¬p→ p) (¬¬p→ p)→ (p ∨ ¬p)

Figure 3.1: Rieger-Nishimura lattice

In the clause for disjunction in Vs+
nd , the choice between Vs+

nd (A) and Vs+
nd (B) can be

arbitrarily made, and we may assume there is a stipulation beforehand regarding
each of the choices. If we replace the clause for atomic formulae P,Q,R . . . by a
clause for propositional variables p, q, r . . ., and drop the clauses for quantifiers, then
we get the clauses for propositional language. The same remark applies to classes
that appear later.

3.2 Ishii’s class and Glivenko’s logic

The argument of Ishii runs as follows: If Γ `c A, then by Glivenko’s theorem
Γ `i ¬¬A; and the class V suffices for EV `i ¬¬A → A. One thing to note
in the latter step is that Ishii’s V collects every propositional variable occurring
strictly positively in a formula, in order to derive DNE for the variables, i.e. to
show p ∨ ¬p `i ¬¬p → p. However for this purpose we can just assume ¬¬p → p
itself, which is weaker. (As an axiom schema, on the other hand, ¬¬A → A and
A ∨ ¬A are equivalent.) This hints that some instances of LEM in Ishii’s class can
be replaced with weaker axioms.

If we recall Rieger-Nishimura lattice [108, 93], the lattice of one-propositional
variable formulae in intuitionistic propositional logic, we can see that p ∨ ¬p is the
meet of ¬¬p ∨ ¬p and ¬¬p → p. Hence it would seem reasonable to modify Ishi-
hara’s problem to ask what classes of atomic WLEM and DNE are sufficient for the
preservation of classical theorems.

We shall give an answer to this modified problem, and we shall look at the
preservation for Glivenko’s logic (with DNS+CD for predicate case). To recall, it is
defined by adding AVQ: ¬¬(⊥ → A) to minimal logic. It is the smallest extension
of minimal logic for which Glivenko’s theorem holds. It is easy to check that the
addition of DNS still extends the theorem to the predicate logic. Semantically, it
is characterised by Kripke frames (for minimal logic) in which one can always find
a path which avoids entering the set Q of worlds in which ⊥ is forced. That is to
say, frames s.t. ∀x∀y ≥ x(y /∈ Q⇒ ∃z ≥ y∀t ≥ z(t /∈ Q)). For more information on
Glivenko’s logic, cf. [109, 138, 33, 94].

Let WA to be the universal closure of instances of WLEM for atomic formulae
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occurring in A. That is, WA = {∀~x(¬¬P ∨ ¬P ) : P ∈ V(A)}. (if we are to
concentrate on propositional logic, just take atomic instances of WLEM.)

Lemma 3.2.1. WA `qg+ ¬¬A ∨ ¬A.

Proof. We prove by induction on the complexity of A. For the atomic case where
A ≡ P , we have ∀~x(¬¬P∨¬P ) `qg+ ¬¬P∨¬P . For A ≡ ⊥, we have `qg+ ¬¬⊥∨¬⊥.

When A ≡ B ∧ C, by I.H.

WB `qg+ ¬¬B ∨ ¬B and WC `qg+ ¬¬C ∨ ¬C.

Now WA =WB ∪WC and

`qg+ ¬B ∨ ¬C → ¬(B ∧ C) and `qg+ ¬¬B ∧ ¬¬C → ¬¬(B ∧ C).

So WA `qg+ ¬¬(B ∧ C) ∨ ¬(B ∧ C).
When A ≡ B ∨ C, the argument is similar to the last case, but we appeal to

`qg+ ¬B ∧ ¬C → ¬(B ∨ C) and `qg+ ¬¬B ∨ ¬¬C → ¬¬(B ∨ C)

instead. Then we conclude WA `qg+ ¬¬(B ∨ C) ∨ ¬(B ∨ C).
When A ≡ B → C, the argument is again analogous, and we appeal to

`qg+ ¬¬B ∧ ¬C → ¬(B → C) and `qg+ (¬B ∨ ¬¬C)→ ¬¬(B → C).

For the latter, we recall `qm+ ¬¬(⊥ → C) → (¬B → ¬¬(B → C)) and so `qg+
¬B → ¬¬(B → C). Thus WA `qg+ ¬¬(B → C) ∨ ¬(B → C).

When A ≡ ∀xB, by I.H. WB `qg+ ¬¬B ∨ ¬B and WA = WB. Thus WA `qg+
¬¬B ∨ ∃x¬B and so WA `qg+ ∀x(¬¬B ∨ ∃x¬B) because we took WA to be a
set of universal closure. Hence by CD, WA `qg+ ∀x¬¬B ∨ ∃x¬B and by DNS,
WA `qg+ ¬¬∀xB ∨ ∃x¬B. Therefore WA `qg+ ¬¬∀xB ∨ ¬∀xB.

When A ≡ ∃xB, we have the same I.H. and again WA = WB. Then WA `qg+
∀x(∃x¬¬B ∨ ¬B) and by CD, WA `qg+ ∃x¬¬B ∨ ∀x¬B. Since `qm+ ∃x¬¬B →
¬¬∃xB, we conclude WA `qg+ ¬¬∃xB ∨ ¬∃xB.

One may observe that the argument above does not work for LEM, because then
in the case for implication we would need ¬B → (B → C), which is not available
in Glivenko’s logic. So there is another benefit of considering classes of WLEM
(and DNE) instead of LEM. As a further note, it will turn out to be important
that this lemma, along with Glivenko’s theorem, are the only instances where we
require non-minimal axiom; the rest of this section can be argued in minimal logic
(+DNS+CD), once we assume Lemma 3.2.1.

Now we are ready to recreate Ishii’s result with finer classes in terms of WLEM
and DNE. Given Γ `qc A, then by Glivenko’s theorem Γ `qg+ ¬¬A. Ishii’s method
would then show DNE for A with classes of WLEM and DNE as additional assump-
tions. We shall use an alternative method1 to better visualise what is going on.
We will push the double negation in front of A inside, until it reaches in front of
atomic formulae occurring strictly positively in A, with the aid of the above lemma.
Then the instances of DNE for strictly positive atomic formulae will let us regain
the original A.

1We thank Hajime Ishihara for the suggestion.
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Lemma 3.2.2.
(i) `qm+ (¬¬A ∨ ¬A)→ (¬¬(A ∨B)→ (¬¬A ∨ ¬¬B)).
(ii) `qm+ ∀x(¬¬A ∨ ¬A)→ (¬¬∃xA→ ∃x¬¬A).

Proof. (i) follows from `qm+ ¬¬A → ¬¬A and `qm+ ¬A → (¬B → ¬(A ∨ B)).
For (ii), we first have `qm+ ∀x(¬¬A ∨ ¬A) → (∃x¬¬A ∨ ∀x¬A) using CD; then
from both disjuncts one can deduce ¬¬∃xA → ∃x¬¬A. In particular, using `qm+

∀x¬A → ¬∃xA, one can deduce ∀x¬A → (¬¬∃xA → ¬¬A), because in minimal
logic any negation can be derived from a contradiction. Thence `qm+ ∀x¬A →
(¬¬∃xA→ ∃x¬¬A).

We define a new class of atomic WLEM from WA.

Definition 3.2.1. We define W̃A inductively.

W̃P = W̃⊥ = ∅
W̃A∧B = W̃A ∪ W̃B

W̃A∨B = W̃A ∪WB or WA ∪ W̃B

W̃A→B = W̃B

W̃∀xA = W̃A

W̃∃xA =WA

In the clause for disjunction, again the choice is arbitrary and can be assumed to
be pre-determined. Also note that WA ⊇ W̃A, because the former takes all atomic
formulae of A.

We now make a modified use of [121, Definition 3.24, Lemma 3.25].

Definition 3.2.2 (multiple formula contexts). Let ∗1, ∗2, . . . be a countable set of
symbols. The class F of multiple formula contexts is defined inductively as follows.
(where F, F ′ ∈ F and A a formula.)
(i) ∗n,⊥, ∀xF, ∃xF,A→ F ∈ F .
(ii) Assume no ∗n occurs in both F and F ′. Then F ∧ F ′, F ∨ F ′ ∈ F .

We shall write F [∗1, . . . , ∗n] to denote the occurrences of ∗1, . . . , ∗n in F ∈ F .
By convention we include in the notation when no ∗n occurs, in which case we
write F [∗1, . . . , ∗−1]. The result of substituting ∗1, . . . , ∗n with A1, . . . , An will be
denoted F [A1, . . . , An]. It is straightforward to see that each ∗i points a position
in F at which an atomic formula would occur strictly positively; i.e. P1, . . . , Pn ∈
Vs+(F [P1, . . . , Pn]). Further, each formula A can be written as F [P1, . . . , Pn], where
{P1, . . . , Pn} = Vs+(A). In below, we shall abbreviate F [(¬¬)P1, . . . , (¬¬)Pn] occa-
sionally as F [(¬¬)P1,...,n].

Proposition 3.2.1. Let F [∗1, . . . , ∗n] ∈ F . Then

W̃F [P1,...,Pn] `qg+ ¬¬F [P1, . . . , Pn]→ F [¬¬P1, . . . ,¬¬Pn].

Proof. We prove by induction on the construction of F .

• When F ≡ ∗n, F [Pn] ≡ Pn, and `qg+ ¬¬Pn → ¬¬Pn.
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• When F ≡ ⊥, then `qg+ ¬¬⊥ → ⊥.

• When F ≡ ∀xF ′, then by I.H.,

W̃F ′[P1,...,n] `qg+ ¬¬F ′[P1,...,n]→ F ′[¬¬P1,...,n].

Also by definition, we have W̃F [P1,...,n] = W̃F ′[P1,...,n]. Thus

W̃F [P1,...,n] `qg+ ∀x¬¬F ′[P1,...,n]→ ∀xF ′[¬¬P1,...,n].

As `qm+ (¬¬∀xC → ¬∃x¬C) ∧ (¬∃x¬C → ∀x¬¬C), we conclude

W̃F [P1,...,n] `qg+ ¬¬∀xF ′[P1,...,n]→ ∀xF ′[¬¬P1,...,n].

• When F ≡ ∃xF ′, then W̃F [P1,...,n] =WF ′[P1,...,n] ⊇ W̃F ′[P1,...,n]. So we can apply
the I.H.

W̃F ′[P1,...,n] `qg+ ¬¬F ′[P1,...,n]→ F ′[¬¬P1,...,n].

This enables us to assert

W̃F [P1,...,n] `qg+ ∃x¬¬F ′[P1,...,n]→ ∃xF ′[¬¬P1,...,n]. (3.1)

In addition, by Lemma 3.2.1 we have W̃F [P1,...,n] `qg+ ¬¬F ′[P1,...,n]∨¬F ′[P1,...,n];

thus W̃F [P1,...,n] `qg+ ∀x(¬¬F ′[P1,...,n] ∨ ¬F ′[P1,...,n]). So by Lemma 3.2.2 (ii),

W̃F [P1,...,n] `qg+ ¬¬∃xF ′[P1,...,n]→ ∃x¬¬F ′[P1,...,n].

Combine this with (3.1) to conclude

W̃F [P1,...,n] `qg+ ¬¬∃xF ′[P1,...,n]→ ∃xF ′[¬¬P1,...,n].

• When F ≡ A→ F ′, by I.H.

W̃F ′[P1,...,n] `qg+ ¬¬F ′[P1,...,n]→ F ′[¬¬P1,...,n].

Now W̃F [P1,...,n] = W̃F ′[P1,...,n] and also `qm+ ¬¬(C → D) → (C → ¬¬D);
hence we conclude

W̃F [P1,...,n] `qg+ ¬¬(A→ F ′[P1,...,n])→ (A→ F ′[¬¬P1,...,n]).

When F ≡ F1 ∧ F2, we have F [P1,...,m, Pm+1,...,n] ≡ F1[P1,...,m] ∧ F2[Pm+1,...,n].
Also by I.H. it follows that

W̃F1 [P1,...,m] `qg+ ¬¬F1[P1,...,m]→ F1[¬¬P1,...,m]

and
W̃F2 [Pm+1,...,n] `qg+ ¬¬F2[Pm+1,...,n]→ F2[¬¬Pm+1,...,n].

Thus
W̃F `qg+ ¬¬(F1 ∧ F2)[P1, . . . , Pn])→ F1 ∧ F2[¬¬P1,...,n].
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• When F ≡ F1 ∨ F2 with F [P1,...,m, Pm+1,...,n] ≡ F1[P1,...,m] ∨ F2[Pm+1,...,n], and

W̃F [P1,...,n] is either W̃F1[P1,...,m] ∪ WF2[Pm+1,...,n] or WF1[P1,...,m] ∪ W̃F2[Pm+1,...,n].
Without loss of generality, assume the former. Then by Lemma 3.2.1

W̃F [P1,...,n] `qg+ ¬¬F2[Pm+1,...,n] ∨ ¬F2[Pm+1,...,n].

Hence by lemma 3.2.2 (i),

W̃F [P1,...,n] `qg+ ¬¬(F1 ∨ F2)[P1,...,n]→ ¬¬F1[P1,...,m] ∨ ¬¬F2[Pm+1,...,n].

Moreover, W̃F [P1,...,n] ⊇ W̃F1[P1,...,m] ∪ W̃F2 [Pm+1,...,n] and so we can apply the
same I.H. as in the case for conjunction. Thus we conclude

W̃F [P1,...,n] `qg+ ¬¬(F1 ∨ F2)[P1,...,n]→ (F1 ∨ F2)[¬¬P1,...,n].

Next, let DA := {∀x(¬¬P → P ) : P ∈ Vs+(A)}. Then we have the following.

Proposition 3.2.2. Let F [∗1, . . . , ∗n] ∈ F . Then

DF [P1,...,Pn] `qg+ F [¬¬P1, . . . ,¬¬Pn]→ F [P1, . . . , Pn].

Proof. We argue by induction on the construction of F .

• When F ≡ ∗n, we have ∀x(¬¬P → P ) `qg+ ¬¬P → P .

• When F ≡ ⊥, then `qg+ ¬¬⊥ → ⊥.

• When F ≡ ∀xF ′, then by I.H.

DF ′[P1,...,n] `qg+ F ′[¬¬P1,...,n]→ F ′[P1,...,n].

Thus
DF [P1,...,n] `qg+ ∀xF ′[¬¬P1,...,n]→ ∀xF ′[P1,...,n].

• When F ≡ ∃xF ′, similar to the previous case.

• When F ≡ A→ F ′, then DF [P1,...,n] = DF ′[P1,...,n]. Also by I.H.

DF ′[P1,...,n] `qg+ F ′[¬¬P1,...,n]→ F ′[P1,...,n].

Thus
DF [P1,...,n] `qg+ (A→ F ′)[¬¬P1,...,n]→ (A→ F ′)[P1,...,n].

• When F ≡ F1 ∧ F2, with F [P1,...,m, Pm+1,...,n] ≡ F1[P1,...,m] ∧ F2[Pm+1,...,n], by
I.H. we have

DF1[P1,...,m] `qg+ F1[¬¬P1,...,m]→ F ′[P1,...,m]

and
DF2[Pm+1,...,n] `qg+ F2[¬¬Pm+1,...,n]→ F2[Pm+1,...,n].

Hence

DF [P1,...,n] `qg+ (F1 ∧ F2)[¬¬P1,...,n]→ (F1 ∧ F2)[Pm+1,...,n].
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• When F ≡ F1 ∨ F2, similar to the previous case.

Therefore, from the preceding two propositions we conclude:

Corollary 3.2.1. For F [∗1, . . . , ∗n] ∈ F ,

W̃F [P1,...,Pn],DF [P1,...,Pn] `qg+ ¬¬F [P1, . . . , Pn]→ F [P1, . . . , Pn].

Thus the desired result follows.

Theorem 3.2.1. If Γ `qc A, then W̃A,DA,Γ `qg+ A.

To reiterate the comparison with Ishii’s result, our class always takes the same
occurrence of atomic formulae as his class, but we assume only WLEM or DNE of
the formulae, unlike his class, which contains instances of LEM. In addition, our
result reaches to weaker logic than Ishii’s.

As we noted, the definition of W̃ contains non-determinism in the clause for ∨.
In the clause, one has to take all the atomic WLEM for one of the disjuncts. One
way to choose the disjunct is to pick one which is negated. Then we can potentially
avoid assuming any instances of LEM for the preservation. For instance, for the
next classical theorem

`c ¬¬(p ∨ q)→ (¬¬p ∨ q),

we can take W̃¬¬(p∨q)→(¬¬p∨q) = {¬¬p∨¬p} and D¬¬(p∨q)→(¬¬p∨q) = {¬¬q → q}, s.t.

¬¬p ∨ ¬p,¬¬q → q `g ¬¬(p ∨ q)→ (¬¬p ∨ q).

With the same choice of disjuncts, Ishii’s class gives {p ∨ ¬p, q ∨ ¬q}, which is
stronger than ours as a set of assumptions. With a different choice, our method and
his method give equivalent classes {¬¬q ∨¬q,¬¬q → q} and {q ∨¬q}, respectively.
Hence his best choice is also available to us, and our method moreover provides
another class incomparable to it. In addition, our class has the merit of using
weaker logical principles. So in some cases our class is a strict improvement over
his, in addition to the fact it is a generalisation to Glivenko’s logic.

3.3 Extension to minimal logic

As we remarked after Lemma 3.2.1, in the last section we relied on the axiom AVQ
in two places. Firstly it was required for Glivenko’s theorem for Glivenko’s logic;
secondly it was required in the case for implication in the lemma.

Here it might be hoped that by assuming atomic instances of AVQ, we can
overcome the reliance. For this purpose, we shall first look at the usage of AVQ in
the 3.2.1. Let QA be the class of the universal closure of all atomic formulae in A,
i.e. QA = {∀~x¬¬(⊥ → P ) : P ∈ V(A)}. With this we shall modify Lemma 3.2.1.

Lemma 3.3.1.
(i) QA `qm+ ¬¬(⊥ → A).
(ii) QA,WA `qm+ ¬¬A ∨ ¬A.
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Proof. For (i), define Q′A = {∀~x¬¬(⊥ → P ) : P ∈ Vs+
nd (A)}. We shall show a

stronger result that Q′A `qm+ ¬¬(⊥ → A). We argue by induction on the complex-
ity of A. It is helpful to recall `qm+ (C → D)→ (¬¬C → ¬¬D).

• It is immediate that Q′P `qm+ ¬¬(⊥ → P ) and `qm+ ¬¬(⊥ → ⊥).

• When A ≡ B∧C, then by I.H., Q′B `qm+ ¬¬(⊥ → B) and Q′C `qm+ ¬¬(⊥ →
C). Thus Q′A `qm+ ¬¬(⊥ → B ∧ C).

• When A ≡ B ∨ C, w.l.o.g. assume Vs+
nd (B ∨ C) = Vs+

nd (B). Then by I.H.,
Q′B `qm+ ¬¬(⊥ → B) and so Q′A `qm+ ¬¬(⊥ → B ∨ C).

• When A ≡ B → C, then by I.H., Q′C `qm+ ¬¬(⊥ → C). So Q′A `qm+

¬¬(⊥ → (B → C)).

• When A ≡ ∀xB, then by I.H. Q′B `qm+ ¬¬(⊥ → B). Thus Q′A `qm+

∀x¬¬(⊥ → B), and by DNS, Q′A `qm+ ¬¬∀x(⊥ → B). Therefore Q′A `qm+

¬¬(⊥ → ∀xB).

• When A ≡ ∃xB, then by I.H. Q′B `qm+ ¬¬(⊥ → B). So Q′A `qm+ ¬¬(⊥ →
∃xB).

For (ii), the proof is almost identical to Lemma 3.2.1. We only need to be careful
that QA is large enough to apply I.H.. Here we look at the case for implication.
When A ≡ B → C, QA = QB ∪ QC and WA = WB ∪ WC . So we can apply I.H.
that QB,WB `qm+ ¬¬B ∨ ¬B and QC ,WC `qm+ ¬¬C ∨ ¬C. In addition, by (i)
QC `qm+ ¬¬(⊥ → C) and so QC `qm+ ¬B → ¬¬(B → C). Then we argue as in
Lemma 3.2.1.

We may note QA andWA collect instances from the same set of atomic formulae;
so we can merge the two classes into one class RA := {∀~x(¬¬(⊥ ↔ P ) ∨ ¬¬P ) :
P ∈ V(A)}, since `qm+ ((¬¬P ∨ ¬P ) ∧ ¬¬(⊥ → P ))↔ (¬¬(⊥ ↔ P ) ∨ ¬¬P ). We

then redefine W̃A into R̃A.

Definition 3.3.1. We define R̃A inductively.

R̃P = R̃⊥ = ∅
R̃A∧B = R̃A ∪ R̃B

R̃A∨B = R̃A ∪RB or RA ∪ R̃B

R̃A→B = R̃B

R̃∀xA = R̃A

R̃∃xA = RA

Then we can proceed exactly as in the last section. The only difference is that
we now assume a bigger class R̃A instead of Q̃A in order to use instances of WLEM.
Therefore:

Proposition 3.3.1. If Γ `qm+ ¬¬A, then R̃A,DA,Γ `qm+ A.

Let us next turn our attention to Glivenko’s theorem. We define another class
of atomic instances of AV Q, which we shall call Q̃.
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Definition 3.3.2. We define Q̃A inductively by the following clauses.

Q̃P = Q̃⊥ = ∅
Q̃A∧B = Q̃A ∪ Q̃B

Q̃A∨B = Q̃A ∪ Q̃B

Q̃A→B = Q̃A ∪QB

Q̃∀xA = Q̃A

Q̃∃xA = Q̃A

Note here QA ⊇ Q̃A for any A. We shall write Q̃Γ to mean
⋃

A∈Γ Q̃A.
We shall modify a couple of classes of formulae in [121, Definition 3.14], which

originally comes from [78]. First, recall Gödel-Gentzen translation of classical logic
into minimal logic. A useful theorem related to the translation is the following.

Theorem 3.3.1. `qm ¬¬Ag ↔ Ag.

Proof. Cf. for instance [121, Lemma 1.3.3].

What we would like to do is to convert Γg and Ag back into Γ and A with the aid
of extra assumptions of AVQ. Towards this goal we introduce the following classes.

Definition 3.3.3 (Q-spreading, Q-isolating). Given a formula A, we say it is Q-

spreading if Q̃A `qm+ A→ Ag, and Q-isolating if Q̃A `qm+ Ag → ¬¬A.

Then we obtain the following result.

Proposition 3.3.2. Let A be a formula. Then A is both Q-spreading and Q-
isolating.

Proof. We argue by induction on the complexity of A.

• When A ≡ P , then we have `qm+ P → ¬¬P and `qm+ ¬¬P → ¬¬P .

• When A ≡ ⊥, then we have `qm+ ⊥ → ⊥ and `qm+ ⊥ → ¬¬⊥.

• When A ≡ B ∧ C, then by I.H., Q̃B `qm+ B → Bg and Q̃C `qm+ C → Cg.

Also Q̃A = Q̃B ∪ Q̃C and Ag ≡ Bg ∧ Cg. Thus Q̃A `qm+ A → Ag, so A is Q-

spreading. Similarly, by I.H. Q̃B `qm+ Bg → ¬¬B and Q̃C `qm+ Cg → ¬¬C;

thus Q̃A `qm+ Ag → ¬¬A and so A is Q-isolating.

• When A ≡ B ∨ C, then by I.H., Q̃B `qm+ B → Bg and Q̃C `qm+ C → Cg.

Also Q̃A = Q̃B ∪ Q̃C and Ag ≡ ¬(¬Bg ∧ ¬Cg). Thus Q̃A `qm+ (B ∨ C) →
¬(¬Bg ∧ ¬Cg). Similarly, by I.H. Q̃B `qm+ Bg → ¬¬B and Q̃C `qm+

Cg → ¬¬C; hence Q̃A `qm+ ¬B ∧ ¬C → ¬Bg ∧ ¬Cg and consequently

Q̃A `qm+ ¬(¬Bg ∧ ¬Cg)→ ¬¬(B ∨ C).
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• When A ≡ B → C, By I.H. Q̃B `qm+ Bg → ¬¬B and Q̃C `qm+ C → Cg.

we have Q̃A = Q̃B ∪ QC . Since QC ⊇ Q̃C , we can apply the I.H. Now
(B → C)g ≡ Bg → Cg and Q̃A `qm+ (B → C) → (Bg → ¬¬Cg). Thus by

Theorem 3.3.1, Q̃A `qm+ (B → C)→ (Bg → Cg). To see A is Q-isolating, by

I.H. Q̃B `qm+ B → Bg and Q̃C `qm+ Cg → ¬¬C. So

Q̃A `qm+ (Bg → Cg)→ (¬¬B → ¬¬C). (3.2)

Next note by Lemma 3.3.1 (i), Q̃A `qm+ ¬¬(⊥ → C) and so Q̃A `qm+ ¬B →
¬¬(B → C); hence

Q̃A `qm+ ¬(B → C)→ ¬¬B. (3.3)

Combining (3.2) and (3.3), we obtain

Q̃A `qm+ (Bg → Cg)→ (¬(B → C)→ ¬¬C).

Then note Q̃A `qm+ ¬(B → C) → ¬C to conclude Q̃A `qm+ (Bg → Cg) →
¬¬(B → C).

• When A ≡ ∀xB, then by I.H. Q̃B `qm+ B → Bg. Since Q̃A = Q̃B and

(∀xB)g = ∀xBg, we have Q̃A `qm+ ∀xB → ∀xBg. To see A is Q-isolating,

by I.H. Q̃B `qm+ Bg → ¬¬B. Thus Q̃A `qm+ ∀xBg → ∀x¬¬B and by DNS,

Q̃A `qm+ ∀xBg → ¬¬∀xB.

• When A ≡ ∃xB, then by I.H. Q̃B `qm+ B → Bg. Since Q̃A = Q̃B and

(∃xB)g = ¬∀x¬Bg, we have Q̃A `qm+ ∃xB → (∃xB)g. To see A is Q-

isolating, Q̃B `qm+ Bg → ¬¬B. Thus Q̃A `qm+ ∃xBg → ∃x¬¬B, which

implies Q̃A `qm+ ∃xBg → ¬¬∃xB and consequently Q̃A `qm+ ¬¬∃xBg →
¬¬∃xB. Therefore Q̃A `qm+ ¬∀x¬Bg → ¬¬∃xB.

Combining Proposition 3.3.1 and Proposition 3.3.2, we finally obtain an answer
to Ishihara’s problem for minimal logic (+DNS+CD).

Theorem 3.3.2. If Γ `qc A, then Q̃Γ∪{A}, R̃A,DA,Γ `qm+ A.

Proof. If Γ `qc A, then Γg `qm+ Ag. So there is some finite ∆ ⊆ Γ such that

∆g `qm+ Ag. Then by Proposition 3.3.2, Q̃Γ∪{A} assures D → Dg for all D ∈
∆ and Ag → ¬¬A; thus Q̃Γ∪{A},∆ `qm+ ¬¬A. Hence by Proposition 3.3.1,

Q̃Γ∪{A}, R̃A,DA,Γ `qm+ A.

Let us write V(Q̃Γ∪{A}), V(R̃A) and V(DA) for atomic formulae occurring in the
sets. Then we further obtains the next result.

Corollary 3.3.1. If Γ `qc A and V(Q̃Γ∪{A}) ⊆ V(R̃A)∪V(DA), then R̃A,DA,Γ `qm+

A.
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Proof. Trivially, if an element of V(Q̃Γ∪{A}) is in V(R̃A) then the instance of AVQ is
already assumed by the latter collection. In addition, because `qm+ (¬¬P → P )→
(⊥ → P ), a fortiori atomic instances of DNE subsume the instances of AVQ. So we

can eliminate Q̃Γ∪{A} from the assumption.

The derivability of EFQ from DNE might make one wonder of the possibil-
ity that perhaps Vs+(A) always gives sufficient instances of EFQ (via instances of
DNE) for the preservation to minimal logic. In other words, can we drop the con-

dition V(Q̃Γ∪{A}) ⊆ V(R̃A)∪V(DA) from the above corollary? The answer is in the

negative, because for `qc ¬¬(⊥ → P ), R̃A = DA = ∅ and 0m+ ¬¬(⊥ → P ).
In the above, we proceeded with two steps: of obtaining ¬¬A from Ag and of

obtaining A from ¬¬A. We can make them into a single step by considering a
wiping class (`qm+ Ag → A) instead of an isolating class (`qm+ Ag → ¬¬A). Then
it turns out we would need to assume not a class of AVQ but classes of DNE and
WLEM for the analogue of Proposition 3.3.2 to work. These classes, let us call
them D′A and W̃ ′A, turn out to be larger than DA and W̃A, respectively. To be
precise, D′A := {∀x(¬¬P → P ) : P ∈ V(A)} (which, as commented above im-

plies contains Q̃A) and W̃ ′A is obtained by changing the clause for implication to

W̃ ′A→B = W̃ ′A ∪ W̃ ′B. We need bigger classes, essentially because in order to apply
I.H. we have to make sure the assumptions in the I.H. need to be included in the
current assumption. Hence our two-step approach in terms of an isolating class gives
a better outcome than one-step approach using a wiping class.

For propositional logic, there is an alternative method to obtain a class of AVQ
different from Q̃Γ∪{A}. The argument appeals to derivations in G3i. We note that in
G3i, the C in the rule (L⊥) can be assumed (and we shall assume in this chapter)
to be either a propositional variable or ⊥, since ⊥,Γ ⇒ C for general C can be
derived cut-free with the instances. If we restrict it to ⊥ alone, then we get the
calculus for minimal logic G3m. We shall denote the derivability in the calculi and
`g3m, respectively. By the equivalence with the Hilbert-type system, Γ `m A if and
only if `g3m Γ⇒ A.

Now we shall recall the subformula property [120, Proposition 4.2.1] for G3i:
instead of the full statement, we extract the part we will rely on.

Proposition 3.3.3 (subformula property). If a sequent Γ⇒ p occurs in a derivation
in G3i of Γ′ ⇒ C, then p ∈ V−(A) for some A ∈ Γ′, or p ∈ V+(C).

This means if `g3i Γ⇒ C, then all the propositional variables in the application
of (L⊥) occur either negatively in Γ or positively in C. Hence the propositional
instances ⊥ → p of EFQ for p ∈ V−(Γ) ∪ V+(C) suffice as assumption set AΓ∪{C}
to derive `g3m AΓ∪{C},Γ⇒ C.

For our purpose, A can be weakened to a set of instances of AVQ; that is, given
Γ `i A, we define BΓ∪{A} := {¬¬(⊥ → p) : p ∈ V−(Γ) ∪ V+(A)}. Then:

Theorem 3.3.3. if Γ `c A, then BΓ∪{A}, R̃A,DA,Γ `m A.

Proof. If Γ `c A, then by Glivenko’s theorem Γ `i ¬¬A. So by the above obser-
vation, AΓ∪{¬¬A},Γ `m ¬¬A. Thus for some finite A′ ⊆ AΓ∪{¬¬A}, A′,Γ `m ¬¬A.
Consequently, for ¬¬A′ := {¬¬(⊥ → p) : p ∈ A′} we obtain ¬¬A′,Γ `m ¬¬A, by
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contraposing finite many times.2 Therefore BΓ∪{A},Γ `m ¬¬A (note V+(¬¬C) =
V+(C) for any C). Then we argue as in Theorem 3.3.2 to reach the conclusion.

For the predicate case, we have additional axioms, and so the same strategy via
cut-free calculus does not apply. To compare our two methods for propositional
logic, for A ≡ (⊥ → p)∨¬¬q we see Q̃A = {p} but BA = {p, q}; on the other hand,

for A ≡ ⊥ → (q → p) we have Q̃A = {p, q} but BA = {p}. Hence it is not the case

that one of Q̃A and BA is always smaller than the other.

3.4 Discussion

The present enquiry extended the results of Ishii (i) to Glivenko’s logic by consider-
ing the classes of WLEM and DNE instead of LEM (ii) to minimal logic by assuming
additional classes of AVQ, and (iii) to predicate logic enhanced with intermediate
axioms DNS and CD.

An apparent future direction would be to contrast the present study with the
methodology of Ishihara [68]. Although his method does not have a direct connec-
tion to Glivenko’s theorem, and so Glivenko’s logic may not play as vital a role, it
is still of interest whether the class of assumptions can be weakened with those of
WLEM and DNE. It is also desirable to obtain the conservativity result for minimal
logic using AVQ. However, Ishihara’s method in its original form appears to make
crucial use of LEM and EFQ, hence some new techniques would be required. It also
has to be carefully investigated how strong the predicate fragment has to be in order
to extend Ishihara’s result to predicate logic.

From a different perspective, the enquiries so far all used proof-theoretical method-
ology. It would be interesting to consider whether a semantical viewpoint can offer
another route to obtain an improvement to the known results.

2This argument is suggested by Hajime Ishihara, and the idea is related to the one in [39].
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Chapter 4

Relationship among logics with
weak negation

4.1 Minimal logic and subminimal negation

One topic we mentioned in the Chapter 2 is how important a role negation plays
in the characterisation of intuitionistic logic. We also made reference to some al-
ternative formalisations of the ideas of intuitionism. One of them was Johansson’s
minimal logic, which rejected the ex falso quodlibet principle of the intuitionistic
logic.

We shall look into two generalisations of minimal logic in the direction of yet
weaker negation. One of them is the logic introduced by Dimiter Vakarelov [126,
127]. Vakarelov’s system, which we shall call by the name An−PC, is characterised
by a negation which is “relative”, in the sense that no theorem of the form ¬A is
derivable in the system.

The other approach is the class of logics endowed with what is called submnimal
negation. This family of logics was introduced by Almudena Colacito, Dick de Jongh
and Ana Lucia Vargas [25, 24]. The only axiom about negation that is assumed in
all of the logics is:

(A↔ B)→ (¬A↔ ¬B).

We next move on to the main objective of this chapter: investigation of An−PC
by applying the results and techniques of subminimal negation. We shall begin with
capturing An−PC in terms of the semantics of subminimal negation, thereby inves-
tigate its semantic properties as well as clarify its relationship with the logics with
subminimal negation. Aided by this insight we shall then move on to formulate the
sequent calculus for An−PC, prove cut-elimination and some of its consequences.
Finally, as a separate topic, we shall formulate a new countable class of logics with
subminimal negation.

4.2 Vakarelovs logic and subminimal logic: se-

mantics

In this section, we shall introduce two types of Kripke semantics for An−PC. We
shall then establish the translations between the semantics. From here we use the
language L¬,>, which is obtained from L¬ with an additional constant >. Intuitively,
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4.2. Vakarelovs logic and subminimal logic: semantics

> stands for a tautology that always holds.
Vakarelov [126, 127] formulates an extension of intuitionistic Kripke semantics

for his system, which we shall call (F,G)-semantics. Here we slightly modify it
for An−PC. It uses two upward closed sets of worlds F and G. Intuitively, they
each stands for the set of worlds in which all/some negations are forced. Then the
forcing of negation is modified from that of intuitionistic logic to reflect this aspect:
we require a negation to be forced in a world only if it is in G. Hence we have the
following definition.

Definition 4.2.1. An (F,G)-frame F for An−PC is a quadruple (W,≤, F,G) where
(W,≤) is an inhabited pre-ordered set, and F ,G are upward closed subsets of W
such that F ⊆ G. An (F,G)-model M for An−PC is a pair (F ,V) where F is
an (F,G)-frame and V is a mapping assigning an upward closed set of worlds V(p)
to each propositional variable p. The valuation ((F,G)) of formulae in a world is
inductively defined as follows.

w (F,G) >.
w (F,G) p ⇔ w ∈ V(p).

w (F,G) A ∧B ⇔ w (F,G) A and w (F,G) B.

w (F,G) A ∨B ⇔ w (F,G) A or w (F,G) B.

w (F,G) A→ B ⇔ for all w′ ≥ w[w′ (F,G) A implies w′ (F,G) B].

w (F,G) ¬A ⇔ for all w′ ≥ w[w′ (F,G) A implies w′ ∈ F ]

and w ∈ G.

The Kripke semantics for subminimal negation in comparison allows a more
general framework. The main idea is to refine the notion of negation to its essential
characteristic. That restricts us to regard negation as just an operator such that the
(upward closed) set of worlds forcing a formula determines the set of worlds forcing
the negation of formulae. It is also required that this is consistent with the upward
closure of forcing, which necessitates the imposition of a restriction of locality on
such a determination.

Definition 4.2.2. An N -frame is a triple (W,≤,N ), where (W,≤) is a pre-ordered
set and N : U(W ) → U(W ) is a mapping from the set U(W ) of upward closed
subsets of W to itself. N must satisfy the condition of locality :

∀U ∈ U(W )∀w ∈ W (w ∈ N (U)⇔ w ∈ N (U ∩R(w))),

where R(w) := {v : v ≥ w}. When it comes to the valuation (N ), only the
valuation for negation is different, which is given by

w N ¬A⇔ w ∈ N (V(A)),

for V(A) := {w : w N A}.

NPC is sound and complete with respect to N -semantics [25]. We now consider
the relationship between the two semantics over An−PC. We will make use of a
fact from [24, Lemma 4.3.2] that R(w) ∩ N (U) = R(w) ∩ N (U ∩ R(w)) for any U
and w.
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4.2. Vakarelovs logic and subminimal logic: semantics

As we shall look into more closely in the next section, the following formula plays
a characteristic role for An−PC

[An−] (A→ ¬A)→ (¬B → ¬A).

We wish to capture semantically the validity of this formula. Hence we introduce
the next class of frames.

Definition 4.2.3. We define an N An−-frame as an N -frame with the property

∀U, V ∈ U(W )[U ⊆ N (U)⇒ N (V ) ⊆ N (U)].

As the name suggests, the condition of N An−-frame directly corresponds to the
validity of An−.

Lemma 4.2.1. Let F be an N -frame. The next conditions are equivalent.

(i) F �N (A→ ¬A)→ (¬B → ¬A) for all A and B.

(ii) F is an N An−-frame.

Proof. To see (i) implying (ii), we shall prove by contraposition. Assume F to be a
non-N An−-frame. That is to say, ∃U, V ∈ U(W )[U ⊆ N (U) ∧ ¬(N (V ) ⊆ N (U))].
Then let V be such that V(p) = U and V(q) = V . By assumption we can find
w ∈ N (V ) such that w /∈ N (U). Now for all w′ ≥ w, if (F ,V), w′ N p then
w′ ∈ U ⊆ N (U). Thus (F ,V), w′ N ¬p and so (F ,V), w N p → ¬p. But
(F ,V), w 1N ¬q → ¬p by our choice of w. Hence (F ,V), w 1N (p→ ¬p)→ (¬q →
¬p). Therefore F 2N (p→ ¬p)→ (¬q → ¬p).

To see (ii) implying (i), let V and w be arbitrary. Assume for v ≥ u ≥ w,
(F ,V), u N A→ ¬A and (F ,V), v N ¬B. Then V(A)∩R(u) ⊆ N (V(A))∩R(u)
by the former assumption. Now N (V(A)) ∩ R(u) = N (V(A) ∩ R(u)) ∩ R(u) ⊆
N (V(A) ∩ R(u)). Thus V(A) ∩ R(u) ⊆ N (V(A) ∩ R(u)), so we infer from the
condition of N An−-frame that N (V(B)) ⊆ N (V(A) ∩ R(u)). Then by the latter
assumption v ∈ N (V(A) ∩ R(u)), which by locality implies v ∈ N(V(A) ∩ R(u) ∩
R(v)). But V(A)∩R(u)∩R(v) = V(A)∩R(v). So by locality again, v ∈ N(V(A)).
Thus (F ,V), v N ¬A. So (F ,V), w N (A → ¬A) → (¬B → ¬A); thus F �N

An−.

From now on we shall denote the valuation/validity with respect to the class of
N An−-frames by NAn− and �NAn− .

Given an N An−-frame, we define an (F,G)-frame in the following way.

Theorem 4.2.1. Let F = (W,≤,N ) be an N An−-frame, and V be a valuation.
Take

F :=
⋂

U∈U(W )

N (U) and G =
⋃

U∈U(W )

N (U).

Then M := (W,≤, F,G,V) defines an (F,G)-model for An−PC such that

(F ,V), w NAn− A⇔M, w (F,G) A.
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4.2. Vakarelovs logic and subminimal logic: semantics

Proof. Throughout the proof, V(A) denotes {w : w NAn− A}. First note that
F ⊆ G, and so F and G are well-defined. We use induction on the complexity of A.
It is sufficient to consider the case for negation, i.e. to show

(F ,V), w NAn− ¬A⇔ ∀w′ ≥ w[M, w′ (F,G) A⇒ w′ ∈ F ] and w ∈ G.

For the left-to-right direction, if (F ,V), w NAn− ¬A, then w ∈ G. Further, if
M, w′ (F,G) A for w′ ≥ w, then by I.H. (F ,V), w′ NAn− A, so (F ,V), w′ NAn− A∧
¬A. We must show w′ ∈ N (V ) for each V ∈ U(W ). Let q be a variable not occurring
in A, and take an arbitrary V ∈ U(W ). Then let V ′ := V except that V ′(q) = V .
Then we can show by induction that (F ,V), u NAn− B ⇔ (F ,V ′), u NAn− B for
arbitrary u and B not containing q. Hence (F ,V ′), w′ NAn− A ∧ ¬A. Also, by
Lemma 4.2.1, (F ,V ′), w′ NAn− (A ∧ ¬A) → ¬q. So (F ,V ′), w′ NAn− ¬q. Hence
w′ ∈ N (V ′(q)) = N (V ). As V is arbitrary, this procedure can be done for any
U in U(W ), i.e. we can always pick a fresh variable r not occurring in A and a
valuation V ′′ with V ′′ := V except V ′′(r) = U such that w′ ∈ N(U). Therefore
w′ ∈

⋂
U∈U(W ) N (U) = F .

For the right-to-left direction, by assumption and I.H., R(w) ∩ V(A) ⊆ F . Also
by definition, F ⊆ N (V(A)). So,

R(w) ∩ V(A) ⊆ R(w) ∩ N (V(A)) = R(w) ∩ N (R(w) ∩ V(A)).

Hence R(w)∩V(A) ⊆ N (R(w)∩V(A)). Thus by the frame property of F , N (V ) ⊆
N (R(w) ∩ V(A)) for any V . So G ⊆ N (R(w) ∩ V(A)). As w ∈ G, w ∈ N (R(w) ∩
V(A)). So w ∈ N (V(A)) by locality. Hence (F ,V), w NAn− ¬A.

We have a similar theorem addressing the opposite direction, starting from an
(F,G)-model to define an N An−-models such that they satisfy the same formulae.

Theorem 4.2.2. Let F = (W,≤, F,G) be an (F,G)-frame for An−PC and V be a
valuation. Define N : U(W )→ U(W ) by

w ∈ N (U)⇔ (R(w) ∩ U ⊆ F ) ∧ w ∈ G.

Then M := (W,≤,N ,V) defines an N An−-model such that

(F ,V), w (F,G) A⇔M, w NAn− A.

Proof. First we check that N is well-defined and an N An−-frame. We show

(i) w ∈ N (U) and w′ ≥ w ⇒ w′ ∈ N (U);

(ii) w ∈ N (U)⇔ w ∈ N (U ∩R(w));

(iii) U ⊆ N (U)⇒ N (V ) ⊆ N (U).

For (i), if w ∈ N (U), then by definitionR(w)∩U ⊆ F and w ∈ G. SoR(w′)∩U ⊆ F
and w′ ∈ G for any w′ ≥ w. Hence w′ ∈ N (U). For (ii), by definition, w ∈ N (U)
if and only if (R(w) ∩ U ⊆ F ) ∧ w ∈ G; but this latter condition is equivalent to
(R(w)∩R(w)∩U ⊆ F )∧w ∈ G. This is equivalent to w ∈ N (R(w)∩U) again by
definition. For (iii), assume U ⊆ N (U) and let w ∈ N (V ). Then (R(w)∩ V ⊆ F )∧
w ∈ G. Now if w′ ∈ R(w)∩U , then w′ ∈ N (U) by assumption. So R(w′)∩U ⊆ F .
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Hence w′ ∈ F . Thus (R(w) ∩ U ⊆ F ) ∧ w ∈ G. That is, w ∈ N (U).
The equivalence of valuation is shown by induction on the complexity of A. For

negation,

(F ,V), w (F,G) ¬A if and only if ∀w′ ≥ w[(F ,V), w′ (F,G) A⇒ w′ ∈ F ] ∧ w ∈ G.

By I.H., this is equivalent to ∀w′ ≥ w[M, w′ NAn− A⇒ w′ ∈ F ]∧w ∈ G, and this
in turn is equivalent to (R(w) ∩ V(A) ⊆ F ) ∧ w ∈ G and hence to w ∈ N (V(A)),
that is M, w NAn− ¬A.

Let us name the mapping from an N An−-frame to an (F,G)-frame defined in
Theorem 4.2.1 as Φ, and the mapping from an (F,G)-frame to an N An−-frame
defined in Theorem 4.2.2 as Ψ.

Theorem 4.2.3. The mappings Φ and Ψ are inverse mappings; i.e.

(i) Ψ ◦ Φ(F) = F for N An−-frame F .

(ii) Φ ◦Ψ(F) = F for (F,G)-frame F .

Proof. For (i), given F = (W,≤,N ), we have to show

w ∈ N (U)⇔ [R(w) ∩ U ⊆
⋂

V ∈U(W )

N (V )] ∧ w ∈
⋃

V ∈U(W )

N (V ).

For the left-to-right direction, We argue by contraposition. Assume

¬[R(w) ∩ U ⊆
⋂

V ∈U(W )

N (V )] ∨ w /∈
⋃

V ∈U(W )

N (V ).

If w /∈
⋃

V ∈U(W ) N (V ), then immediately w /∈ N (U). If ¬[R(w)∩U ⊆
⋂

V ∈U(W ) N (V )],

take u ∈ R(w) ∩ U such that u /∈
⋂

V ∈U(W ) N (V ). Now if w ∈ N (U), then take

V such that V(p) = U and V(q) = V for certain V . Then w ∈ N (U) implies
(F ,V), w NAn− ¬p. Thus (F ,V), u NAn− p ∧ ¬p. As (F ,V), u NAn− (p ∧ ¬p)→
¬q, (F ,V), u NAn− ¬q. So u ∈ N (V ). As V is arbitrary, u ∈

⋂
V ∈U(W ) N (V ), a

contradiction. For the right-to-left direction, if [R(w) ∩ U ⊆
⋂

V ∈U(W ) N (V )] ∧ w ∈⋃
V ∈U(W ) N (V ) then R(w) ∩ U ⊆

⋂
V ∈U(W ) N (V ) ⊆ N (U). So

R(w) ∩ U ⊆ R(w) ∩ N (U) = R(w) ∩ N (U ∩R(w)) ⊆ N (U ∩R(w)).

By the frame property, N (V ) ⊆ N (U ∩ R(w)) for any V . So
⋃

V ∈U(W ) N (V ) ⊆
N (U ∩R(w)). Hence w ∈ N (U) by locality.

For (ii), given F = (W,≤, F,G), define N as in Theorem 4.2.2. We have to show⋂
U∈U(W ) N (U) = F and

⋃
U∈U(W ) N (U) = G. To see the former, for the left-to-right

direction, if w ∈
⋂

U∈U(W ) N (U) then in particular w ∈ N (R(w)). By definition, this

means (R(w)∩R(w) ⊆ F )∧w ∈ G. Hence w ∈ F . For the right-to-left direction, if
w ∈ F then (R(w)∩U ⊆ F )∧w ∈ G for all U . So w ∈

⋂
U∈U(W ) N (U) by definition

of N . Next, to see the latter, for the left-to-right direction, if w ∈
⋃

U∈U(W ) N (U)

then w ∈ N (V ) for some V . Hence w ∈ G. For the right-to-left direction, if w ∈ G
then (R(w) ∩ F ⊆ F ) ∧ w ∈ G. Hence w ∈ N (F ), so w ∈

⋃
U∈U(W ) N (U).

Corollary 4.2.1.

37



4.3. Vakarelovs logic and subminimal logic: proof theory

(i) If CLA is the class of N An−-frames validating a formula A, then {Φ(F) : F ∈
CLA} is the class of (F,G)-frames validating A.

(ii) If CLA is the class of (F,G)-frames validating a formula A, then {Ψ(F) : F ∈
CLA} is the class of N An−-frames validating A.

Proof. For (i), by Theorem 4.2.1, If F �NAn− A then Φ(F) �(F,G) A. Conversely, if
G �(F,G) A, then Ψ(G) �NAn− A, so Ψ(G) ∈ CLA. Therefore by the last theorem,
G = Φ ◦Ψ(G) ∈ {Φ(F) : F ∈ CLA}. (ii) is analogous.

4.3 Vakarelovs logic and subminimal logic: proof

theory

Now we turn our attention to the proof theory of An−PC. First we introduce
Hilbert systems of minimal logic in L¬,> and the eponymous system of An−PC,
which we shall confirm as the counterpart of the ⊥-less fragment of Vakarelov’s
SUBMIN. We shall then show the soundness and completeness with the (F,G)-
semantics. This is followed by the formulation of a sequent calculus GAn−, and
show cut-elimination and its consequences.

So let us begin with minimal logic. An important characteristic of MPC in L⊥
was that there is no axiom specific to ⊥. In L¬,>, however, this turns out to be
insufficient; we need an axiom expressing the property of negation in the system.
We shall denote the system by MPC¬. It in addition contains >; this addition is
inessential but for the sake of comparison with the original system of Vakarelov.

Definition 4.3.1 (MPC¬). We axiomatise MPC¬ in by the axioms of MPC and

• A→ >

• (A→ B) ∧ (A→ ¬B)→ ¬A

Then An−PC is obtained by weakening the latter axiom of negation.

Definition 4.3.2. (An−PC) We define a Hilbert system of An−PC by replacing
(A→ B) ∧ (A→ ¬B)→ ¬A in MPC¬ with the next axioms.

N :(A↔ B)→ (¬A↔ ¬B)

An− :(A→ ¬A)→ (¬B → ¬A)

We shall use `An− for the derivability in An−PC. It is easy to check the deduc-
tion theorem holds for An−PC.

The removal of An− defines the logic NPC taken to be basic in [10, 24, 25]
(therein called N). The deducibility in NPC will be denoted by `N. If we add An:
(A → ¬A) → ¬A to NPC (note An is a strengthening of An−), we obtain back
MPC¬ [10, 24].1 Therefore An− be understood as a restriction on An.

Let us now see as an example that `An− (A → B) → (¬B → ¬A). First we
observe that `An− [(A → B) ∧ A] → (A ↔ B); so by N, `An− [(A → B) ∧ A] →
(¬B → ¬A). Hence `An− [(A → B) ∧ ¬B] → (A → ¬A); by An− we obtain

1A weaker axiom (A ∧ ¬A) → (B → ¬B) in place of N suffices for this purpose. That this
axiom is derivable in NPC shows the limitation of paraconsistency in subminimal logics.
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`An− [(A→ B) ∧ ¬B]→ (¬B → ¬A). Therefore `An− (A→ B)→ (¬B → ¬A).
We can similarly check that (A ∧ ¬A)→ ¬B and ¬A↔ ¬¬¬A are derivable in

An−PC. We shall refer to (A → B) → (¬B → ¬A) and (A ∧ ¬A) → ¬B as Co
and NeF. The addition of Co (in this case N is redundant) or NeF to NPC each
defines logics CoPC and NeFPC (CoPC and NeF in [10, 24, 25]).

We now check that An−PC is equivalent to the ⊥-less fragment of SUBMIN,
which is defined by CoPC+¬A→ ¬¬>. We shall call the fragment as SUBMIN−.

Proposition 4.3.1. An−PC is equal to SUBMIN−.

Proof. We have to show (i) An−PC ` Co and An−PC ` ¬A → ¬¬>; as well as
(ii) SUBMIN− ` N and SUBMIN− ` An−.

For (i), the former is already discussed. For the latter, `An− ¬A → (¬> → >)
and so `An− ¬A → (¬> → ¬¬>) from Co. Then by An−, `An− ¬A → (¬A →
¬¬>) and so `An− ¬A→ ¬¬>.

For (ii), the former follows from the presence of Co. For the latter, we first
note that NeF is derivable from Co. Since SUBMIN− ` (A → ¬A) → (A →
(A ∧ ¬A)), we have SUBMIN− ` (A → ¬A) → (A → ¬B) by NeF. Hence
SUBMIN− ` (A → ¬A) → (¬¬B → ¬A) by another application of Co. 2 In
particular, SUBMIN− ` (A → ¬A) → (¬¬> → ¬A). Finally use ¬B → ¬¬> to
replace ¬¬> with ¬B.

Now we check the soundness and completeness of An−PC with respect to (F,G)-
semantics.

Theorem 4.3.1 (Soundness of An−PC). If Γ `An− A, then Γ �(F,G) A.

Proof. We argue by induction on the depth of deduction. Here we look at the cases
for the negative axioms. Let (F ,V) and w ∈ W be arbitrary.

(A↔ B)→ (¬A↔ ¬B)
Suppose (F ,V), u (F,G) A ↔ B and (F ,V), v (F,G) ¬A for v ≥ u ≥ w. We
want to show (F ,V), v (F,G) ¬B. The latter supposition implies v ∈ G from
Definition 4.2.1. Also, if (F ,V), s (F,G) B for s ≥ v, we have (F ,V), s (F,G) A
from the former supposition. So s ∈ F . Therefore (F ,V), v (F,G) ¬B, as de-
sired. So (F ,V), u (F,G) ¬A → ¬B. Similarly, (F ,V), u (F,G) ¬B → ¬A. So
(F ,V), w (F,G) (A ↔ B) → (¬A ↔ ¬B). Since (F ,V) and w are arbitrary,
�(F,G) (A↔ B)→ (¬A↔ ¬B).

(A→ ¬A)→ (¬B → ¬A)
Suppose (F ,V), u (F,G) A→ ¬A and (F ,V), v (F,G) ¬B for v ≥ u ≥ w. We want
to show (F ,V), v (F,G) ¬A. If (F ,V), s (F,G) A for s ≥ v, then (F ,V), s (F,G) ¬A.
Thus by the semantic definition, (F ,V), t (F,G) A implies t ∈ F for t ≥ s. In
particular s ∈ F , and since ¬B holds in v, v ∈ G follows. So (F ,V), v (F,G) ¬A
as desired. Thus (F ,V), u (F,G) ¬B → ¬A and so (F ,V), w (F,G) (A → ¬A) →
(¬B → ¬A). Since (F ,V) and w are arbitrary, �(F,G) (A → ¬A) → (¬B →
¬A).

2Analogously, CoPC derives this weaker version of An−. Since CoPC is strictly contained in
MPC¬ [25], this implies CoPC 0 A→ ¬¬A, as otherwise CoPC ` An.
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Next we shall look at the completeness of An−PC with respect to (F,G)-
semantics. In what follows, we call a set of formulae ∆ saturated, if (a) ∆ `An−

A⇒ A ∈ ∆ and (b) ∆ `An− A ∨ B ⇒ ∆ `An− A or ∆ `An− B. A saturated set is
also sometimes called a theory with disjunction property.

Theorem 4.3.2 (Completeness of An−PC). If Γ �(F,G) A, then Γ `An− A.

Proof. The argument is analogous to the one for intuitionistic logic; cf. for instance
[121]. Given Γ 0An− A, we construct a saturated Γ0 ⊇ Γ s.t. Γ0 0An− A. Then the
canonical model M = (W,≤, F,G,V) with respect to Γ0 is defined standardly. For
F and G we take F := {∆ : ¬B ∈ ∆ for all B} and G := {∆ : ¬B ∈ ∆ for some B}.
Note that F , G are upward closed and F ⊆ G. Now it is sufficient to show B ∈
∆⇔M,∆ (F,G) B for any ∆ ∈ W . We argue this by induction on the complexity
of B. We consider the case when B has the form ¬C: other cases are standard.

For the left-to-right direction, assume ¬C ∈ ∆. Then ∆ ∈ G. Further if for
∆′ ≥ ∆ we have M,∆′ (F,G) C, then by I.H. C ∈ ∆′. As ∆′ is saturated,
C ∧ ¬C ∈ ∆′, and so ¬D ∈ ∆′ for any D, because `An− (p ∧ ¬p) → ¬q. Hence
∆′ ∈ F . Consequently M,∆ (F,G) ¬C.

For the right-to-left direction, assume M,∆ (F,G) ¬C. Then ∆ ∈ G, and for
all ∆′ ≥ ∆, if M,∆′ (F,G) C then ∆′ ∈ F . Now suppose ∆ 0An− C → ¬C. Then
∆∪{C} 0An− ¬C. Then there is a saturated ∆0 ⊇ ∆∪{C} such that ∆0 0An− ¬C.
Thus ¬C /∈ ∆0. But by I.H., C ∈ ∆0 impliesM,∆0 (F,G) C. Thus ∆0 ∈ F and so
¬C ∈ ∆0, a contradiction. Therefore ∆ `An− C → ¬C, and so ∆ `An− ¬D → ¬C
for any D by An−. As ∆ ∈ G, there is E s.t. ¬E ∈ ∆. Hence ∆ `An− ¬C, so
¬C ∈ ∆.

4.4 Sequent calculus

We shall consider the following system GAn− of sequent calculus. This system
is based on ones given in [10, 24] for subminimal logics, and is in the style of the
G3-systems of Troelstra and Schwichtenberg [120].

Our goal in this section is to show the cut-elimination theorem, which enables in-
detail analysis of proofs, and thus to obtain important theorems such as decidability
and Craig’s interpolation theorem.

The formulation of GAn− is obtained from that of G3i by replacing (L⊥) with
a couple of axioms for negation, and adding an axiom for >.

Definition 4.4.1 (GAn−). We define GAn− by (Ax), (R◦), (L◦) for ◦ ∈ {∧,∨,→}
and the next rules.

Γ⇒ > (R>)

Γ,¬A,A⇒ B Γ,¬A,B ⇒ A
(N)

Γ,¬A⇒ ¬B
Γ,¬B,A⇒ ¬A

(An−)
Γ,¬B ⇒ ¬A

We denote the addition of (Cut) to GAn− as GAn−+Cut. We shall call the
formulae in position of A in the Cut rule as the cutformulae. If we eliminate the rule
An−, we obtain the system G3n of [24], which is shown to be equivalent to NPC
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(also cf. [10]). Principal formulae are defined as in G3i. Note however that in (N)
and (An−), both ¬A and ¬B in the conclusion are principal.

We shall first see that there is a correspondence between GAn− and An−PC.

Lemma 4.4.1. `GAn− Γ, A⇒ A for all A.

Proof. Given the statement for G3i, it suffices to check for the cases where A ≡ >
and A ≡ ¬B. For A ≡ >, we immediately see that Γ,> ⇒ > is an instance of
(R>). For the case A ≡ ¬B, as for G3n, (N) guarantees the statement. That is:

Γ,¬B,B ⇒ B Γ,¬B,B ⇒ B
(N)

Γ,¬B ⇒ ¬B

Proposition 4.4.1. Γ `An− A if and only if `GAn−+Cut Γ⇒ A.

Proof. It suffices to consider the case for An−. For the left-to-right direction, we
proceed by induction on the depth of deduction in An−PC. An− is derivable in
GAn− + Cut with the following derivation.

¬B,A,A→ ¬A⇒ A
¬B,A,¬A,A⇒ A ¬B,A,¬A,A⇒ A

(N)¬B,A,¬A⇒ ¬A
(L→)¬B,A,A→ ¬A⇒ ¬A

(An−)¬B,A→ ¬A⇒ ¬A
(R→)

A→ ¬A⇒ ¬B → ¬A (R→)
⇒ (A→ ¬A)→ (¬B → ¬A)

For the right-to-left direction, we proceed by induction on the depth of deduction
of GAn−+ Cut. In the case for (An−), suppose the deduction end with an instance
Γ,¬B,A⇒ ¬A

Γ,¬B ⇒ ¬A
of (An−). By I.H. we have Γ,¬B,A `An− ¬A. Use deduction

theorem and instances of (MP) to conclude Γ,¬B `An− ¬A.

In [127] it is shown using completeness that no formula of the form ¬A is provable
in SUBMIN. Here we give a different proof for An−PC by syntactic means, via
a condition formulae in a provable sequent observes with respect to two classes of
formulae F+ and F−. This separates An−PC from MPC¬, which proves ¬¬(p→
p). In general, we shall write XPC ⊆ YPC if Γ `X A implies Γ `Y A for all Γ,
A. So the above is expressed as MPC¬ ) An−PC. A syntactic argument may be
preferred over a semantic argument, from a constructive point of view, because we
only need to consider finite objects of proofs.

Definition 4.4.2. We define the following classes of formulae.
F+ ::= p | > | P1 ∧ P2 | P ∨ A | A ∨ P | A→ P | N → A
F− ::= ¬A | N ∧ A | A ∧N | N1 ∨N2 | P → N
(where P ∈ F+, N ∈ F−, A ∈ F+ ∪ F−)

Note that all formulas belong to one and only one of the classes.

Proposition 4.4.2.

(i) If `GAn−+Cut Γ⇒ A and A ∈ F−, then Γ contains a formula in F−.

(ii) 0GAn−+Cut ⇒ ¬A for any A;.
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Proof. For (i), we proceed by induction on the depth of deduction. We consider
the case for (L→); others cases are simpler. Suppose the deduction ends with an
instance

Γ, A→ B ⇒ A Γ, B ⇒ C
(L→)

Γ, A→ B ⇒ C

If C ∈ F−, check if Γ has a formula in F−. If it does, then the statement follows.
If not, then by I.H., B ∈ F−. Also we see A ∈ F+, as otherwise A → B ∈ F+,
contradicting I.H.. So A→ B ∈ F−. (ii) is then an immediate consequence.

Another advantage of this syntactic approach is that the above condition allows
one to pick out a concrete formula in the class F− directly from a proof. In any
case, it is an interesting question to ask whether this approach of studying provable
sequents using classes of formulae can be generalised for further applications.

The system G3copc corresponding to CoPC is obtained from G3n by replacing
N with the rule

.
Γ,¬B,A⇒ B

(Co)
Γ,¬B ⇒ ¬A

This G3copc is proved in [10, 24] to be decidable, and using this we can separate
An−PC from CoPC syntactically, which we prefer by the same reason as above.

Proposition 4.4.3. An−PC ) CoPC.

Proof. Recall that in the proof of Proposition 4.3.1, we have already seen that
An−PC contains CoPC.
We show that The instance (p → ¬p) → (¬q → ¬p) of An− is not a theorem of
CoPC. We search the possible proofs of ⇒ (p → ¬p) → (¬q → ¬p) in G3copc.
The last rule has to be R→, so the premise must be p → ¬p ⇒ ¬q → ¬p. Then
the rule above it must be (L→) or (R→). For (L→) a non-theorem p → ¬p ⇒ p
is a premise. So the rule above must be (R→) with the premise p→ ¬p,¬q ⇒ ¬p.
Then the rule above must be (L→) or (Co). If (L→) one of the premises must
be a non-theorem p → ¬p,¬q ⇒ p, so (Co) must be applied with the premise
p → ¬p,¬q, p ⇒ q. Then (L→) is the only possible rule above; but then a non-
theorem ¬q,¬p, p⇒ q is a premise. This exhausts the possible proofs.

Next we prove the cut-elimination theorem for GAn−, similarly to the systems
for other subminimal negation in [10, 24]. We write `k Γ ⇒ A when there is a
derivation of the sequent with depth less than or equal to k. We say a rule is depth-
preserving admissible (dp-admissible) if the derivability of the premises within a
certain depth implies that of the conclusion within the same depth. If the condition
on depth is lifted, we will simply say a rule is admissible. We see examples of a
dp-admissible rules in the following.

Lemma 4.4.2. (LW) and (LC) are dp-admissible in GAn−.

Proof. For (LW), we show by induction on `k. If k = 0, then the sequent is obtained
by an instance of an axiom, and so is the result of Weakening. If k = n + 1, then
we have to consider which rule is applied in the last step. If it is an instance of
(An−), for instance, then the last sequent is of the form `k+1 Γ,¬B ⇒ ¬A. Hence
`k Γ,¬B,A ⇒ ¬A; so by I.H., `k C,Γ,¬B,A ⇒ ¬A. Thus `k+1 C,Γ,¬B ⇒ ¬A.
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The cases for other rules are similar.
For (LC), we show by induction on `k with subinduction on the complexity of

the contraction formula. Here we shall look at the case where the rule applied is
(An−), and the contraction formula is principal.

`k Γ,¬B,¬B,A⇒ ¬A
(An−)`k+1 Γ,¬B,¬B ⇒ ¬A

Then by I.H. `k Γ,¬B,A⇒ ¬A. So the following derivation is possible.

`k Γ,¬B,A⇒ ¬A
(An−)`k+1 Γ,¬B ⇒ ¬A

For some other cases, we need to appeal to the so-called inversion lemma [120,
Proposition 3.5.4], but those cases are identical to the ones for intuitionistic logic.
Cf. [24, Theorem 5.2.2], [120, Proposition 3.5.5.].

Now we are ready to prove the cut-elimination theorem for GAn−; namely, if
a sequent is provable in GAn− + Cut, then so is it in the system without cut, i.e.
GAn−. This is shown by observing that cut is an admissible rule in GAn−.

Theorem 4.4.1. If `GAn−+Cut Γ⇒ A then `GAn− Γ⇒ A

Proof. Our proof is by induction on the the complexity of cutformula, with subin-
duction on the level (sum of the depths of the premises) of the deduction. By the
theorem for NPC [10, Theorem 4.1] [24, Theorem 6.1.1] it suffices to treat cases
involving (An−).

Case 1: Cutformula is not principal on the right.
The case depends on whether an application of (An−) appears on the left or the

right premise. If it appears on the left, then it further depends on whether the right
premise is an axiom or a rule. For the former, if the right premise is an instance of
(Ax), then the conclusion is also an instance of (Ax):

D1

`k−1 Γ,¬B,A⇒ ¬A
(An−)`k Γ,¬B ⇒ ¬A `0 ¬A,Γ′, p⇒ p

(Cut)
` Γ,Γ′,¬B, p⇒ p

Similarly when we have (R>) instead of (Ax). For the latter, we have

D1

`k−1 Γ,¬B,A⇒ ¬A
(An−)`k Γ,¬B ⇒ ¬A

D2

`k′−1 ¬A,Γ′′ ⇒ C ′
(Rule)

`k′ ¬A,Γ′ ⇒ C
(Cut)

` Γ,Γ′,¬B ⇒ C

if the right premise is a 1-premise rule. We can elevate the cut and reduce the
level of the cut to be applied. By I.H. the particular cut is known to be admissible,
so we obtain the following derivation.

D1

`k−1 Γ,¬B,A⇒ ¬A
(An−)`k Γ,¬B ⇒ ¬A

D2

`k′−1 ¬A,Γ′′ ⇒ C ′
(I.H.)

` Γ,Γ′′¬B ⇒ C ′
(Rule)

` Γ,Γ′,¬B ⇒ C

43



4.4. Sequent calculus

The case for a 2-premise rule is analogous. If (An−) appears on the right, then
the cutformula must reside in the context on the right premise.

D1

`k Γ⇒ C

D2

`k′−1 Γ′, C,¬B,A⇒ ¬A
(An−)`k′ Γ′, C,¬B ⇒ ¬A

(Cut)
` Γ,Γ′,¬B ⇒ ¬A

Then we can elevate the cut so that I.H. becomes applicable.

D1

`k Γ⇒ C

D2

`k′−1 Γ′, C,¬B,A⇒ ¬A
(I.H.)

` Γ,Γ′,¬B,A⇒ ¬A
(An−)` Γ,Γ′,¬B ⇒ ¬A

Case 2: Cutformula is not principal on the left.
The left premise cannot be an application of (An−); so the right premise must

be. The case depends on whether the cutformula is principal on the right. If not,
the last case covers this case. If it is, the left premise must be an instance of a left
rule. For a 1-premise rule, we have the next deduction.

D1

`k−1 Γ′′ ⇒ ¬B
(Rule)

`k Γ′ ⇒ ¬B

D2

`k′−1 Γ,¬B,A⇒ ¬A
(An−)`k′ Γ,¬B ⇒ ¬A

(Cut)
` Γ,Γ′ ⇒ ¬A

This can be turned into the following deduction.

D1

`k−1 Γ′′ ⇒ ¬B

D2

`k′−1 Γ,¬B,A⇒ ¬A
(An−)`k′ Γ,¬B ⇒ ¬A

(I.H.)
` Γ,Γ′′ ⇒ ¬A

(Rule)
` Γ,Γ′ ⇒ ¬A

Case 3: Cutformula is principal on both premises.
Each premise must be an application of (N) or (An−). So we have one of:

- Subcase 3.1: (An−) in both premises.

D1

`k−1 Γ,¬C,B ⇒ ¬B
(An−)`k Γ,¬C ⇒ ¬B

D2

`k′−1 Γ′,¬B,A⇒ ¬A
(An−)`k′ Γ′,¬B ⇒ ¬A

(Cut)
` Γ,Γ′,¬C ⇒ ¬A

Then we can elevate the cut in the following manner.

D1

`k−1 Γ,¬C,B ⇒ ¬B
(An−)`k Γ,¬C ⇒ ¬B

D2

`k′−1 Γ′,¬B,A⇒ ¬A
(I.H.)

` Γ,Γ′,¬C,A⇒ ¬A
(An−)` Γ,Γ′,¬C ⇒ ¬A

- Subcase 3.2: (An−) on the left and (N) on the right.

D1

`k−1 Γ,¬B,A⇒ ¬A
(An−)`k Γ,¬B ⇒ ¬A

D2

`k′ Γ′,¬A,A⇒ C

D3

`k′′ Γ′,¬A,C ⇒ A
(N)

`max(k′,k′′)+1 Γ′,¬A⇒ ¬C
(Cut)

` Γ,Γ′,¬B ⇒ ¬C
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Then we perform two cuts that are admissible because of reduced level.

D1

`k−1 Γ,¬B,A⇒ ¬A
(An−)`k Γ,¬B ⇒ ¬A

D3

`k′′ Γ′,¬A,C ⇒ A
(I.H.)

` Γ,Γ′,¬B,C ⇒ A · · · (a)

D1

`k−1 Γ,¬B,A⇒ ¬A

D2

`k′ Γ′,¬A,A⇒ C

D3

`k′′ Γ′,¬A,C ⇒ A
(N)

`max(k′,k′′)+1 Γ′,¬A⇒ ¬C
(I.H.)

` Γ,Γ′,¬B,A⇒ ¬C · · · (b)

Next we combine the two with a cut of reduced complexity.

(a)

` Γ,Γ′,¬B,C ⇒ A

(b)

` Γ,Γ′,¬B,A⇒ ¬C
(I.H.)

` Γ,Γ,Γ′,Γ′,¬B,¬B,C ⇒ ¬C · · · (c)

Now we utilise the admissibility of Contraction.

(c)

` Γ,Γ,Γ′,Γ′,¬B,¬B,C ⇒ ¬C
(LC)

` Γ,Γ′,¬B,C ⇒ ¬C
(An−)` Γ,Γ′,¬B ⇒ ¬C

- Subcase 3.3: N on the left and An− on the right.

D1

`k Γ,¬A,A⇒ B

D2

`k′ Γ,¬A,B ⇒ A
(N)`max(k,k′)+1 Γ,¬A⇒ ¬B

D3

`k′′−1 Γ′,¬B,C ⇒ ¬C
(An−)`k′′ Γ′,¬B ⇒ ¬C

(Cut)
` Γ,Γ′,¬A⇒ ¬C

The following derivation reduces the level of (Cut).

D1

`k Γ,¬A,A⇒ B

D2

`k′ Γ,¬A,B ⇒ A
(N)`max(k,k′)+1 Γ,¬A⇒ ¬B

D3

`k′′−1 Γ′,¬B,C ⇒ ¬C
(I.H.)

` Γ,Γ′,¬A,C ⇒ ¬C
(An−)` Γ,Γ′,¬A⇒ ¬C

As cut is absent in (GAn−), the formulae occurring in a derivation of Γ⇒ A are
limited to those that are subformulae of a formula in Γ∪{A} (Subformula property).
This allows the decidability of An−PC like other subminimal logics [24].

Another consequence is the disjunction property: If Γ does not contain a dis-
junction, then `GAn− Γ ⇒ A ∨ B implies `GAn− Γ ⇒ A or `GAn− Γ ⇒ B. The
proof is as in [24], and An− does not affect the argument.

We next consider a further consequence called Craig’s interpolation theorem.
Recall the sets of propositional variables in Γ and A are denoted as V(Γ) and V(A),
respectively.

Definition 4.4.3. Given a sequent Γ1,Γ2 ⇒ A, we associate a split sequent Γ1; Γ2 ⇒
A. Then an interpolant of Γ1; Γ2 ⇒ A is a formula I s.t. `GAn− Γ1 ⇒ I and
`GAn− Γ2, I ⇒ A, with V(I) ⊆ V(Γ1) ∩ V(Γ2 ∪ {A}).
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Theorem 4.4.2 (Craig’s Interpolation). If `GAn− Γ ⇒ B, then each split sequent
Γ1; Γ2 ⇒ B of the sequent has an interpolant.

Proof. We argue it by induction on the depth of deduction. All cases except for
An− are treated in [10, 24]. Now if the deduction ends with an instance of

Γ,¬B,A⇒ ¬A
(An−)

Γ,¬B ⇒ ¬A

then there are two ways of splitting the endsequent.

1. The endsequent is split as Γ1,¬B; Γ2 ⇒ ¬A. We have to find I such that

`GAn− Γ1,¬B ⇒ I, `GAn− Γ2, I ⇒ ¬A

for V(I) ⊆ V(Γ1 ∪ {¬B}) ∩ V(Γ2 ∪ {¬A}). By I.H. an I ′ satisfies

`GAn− Γ1,¬B ⇒ I ′ and `GAn− Γ2, A, I
′ ⇒ ¬A.

We define I := ¬¬I ′ ∧ I ′. Then,

V(¬¬I ′ ∧ I ′) ⊆ V(Γ1 ∪ {¬B}) ∩ V(Γ2 ∪ {A,¬A}) [by I.H.]

= V(Γ1 ∪ {¬B}) ∩ V(Γ2 ∪ {¬A})

as required. Now we note that `GAn− ¬A ⇒ ¬¬¬A and also the rule
Γ,¬B,A⇒ B

(Co)
Γ,¬B ⇒ ¬A

is admissible. Then we can show `GAn− Γ1,¬B ⇒

¬¬I ′ ∧ I ′ and `GAn− Γ2,¬¬I ′ ∧ I ′ ⇒ ¬A by the following deductions.

D
¬B ⇒ ¬¬¬B

D′
Γ1,¬B ⇒ I ′

(LW)
Γ1,¬I ′,¬B ⇒ I ′

(Co)
Γ1,¬I ′ ⇒ ¬¬B (LW)

Γ1,¬¬¬B,¬I ′ ⇒ ¬¬B
(Co)

Γ1,¬¬¬B ⇒ ¬¬I ′ (Cut)
Γ1,¬B ⇒ ¬¬I ′

D′
Γ1,¬B ⇒ I ′

(R∧)
Γ1,¬B ⇒ ¬¬I ′ ∧ I ′

Note that the appeal to the admissibility of cut in the proof. The other deduction
is much simpler.

D
Γ2, A, I

′ ⇒ ¬A
(LW)

Γ2,¬¬I ′, A, I ′ ⇒ ¬A
(An−)

Γ2,¬¬I ′, I ′ ⇒ ¬A (L∧)
Γ2,¬¬I ′ ∧ I ′ ⇒ ¬A

2. The endsequent is split as Γ1;¬B,Γ2 ⇒ ¬A. We have to find I such that

`GAn− Γ1 ⇒ I, `GAn− Γ2,¬B, I ⇒ ¬A

for V(I) ⊆ V(Γ1) ∩ V(Γ2 ∪ {¬B,¬A}). By I.H. an I ′ satisfies

`GAn− Γ1 ⇒ I ′ and `GAn− Γ2,¬B,A, I ′ ⇒ ¬A.
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4.5. Countable classes of logics with subminimal negation

Define I := I ′. Then,

V(I ′) ⊆ V(Γ1) ∩ V(Γ2 ∪ {¬B,A,¬A}) [by I.H.]

= V(Γ1) ∩ V(Γ2 ∪ {¬B,¬A})

as required. It remains to show `GAn− Γ1 ⇒ I ′ and `GAn− Γ2,¬B, I ′ ⇒ ¬A.
But they immediately follow from I.H..

4.5 Countable classes of logics with subminimal

negation

It is known that there are uncountably many subsystems of minimal logic with sub-
minimal negation [8]. In this section, we shall give more insights into the structure of
the class of such logics, by describing an additional family of countably many logics.
This class will be obtained by considering weaker variants of the axiom An.In this
sense it is connected to the study of An−PC as studies of weaker versions of An.
As observed previously, the presence of An has a huge influence on weak negations,
and this type of study contributes to the understanding of this mechanism.

The countable family will be investigated using N -frames. For i ≥ 0, we define
the axiom Ani by (¬iA→ ¬i+1A)→ ¬i+1A, where

¬0A :≡ A

¬i+1A :≡ ¬(¬iA).

(Note An0 ≡ An.) Then for i ≥ 0, AniPC is defined by NPC + Ani. We shall use
`Ani

for the derivability in AniPC.

Proposition 4.5.1. Let F be an N -frame. The next conditions are equivalent.

(i) F �N (¬iA→ ¬i+1A)→ ¬i+1A for all A

(ii) ∀U ∈ U(W )∀w ∈ W [R(w) ∩ N i(U) ⊆ N i+1(U)⇒ R(w) ⊆ N i+1(U)]

Proof. We first see (i) implies (ii). Let U ∈ U(W ) and w ∈ W . Assume

R(w) ∩ N i(U) ⊆ N i+1(U).

Let V(p) = U . Now for w′ ≥ w, if (F ,V), w′ N ¬ip, then w′ ∈ N i(V(p)), and
consequently w′ ∈ R(w) ∩ N i(U) ⊆ N i+1(U). So

(F ,V), w′ N ¬ip⇒ (F ,V), w′ N ¬i+1p.

Thus (F ,V), w N ¬ip → ¬i+1p, and so (F ,V), w N ¬i+1p by (i). Hence R(w) ⊆
N i+1(U).

Next we see (ii) implies (i). Let V be a valuation and w ∈ W . Suppose

(F ,V), w′ N ¬iA→ ¬i+1A for w′ ≥ w.
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4.5. Countable classes of logics with subminimal negation

Then for w′′ ≥ w′, (F ,V), w′′ N ¬iA implies (F ,V), w′′ N ¬i+1A. That is,

R(w′) ∩ N i(V(A)) ⊆ N i+1(V(A)).

Thus by (ii), R(w′) ⊆ N i+1(V(A)) and so (F ,V), w′ N ¬i+1p. Hence

(F ,V), w N (¬iA→ ¬i+1A)→ ¬i+1A;

so F �N (¬iA→ ¬i+1A)→ ¬i+1A.

Definition 4.5.1. We define an Ani-frame as an N -frame satisfying:

[PAni
] ∀U ∈ U(W )∀w ∈ W [R(w) ∩ N i(U) ⊆ N i+1(U)⇒ R(w) ⊆ N i+1(U)].

We shall use symbols Ani
for valuation at a world and �Ani

for validity, with respect
to these frames.

By Proposition 4.5.1, it follows that if Γ `Ani
A then Γ �Ani

A. We want to see
that each AniPC is distinct, and for this we first need the following lemma.

Lemma 4.5.1. There is an Ani+1-frame refuting Ani: i.e. 2Ani+1
Ani.

Proof. Let F := (W,≤,N ) = ({w0, . . . , wi+2}, {(wj, wk) : j ≥ k},N ),

where: N (U) =

{
R(wi+2) if U = ∅ or U = R(wi+2),

R(wj+1) if U = R(wj) for 0 ≤ j ≤ i+ 1.

wi+2

¬i+2p

wi+1

¬i+1p

wi

¬ip
w1

¬p
w0

p

Note that N is a mapping between upward closed sets, as required. Now let V
be such that V(p) = {w0}. We first check F is an Ani+1-frame. For F to be an
N -frame, it has to satisfy locality. As stated in [25], in a linear frame this condition
becomes (for U 6= ∅):

∀w, v ∈ W [w ∈ N (R(v))⇔ w ∈ N (R(v) ∩R(w))]

If w ≤ v, or for U = ∅, no condition is imposed. If w > v, this becomes

w ∈ N (R(v))⇔ w ∈ N (R(w))⇔ w ∈ {u|u ∈ N (R(u))}
In our frame, for each w ∈ W , w ∈ N (R(w)). So W = {u|u ∈ N (R(u))}. Hence F
must satisfy w ∈ N (R(v)) for all w, v such that w > v. This is satisfied, as w > v
implies w ∈ R(v), and R(v) ⊆ N (R(v)). F must also satisfy

PAni+1
: ∀U∀w[R(w) ∩ N i+1(U) ⊆ N i+2(U)⇒ R(w) ⊆ N i+2(U)].

But as N i+2(U) = R(wi+2) for all U , PAni+1
always holds.

We argue (F ,V) falsifies Ani. We have V(¬ip) = N i(V(p)) = R(wi) and
V(¬i+1p) = R(wi+1). So

(F ,V), wi+2 Ani+1
¬ip→ ¬i+1p

but
(F ,V), wi+2 1Ani+1

¬i+1p.

Hence (F ,V), wi+2 1Ani+1
(¬ip→ ¬i+1p)→ ¬i+1p.

Theorem 4.5.1. MPC¬ ≡ An0PC ) An1PC ) An2PC . . . ⊃ NPC.

Proof. It is immediate to see AniPC ⊇ Ani+1PC. Then by Lemma 4.5.1 2Ani+1

Ani and so 0Ani+1
Ani by soundness. Thus AniPC * Ani+1PC.
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4.6 Discussion

We have observed that An−PC is a logic with subminimal negation which satisfies
many of the standard properties enjoyed by the systems investigated in [24, 25].
An−PC strictly contains these systems, and the addition of a single proposition of
the form ¬A reduces it to minimal logic. Thus An−PC appears to be quite strong
among the logics with subminimal negation. To extend the result of this section,
therefore, it would be interesting whether there exists a stronger subsystem of min-
imal logic than An−PC. In particular, it should have a significant consequence to
study whether there is a maximal such subsystem.

As for the infinite class of logics with subminimal negation we treated at the
end, in the proof we used linear models, which may be seen as many-valued truth
tables. Therefore it would be intriguing to investigate further what sort of negations
are defined in this setting. Furthermore, the completeness proofs for AniPC are
lacking for i 6= 0, which is another gap that needs to be filled.
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Chapter 5

Analyses of modal, empirical and
co-negations

5.1 Introduction

The philosophy of Intuitionism has long acknowledged that there is more to negation
than the customary, reduction to absurdity. Brouwer [17] has already introduced the
notion of apartness as a positive version of inequality, such that from two apart ob-
jects (e.g. points, sequences) one can learn not only they are unequal, but also how
much or where they are different. (Cf. [132, pp.319-320]). He also introduced the
notion of weak counterexample, in which a statement is reduced to a constructively
unacceptable principle, to conclude we cannot expect to prove the statement [121].

Another type of negation was discussed in the dialogue of Heyting [59, pp.17-19].
In it mathematical negation characterised by reduction to absurdity is distinguished
from factual negation, which concerns the present state of our knowledge. In the
dialogue it is emphasised that only the former type of negation has a part in math-
ematics, on the ground that the latter does not have the form of a mathematical
assertion, i.e. assertion of a mental construction. Nevertheless it remains the case
that factual negation has a place in his theoretical framework.

One formalisation of logic with this “negation at the present stage of knowledge”
was given by M. De [29] and axiomatised by De and H. Omori [30], under the name
of empirical negation. The central idea of their logic IPC∼ is semantic: the Kripke
semantics of IPC∼ is taken to be rooted, with the root being understood as rep-
resenting the present moment. Then the empirical negation ∼A is defined to be
forced at a world, if A is not forced at the root.

Yet another type of negation in the intuitionistic framework is co-negation intro-
duced by C. Rauszer [102, 103]. Seen from Kripke semantics, a co-negation ∼A is
forced at a world, if there is a preceding world in which A is not forced. This is dual
to the forcing of intuitionistic negation ¬A, which requires A not being forced at all
succeeding nodes. Co-negation was originally defined in terms of co-implication, but
the co-negative fragment was extracted by G. Priest [100], to define a logic named
daC.

In both empirical and co- negation, the semantic formulation arguably gives a
more fundamental motivation than the syntactic formulation. In particular, in case
of empirical negation, it is of essential importance that a Kripke frame can be under-
stood as giving the progression of growth of knowledge. It may be noted, however,
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5.2. Empirical negation in Kripke Semantics

that Kripke semantics is not the only semantics to give this kind of picture. Beth
semantics is another semantics whose frames represent the growth of knowledge.
It then appears a natural question to ask, whether the same forcing condition of
empirical/co- negation gives rise to the same logic. That is to say, whether IPC∼

and daC will be sound and complete with respect to Beth semantics. Indeed, for
co-implication, a similar question was asked by Restall [106]. There it was found
out that one needs to alter the forcing condition to get a complete semantics.

In this chapter, we shall observe that another logic called TCCω, introduced
by A.B. Gordienko [54], becomes sound and complete with Beth models with the
forcing conditions of empirical and co- negation (which turn out to coincide). This
is of significant interest for those who advocate empirical or co- negation from a
semantic motivation, as it will provide a choice in the logic to which they should
adhere.

This is followed by another observation about the axiomatisation of IPC∼ and
daC, which employ the disjunctive syllogism rule (RP). In contrast, the axiomatisa-
tion of of TCCω and a related system CCω of R. Sylvan [116], which is a subsystem
of the other three, use the contraposition rule (RC). We shall observe that this dif-
ference in rules can be eliminated, by replacing (RP) with (RC) and an additional
axiom. This will give a completeness proof of daC with respect to the semantics
of CCω, and thus the semantics of Došen [34]. It will also provide a more unified
viewpoint of the logics related to CCω as defined by extra axioms with no change
in rules.

5.2 Empirical negation in Kripke Semantics

In this chapter, we shall consider the following propositional language L∼:

A ::= p | (A ∧ A) | (A ∨ A)| (A→ A) | ∼A,

where ∼ is used to emphasize the contra-intuitionistic character of the negation.

Definition 5.2.1 (Kripke model for IPC∼). A Kripke Frame F∼K for IPC∼ is an
inhabited pre-ordered set (W,≤) with a root r ∈ W such that r ≤ w for all w ∈ W .
A Kripke model M∼

K for IPC∼ is a pair (F∼K ,V), where V is a mapping that assigns
a set of worlds V(p) ⊆ W to each propositional variable p. We assume V to be
monotone, viz. w ∈ V(p) and w′ ≥ w implies w′ ∈ V(p). To denote a model, we
shall use bothM∼

K and (F∼K ,V) interchangeably. Similar remarks apply to different
notions of model in the later sections.

GivenM∼
K, the forcing (or valuation) of a formula in a world, denoted w K A,

is inductively defined as follows.

w K p ⇐⇒ w ∈ V(p).

w K A ∧B ⇐⇒ w K A and w K B.

w K A ∨B ⇐⇒ w K A or w K B.

w K A→ B ⇐⇒ for all w′ ≥ w, if w′ K A then w′ K B.

w K ∼A ⇐⇒ r 1K A.

If M∼
K, w K A for all w ∈ W (or equivalently, M∼

K, r K A), we write M∼
K �K A

and say A is valid inM∼
K. For a set of formulae Γ, ifM∼

K �K C for all C ∈ Γ implies

51



5.3. Empirical Negation in Beth Semantics

M∼
K �K A, then we write Γ �K A and say A is a logical consequence of Γ. If Γ is

empty, we simply write �K A and say A is valid (in IPC∼).

A Hilbert-style proof system for IPC∼ is established in [30], which we identify
here with the logic itself for convenience, and denote it simply as IPC∼. We shall
apply the same convention to other logics in later sections.

Definition 5.2.2 (IPC∼).
The logic IPC∼ is defined by adding the next axiom and rule to IPC.

• A ∨ ∼A

• ∼A→ (∼∼A→ B)

• A ∨B (RP)∼A→ B

we shall denote by the derivability in IPC∼ by Γ `∼ A. Then it has been shown
by De and Omori that IPC∼ is sound and complete with the Kripke semantics.

Theorem 5.2.1 (Kripke completeness of IPC∼). Γ `∼ A⇐⇒ Γ �K A.

Proof. Cf. [30].

5.3 Empirical Negation in Beth Semantics

5.3.1 Beth Semantics and De’s logic

Let us turn our attention to Beth models in this section. Our formalisation will be
based on that of [119, 122]. If we apply to the forcing of ∼ the same criterion as to
the Kripke semantics above, then we obtain the following semantics.

Definition 5.3.1 (Beth model). A Beth frame FB is a pair (W,�) that defines a
spread. Then A Beth model MB is a pair (FB,V), where V is a covering assignment
of propositional variables.

The forcing relation B A for a Beth model is defined by the following clauses.

b B p ⇐⇒ b ∈ V(p).

b B A ∧B ⇐⇒ b B A and b B B.

b B A ∨B ⇐⇒ ∀α ∈ b∃n(ᾱn B A or ᾱn B B).

b B A→ B ⇐⇒ for all b′ � b, if b′ B A then b′ B B.

b B ∼A ⇐⇒ 〈〉 1B A.

Proposition 5.3.1.
(i) b B A if and only if ∀α ∈ b∃n(ᾱn B A). (covering property)
(ii) b′ � b and b B A implies b′ B A. (monotonicity)

Proof. We prove (i) by induction on the complexity of formulae. If b B A, then
trivially ∀α ∈ b∃n(ᾱn B A). For the converse direction, we show by induction
on the complexity of A. Because (i) holds in Beth models for intuitionistic logic,
it suffices to check the case where A ≡ ∼B. If ∀α ∈ b∃n(ᾱn B ∼B), then by
definition ∀α ∈ b∃n(〈〉 1B B); i.e. 〈〉 1B B. Thus by definition again, b B ∼B.

(ii) is an immediate consequence of (i).
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5.3. Empirical Negation in Beth Semantics

How does this semantics relate to IPC∼? In considering this question, we first
look at how to embed Kripke models into Beth models, in accordance with the
method outlined in [122].

Given a Kripke modelM∼
K = (WK ,≤,VK) for IPC∼, we construct a correspond-

ing Beth model MB = (WB,�,VB) with the following stipulations.

• WB is the set of finite nondecreasing sequences of worlds (i.e. each w in a
sequence is followed by w′ s.t. w ≤ w′) from the root r in (WK ,≤) with length
> 0.

• � is defined accordingly.

• 〈w0, . . . , wn〉 ∈ VB(p) if and only if wn ∈ VK(p).

The resultingWB is a spread, because the reflexivity of≤ assures that 〈w0, . . . , wn〉
∈ WB implies 〈w0, . . . , wn, wn〉 ∈ WB. Note that w0 is always the root r in M∼

K,
and 〈w0〉 is the root of MB. The latter slightly differs from our definition of Beth
model: we can fit the model to the definition if we reinterpret the sequences as mere
labels for the tree, and the actual tree is constructed in such a way that 〈w0〉 is the
label for the node 〈〉, 〈w0, w1, . . . , wn〉 is the label for the node 〈w1, . . . , wn〉. We can
also adopt a different embedding, which we shall see later.

For any Kripke model, because we can concatenate the same element indefinitely
many times, we can also consider infinite nondecreasing sequences of worlds. This
fact will be used in the next lemma.

Lemma 5.3.1 (embeddability of Kripke models for IPC∼).
(i) MB is indeed a Beth model.
(ii) M∼

K �K A if and only MB �B A.

Proof. For (i), we need to check that VB is a covering assignment. If

∀α ∈ 〈w0, . . . , wn〉∃m(ᾱm ∈ VB(p)),

then in particular, α0 := 〈w0, . . . , wn〉∗〈wn, wn, . . .〉 ∈ 〈w0, . . . , wn〉. So there is an m
such that ᾱ0m ∈ VB(p). If m ≤ n+ 1 = lh(〈w0, . . . , wn〉), then by the monotonicity
of VB (which follows from that of VK , and the fact that VB only looks at the last
element of a sequence) we have 〈w0, . . . , wn〉 ∈ VB(p). Otherwise, by definition of
VB, wn ∈ VK(p); hence 〈w0, . . . , wn〉 ∈ VB(p).

For (ii), it suffices to show wn K A ⇔ 〈w0, . . . , wn〉 B A. We prove this by
induction on the complexity of formulae. Given the result for intuitionistic logic, we
only need to check for A ≡ ∼B. In this case,

wn K ∼B ⇔ w0 1K B ⇔ 〈w0〉 1B B ⇔ 〈w0, . . . , wn〉 B ∼B.

Let Q be the class of Beth models obtained by the above embedding. We shall
denote Beth validity with respect to Q as �Q.

Theorem 5.3.1 (Beth completeness of IPC∼ with respect to Q). Γ `∼ A if and
only if Γ �Q A.

Proof. Because of Theorem 5.2.1, Γ `∼ A if and only if Γ �K A. Also by the
preceding lemma, Γ �K A if and only if Γ �Q A.
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5.3.2 Beth semantics and Gordienko’s logic

The above theorem shows that IPC∼ is sound and complete with respect to a certain
class of Beth models. The question remains, however, of whether it is sound and
complete with respect to all Beth models. A problem lies in the soundness direction,
of the validity of (RP). In a Beth model, it is possible that a disjunction is forced
at a world whilst neither of the disjuncts is.

This is contrastable with an admissible [30] rule of IPC∼:

. A→ B (RC)∼B → ∼A
Given any Beth model and assuming A → B is valid, if ∼B is forced at a node
b′ � b given an arbitrary b, then 〈〉 does not force B, so 〈〉 cannot force A either;
thus we can conclude b′ forces ∼A and so b forces ∼B → ∼A, i.e. ∼B → ∼A is
valid.

This admissibility of (RC) in Beth models motivates us to consider a variant of
IPC∼ in which (RP) is replaced with (RC). As already mentioned in [30], such a
logic is known under the name TCCω, formulated by Gordienko in [54].

Definition 5.3.2 (TCCω). The logic TCCω is defined by adding the next axiom
and rule to IPC.

• A ∨ ∼A

• ∼A→ (∼∼A→ B)

• A→ B (RC)∼B → ∼A
We shall denote the provability in TCCω by `t. We shall prove the soundness

and completeness of TCCω with respect to all Beth models. Again we want to
embed Kripke models into Beth models; but as we see below, the Kripke models for
TCCω are not necessarily rooted. So we shall embed models in a slightly different
way.

Definition 5.3.3 (Kripke model for TCCω). A Kripke Frame F t
K = (W,≤) for

TCCω is a non-empty pre-ordered set. A Kripke model Mt
K for TCCω is a pair

(F t
K,V), where V is a monotone mapping that assigns a set of worlds V(p) ⊆ W for

each propositional variable p.
GivenMt

K, The forcing of a formula in a world, denoted w Kt A, is inductively
defined as follows.

w Kt p ⇐⇒ w ∈ V(p).

w Kt A ∧B ⇐⇒ w Kt A and w Kt B.

w Kt A ∨B ⇐⇒ w Kt A or w Kt B.

w Kt A→ B ⇐⇒ for all w′ ≥ w, if w′ Kt A then w′ Kt B.

w Kt ∼A ⇐⇒ w′ 1Kt A for some w′.

Theorem 5.3.2 (Kripke completeness for TCCω). `t A if and only if �Kt A.

Proof. Cf. [54]
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Given a Kripke model Mt
K = (WK ,≤,VK) for TCCω, we construct a corre-

sponding Beth model MB = (WB,�,VB) in the same way we did in Lemma 2.3.1.
This shall again enable the next embedding.

Lemma 5.3.2 (embeddability of Kripke models for TCCω). Mt
K �Kt A if and only

MB �B A.

Proof. By Lemma 2.3.1, it suffices to consider the case for ∼A:

1. 〈〉 B ∼A if and only if Mt
K �Kt ∼A.

2. 〈b0, . . . , bn〉 B ∼A if and only if bn Kt ∼A. (where n > −1)

If A ≡ ∼A1, then for 1., suppose 〈〉 B ∼A1. Then 〈〉 1B A1. So Mt
K 2Kt A1

by I.H.. Hence w 1Kt A1 for some w ∈ WK . Thus u Kt ∼A for all u ∈ WK . Thus
Mt
K �Kt ∼A. Conversely, suppose Mt

K �Kt ∼A. Take w ∈ WK . Then w Kt ∼A,
so u 1Kt A for some u ∈ WK . Hence Mt

K 2Kt A, so 〈〉 1B A by I.H.. Therefore
〈〉 B ∼A.

For 2., suppose 〈b0, . . . , bn〉 B ∼A. Then 〈〉 1B A. So Mt
K 2Kt A. Hence

for some w ∈ WK , w 1Kt A. Therefore bn Kt ∼A. Conversely, if bn Kt ∼A,
then w 1Kt A for some w ∈ WK . By I.H. 〈w〉 1B A. Thus 〈〉 1B A. Therefore
〈b0, . . . , bn〉 B ∼A.

Theorem 5.3.3 (soundness and weak completeness of TCCω with Beth semantics).
`t A if and only if �B A.

Proof. We first show the soundness by induction on the depth of deductions. We
check A ∨ ∼A, ∼A → (∼∼A → B) and (RC). Let MB = (WB,�,VB) be a Beth
model. By monotonicity, it suffices to check the root.

For A ∨ ∼A, either
〈〉 B A or 〈〉 1B A.

If the latter, 〈〉 B ∼A. So in either case, 〈〉 B A ∨ ∼A.
For ∼A→ (∼∼A→ B), if

b B ∼A for b � 〈〉,

then if b′ B ∼∼A for b′ � b, we have

〈〉 1B ∼A and 〈〉 1B A.

But the former implies 〈〉 B A, a contradiction. Therefore b′ B B; so

〈〉 B ∼A→ (∼∼A→ B).

For (RC), by I.H., �B A → B and in particular, MB �B A → B. If for b � 〈〉
we have b B ∼B, then 〈〉 1B B. Now if 〈〉 B A, then as 〈〉 B A→ B, 〈〉 B B, a
contradiction. Thus 〈〉 1B A; hence b B ∼A. So

〈〉 B ∼B → ∼A.

The completeness follows from the previous lemma and the Kripke completeness
of TCCω [54, Theorem 4.5].
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5.3.3 Classical logic and Gordienko’s logic

The fact that Kripke and Beth semantics differ on the forcing of disjunction is
well-reflected in the following translation of CPC into TCCω.

Definition 5.3.4 (()t). We inductively define ()t to be a mapping between formulae
in L.

pt ≡ p

(A ∧B)t ≡ At ∧Bt.

(A ∨B)t ≡ ∼∼At ∨ ∼∼Bt.

(A→ B)t ≡ ∼∼At → ∼∼Bt.

(∼A)t ≡ ∼At.

Beth-semantically speaking, ()t restricts our attention to the root world, when
it comes to disjunction and implication. This is related to the connection between
empirical negation (of IPC∼) and classical negation, as observed in [29] and [30]. A
new point for TCCω is that the restriction applies not only to implication but also
to disjunction. This corresponds to the fact that in Beth semantics, both disjunction
and implication look at other worlds, whereas in Kripke semantics, only the latter
does so.

In the following, we make a heavy use of easily checkable equivalences in Beth
semantics.

• b B ∼∼A⇐⇒ 〈〉 B A.

• b B ∼∼A ∨ ∼∼B ⇐⇒ 〈〉 B A or 〈〉 B B.

• b B ∼∼A→ ∼∼B ⇐⇒ 〈〉 B A implies 〈〉 B B.

Let us use the notation Γt := {Bt : B ∈ Γ}. We shall henceforth abbreviate
∼∼A as ≈A. Metalinguistic ‘implies’ (⇒) should not be confused with → in the
proof below.

Proposition 5.3.2 (faithful embedding of CPC into TCCω). Γ `c A if and only
if Γt `t At.

Proof. The left-to-right direction is shown by induction on the depth of deductions.
If A is an assumption, then correspondingly At ∈ Γt.

If A is an axiom, we exemplify by the case for the axiom

(A→ C)→ ((B → C)→ (A ∨B → C)).

((A→ C)→ ((B → C)→ (A ∨B → C)))t is

≈(≈At → ≈Ct)→ ≈(≈(≈Bt → ≈Ct)→ ≈(≈(≈At ∨ ≈Bt)→ ≈Ct)).

Using Beth completeness, it is sufficient to show,

b B ≈(≈At → ≈Ct)→ ≈(≈(≈Bt → ≈Ct)→ ≈(≈(≈At ∨ ≈Bt → ≈Ct)))
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holds for any b in an arbitrary Beth model. This is equivalent to

〈〉 B ≈At → ≈Ct

implies 〈〉 B ≈(≈Bt → ≈Ct)→ ≈(≈(≈At ∨ ≈Bt)→ ≈Ct)

by one of the above equivalences; this is further equivalent to

〈〉 B At ⇒ 〈〉 B Ct

implies (〈〉 B ≈Bt → ≈Ct)⇒ (〈〉 B ≈(≈(≈At ∨ ≈Bt)→ ≈Ct))

and to

〈〉 B At ⇒ 〈〉 B Ct

implies (〈〉 B Bt ⇒ 〈〉 B Ct)⇒ (〈〉 B ≈At ∨ ≈Bt ⇒ 〈〉 B Ct)

and to

(〈〉 B At ⇒ 〈〉 B Ct) and (〈〉 B Bt ⇒ 〈〉 B Ct)

implies ((〈〉 B At or 〈〉 B Bt)⇒ 〈〉 B Ct))

and this holds. Here, if it were the case that (A ∨ B)t ≡ (At ∨ Bt), then we would
get 〈〉 B At ∨Bt instead of 〈〉 B ≈At ∨ ≈Bt, and the formula fails to hold.

If the deduction ends with an application of

, B B → A (MP)
A

then by I.H., Γt `t Bt and Γt `t ∼∼Bt → ∼∼At. In [30, Lemma 2.8] the rule

A (RD)∼∼A
is shown to be derivable from (RC) in IPC∼. The proof appeals to (RP) only
non-essentially (it is used to derive ∼∼A → A, which is obtainable from A ∨ ∼A
and ∼A → (∼∼A → B) alone), and so (RD) is also derivable in TCCω. Thus we
obtain Γt `t ∼∼Bt. So by (MP), Γt `t ∼∼At; hence Γt `t At by double negation
elimination.

The right-to-left direction follows from the easily noticeable equivalence that
`c A↔ At.

Before moving on, we shall mention that there exists another reading of the
negation in the Beth semantics for TCCω. Because the models are rooted, for any
b,

∃b′ ≤ b(b′ 1 A)⇔ 〈〉 1 A.

From this viewpoint the negation of TCCω can be understood as co-negation as
well. For Kripke semantics, the logic of co-negation is the logic daC of Priest [100].
A Hilbert-style axiomatisation of daC was first formulated by Castiglioni et al.
[21]. This axiomatisation is obtained from that of IPC∼ by removing the axiom
∼A → (∼∼A → B). If we further replace (RP) with (RC), and add an axiom
∼∼A → A (a theorem of daC), we obtain the logic CCω of Sylvan [116]. Note
CCω can be strengthened to TCCω by adding ∼A → (∼∼A → B) as an axiom
and dropping ∼∼A→ A, which becomes redundant.
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5.4 Eliminating (RP)

The last section made clear that the negations of IPC∼ and TCCω are characterised
by the same valuation, but with respect to different semantics: Kripke and Beth.
We may understand them as representing different types of experience, and thus dif-
ferent empirical negations. We can make an analogous remark for co-negation. This
case is perhaps more interesting, for TCCω and daC are not comparable [99]. In
any case, these curious effects of “same forcing-condition in two similar semantics”
encourage a further analysis.

Proof-theoretically, however, there is an obstacle in comparing the logics, in that
TCCω and CCω employ the rule (RC), whereas daC and IPC∼ employ the stronger
(RP).

We would like, therefore, to have a new axiomatisation of IPC∼ and daC with
(RC), rather than (RP). We can expect such conversion would allow us to analyse
and understand the logics from a more unified perspective.

We shall start such an attempt with IPC∼, using a provable formula of IPC∼,
(∼A ∧ ∼B)→ ∼(A ∨B) [30, Proposition 2.14].

Proposition 5.4.1. The addition of (∼A ∧ ∼B) → ∼(A ∨ B) to TCCω derives
(RP).

Proof. In TCCω, assuming (A∨B) we can derive ∼∼(A∨B) by (RD). So we have

∼B → (∼A→ ∼∼(A ∨B)).

Also we infer from ∼B → (∼A→ (∼A ∧ ∼B)) and (∼A ∧ ∼B)→ ∼(A ∨B) that

∼B → (∼A→ ∼(A ∨B)).

Thus
∼B → (∼A→ (∼(A ∨B) ∧ ∼∼(A ∨B))).

Next note ∼(A ∨ B) → (∼∼(A ∨ B) → B) is an instance if one of the axioms.
Combine the two and we obtain

∼B → (∼A→ B).

Then as B → (∼A→ B) follows from intuitionistic logic, and B ∨∼B is an axiom,
we conclude ∼A→ B.

Hence we have obtained an alternative axiomatisation of IPC∼ with (RC).
It is stated in [30] that TCCω is a strict subsystem of IPC∼, but no specific

example is shown. As a side remark, we can use (∼A∧∼B)→ ∼(A∨B) to observe
the following.

Proposition 5.4.2. (∼A ∧ ∼B)→ ∼(A ∨B) is underivable in TCCω.

Proof. We prove it via Beth completeness. Let FB = (W,�) be the set of finite
binary sequences ordered by the initial segment relation. Let MB = (FB,V) be a
model such that

b ∈ V(p)⇔ 〈0〉 � b and b ∈ V(q)⇔ 〈1〉 � b.
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Then it is straightforward to see that this assignment is covering: e.g. if ∀α ∈
b∃m(ᾱm B p), then clearly 〈0〉 � b. Now

MB, 〈〉 1B p and MB, 〈〉 1B q,

so MB, 〈〉 B ∼p ∧ ∼q; but since

∀α ∈ 〈〉(ᾱ1 B p or ᾱ1 B q),

we haveMB, 〈〉 B p∨q, i.e. MB, 〈〉 1B ∼(p∨q). ThereforeMB, 〈〉 1B (∼p∧∼q)→
∼(p ∨ q).

Corollary 5.4.1 (failure of soundness for IPC∼ with all Beth models).
`∼ A;�B A.

Proof. Otherwise `∼ A⇒�B A⇔`t A, which is absurd.

Ferguson [40, Theorem 2.3] gives the frame property of (∼A∧∼B)→ ∼(A∨B)
with respect to daC. We just mention a quite similar observation can be made for
the Kripke models for CCω.

Definition 5.4.1 (Semantics of CCω). A Kripke frame F c
K for CCω is a triple

(W,≤, S), where S ⊆ W ×W is a reflexive and symmetric (accessibility) relation
such that u ≤ v and uSw implies vSw, i.e. S is upward closed. A Kripke model
Mc
K for CCω is defined as usual, except for the forcing condition (Kcc) of negation,

which is

w Kcc ∼A⇐⇒ w′ 1Kcc A for some w′ such that wSw′.

Note if S = W ×W , then a CCω-frame (model) is a TCCω-frame (model) [54].
Indeed, what is shown in [54] is that TCCω is sound and complete with the class of
CCω-frames where S is transitive, and in particular the frames with S = W ×W
is sufficient for this. We shall occasionally denote uSv also by vS−1u. As S is
symmetric in CCω, this distinction is not quite necessary. This however clarifies
appeals to symmetry in proofs, which becomes significant in a broader context.

Proposition 5.4.3. Let F c
K be a CCω-frame. Then the following conditions are

equivalent:

(i) F c
K �Kcc (∼A ∧ ∼B)→ ∼(A ∨B) for all A,B.

(ii) F c
K satisfies ∀u, v, w(uSv and uSw implies ∃xS−1u(v ≥ x and w ≥ x).

Proof. We shall first see (i) implies (ii). Suppose uSv and uSw. Let

V(p) = {x : v � x} and V(q) = {x : w � x}.

Now if w ∈ V(p) and x′ ≥ x, then v ≥ x′ implies v ≥ x, a contradiction. So v � x′,
and thus x′ ∈ V(p). Hence V(p) is upward closed. Similarly V(q) is upward closed.
Now since v ≥ v and w ≥ w,

v 1Kt p and w 1Kt q.
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So u Kcc ∼p ∧ ∼q. Hence by assumption u Kcc ∼(p ∨ q). So there is an xS−1u
such that

x 1Kcc p (i.e. v ≥ x) and x 1Kcc q (i.e. w ≥ x),

as we desired.
Next we shall see (ii) implies (i). Assume F c

K satisfies (ii) and V , u0 be arbitrary.
If for u ≥ u0

(F t
K,V), u Kcc ∼A ∧ ∼B,

then there are vS−1u and wS−1u such that

v 1Kcc A and w 1Kcc B.

By (ii), there is xS−1u such that v ≥ x and w ≥ x. Now x 1Kcc A ∨ B. Hence
u Kcc ∼(A ∨B). So

(F t
K,V), u0 Kcc (∼A ∧ ∼B)→ ∼(A ∨B).

Since w and V are arbitrary, F c
K �Kcc (∼A ∧ ∼B)→ ∼(A ∨B).

Given a Kripke frame for IPC∼, we can regard it as a frame of TCCω with
S = W ×W ; i.e. there is an embedding. Then it is immediately seen that such
a frame satisfies the above condition, because it is rooted. This means the class of
Kripke frames for TCCω satisfying the above condition is complete with respect to
IPC∼, for if a formula is validated by each such frame, then it must be validated
by each frame of IPC∼.

Next we consider daC. The formula ∼A ∧ ∼B → ∼(A ∨ B) used for IPC∼

cannot be used for daC, because it is not a theorem of daC [98, Table 3]. We
instead have to look at another formula ∼(∼(A ∨B) ∨ A)→ B.

Proposition 5.4.4. CCω +∼(∼(A ∨B) ∨ A)→ B = daC.

Proof. It has been observed in [98, Theorem 3.13] that ∼(∼(A ∨ B) ∨ A)→ B is a
theorem of daC. So we only have to check (RP) is admissible in CCω + ∼(∼(A ∨
B) ∨ A)→ B. We first note

A
∼A→ B

is derivable in CCω by the same argument as in [99, Theorem 4.3]. Assuming A∨B
is derivable, from this we see ∼(A ∨ B) → A is derivable. By intuitionistic logic,
we can infer (∼(A ∨ B) ∨ A) → A, and then by (RC), ∼A → ∼(∼(A ∨ B) ∨ A).
On the other hand, ∼(∼(A ∨ B) ∨ A) → B is the added axiom. Thus we conclude
∼A→ B.

∼(∼(A∨B)∨A)→ B is used in [98, theorem 3.13] to establish that daC strictly
contains another logic daC’, axiomatised by replacing (RP) with a weaker rule

. A ∨ ∼B (wRP)∼ A→∼ B

We shall note (wRP) in daC′ is similarly reducible to an axiom ∼(∼(A∨∼B)∨A)→
∼B.

Proposition 5.4.5. CCω +∼(∼(A ∨ ∼B) ∨ A)→ ∼B = daC′
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Proof. It has been observed in [99, Lemma 3.2] that ∼(∼(A ∨ ∼B) ∨ A) → ∼B
is a theorem of daC′. So we only have to check (wRP) is admissible in CCω +
∼(∼(A ∨ ∼B) ∨ A) → ∼B. This is proved as in the previous proposition, except
that we infer ∼A→ ∼(∼(A∨∼B)∨A) and ∼(∼(A∨∼B)∨A)→ ∼B to conclude
∼A→ ∼B.

Next, we turn our attention to the semantic side. Our goal will be to establish a
connection between the Kripke semantics of CCω and daC. For this we shall first
consider the frame condition for ∼(∼(A ∨B) ∨ A)→ B.

Proposition 5.4.6. Let F c
K be a CCω-frame. Then the following conditions are

equivalent:

(i) F c
K �Kcc ∼(∼(A ∨B) ∨ A)→ B for all A,B.

(ii) F c
K satisfies ∀u, v(uSv → ∃wS−1v(w ≤ u and w ≤ v)).

Proof. We shall first see (i) implies (ii). We shall show the contrapositive. So
suppose for some u and v, uSv holds but ¬∃wS−1v(w ≤ u and w ≤ v). Choose V
s.t.

V(p) = {w : w � v} and V(q) = {w : w � u}.
It is straightforward to see V(p) and V(q) are upward closed. Now since ∀wS−1v(w �
u or w � v), we have ∀wS−1v(w Kcc p or w Kcc q). So v 1Kcc ∼(p ∨ q). In
addition, v ≤ v means v 1Kcc p. Thus

u Kcc ∼(∼(p ∨ q) ∨ p).

On the other hand, u ≤ u implies u 1Kcc q. Thus u 1Kcc ∼(∼(p ∨ q) ∨ p) → q.
Therefore F c

K 2Kcc ∼(∼(p ∨ q) ∨ p)→ q.
Next we shall see (ii) implies (i). Assume

∀u, v(uSv → ∃wS−1v(w ≤ u and w ≤ v)).

Let V and u be arbitrary, and for v ≥ u, suppose (F c
K,V), v Kcc ∼(∼(A∨B)∨A).

Then for some wS−1v, w 1Kcc ∼(A ∨B) ∨ A. Thus

w 1Kcc A and ∀xS−1w(x Kcc A ∨B).

Now by assumption, from vSw we infer ∃yS−1w(y ≤ v and y ≤ w). From our
observation above, we know y Kcc A ∨ B. If y Kcc A, then y ≤ w implies
w Kcc A, a contradiction. So y Kcc B, which with y ≤ v implies v Kcc B. Thus

(F c
K,V), u Kcc ∼(∼(A ∨B) ∨ A)→ B.

Since V and u are arbitrary, F c
K �Kcc ∼(∼(A ∨B) ∨ A)→ B.

Note that in the proof no appeal is made to neither the reflexivity nor symmetry
of S. Thus we see the correspondence holds for a weaker setting of one of Došen’s
systems in [34, p.81-83] (under what he calls condensed frames). It has the same
forcing condition, but the accessibility relation there is not assumed to be reflexive
nor symmetric.

With the frame condition at hand, we can now translate back and forth the
frames of CCω and daC.
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Definition 5.4.2 (semantics of daC). A Kripke frame Fd
K for daC is a pair (W,≤),

and a Kripke modelMd
K for daC is defined as usual, except for the forcing condition

(Kcc) of negation, which is

Md
K, w Kd ∼A⇐⇒Md

K, w
′ 1Kd A for some w′ ≤ w.

Proposition 5.4.7.

(i) Let F c
K = (W,≤, S) be a frame of CCω satisfying

∀u, v(uSv → ∃wS−1v(w ≤ u and w ≤ v)).

Define Φ(F c
K) = (W,≤). Then for any V and w,

(F c
K,V), w Kcc A⇔ (Φ(F c

K),V), w Kd A.

(ii) Let Fd
K be a frame of daC. Define

S = {(u, v) : ∃w(w ≤ u and w ≤ v))}.

and Ψ(Fd
K) = (W,≤, S). Then for any V and w,

(Fd
K,V), w Kd A⇔ (Ψ(Fd

K),V), w Kcc A.

(iii) Ψ = Φ−1 for the above Φ and Ψ.

Note the S defined in (ii) is well-defined: it is easy to check it is reflexive,
symmetric and satisfies ∀u, v(uSv → ∃wS−1v(w ≤ u and w ≤ v)).

Proof. In (i) and (ii), we only have to consider the case for negation.
For (i), if (F c

K,V), w Kcc ∼A, then for some w′S−1w, (F c
K,V), w′ 1Kcc A. By the

frame condition, there is xS−1w such that x ≤ w and x ≤ w′. Because of the latter,
(F c
K,V), x 1Kcc A. By I.H., (Φ(F c

K),V), x 1Kd A. Since x ≤ w, (Φ(F c
K),V), w Kd

∼A. For the converse direction, if (Φ(F c
K),V), w Kd ∼A then for some w′ ≤ w,

(Φ(F c
K),V), w′ 1Kd A. By I.H., (F c

K,V), w′ 1Kcc A. Here, since w′Sw′ by reflexivity
and w′ ≤ w, we have w′Sw, so by symmetry wSw′. Thus (F c

K,V), w Kcc ∼A.
For (ii), if (Fd

K,V), w Kd ∼A, then for some w′ ≤ w, (Fd
K,V), w′ 1Kd A. By I.H.,

(Ψ(Fd
K),V), w′ 1Kcc A. Now as w′ ≤ w and w′Sw′, wSw′. So (Ψ(Fd

K),V), w Kcc
∼A. For the converse direction, if (Ψ(Fd

K),V), w Kcc ∼A, then for some w′S−1w,
(Ψ(Fd

K),V), w′ 1Kcc A. Thus there is an x such that x ≤ w and x ≤ w′. We
have (Ψ(Fd

K),V), x 1Kcc A by the latter. By I.H., (Fd
K,V), x 1Kd A. Therefore

(Fd
K,V), w Kd ∼A.
For (iii), it is immediate to see that Φ(Ψ(Fd

K)) = Fd
K, as the mappings do not

alter (W,≤). As for Ψ(Φ(F c
K)) = F c

K, we need to check the original S in F c
K and the

defined S ′ in Ψ(Φ(F c
K)). It is easy from the frame condition that S ⊆ S ′. Further,

if ∃x(x ≤ w and x ≤ w′), then xSw′ by reflexivity, symmetry and upward closure
of S. Thus again by upward closure of S, wSw′; so S ⊇ S ′.

This allows us to conclude the following completeness of daC with respect to
the frames of CCω: let us denote the derivability in daC by `d.
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Corollary 5.4.2. `d A if and only if F c
K �Kcc A for all F c

K satisfying

∀u, v(uSv → ∃wS−1v(w ≤ u and w ≤ v)).

Proof. The last proposition established a bijection of frames agreeing in forcing.
Thus the statement follows from the completeness of daC with respect to its models
[100].

We now look at the frame condition for ∼(∼(A ∨ ∼B) ∨ A)→ ∼B.

Proposition 5.4.8. Let F be a CCω-frame. Then the following conditions are
equivalent.

(i) F �Kcc ∼(∼(A ∨ ∼B) ∨ A)→ ∼B for all A,B.

(ii) F satisfies ∀u, v(uSv → ∃wS−1v(w ≤ v and ∀x(wSx→ uSx))).

Proof. We shall first see (i) implies (ii). We show this by contraposition. Assume
uSv but

¬∃wS−1v(w ≤ v and ∀x(wSx→ uSx)).

Choose V such that

V(p) = {w : w � v} and V(q) = {w : uSw}.

Again the former set is upward closed, and the latter set is upward closed because
of symmetry and upward closure of S. Now since

∀wS−1v(w � v or ¬∀x(wSx→ uSx)),

if the former disjunct holds then w ∈ V(p). And if the latter disjunct holds, then
∃x(wSx and ¬uSx). So if x Kcc q, then uSx, a contradiction. Thus x 1Kcc q and
consequently, w Kcc ∼q. Thus ∀wS−1v(w Kcc p or w Kcc ∼q). Also if v Kcc p,
then v � v, a contradiction. So v 1Kcc p; hence u Kcc ∼(∼(p ∨ ∼q) ∨ p). But if
u Kcc ∼q, then ∃xS−1u(x 1Kcc q). So ¬uSx, a contradiction. Hence u 1Kcc ∼q.
Thus

u 1Kcc ∼(∼(p ∨ ∼q) ∨ p)→ ∼q.
Therefore 2Kcc ∼(∼(p ∨ ∼q) ∨ p)→ ∼q.

To see (ii) implies (i), let v ≥ u for arbitrary and assume

v Kcc ∼(∼(A ∨ ∼B) ∨ A).

We want to show v Kcc ∼B. By definition, ∃wS−1v(w 1Kcc ∼(A ∨ ∼B) ∨ A). So

∀xS−1w(x Kcc A ∨ ∼B) (*)

and w 1Kcc A. By the frame condition, there is xS−1w such that x ≤ w and
∀y(xSy → vSy). From (*) we infer x Kcc A or x Kcc ∼B. If the former, then
w Kcc A, a contradiction. So x Kcc ∼B. But then for some yS−1x, y 1Kcc B.
Thus vSy by the frame condition. So v Kcc ∼B. Hence

u Kcc ∼(∼(A ∨ ∼B) ∨ A)→ ∼B.

Since u is arbitrary, �Kcc ∼(∼(A ∨ ∼B) ∨ A)→ ∼B.

Note that contrary to the last case, in this proof we appealed to the symmetry
of S in CCω.
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5.5 Labelled sequent calculus

In this section, we define a labelled sequent calculus for some of the logics we have
treated (CCω,TCCω,daC, IPC∼), with the aid of the insights obtained in the last
section regarding their relationship. We shall show the admissibility of cut and the
correspondence with the Hilbert-style system.

A labelled formula is an expression of the form x : A, where A is a formula and x
is a label. We shall use x, y, z . . . for labels. We shall additionally consider relational
atoms, which either have the form xSy, or x ≤ y. An item is either a labelled
formula or a relational atom. We denote items by α, β, . . .. A sequent has the form
Γ⇒ ∆, where Γ and ∆ are finite multisets of items.

We shall consider the following calculus G3ccω.

Definition 5.5.1 (G3ccω).

x ≤ y, x : p,Γ⇒ ∆, y : p (Ax1) x ≤ y,Γ⇒ ∆, x ≤ y (Ax2)

xSy,Γ⇒ ∆, xSy (Ax3)

x : A, x : B,Γ⇒ ∆
(L∧)

x : A ∧B,Γ⇒ ∆
Γ⇒ ∆, x : A Γ⇒ ∆, x : B

(R∧)
Γ⇒ ∆, x : A ∧B

x : A,Γ⇒ ∆ x : B,Γ⇒ ∆
(L∨)

x : A ∨B,Γ⇒ ∆
Γ⇒ ∆, x : A, x : B

(R∨)
Γ⇒ ∆, x : A ∨B

x ≤ y, x : A→ B,Γ⇒ ∆, y : A x ≤ y, x : A→ B, y : B,Γ⇒ ∆
(L→)

x ≤ y, x : A→ B,Γ⇒ ∆

x ≤ y∗, y∗ : A,Γ⇒ ∆, y∗ : B
(R→)

Γ⇒ ∆, x : A→ B

xSy∗,Γ⇒ ∆, y∗ : A
(L∼)

x : ∼A,Γ⇒ ∆
xSy, y : A,Γ⇒ ∆, x : ∼A

(R∼)
xSy,Γ⇒ ∆, x : ∼A

x ≤ x,Γ⇒ ∆
(Ref)

Γ⇒ ∆
x ≤ z, x ≤ y, y ≤ z,Γ⇒ ∆

(Trans)
x ≤ y, y ≤ z,Γ⇒ ∆

xSx,Γ⇒ ∆
(RefS)

Γ⇒ ∆
xSy, ySx,Γ⇒ ∆

(SymS)
xSy,Γ⇒ ∆

x ≤ y, xSz, ySz,Γ⇒ ∆
(Up)

x ≤ y, xSz,Γ⇒ ∆

A proof (derivation/deduction) of a sequent Γ ⇒ ∆ in G3ccω (to be denoted
`Gcc Γ ⇒ ∆) is a tree whose root is the sequent, whose nodes are applications of
rules, and whose leaves are axioms (0-premise rules).

In the rules, variables indicated by * are eigenvariables, meaning that they can-
not occur in the conclusion of the rules. Γ, ∆ are called contexts, and non-context
items in the conclusion are called principal. The calculus is in a large part an amal-
gamation of the labelled calculus for modal logic [82] and intuitionistic logic [83]. It
has the rules (RefS) and (SymS) corresponding to the reflexivity and symmetry in
CCω. Additionally, it has the rule (Up) corresponding to the condition for upward
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closure in CCω.1

We shall also consider the following additional rules, corresponding to the addi-
tional frame conditions for daC, TCCω and IPC∼, to G3ccω.

Definition 5.5.2.

xSy, ySz∗, z∗ ≤ x, z∗ ≤ y,Γ⇒ ∆
(Pr)

xSy,Γ⇒ ∆
xSz, xSy, ySz,Γ⇒ ∆

(TransS)
xSy, ySz,Γ⇒ ∆

xSy, xSz, t∗ ≤ y, t∗ ≤ z, xSt∗,Γ⇒ ∆
(De)

xSy, xSz,Γ⇒ ∆

Where, as before, labels indicted with * are eigenvariables. The intention is that
the addition of (Pr) should correspond to daC, (TransS) to TCCω, and (TransS)
and (De) to IPC∼. We shall denote the addition of some of these rules to G3ccω

by G3cc+
ω , and the deducibility is denoted by `Gcc+.

We shall later observe how the sequent calculi correspond to the Hilbert-style
systems. We now proceed with checking some standard properties of the calculi.

Proposition 5.5.1. `Gcc x ≤ y, x : A,Γ⇒ ∆, y : A

Proof. By [84, Lemma 12.25], we only have to consider the case for ∼. When
A ≡ ∼B,

z ≤ z, z : B, xSz, x ≤ y, ySz,Γ⇒ ∆, y : ∼B, z : B
(Ref)

z : B, xSz, x ≤ y, ySz,Γ⇒ ∆, y : ∼B, z : B
(R∼)

xSz, x ≤ y, ySz,Γ⇒ ∆, y : ∼B, z : B
(Up)

xSz, x ≤ y,Γ⇒ ∆, y : ∼B, z : B
(L∼)

x ≤ y, x : ∼B,Γ⇒ ∆, y : ∼B
where the first line is obtained from the inductive hypothesis.

Definition 5.5.3 (substitution of labels). We define the substitution of a label by
another label x[z/w], substitution for an item α[z/w] and for a multiset Γ[z/w] by
the following clauses. (◦ ∈ {≤, S})

x[z/w] ≡ w if x ≡ z.

x[z/w] ≡ x if x 6≡ z.

α[z/w] ≡ x[z/w] ◦ y[z/w] if α ≡ x ◦ y.
α[z/w] ≡ x[z/w] : A if α ≡ x : A.

Γ[z/w] ≡ {α[z/w] : α ∈ Γ}

We shall denote instances of substitution by (Sub). In addition, we shall write
G3cc+

ω `n Γ ⇒ ∆ if the sequent has a derivation whose depth is less than n. We
say a rule is depth-preserving admissible (dp-admissible) if and only if: if there are
derivations of the premises of the rule each with the depth less than n, then there
exists a derivation of the conclusion with the depth less than n. If the depth is not
preserved, we just say the rule is admissible. We shall indicate an application of an
admissible rule by a dashed line.

1Note that in the calculus for IPC∼, we do not need a syntactic notion corresponding to the
root world. This is because we are using here a larger (not necessarily rooted) class of Kripke
frames than the class of rooted frames, for which IPC∼ is still sound and complete.
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Proposition 5.5.2 (dp-admissibility of substitution).

The rule Γ⇒ ∆ (Sub)
Γ[z/w]⇒ ∆[z/w]

is dp-admissible in G3cc+
ω .

Proof. We argue by induction on the depth of deduction. The intuitionistic rules are
already treated in [84, Lemma 12.26]. For others, the case for (Ax2) is immediate,
since the result of the substitution is also an instance of (Ax2). The case for (L∼)
and (R∼) are similar to those of R� and L� in modal calculi, respectively; cf. [84,
Lemma 11.4]. The other rules are instances of either the scheme for mathematical
rules or the geometric rule scheme [84, pp.98, 134], so can be dealt with by the
methodology of [84, Lemma 11.4].

We shall now move on to consider structural rules.

Definition 5.5.4 (structural rules).

Γ⇒ ∆ (LW)
α,Γ⇒ ∆

Γ⇒ ∆ (RW)
Γ⇒ ∆, α

α, α,Γ⇒ ∆
(LC)

α,Γ⇒ ∆
Γ⇒ ∆, α, α

(RC)
Γ⇒ ∆, α

Γ⇒ ∆, α α,Γ′ ⇒ ∆′
(Cut)

Γ,Γ′ ⇒ ∆,∆′

Our goal is to prove that (Cut) is admissible. For this purpose we check that
the rules of Weakening (LW,RW) and Contraction (LC,RC) are dp-admissible. We
start with Weakening.

Proposition 5.5.3 (dp-admissibility of Weakening).
(LW) and (RW) are dp-admissible in G3cc+

ω .

Proof. The proof is by induction on the depth of deduction. In cases of applications
of (Ax1)-(Ax3), the result of Weakening is again an instance of the axiom. For
other rules, we apply the inductive hypothesis to the premises of the rule, and
thereafter apply the rule to obtain the desired sequent; however for rules involving
eigenvariables, we first need to apply dp-admissible substitution (Proposition 5.5.2)
to substitute the eigenvariable with a fresh variable, so as to avoid the clash of
variables. Then we apply the above procedure.

For Contraction, we first need to demonstrate that the rules of G3cc+
ω are dp-

invertible: that is, given a derivation of the conclusion of a rule, we can find a
depth-preserving derivation of the premises.

Lemma 5.5.1. The rules of G3cc+
ω are dp-invertible.

Proof. We argue by induction on the depth of deduction. For the intuitionistic rules,
we refer to [84, Theorem 12.28]. For the rules (R∼), (Up), (RefS), (SymS), (TransS),
(Pr) and (De), we can invert the sequent by dp-admissible weakening.

The case for (L∼) is quite similar to that of R� for modal logic [84, Lemma
11.7]. If `0 x : ∼A,Γ ⇒ ∆, then the derivation is an instance of (Ax1), (Ax2) or
(Ax3). In each case, xSy,Γ ⇒ ∆, y : A is also an instance of the same axiom. If
`n+1 x : ∼A,Γ⇒ ∆, then if it is obtained by (L∼) with x : ∼A principal, i.e. it is
of the form
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`n xSz,Γ⇒ ∆, z : A
(L∼)`n+1 x : ∼A,Γ⇒ ∆

where z does not occur in the conclusion; then by dp-admissible substitution, `n
xSy,Γ⇒ ∆, y : A (where y is a fresh variable).

We exemplify with (R→) the case where x : ∼A is obtained by a rule with
eigenvalue condition in which it is not principal

`n z ≤ t, t : C, x : ∼A,Γ′ ⇒ ∆′, t : D
(R→)`n+1 x : ∼A,Γ′ ⇒ ∆′, z : C → D

then by dp-substitution, `n z ≤ t′, t′ : C, x : ∼A,Γ′ ⇒ ∆′, t′ : D, where t′ 6≡ y. (Note
that y is fixed beforehand.) By I.H., `n z ≤ t′, t′ : C, xSy,Γ′ ⇒ ∆′, y : A, t′ : D. So
by (R→), `n+1 xSy,Γ

′ ⇒ ∆′, y : A, z : C → D.
If it is obtained by a rule without eigenvariable condition, then apply I.H. to the

premise and apply the same rule.

Proposition 5.5.4 (dp-admissibility of Contraction).
(LC) and (RC) are dp-admissible in G3cc+

ω .

Proof. We argue by simultaneous induction ((LC),(RC)) on the depth of the de-
duction. General outline is as in [84, Theorem 12.28]. As an example, suppose
`n+1 x : ∼A, x : ∼A,Γ ⇒ ∆ and the last step is an instance of (L∼) with x : ∼A
principal.

`n xSy, x : ∼A,Γ⇒ ∆, y : A
(L∼)`n+1 x : ∼A, x : ∼A,Γ⇒ ∆

Then by dp-admissible invertibility of (L∼),

`n xSy, xSy,Γ⇒ ∆, y : A, y : A

So by I.H.
`n xSy,Γ⇒ ∆, y : A

Thus by (L∼)
`n+1 x : ∼A,Γ⇒ ∆

We are now ready to prove the admissibility of (Cut). We shall call the item to
be eliminated in (Cut) the cut-item.

Theorem 5.5.1 (admissibility of Cut). (Cut) is admissible in G3cc+
ω .

Proof. We argue by induction on the complexity of cut-items, with a subinduction
on the level (the sum of the depths of the deductions of the premises) of (Cut).
Again the outline is the same as that of the intuitionistic case [84, Theorem 12.30].
In particular, rules that are mathematical or geometric are treated similarly to those
of intermediate axioms.

Here we shall consider the case where the cut-item is principal in both of the
premises, and has the form x : ∼A. We have

`m−1 xSy, y : A,Γ⇒ ∆, x : ∼A
(R∼)`m xSy,Γ⇒ ∆, x : ∼A

`n−1 xSz,Γ
′ ⇒ ∆′, z : A

(L∼)`n x : ∼A,Γ′ ⇒ ∆′
(Cut)` xSy,ΓΓ′ ⇒ ∆∆′
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Then

`n−1 xSz,Γ
′ ⇒ ∆′, z : A

(Sub)`n−1 xSy,Γ
′ ⇒ ∆′, y : A

(note that z is an eigenvariable, so cannot occur in Γ′,∆′). Moreover, by I.H. the
following cut of a lower level (m+ n− 1 < m+ n) is admissible:

`m−1 xSy, y : A,Γ⇒ ∆, x : ∼A `n x : ∼A,Γ′ ⇒ ∆′
(I.H.)` xSy, y : A,ΓΓ′ ⇒ ∆∆′

From these, and a cut of lower complexity (admissible by I.H.), we obtain

`n−1 xSy,Γ
′ ⇒ ∆′, y : A ` xSy, y : A,ΓΓ′ ⇒ ∆∆′

(I.H.)` xSy, xSy,ΓΓ′Γ′ ⇒ ∆∆′∆′
(LC,RC)` xSy,ΓΓ′ ⇒ ∆∆′

Next we observe that G3ccω and calculi in G3cc+
ω indeed correspond to CCω,

daC, TCCω and IPC∼.

Proposition 5.5.5.

(i) `cc A implies `Gcc ⇒ x : A.

(ii) If we add (Pr)/(transS) to the calculus, then the axioms of daC/TCCω be-
come derivable. If we add (transS) and (De), the axioms of IPC∼ become
derivable.

Proof.
(i) For CCω, the positive axioms can be shown to be derivable as in the intuitionistic
case. We need to check A ∨ ∼A, ∼∼A→ A and (RC).

A ∨ ∼A

x ≤ x, xSx, x : A⇒ x : A, x : ∼A
(Ref)

xSx, x : A⇒ x : A, x : ∼A
(R∼)

xSx⇒ x : A, x : ∼A
(RefS)⇒ x : A, x : ∼A

(R∨)⇒ x : A ∨ ∼A
∼∼A→ A

y ≤ y, x ≤ y, ySz, zSy, y : A⇒ z : ∼A, y : A
(Ref)

x ≤ y, ySz, zSy, y : A⇒ z : ∼A, y : A
(R∼)

x ≤ y, ySz, zSy ⇒ z : ∼A, y : A
(SymS)

x ≤ y, ySz ⇒ z : ∼A, y : A
(L∼)

x ≤ y, y : ∼∼A⇒ y : A
(R→)⇒ x : ∼∼A→ A

(RC)
We first observe that x : A→ B, x : A⇒ x : B is derivable:

x ≤ x, x : A→ B, x : A⇒ x : A x ≤ x, x : A→ B, x : B ⇒ x : B
(L→)

x ≤ x, x : A→ B, x : A⇒ x : B
(Ref)

x : A→ B, x : A⇒ x : B
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Then

⇒ x : A→ B x : A→ B, x : A⇒ x : B
(Cut)

x : A⇒ x : B (LW,RW)
y ≤ z, zSx, x : A⇒ x : B, z : ∼A

(R∼)
y ≤ z, zSx⇒ x : B, z : ∼A

(L∼)
y ≤ z, z : ∼B ⇒ z : ∼A

(R→)⇒ y : ∼B → ∼A
(Sub)⇒ x : ∼B → ∼A

(ii) We need to check each of the additional axioms are derivable in the correspond-
ing calculi.

daC
First we apply (L∨) to

x ≤ y, ySz, zSt, t ≤ y, t ≤ z, t : A⇒ z : ∼(A ∨B), z : A, y : B;

x ≤ y, ySz, zSt, t ≤ y, t ≤ z, t : B ⇒ z : ∼(A ∨B), z : A, y : B

to obtain

x ≤ y, ySz, zSt, t ≤ y, t ≤ z, t : A ∨B ⇒ z : ∼(A ∨B), z : A, y : B

Then,

x ≤ y, ySz, zSt, t ≤ y, t ≤ z, t : A ∨B ⇒ z : ∼(A ∨B), z : A, y : B
(R∼)

x ≤ y, ySz, zSt, t ≤ y, t ≤ z ⇒ z : ∼(A ∨B), z : A, y : B
(Pr)

x ≤ y, ySz ⇒ z : ∼(A ∨B), z : A, y : B
(R∨)

x ≤ y, ySz ⇒ z : ∼(A ∨B) ∨ A, y : B
(L∼)

x ≤ y, y : ∼(∼(A ∨B) ∨ A)⇒ y : B
(R→)

⇒ x : ∼(∼(A ∨B) ∨ ∼A)→ B

TCCω

u ≤ u, y ≤ z, ySu, zSv, zSu, vSz, vSu, u : A⇒ u : A, v : ∼A
(Ref)

y ≤ z, ySu, zSv, zSu, vSz, vSu, u : A⇒ u : A, v : ∼A
(R∼)

y ≤ z, ySu, zSv, zSu, vSz, vSu⇒ u : A, v : ∼A
(TransS)

y ≤ z, ySu, zSv, zSu, vSz ⇒ u : A, v : ∼A
(SymS)

y ≤ z, ySu, zSv, zSu⇒ u : A, v : ∼A
(Up)

y ≤ z, ySu, zSv ⇒ u : A, v : ∼A
(L∼)

y ≤ z, ySu, z : ∼∼A⇒ u : A
(L∼)

y ≤ z, y : ∼A, z : ∼∼A⇒
(LW,RW)

x ≤ y, y ≤ z, y : ∼A, z : ∼∼A⇒ z : B
(R→)

x ≤ y, y : ∼A⇒ y : ∼∼A→ B
(R→)

x : ∼A→ (∼∼A→ B)

IPC∼

First we apply (L∨) to

ySz, ySt, w : A,w ≤ z, w ≤ t, ySw ⇒ z : A, t : B, y : ∼(A ∨B);

ySz, ySt, w : B,w ≤ z, w ≤ t, ySw ⇒ z : A, t : B, y : ∼(A ∨B)
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to obtain

ySz, ySt, w : A ∨B,w ≤ z, w ≤ t, ySw ⇒ z : A, t : B, y : ∼(A ∨B)

Then

ySz, ySt, w : A ∨B,w ≤ z, w ≤ t, uSw ⇒ z : A, t : B, y : ∼(A ∨B)
(R∼)

ySz, ySt, w ≤ z, w ≤ t, ySw ⇒ z : A, t : B, y : ∼(A ∨B)
(De)

ySz, ySt⇒ z : A, t : B, y : ∼(A ∨B)
(L∼)

ySz, y : ∼B ⇒ z : A, y : ∼(A ∨B)
(L∼)

y : ∼A, y : ∼B ⇒ y : ∼(A ∨B)
(L∧)

y : ∼A ∧ ∼B ⇒ y : ∼(A ∨B)
(LW)

x ≤ y, y : ∼A ∧ ∼B ⇒ y : ∼(A ∨B)
(R→)

⇒ x : (∼A ∧ ∼B)→ ∼(A ∨B)

For the converse direction, we argue via completeness of the Hilbert-style systems
with respect to Kripke semantics. For this purpose the notion of valuation has to be
modified in the style of [84, Definition 11.25-26], to accommodate labelled formulae
and relational atoms.

Definition 5.5.5 (modified valuation for CCω-model). Let F c
K be a CCω-frame.

A modified valuation Vm is a pair (V , l), where V is the ordinary valuation for F c
K

introduced before, and l maps each label x into to a world l(x)of F c
K.

We say an item α is valid in a modified model Mmc
K = (F c

K,Vm) (denoted
Mmc
K m

Kcc α), when

• l(x) ≤ l(y) (or l(x)Sl(y)) in F c
K, if α ≡ x ≤ y (or xSy).

• (F c
K,V), l(x) Kcc A, if α ≡ x : A.

We say a sequent Γ⇒ ∆ is valid inMmc
K (denotedMmc

K �m
Kcc Γ⇒ ∆), ifMmc

K m
Kcc α

for all α ∈ Γ implies Mmc
K m

Kcc β for some β ∈ ∆. If Mmc
K is arbitrary, we say

Γ⇒ ∆ is valid and write �m
Kcc Γ⇒ ∆.

Note that �m
Kcc ⇒ x : A is valid if and only if �Kcc A. Similar statements hold

when we restrict the class of frames. We now wish to demonstrate the following.

Proposition 5.5.6.

(i) `Gcc Γ⇒ ∆ implies �m
Kcc Γ⇒ ∆.

(ii) (Pr)/(TransS)/(De) become sound if we restrict consideration to the corre-
sponding classes of frames .

Proof.
(i) We argue by induction on the depth of deductions. The cases for the intuitionistic
rules follow straightforwardly from the definition of intuitionistic Kripke models. We
shall look at the cases for (L∼), (R∼). The other cases are straightforward. In each
case, we consider an arbitrary modified model Mmc

K = (F c
K,Vm) with Vm = (V , l).
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(L∼) Suppose Mmc
K m

Kcc α for all α ∈ {x : ∼A} ∪ Γ. Then (F c
K,V), l(x) Kcc ∼A.

So there is w such that l(x)Sw and (F c
K,V), w 1Kcc A. Take V ′m = (V , l′)

where l′ = l except l′(y) = w. Note, since y does not occur in Γ and ∆, l and
l′ evaluate them in the same way. Thus (F c

K,V ′m) m
Kcc α for all α ∈ {xSy}∪Γ.

So by I.H., (F c
K,V ′m) m

Kcc β for some β ∈ {y : A} ∪ ∆. If it validates y : A,
however, then (F c

K,V), l′(y) Kcc A, a contradiction. Therefore (F c
K,Vm) m

Kcc
β for some β ∈ ∆. Since Mmc

K is arbitrary, �m
Kcc x : ∼A,Γ⇒ ∆.

(R∼) SupposeMmc
K m

Kcc α for all α ∈ {xSy}∪Γ. If l(y) 1Kcc A, then l(x) Kcc ∼A.
Otherwise, l(y) Kcc A, so by I.H.,Mmc

K m
Kcc α for all α ∈ {xSy, y : A}∪Γ. So

in either case (the latter with I.H.), Mmc
K m

Kcc β for some β ∈ ∆ ∪ {x : ∼A}.

(ii) The case for (TransS) is straightforward and (Pr), (De) are similar to the case
for (L∼); one needs to appeal to the frame condition to pick out a world satisfying
the desired order relation; then define a new modified valuation which is identical
to the original except it assigns the world to the eigenvariable; then the rest follows
as in the case for (L∼).

This allows us to conclude the other direction.

Corollary 5.5.1.

(i) `Gcc ⇒ x : A implies `cc A.

(ii) `Gcc+ is sound with respect to the corresponding logics (daC,TCCω,IPC∼).

Proof.
(i) If `Gcc ⇒ x : A, then by the previous proposition, �m

Kcc ⇒ x : A. Then as we
remarked before, �Kcc A. Thus by the completeness of CCω, `cc A.
(ii) Similar.

5.6 Discussion

We have seen that TCCω can be regarded as the logic of empirical and co-negation
for Beth semantics, which differs from IPC∼ and daC for Kripke semantics. Ac-
cording to the interpretation in [122, p.679], the difference between Kripke and Beth
semantics is the treatment of time. A node in Kripke models signifies a state of in-
formation, whereas in Beth models it signifies a moment in time. So for instance,
to decide the forcing of a disjunction in a Kripke model, one can stay in a world as
much as one likes, until one learns which of the disjuncts is true. In comparison, in
Beth models this waiting time is expressed by posterior nodes, so we need to refer
to those other worlds to decide the forcing of the disjunction in the original world.
The two kinds of empirical and co-negation can be interpreted similarly.

The question remains, however, which empirical (or co- ) negation one actually
means in an assertion of negation. For example, if one says “There is no proof of
P=NP”, does it mean there is no proof at the present state of information, or there
is no proof at the present moment?

Changing perspective, from an intuitionistic viewpoint there is a certain advan-
tage in considering Beth semantics. There is a relatively simple proof of intuitionistic
completeness (proving completeness with only intuitionistically accepted principles)
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for intuitionistic logic [43, 122]. The intuitionistic completeness proof for Kripke
semantics [135] gives a more refined result, but is comparatively more involved. A
possible future direction is to show the intuitionistic completeness for TCCω. An
obstacle would be the treatment of excluded middle, but classical logic also has
an intuitionistic completeness proof [75], so possibly this may be overcome. An
intuitionistic completeness would be desirable if one is a full-fledged intuitionist,
especially when the logic is motivated from the semantics, rather than from the
syntax.
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Chapter 6

Actuality in intuitionistic logic

6.1 Introduction

In the last chapter, we looked at a heterodox negation named empirical negation,
obtained through rooted Kripke models. Now, a simple calculation therein reveals
that double empirical negation of A is forced at a point iff A is forced at the base
point. In other words, double empirical negation can be seen as an actuality operator
explored by John N. Crossley, Lloyd Humberstone, Martin Davies and more. This
then gives rise to a natural question of exploring an expansion of intuitionistic logic
enriched by actuality operator. The aim of this chapter is twofold, and the first aim
is to address this question. Although the notion of actuality has been discussed in
classical settings (see our brief overview below), few attempts are known to discuss
the notion of actuality based on intuitionistic logic.1 The only exception known to
us is the system suggested by Humberstone in [66, pp.75–76], whose semantics is
based on the same idea as above. The proof theory for the system was not spelled
out in [66], and our enquiry will serve to fill the gap. It is also of significant interest
how we can incorporate the notion along the philosophical foundation of Dummett-
Tennant-De.

The second aim is to draw some connections to closely related systems. This
enables us to uncover links with other logical concepts, such as empirical negation
and globality. For this purpose, we shall adopt a language that includes absurdity
and therefore negation. Nonetheless we shall also observe how the notion of actuality
is independent of that of negation, which is an advantage over an approach that
defines actuality in terms of empirical negation. Before moving further, let us briefly
review some of the developments in the literature related to our aim.

Actuality The notion of actuality has been studied in modal logic for a long
time, and various conceptualisations have been introduced. Even at an early period,
Crossley, Humberstone and Davies [26, 28] already introduced two different actuality
operators, A and F (read fixedly). Each model M has a distinguished world w∗,
and Aϕ is true at w iff ϕ is true at w∗. On the other hand, Fϕ is true at w iff
for every model M′, ϕ is true at M′’s distinguished world w′. These two operators
represent different intuitions about whether ‘the actual world’ is necessarily so or
not.

1Note that there is a recent work on the notion of actuality based on relevant logics by Shawn
Standefer in [114].
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Another example for flexible actuality is that of Dominic Gregory [55], whose
semantics includes a mapping @, which maps a world w to its actual world @(w) in
the same model, with a couple of conditions on @. This in particular allows there
being more than one actual worlds in a model.2

Baaz’ LGP and Titatni’s GI Recall that Gödel-Dummett logic, introduced in
[38] by Dummett, is an extension of intuitionistic logic with the linearity axiom:

(A→ B) ∨ (B → A). (Lin)

Semantically, this logic is characterised by linear Kripke frames, which enables us
to see it as a fuzzy logic in intuitionistic setting.

Then, in [2], Matthias Baaz expanded Gödel-Dummett logic by an additional
operator, 4, which he called a projection modality, also later known as Baaz’ Delta.
The resulting logic is named LGP. Semantically, a formula of the form 4A attains
either the value 1 or 0, and it attains the value 1 iff A has the value 1.3 In other
words, 4A is true iff A is valid in the model. Baaz in the same paper also mentions
an operator equivalent to empirical negation in the setting of Gödel-Dummett logic
(cf. [2, p.33]).

A logic closely related to LGP of Baaz is Satoko Titani’s global intuitionistic
logic GI, introduced in [118]. This logic, formulated as a sequent calculus, is defined
by adding to intuitionistic logic an operator � of globalization. From a semantic
perspective, in terms of algebraic semantics, � has the same interpretation as 4.
There is also a fuzzy extension of GI called fuzzy intuitionistic logic with globalization
GIF proposed by Gaisi Takeuti and Satoko Titani in [117], whose propositional
fragment is equivalent to LGP (cf. [23, Remark 3]).

Note here that global intuitionistic logic can be regarded as an instance of intu-
itionistic modal logics which are equipped with at least two accessibility relations,
intuitionistic ≤ and modal R. This is studied since 1948 by Frederic B. Fitch in
[41], followed by Arthur N. Prior’s [101] and R. A. Bull’s papers [19, 20], and later
major developments include [9, 11, 36, 95, 110, 111, 113, 125]. Some close connec-
tions of global intuitionistic logic to intuitionistic modal logics are studied by Hiroshi
Aoyama in [1].

Based on these, this paper is structured as follows. We first introduce intuitionis-
tic logic with actuality operator, called IPC@, both in terms of semantics and proof
system, in §6.2. Then, in §6.3, we establish the soundness and strong completeness
of IPC@. This is followed by a comparison of IPC@ with related systems in §6.4 and
§6.5. More specifically, IPC@ is compared with intuitionistic logic with empirical
negation as well as logic of actuality of Crossley and Humberstone in §6.4. We then
turn to compare IPC@ with LGP of Baaz and GI of Titani in §6.5. The paper
concludes with a brief summary of our main results and some directions for future
research in §6.6.

2For more discussions on actuality, see, for instance, [44, 65, 115].
3This condition is closely related to the framework of simple monadic Heyting algebra which is

explored in detail in [7] by Guram Bezhanishvili.
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6.2 Semantics and Proof system

In this section, we first introduce the semantics for intuitionistic actuality using a
rooted Kripke frame. This is then followed by an axiomatic system, whose com-
pleteness with respect to the semantics will be shown in the next section.

We shall use the following language L@
⊥ in describing our logic:

A ::= p | (A ∧ A) | (A ∨ A)| (A→ A)| ⊥ | @A

Then we consider the following Kripke semantics.

Definition 6.2.1. A model M@ for the language L@
⊥ is defined as for a model of

IPC∼; so we shall consider frames with the root r. The forcing (a A) of formulae
of the form @A is given by the next clause.

M@, w a @A⇐⇒M@, r a A.

Semantic consequence is now defined in terms of truth preservation at r: Γ �a A
iff for all models M@, M@, r a A if M@, r a B for all B ∈ Γ.

We claim that the next Hilbert system corresponds to the above semantics.

Definition 6.2.2. The system IPC@ is defined with the axiom schemata of IPC
and the following axiom schemata and a rule of inference.

@(A→B)→(@A→@B) (K)

@A→A (T)

@A→@@A (4)

@A ∨ (@A→B) (aLEM)

@(A∨B)→(@A∨@B) (aDIS)

A

@A
(RN)

We shall use `a to denote the derivability in IPC@.
Because of the rule (RN), IPC@ does not enjoy the deduction theorem in the

usual form. Yet the theorem turns out to be available in a different form, similarly
to some modal logics.

Proposition 6.2.1. If Γ, A `a B then Γ `a @A→ B.

Proof. We argue by the induction on the depth n of deduction.
If n = 0, then there are a few possibilities.

• If B an axioms or B ∈ Γ, then we have Γ `a B and so Γ `a @A→ B.
• If B = A, then @A→ A is an instance of the axiom (T); hence Γ `a @A→ B.

If n = k + 1, we have to consider deductions ending with one of the rules.

• For (MP), the premises have the form Γ, A `a C and Γ, A `a C → B. Thus,
by I.H. we have Γ `a @A→ C and Γ `a @A→ (C → B). Therefore it follows
that Γ `a @A→ B.
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• For (RN), the premise has the form Γ, A `a C and B ≡ @C. Then by I.H.
we have Γ `a @A→C. By (K) and (RN), we have Γ `a @@A→@C. Then an
application of (4) gives us Γ `a @A→ @C, i.e. Γ `a @A→ B.

Next we look at the opposite direction.

Proposition 6.2.2. If Γ `a @A→ B then Γ, A `a B.

Proof. If Γ `a @A → B, then we use the fact that Γ, A `a @A by (RN). Then
Γ, A `a B by (MP).

Therefore we conclude:

Theorem 6.2.1. Γ, A `a B iff Γ `a @A→ B.

Let us mention a corollary of the deduction theorem which shall prove vital for
the completeness theorem.

Corollary 6.2.1. If A `a C and B `a C, then A ∨B `a C.

Proof. If A `a C and B `a C, then by deduction theorem `a @A → C and `a
@B → C. Thus `a (@A ∨@B)→ C; now use (aDIS) to deduce `a @(A ∨B)→ C.
By deduction theorem again, we conclude A ∨B `a C.

6.3 Soundness and completeness

We now turn to prove the soundness and the strong completeness. The proofs are
in large part analogous to those of [30, 31] which build on [105]. First we look at
the soundness.

Theorem 6.3.1. If Γ `a A then Γ �a A.

Proof. By induction on the depth of the deduction.

Next, we shall show the completeness. In below we introduce some concepts
used in the argument for completeness.

(i) Σ `Π A iff Σ ∪ Π `a A.
(ii) Σ is a Π-theory iff:

(a) if A,B ∈ Σ then A ∧B ∈ Σ.

(b) if `Π A→ B then (if A ∈ Σ then B ∈ Σ).

(iii) Σ is prime iff (if A ∨B ∈ Σ then A ∈ Σ or B ∈ Σ).
(iv) Σ `Π ∆ iff for some D1, . . . , Dn ∈ ∆, Σ `Π D1 ∨ . . . ∨Dn.
(v) `Π Σ→ ∆ iff for some C1, . . . , Cn ∈ Σ and D1, . . . , Dm ∈ ∆:

`Π C1 ∧ · · · ∧ Cn → D1 ∨ · · · ∨Dm.

(vi) Σ is Π-deductively closed iff (if Σ `Π A then A ∈ Σ).
(vii) 〈Σ,∆〉 is a Π-partition iff:

(a) Σ ∪∆ = Form
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(b) 0Π Σ→ ∆

(viii) Σ is non-trivial iff A /∈ Σ for some formula A.

Lemma 6.3.1. If Γ is a non-empty Π-theory, then Π ⊆ Γ.

Proof. Take A ∈ Π. Then, we have Π `a A. Now since Γ is non-empty, we may pick
a formula C ∈ Γ. With respect to this C, it holds that Π `a C → A, in other words
`Π C → A. Now using the assumptions C ∈ Γ and that Γ is Π-theory, we conclude
that A ∈ Γ.

We now introduce a number of lemmas concerning extensions of sets with various
properties. For the proofs, cf. [30, §2] which are based on [105].

Lemma 6.3.2. If 〈Σ,∆〉 is a Π-partition then Σ is a prime Π-theory.

Lemma 6.3.3. If 0Π Σ→ ∆ then there are Σ′ ⊇ Σ and ∆′ ⊇ ∆ such that 〈Σ′,∆′〉
is a Π-partition.

Corollary 6.3.1. Let Σ be a non-empty Π-theory, ∆ be closed under disjunction,
and Σ ∩ ∆ = ∅. Then there is Σ′ ⊇ Σ such that Σ′ ∩ ∆ = ∅ and Σ′ is a prime
Π-theory.

Lemma 6.3.4. If Σ 0a ∆ then there are Σ′ ⊇ Σ and ∆′ ⊇ ∆ such that 〈Σ′,∆′〉 is
a partition, and Σ′ is deductively closed.

We shall mention that the proof of this lemma relies on Corollary 6.2.1, and
consequently on (aDIS). Hence the same argument cannot be directly imitated by
a logic lacking this axiom, such as GIPC in §6.5.

Corollary 6.3.2. If Σ 0a A then there are Π ⊇ Σ such that A /∈ Π, Π is a prime
Π-theory and is Π-deductively closed.

Lemma 6.3.5. If ∆ is a Π-theory and A→ B /∈ ∆, then there is a prime Π-theory
Γ ⊇ ∆, such that A ∈ Γ and B /∈ Γ.

Proof. Let Σ = {C : A→ C ∈ ∆}. We check that Σ is a Π-theory. First, if C1, C2 ∈
Σ then A → C1, A → C2 ∈ ∆. Since `a (A → C1 ∧ A → C2) → (A → (C1 ∧ C2))
and ∆ a Π-theory, we have A → (C1 ∧ C2) ∈ ∆. Thus C1 ∧ C2 ∈ Σ. Now suppose
that `Π C → D and C ∈ Σ. Then `Π (A → C) → (A → D) and A → C ∈ ∆; so
A→ D ∈ ∆ and hence D ∈ Σ.

Clearly, Σ ⊇ ∆. Moreover, it is straightforward to check thatA∈Σ andB∨ · · · ∨B/∈Σ.
Hence let ∆′ be the closure of {B} under disjunction. Then Σ ∩∆′=∅, and we can
apply Corollary 6.3.1 to conclude the desired result.

Note that, since Σ is non-trivial, the obtained Γ is non-trivial as well.
We are now ready to prove the completeness.

Theorem 6.3.2. If Γ �a A then Γ `a A.

Proof. We prove the contrapositive. Suppose that Γ 0a A. Then, by Corollary
6.3.2, there is a Π ⊇ Γ such that Π is a prime Π-theory, Π-deductively closed
and A /∈ Π. Define the countermodel M@ = (X,≤,V) with Π as the root, where
X = {∆ : ∆ is a non-trivial prime Π-theory}, ∆ ≤ Σ iff ∆ ⊆ Σ and V is defined
thus. For every state Σ and propositional parameter p:
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M@,Σ a p iff p ∈ Σ

We show by induction on B that M@,Σ a B iff B ∈ Σ. We concentrate on the
cases where B has the form @C and C → D.

When B ≡ @C, if M@,Σ a @C then by definition M@,Π a C. By IH this
is equivalent to C ∈ Π. Then C ∈ Σ as Π ⊆ Σ and also `Π @C by (RN); hence
`Π C → @C. Now as Σ is a Π-theory, C ∈ Σ implies @C ∈ Σ. For the other
direction, it suffices to show @C ∈ Σ implies C ∈ Π. First note @C ∨@C → D ∈ Π
for all D because Π is Π-deductively closed. Then as Π is a prime theory, for each D
either @C ∈ Π or @C → D ∈ Π. That is, either @C ∈ Π or for all D, @C → D ∈ Π.
But if the latter, because Σ is a Π-theory, that Π ⊆ Σ and ` (@C∧(@C → D))→ D
imply D ∈ Σ for all D. This contradicts the non-triviality of Σ, so it must be that
@C ∈ Π. But then C ∈ Π by (T) and Π being a Π-theory.

When B ≡ C → D, by IH M@,Σ a C → D iff for all ∆ s.t. Σ ⊆ ∆, if C ∈ ∆
then D ∈ ∆. Hence it suffices to show that this latter condition is equivalent to
C → D ∈ Σ. For the forward direction, we argue by contraposition; so assume
C → D /∈ Σ. Then by Lemma 6.3.5 we can find find a non-trivial prime Π-theory
Σ′ such that C ∈ Σ′ but D /∈ Σ′. For the backward direction, assume C → D ∈ Σ
and C ∈ ∆ for any ∆ s.t. Σ ⊆ ∆. Then C → D ∈ ∆ as well, and so D ∈ ∆ since
∆ is a Π-theory.

It now suffices to observe that B ∈ Π for all B ∈ Γ and A /∈ Π, which in view of
the above means Γ 2a A. This completes the proof.

6.4 Comparison (I)

In this section, we give some comparisons of IPC@ with IPC∼, as given in [29, 30],
and S5A of Crossley and Humberstone, as given in [26].

6.4.1 Empirical negation and actuality

We start with recalling from the previous chapter that the semantics for IPC∼ is
almost identical to that of IPC@, except for the valuation of formulae of the form
∼A , which is given by:

w K ∼A iff r 1K A.

remark 6.4.1. Note that Kosta Došen, in papers [35, 33, 34], considered nega-
tive modalities in models with two relations between worlds, like the models for
intuitionistic modal logics, and one of them has the following condition:

w  ∼A iff for some w′ ∈ W,wRw′ and w′ 1 A.

Although the modal relation R is absorbed by the intuitionistic relation ≤, empirical
negation can be seen as having this type of valuation. Interestingly, Došen considered
this sort of absorption is a necessary condition for a negative modality to be deemed
a ‘negation’ (cf. [34, p.85]). For a recent discussion on negation understood as
negative modality, see [4, 5, 32]. See also [62] for an up-to-date survey on negation,
as well as negative modalities, in general.
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remark 6.4.2. There are two more things to note with this valuation. First, in-
tuitionistic ⊥ and consequently the intuitionistic negation ¬ is definable in IPC∼

by setting ⊥ := ∼(A → A). Second, since w K ∼∼A iff r K A, we see @ is also
definable in IPC∼ by @A := ∼∼A.

A natural question then would be whether we can go the opposite direction,
namely, is ∼ definable in IPC@? It turns out that this also holds. Since we have ⊥
in L@

⊥, we readily see: w a ¬@A iff r 1a A. The situation changes once we drop ⊥
from the language. Let IPC@+ be defined in the language L@ that excludes ⊥, with
the corresponding omission of the axiom ⊥ → A. The completeness for IPC@+ with
respect to Kripke models with the base state is readily obtainable by an analogous
means to that of IPC@.

Proposition 6.4.1. ∼ is not definable in IPC@+.

Proof. If ∼ is definable in IPC@+, then as we have seen ⊥ is also definable as
∼(A→A). Let F be such a formula. Now choose a model such that w  p for all
p and w∈W . Then by induction on formula we can establish w  A for all A and
w∈W . So in particular, w  F for all w∈W , a contradiction.

Therefore IPC@+ may be seen as an intuitionistic system with actuality operator
that is independent of negation. This system consequently has an advantage over
IPC@ and IPC∼ when a non-standard notion of negation is espoused. Moreover
it offers a suitable starting point for combining intuitionism in empirical discourse
and the school of intuitionism which eschews negation altogether, as a result of
scepticism towards unrealised concepts (cf. [58]).

6.4.2 Classical actuality and constructive actuality

We now turn to compare IPC@ to S5A of Crossley and Humberstone. To this end,
we first review the basics of S5A, with a slightly difference in the notation to replace
A, for actuality, by @. Then the system is described by the language L@

m:

A ::= p | (A ∧ A) | (A ∨ A)| (A→ A)| ⊥ | @A | �A

Definition 6.4.1 (Crossley & Humberstone). An S5A-model for the language L@
m

is a triple (W, r,V), where W is a non-empty set (of states); r ∈ W (the base state);
and V an assignment.

• w  p iff w ∈ V(p);
• w 1 ⊥;
• w  �A iff for all w′ ∈ W , w′  A;
• w  @A iff r  A;
• w  A ∧B iff w  A and w  B;
• w  A ∨B iff w  A or w  B;
• w  A→ B iff w 0 A or w  B.

Then, S5A-validity is defined in terms of truth at all w ∈ W : �S5A A iff for all
S5A-models, w  A for all w ∈ W .

79



6.4. Comparison (I)

Definition 6.4.2 (Crossley and Humberstone). The axiomatic proof system for
S5A consists of the following axioms in addition to any axiomatisation of S5:

@(@A→ A) (A1)

@(A→ B)→ (@A→ @B) (A2)

@A↔ ¬@¬A (A3)

�A→ @A (A4)
@A→ �@A (A5)

We refer to the derivability in S5A as `S5A.

Based on these, Crossley and Humberstone established the following result.

Theorem 6.4.1 (Crossley and Humberstone). �S5A A iff `S5A A.

The above axiomatisation seen in view of IPC@ is problematic since the right-
to-left direction of (A3) is not valid/derivable. However, a slightly different axioma-
tisation will allow us to compare S5A and IPC@ more easily.

Proposition 6.4.2. Let `S5A′ be the derivability in a system obtained from the
axiomatic proof system for S5A by replacing (A3) by the following two axioms:

@A→ ¬@¬A (A3.1) @(A ∨B)→ (@A ∨@B) (A3.2)
Then, `S5A′ A iff `S5A A.

Proof. For the left-to-right direction, it suffices to check that (A3.2) is derivable in
S5A. In view of (A3), (A3.2) is derivable iff `S5A (@¬A ∧ @¬B) → @(¬A ∧ ¬B).
But this is obvious since @ is an extension of K-modality.

For the other way around, it suffices to prove `S5A′ @A ∨ @¬A. Since we have
classical tautologies, we have `S5A′ A ∨ ¬A, and by the rule of necessitation, we
have `S5A′ �(A ∨ ¬A). This implies `S5A′ @(A ∨ ¬A) in view of (A4), and finally
we make use of (A3.2) to obtain the desired result.

remark 6.4.3. Note first that even though we do not have the necessity operator
in IPC@, the actuality operator also enjoys the following condition:

w a @A iff w a A for all w ∈ W

This is because the base point is the root. Thus, if we regard � as @ in the above
axiomatisation of S5A, then we can see that all the axiom schemata and rules of
inference related to � and @ in S5A are derivable in IPC@.

Therefore, there is a sense in which IPC@ is a generalisation of S5A. But there
is also a sense in which this generalisation is not simple. More specifically, we obtain
the following result.

Proposition 6.4.3. IPC@ plus Peirce’s law collapses into Triv based on CPC.

Proof. In view of (T), it suffices to prove A→@A in the extension. Note first
that A∨(A→B) is still derivable from an instance of Peirce’s law, namely (((A ∨
(A→B))→A)→(A∨(A→B)))→(A∨(A→B)). Then as before we obtain @A∨@(A→B),
which entails (@A→@B)→@(A→B). TakeB ≡ @A and we then have (@A→@@A)→
@(A→@A). By (4) and (T), we obtain A→ @A.

remark 6.4.4. The above proof does not rely on the existence of ⊥ in the language,
and thus also applies to IPC@+.
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6.5 Comparison (II)

In this section, we offer further comparisons of IPC@ with LGP of Baaz, as given
in [2], and GIPC of Titani, as given in [118].

6.5.1 Baaz delta and actuality

As we mentioned in the introduction, Baaz’ logic LGP is Gödel-Dummet logic
equipped with a projection modality 4. Let us first look at the precise formulation
in [2]. (For the sake of simplicity, we shall hereafter use L@

⊥ to describe the system,
so @ will be used instead of 4.)

Definition 6.5.1 (Baaz). Let V ⊆ [0, 1] be a set of truth values containing 0 and 1.
A valuation V based on V assigns a truth value in V to each propositional variable.
V is extended to all propositions by the clauses:

• V(⊥) = 0

• V(A∧B) = min(V(A),V(B))

• V(A∨B) = max(V(A),V(B))

• V(A→B) =

{
V(B) if V(A) > V(B)

1 if V(A) ≤ V(B)

• V(@A) =

{
1 if V(A) = 1

0 if V(A) 6= 1

Then GP(V ) := {A : V(A) = 1 for every V based on V }.

Definition 6.5.2. LGP is axiomatized by adding the following axiom to IPC@.

(A→ B) ∨ (B → A) (Lin)

Let V be infinite. Baaz showed the following weak completeness for LGP.

Theorem 6.5.1 (Baaz). For all A ∈ Form, LGP ` A iff A ∈ GP(V ).

As is well-known (e.g. [45, Theorem 19, Chapter 4]), Kripke-semantically (Lin)
corresponds to lineally ordered Kripke frames. Thus as an improvement, we obtain
a strong completeness proof for LGP, in view of Theorem 6.3.2. More specifically,
let us denote `l and �l for the derivability in LGP and semantic consequence with
respect to the class of linearly ordered models, respectively.

Proposition 6.5.1. Γ `l A iff Γ �l A.

Proof. For soundness, we have to check that (Lin) holds in any linearly ordered
model. Given a linearly ordered model (W, r,≤,V) and formulae A and B, let
us denote V (A) = {w : w l A} and V (B) = {w : w l B}. Then we have
V (A) ⊆ V (B) or V (B) ⊆ V (A). Hence r l A→ B ∨B → A.

For completeness, we have to check that the counter-model construction of The-
orem 6.3.2 creates a linearly ordered model. Suppose otherwise. Then there are
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states Σ1 and Σ2 such that neither Σ1 ⊆ Σ2 nor Σ2 ⊆ Σ1. Then we can find a
formula A1 in Σ1 not in Σ2, and A2 in Σ2 not in Σ1. Now as the base state Π is a
prime Π-theory, A1 → A2 ∨ A2 → A1 ∈ Π, and so A1 → A2 ∈ Π or A2 → A1 ∈ Π.
Without loss of generality, assume the former. Then because Σ1 is a Π-theory,
A1 ∧ (A1 → A2) ∈ Σ1; thus A2 ∈ Σ1, a contradiction. Therefore the counter-model
has to be linearly ordered. This completes the proof.

remark 6.5.1. The above result clarifies that IPC@ is a generalisation of LGP
to include non-linearly ordered models. To give a further comparison, for LGP
it is observed in [2] that ¬¬A is a dual projection operator of @A, attaining 1
if A 6= 0 and 0 otherwise. In the setting of IPC@, this true-if-not-false type of
operator is perhaps better captured by ¬@¬A (i.e. ∼¬A). w a ¬@¬A iff for some
u∈W,u a A; so while ¬¬A→¬@¬A holds in general, ¬@¬A→¬¬A does not. One
may readily check that this latter implication is equivalent to the weak excluded
middle ¬A ∨ ¬¬A as an axiom; in particular ¬@¬A and ¬¬A becomes equivalent
in LGP, because (Lin) implies the weak excluded middle.

6.5.2 A reformulation of global intuitionistic logic

Next we shall consider propositional global intuitionistic logic (to be called GIPC).
Let us first look at the formulation of the logic in sequent calculus as given in [118, 1].
The system will be described in the language L@

⊥. Originally, however, � was used in
place of @, and ¬ was taken as primitive, rather than ⊥. We shall call the calculus
LGJ and the derivability by `gGI .

Definition 6.5.3 (Titani & Aoyama). The rule of the calculus LGJ are as follows.

A⇒ A (Ax) ⊥ ⇒ (L⊥)

Γ⇒ ∆ (LW)
A,Γ⇒ ∆

Γ⇒ ∆ (RW)
Γ⇒ ∆, A

A,A,Γ⇒ ∆
(LC)

A,Γ⇒ ∆
Γ⇒ ∆, A,A

(RC)
Γ⇒ ∆, A

Γ, A,B,Π⇒ ∆
(LE)

Γ, B,A,Π⇒ ∆
Γ⇒ ∆, A,B,Λ

(RE)
Γ⇒ ∆, B,A,Λ

Γ⇒ ∆, A A,Π⇒ Λ
(Cut)

Γ,Π⇒ ∆,Λ

Ai,Γ⇒ ∆
(L∧)

A1 ∧ A2,Γ⇒ ∆
Γ⇒ ∆, A Γ⇒ ∆, B

(R∧)
Γ⇒ ∆, A ∧B

A,Γ⇒ ∆ B,Γ⇒ ∆
(L∨)

A ∨B,Γ⇒ ∆
Γ⇒ ∆, Ai (R∨)

Γ⇒ ∆, A1 ∨ A2

Γ⇒ ∆, A B,Π⇒ Λ
(L→)

A→ B,Γ,Π⇒ ∆,Λ
A,Γ⇒ ∆̄, B

(R→)
Γ⇒ ∆̄, A→ B

A,Γ⇒ ∆
(L@)

@A,Γ⇒ ∆
Γ̄⇒ ∆̄, A

(R@)
Γ̄⇒ ∆̄,@A

In the above, i ∈ {1, 2} and Γ̄ and ∆̄ are finite sequences of @-closed formulae, which
are formulae built from ⊥ and formulae of the form @A, by the connectives ∧,∨,→.
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For example, @@A,@A ∧ @(⊥ → C),¬@(¬A ∨ B) are all @-closed formulae. We
shall denote @-closed formulae by Ā, B̄ and so on.

We wish to compare GIPC with IPC@. For this purpose it is preferable to have
at hand a Hilbert-style axiomatisation. This we claim to be the following.

Definition 6.5.4. The system GIPC consists of intuitionistic axioms, (K)-(aLEM),
(MP),(RN) and the following axiom scheme:

(@A→ @B)→ @(@A→ B) (aSFT)

The derivability in GIPC will be denoted by `GI .

remark 6.5.2. Note that the deduction theorem, in the form of Theorem 6.2.1,
holds for GIPC as well, by the same argument.

We now show a lemma before proving that LGJ and GIPC are equivalent.

Lemma 6.5.1. Let Ā be @-closed. Then, (i) `GI Ā∨Ā→B, and (ii) `GI Ā→@Ā.

Proof. For (i), we argue by induction on the complexity of A.

• If Ā ≡ ⊥, then `GI ⊥ ∨⊥ → B.
• If Ā ≡ @A, then @A ∨@A→ B is an instance of (aLEM).
• If Ā ≡ C̄∧D̄, then by IH `GI C̄∨C̄→B and `GI D̄∨D̄→B. So `GI (C̄ ∧ D̄) ∨

(C̄ ∧ D̄)→ B.
• If Ā ≡ C̄ ∨ D̄, similarly `GI (C̄ ∨ D̄) ∨ (C̄ ∨ D̄)→ B.
• If Ā ≡ C̄ → D̄, by IH `GI C̄ ∨ C̄ → D̄ and `GI D̄ ∨ D̄ → B. So `GI (C̄ →
D̄) ∨ (C̄ → D̄)→ B.

For (ii), we similarly argue by induction on A.

• If Ā ≡ ⊥, then ⊥ → @⊥ is an instance of intuitionistic axioms.
• If Ā ≡ @A, then @A→ @@A is an instance of (4).
• If Ā ≡ B̄ ∧ C̄, then by IH `GI B̄ → @B̄ and `GI C̄ → @C̄. Thus `GI

B̄ ∧ C̄ → @B̄ ∧ @C̄. Now it is easy to check via the deduction theorem that
`GI @B̄ ∧@C̄ → @(B̄ ∧ C̄). Hence `GI B̄ ∧ C̄ → @(B̄ ∧ C̄).
• If Ā ≡ B̄∨C̄, then using the same IH as above, we see `GI B̄∨C̄ → @B̄∨@C̄.

Again it is an easy consequence of the deduction theorem that `GI @B̄ →
@(B̄ ∨ C̄) and `GI @C̄ → @(B̄ ∨ C̄). Hence `GI B̄ ∨ C̄ → @(B̄ ∨ C̄).
• If Ā ≡ B̄ → C̄, then using (T) and the IH that `GI C̄ → @C̄ we infer `GI

(B̄ → C̄) → (@B̄ → @C̄). Thus by (aSFT) `GI (B̄ → C̄) → @(@B̄ → C̄).
Also by the IH that `GI B̄ → @B̄ we have `GI (@B̄ → C̄) → (B̄ → C̄). So
by (RN) and (K), `GI @(@B̄ → C̄)→ @(B̄ → C̄). Combining the above two
observations, we conclude `GI (B̄ → C̄)→ @(B̄ → C̄).

This completes the proof.

Proposition 6.5.2. The following equivalence hold between LGJ and GIPC.
(i) If `GI A then `gGI ⇒ A.
(ii) If `gGI Γ⇒ ∆ then `GI

∧
Γ→

∨
∆.
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Proof. For (i), given the correspondence in intuitionistic logic, it suffices to consider
axioms involving @ and (RN). Here we show cases for (aLEM) and (aSFT), which
are stated but not shown in [1, Proposition 2.1]; other cases are immediate.

(aLEM)

@A⇒ @A (RW)
@A⇒ @A,B

(R→)⇒ @A,@A→ B
(R∨),(RC)

⇒ @A ∨@A→ B

(aSFT)

@A⇒ @A
B ⇒ B (L@)

@B ⇒ B (L→)
@A→ @B,@A⇒ B

(R→)
@A→ @B ⇒ @A→ B (R@)

@A→ @B ⇒ @(@A→ B)
(R→)

⇒ (@A→ @B)→ @(@A→ B)

For (ii), we treat here the cases for (R→), (L@) and (R@).

• For (R→), by IH `GI (
∧

Γ∧A)→ (
∨

∆̄∨B). So `GI

∧
Γ→ (A→ (

∨
∆̄∨B)).

Now by Lemma 6.5.1 (i), `GI

∨
∆̄∨

∨
∆̄→ B. Thus `GI

∧
Γ→ (

∨
∆̄∨A→

B).
• For (L@), by IH `GI (A ∧

∧
Γ)→

∨
∆. Then `GI A→ (

∧
Γ→

∨
∆). So by

(T) `GI @A→ (
∧

Γ→
∨

∆). Hence `GI (@A ∧
∧

Γ)→
∨

∆.
• For (R@), by IH `GI

∧
Γ̄→ (

∨
∆̄∨A). Then `GI (

∧
Γ̄∧ (

∨
∆̄→ @A))→ A.

Thus by (RN) and (K), `GI @(
∧

Γ̄ ∧ (
∨

∆̄ → @A)) → @A. Here we note
@(

∧
Γ̄∧(

∨
∆̄→ @A)) is @-closed. So by Lemma 6.5.1 (ii), `GI (

∧
Γ̄∧(

∨
∆̄→

@A)) → @A. Also by Lemma 6.5.1 (i), `GI

∨
∆̄ ∨

∨
∆̄ → @A. From these

we deduce `GI

∧
Γ̄→ (

∨
∆̄ ∨@A).

This completes the proof.

6.5.3 Globalization and actuality

We are now ready to compare IPC@ and GIPC. We first observe that the former
logic contains the latter.

Proposition 6.5.3. IPC@⊇ GIPC.

Proof. It suffices to observe that (aSFT) is derivable in IPC@. Applying (RN) and
(aDIS) to (aLEM), we obtain `a @A ∨ @(@A → B). Then on one hand, since
`a @A → ((@A → @B) → @B) and `a @B → @(@A → B) (the derivation of the
latter uses (RN) and (K)), we have `a @A → ((@A → @B) → @(@A → B)). On
the other hand, it is immediate that `a @(@A→ B)→ ((@A→ @B)→ @(@A→
B)). Therefore `a (@A→ @B)→ @(@A→ B).

remark 6.5.3. Baaz, in [2], states sequent rules for 4 of LGP. It turns out that
the same rules can be used to formulate a calculus for IPC@. It is obtained from
LGJ by relaxing (R@) to

Γ̄⇒ ∆, A
(R@)

Γ̄⇒ ∆,@A

By Proposition 6.5.3, we can use Lemma 6.5.1 for IPC@ as well. Then we can
argue analogously to Proposition 6.5.2; the treatments of cases for the new (R@)
and (aDIS) are straightforward.
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To show that the inclusion of the above proposition is strict, we shall turn to
TCCω. We shall make use of the fact that the following formulae and rule are
derivable in TCCω.

(∼A→ A)→ A (t1)

∼(A→ A)→ B (t2)

∼∼A→ A (t3)

A

∼∼A
(t4)

Moreover, the same form of the deduction theorem as IPC∼ holds in TCCω.
Quite similarly to the situation with IPC@ and IPC∼, we have the following

translations between GIPC and TCCω.

Definition 6.5.5. Let ()∼ and ()@ be translations between L@
⊥ and L∼ such that:

p∼ = p p@ = p

(A ◦B)∼ = A∼ ◦B∼ (A ◦B)@ = A@ ◦B@

(@A)∼ = ∼∼A∼ (∼A)@ = ¬@A@

⊥∼ = ∼(p0 → p0)

where p0 is a fixed propositional variable, and ◦ ∈ {∧,∨ →}.

Lemma 6.5.2. `GI A↔ (A∼)@ and `t A↔ (A@)∼.

Proof. By induction on A. Here we look at the cases A ≡ @B and A ≡ ∼B.
For the former, we need to show `GI @B ↔ ¬@¬@(B∼)@. By IH `GI B ↔

(B∼)@, so its suffices to show `GI @B ↔ ¬@¬@B. We first note ¬@B is @-closed,
thus `GI ¬@¬@B ↔ ¬¬@B. Also `GI ¬¬@B ↔ @B from (aLEM). Therefore we
conclude `GI @B ↔ ¬@¬@B as desired.

For the latter, we need `t ∼B ↔ (∼∼(B@)∼ → ∼(p0 → p0)). Again by IH
`t B ↔ (B@)∼. Then the equivalence follows by ∼B → ¬¬B → ∼(p0 → p0), (t1)
and (t2).

Proposition 6.5.4. We have that (i) for all A ∈ Form, `GI A iff `t A∼, and (ii) for
all A ∈ Form∼, `t A iff `GI A

@.

Proof. By Lemma 6.5.2, it suffices to show the left-to-right direction.
For (i), we need to check the translations of (K)-(aLEM), (aSFT) and (RN) hold

in TCCω.

• (K) is translated as ∼∼(A∼ → B∼)→ (∼∼A∼ → ∼∼B∼), the derivability of
which is immediate from the deduction theorem and (RC).
• (T) is translated as ∼∼A∼ → A∼, which is an instance of (t3).
• (4) is translated as ∼∼A∼ → ∼∼∼∼A∼. This follows from ∼∼∼A∼ →

(∼∼A∼ → ∼A∼) and (t1), which imply ∼∼∼A∼ → ∼A∼; then use (RC).
• (aLEM) becomes ∼∼A∼ ∨ ∼∼A∼ → B∼, a consequence of ∼∼A ∨ ∼A∼ and
∼A∼ → (∼∼A∼ → B∼).
• For (aSFT), we need to show `t (∼∼A∼ → ∼∼B∼) → ∼∼(∼∼A∼ → B∼).

First `t ∼A∼ ∨ ∼∼A∼ and `t ∼∼∼A∼ → ∼A∼ as seen above. So `t
(∼∼A∼ → ∼∼B∼)→ (∼A∼ ∨ ∼∼B∼). We shall show `t (∼A∼ ∨ ∼∼B∼)→
∼∼(∼∼A∼ → B∼). On one hand, `t ∼A∼ → ∼∼(∼∼A∼ → B∼) from
`t ∼A∼ → (∼∼A∼ → B∼), (t3) and (RC). On the other hand, `t ∼∼B∼ →
∼∼(∼∼A∼ → B∼) from (RC). Thus `t (∼A∼∨∼∼B∼)→∼∼(∼∼A∼→B∼)
as required.
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• Finally, (RN) is replicable by (t4).

For (ii), we need to check A ∨ ∼A,∼A→ (∼∼A→ B) and (RC).

• A ∨ ∼A is translated into A@ ∨ ¬@A@, which is an instance of (aLEM).
• ∼A → (∼∼A → B) is translated into ¬@A@ → (¬@¬@A@ → B@). As we

observed in Lemma 6.5.2, ¬@¬@A@ is equivalent to ¬¬@A@; so it follows from
Ex falso.
• For (RC), we need to derive ¬@B → ¬@A from A→ B. This is possible with

(RN),(K) and by contraposition.

This completes the proof.

The translation allows us to use the Kripke semantics for TCCω.
We are now ready to separate the two systems.

Corollary 6.5.1. IPC@) GIPC.

Proof. First, recall that we have the following valuation for ∼∼A.

w Kt ∼∼A iff w′ Kt A for all w′.

Now, if GIPC proves (aDIS), then by Proposition 6.5.4 ∼∼(p∨q)→ ∼∼p∨∼∼q is
provable in TCCω. On the other hand, if we consider a model where W = {w,w′},
≤ ={(w,w), (w′, w′)}, V(p)={w} and V(q)={w′}, then w Kt ∼∼(p∨ q), but w 1Kt
∼∼p and w 1Kt ∼∼q. Hence this is a countermodel for ∼∼(p∨q)→∼∼p∨∼∼q. So
by the previous theorem, 0t ∼∼(p ∨ q)→ ∼∼p ∨ ∼∼q. A contradiction. Therefore
GIPC does not prove (aDIS).

remark 6.5.4. Note that given a model of TCCω, we can define a model for L@
⊥

such that

w  @A iff w′  A for all w′.

Then, it is not difficult to see that each such model corresponds to the original
model similarly to Lemma 6.5.2 and Proposition 6.5.4. Therefore, it is an immediate
consequence of Theorem 5.3.2 that this gives a sound and weakly complete Kripke
semantics for GIPC. (This semantics can be also obtained from Ono’s semantics
via Gordienko’s technique; see below.)

We offer a few more words about GIPC. In [95], Hiroakira Ono extensively
discussed intuitionistic modal systems which are defined by axioms that classically
define S5 when added to S4. Aoyama [1] compared some of these systems with
GIPC,4 but he did not compare with the strongest of Ono’s systems, L4. It is de-
fined by intuitionistic axioms plus (K)-(4), @A∨@¬@A, (MP) and (RP). The Kripke
semantics for L4 in [95] is characterised by modal relation R that is an equivalence
relation; this corresponds to the original semantics of TCCω, from which Gordi-
enko derived [54, Lemma 4.4] the semantics of Definition 5.3.3. This observation
and Proposition 6.5.4 suggest a close relationship between GIPC and L4. In fact,
the two systems turn out to coincide.

Proposition 6.5.5. GIPC = L4

4Some of the comparisons offered in [1] are also observed by Hidenori Kurokawa in [77].
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Proof. On one hand, ¬@A is @-closed, so by Lemma 6.5.1 (ii) ¬@A → @¬@A
is derivable in GIPC. Thus with (aLEM), @A ∨ @¬@A is derivable in GIPC.
Consequently GIPC contains L4. On the other hand, @A∨@¬@A implies (aLEM)
with Ex falso and (T). Moreover, (@A → @B) → @(@A → @B) is known to be
derivable in L4 (cf. [95, Figure 2.1]), and it is a consequence of (T), (RN) and (K)
that @(@A → @B) → @(@A → B) holds, so (aSFT) is also derivable in L4. Thus
L4 contains GIPC as well.

6.5.4 Sequent calculi for logics with empirical negation

Finally, we shall use the results obtained so far to formulate sequent calculi for
TCCω and IPC∼. We begin with introducing an analogue of @-closed for formulae
in L∼.

Definition 6.5.6. We define the class of ∼-closed formulae by the next clauses.
(i) ⊥, ∼A are ∼-closed.
(ii) If B̄ and C̄ are ∼-closed, then B̄ ◦ C̄ is ∼-closed, where ◦ ∈ {∧,∨,→}.

It is straightforward to check that if Ā is ∼-closed, then Ā@ is @-closed.

Lemma 6.5.3. `t Ā→ ∼∼Ā.

Proof. By the above observation and Lemma 6.5.1 (ii), we have `GI Ā
@ → @Ā@.

Thus by Proposition 6.5.4 (i) and Lemma 6.5.2, `t Ā→ ∼∼Ā.

The sequent rules for ∼ corresponding to TCCω is obtained by the following

Γ̄⇒ ∆̄, A
(L∼)

∼A, Γ̄⇒ ∆̄

A,Γ⇒ ∆
(R∼)

Γ⇒ ∆,∼A

where Γ̄, ∆̄ are ∼-closed. The sequent calculus LT for TCCω is obtained by adding
the above rules to the positive and non-modal fragment of LGJ (derivability denoted
by `gT ).

Theorem 6.5.2. `gT Γ⇒ ∆ iff `t
∧

Γ→
∨

∆.

Proof. For the right-to-left direction, we need to check the cases for A∨∼A, ∼A→
(∼∼A→ B) and (RC). Each case is straightforward. For the right-to-left direction,
we must check the cases for (L∼) and (R∼). The latter case is simple; for the former
case, `t Γ̄→ (

∨
∆̄∨A) by IH. Then by (MP) and Lemma 6.5.3, Γ̄ `t ∼∼

∨
∆̄∨A.

So Γ̄ `t ∼
∨

∆̄→ A and thus by (RC) and (t3), we obtain Γ̄ `t ∼A→
∨

∆̄. Hence
by deduction theorem and Lemma 6.5.3 again, we conclude `t (Γ̄∧∼A)→

∨
∆̄.

A sequent calculus for IPC∼ has not been considered before. We can now obtain
one by removing the condition that ∆̄ is ∼-closed in (L∼). The correspondence with
the Hilbert-style system is straightforwardly demonstrable.
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6.6 Discussion

In this chapter, we introduced IPC@, an expansion of IPC, obtained by adding
actuality operator, and compared with systems including LGP of Baaz, GIPC of
Titani and IPC∼ of De, obtained by adding projection operator, globalization op-
erator and empirical negation respectively. What emerged is the following hierarchy
of systems in L@

⊥, each corresponding to a system in L∼.

GIPC = L4

IPC@

LGP

TCCω

IPC∼

IPC∼ + (Lin)

⇐⇒

⇐⇒

⇐⇒(In L@
⊥) (In L∼)

With respect to these systems, we make some additional observations and men-
tion a few future directions.

Hybrid logic Since there are clear connections between hybrid logics and logics
with actuality operator, and in particular there are some results on hybrid logics
based on intuitionistic logic (cf. [12, 13]), a comparison of IPC@ to these systems
will be of great interest.

Kripke semantics vs. Beth semantics We observed that @ in IPC@ and ∼ in
IPC∼ are inter-definable (in the presence of ⊥ in the language), and similarly for
GIPC and TCCω. As we have noted, a crucial difference between the semantics
of IPC∼ and TCCω (hence the interpretation of @) is that models in the former
always has a base state, while the latter in general does not. As a result, Kripke-
semantically, even though both @ can be understood as a globalization operator
(i.e. true iff true everywhere), only the former can be interpreted as an actuality
operator. Yet one may wonder whether one could view @ in GIPC as a sort of
actuality operator. To this question, one may again answer that Beth semantics
allows such an interpretation, in the same way the negation of TCCω can be viewed
as an empirical negation. Thus there are two types of actuality operator/empirical
negation in intuitionistic logic, Kripke-type and Beth-type.

With this kind of perspective, we can connect results related to GIPC with
empirical negation. For instance, Titani’s global intuitionistic set theory can be
seen as a mathematical theory with Beth-type empirical negation, by reading ¬�
as ∼. This could then encourage the investigation of intuitionistic set theory with
Kripke-type empirical negation, as a possible future direction.

Quantifiers Global intuitionistic logic was originally formulated in a first-order
language. Moreover, quantification for LGP has been investigated in [2, 3]. From
this perspective, it seems to be a natural direction to consider first-order systems
for IPC@. This can be particularly interesting because like disjunction, existen-
tial quantifier has differing interpretations in Kripke and Beth models. Therefore
we might be able to find an interesting interaction between quantifiers and modal
operators. Moreover, for the purpose of comparing IPC@ to S5A of Crossley and
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Humberstone, we also need quantifiers, and this will be yet another motivation for
adding quantifiers.

Hypersequent calculi The sequent calculus for global intuitionistic logic GI de-
fined by Titani and Aoyama is not cut-eliminatable, as observed by Agata Ciabattoni
in [23, p.437]. She instead formulated a cut-free hypersequent calculus for GI and
for GIF. We may then expect a similar approach to be quite beneficial in pursuing
cut-free sequent calculi for the systems we have considered, namely IPC@, IPC∼

and TCCω.
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Chapter 7

Concluding remarks

7.1 Summary of the contents

In this thesis, we have investigated various types of negation; in Chapter 3, we saw
that the extension of Ishii’s class for Ishihara’s problem of decidable variables, by
means of the classes of weak excluded middle and double negation elimination. This
also allowed the extension of the result to Glivenko’s logic. Moreover, we observed
the extension of the problem into minimal logic by considering classes of the avoid-
ability of Q.

In Chapter 4, we have seen how the logic of Vakarelov relates to the framework of
subminimal negation, with the correspondence between the semantics established.
This further enabled us to formulate a cut-free sequent calculus for the logic. In
addition, we formulated a new countably infinite class of logics with subminimal
negation.

In Chapter 5, we looked at how different semantics capture empirical and co-
negation with different logics. For these systems, we formulated a uniform axiomati-
sation in terms of the rules (RC), and obtained the corresponding frame conditions.
They were then utilised to create cut-free labelled sequent calculi for the systems.

In Chapter 6, we explored actuality operator as the dual notion of empirical nega-
tion in the intuitionistic setting. We formulated the proof theory for the semantics
of Humberstone, and showed the strong completeness between them. We then made
comparisons, with adjacent systems, including classical logic with actuality opera-
tor, Gödel-Dummett logic with projection operator and global intuitionistic logic.

These enquiries offer us many crucial insights into the nature of alternative nega-
tions in intuitionistic setting, the interaction between different proof systems and
semantics, as well as the relationship between various logics from the viewpoint of
negation.

7.2 Future directions

Although we have already discussed some possible future directions for each topic
at the end of respective chapter, we would like to add a few words regarding a wider
picture emerging from the interactions among the topics, including its potential in-
fluences. Whilst the enquiries of this thesis are mostly independent of each other, it
can still be expected that one broadens the perspective for negation in intuitionistic
setting further by combining the interests of the topics. For instance, one may in-
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vestigate a possible generalisation of the framework of subminimal negation which
is able to incorporate empirical negation. Another prospect would be to extend the
range of Ishihara’s problem to include non-standard negations.

For a more long-term perspectives, I should suggest the following future influ-
ences to various academic disciplines.

With respect to mathematics, it can be expected that the types of negation we
explored to be incorporated into the formal and informal discourse of mathematics.
Different notions of negation, such as the ones we treated in this thesis, are made
precise by the use of the formal-mathematical frameworks. This shall mean, from
a slightly different viewpoint, that the negations have developed a closer affinity
with mathematical discourse. Although it has been generally accepted that infor-
mal mathematics can be formalised with the connectives ∧,∨,→ (with quantifiers),
it is possible that the alternative negations, made mathematics-friendly via for-
malisation, contribute to enrich new mathematical perspectives and enquiries. For
instance, subminimal negation should bring more paraconsistency into mathemat-
ics. Furthermore, empirical negation and co-negation may allow to introduce a more
empirical perspective to mathematics, to allow to talk about statements that are
initially not the case. If the mathematical value of the negations is confirmed in
the formal setting, then the use of the concepts can potentially be extended even
to more informal mathematical discourses. This prospective is also of significant
value to intuitionistic logic, because many of the negations crucially depending on
the intuitionistic setting in their formalisations.

In this respect, we may also recall the fact that a proof of a proposition in in-
tuitionistic logic corresponds to a construction of a program, a principle known as
Curry-Howard correspondence [27, 64, 112]. It fundamentally connects the proof
theory of intuitionistic logic and type theory. Given such connections, alternative
negations in intuitionistic logic can also be expected to find applications in the afore-
mentioned areas, e.g. by serving as a foundation for a weak theory of constructive
mathematics, or as a guide to find their type-theoretic equivalents.

Finally, with respect to philosophy, one of the core significance of the present
enquiry lies in the potential to uncover the aspects of Brouwerian philosophy. From
its origin, intuitionistic logic has had a strong philosophical flavour due to the in-
fluence of Brouwer. As is well known, Brouwer’s mathematical philosophy is closely
related to his solipsistic mysticism [18]. Mathematically, this point of view is mir-
rored in the notion of creative subject argument [121, p.236], which incorporates the
growth of knowledge of an idealised mathematician into the arguments in intuition-
istic mathematics. Kripke and Beth semantics can be interpreted [133, pp.166-167]
as the visualisation of the intellectual journey of the creative subject. Hence Brouw-
erian philosophy is well-reflected in the semantics of intuitionistic logic. This in turn
suggests that the ideas of Brouwer can be analysed with the aid of the semantics.
Therefore enriching of intuitionistic semantics with new types of negation should
contribute to expand and enrich the philosophical system of Brouwer.
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[2] Matthias Baaz. Infinite-valued Gödel logics with 0-1-projections and rela-
tivizations. In Petr Hájek, editor, Gödel ’96, pages 23–33. Springer, 1996.
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lected works, volume I, page 301. Oxford University Press, 1986.
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