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Abstract

The smart grid is a vital part of the Japanese initiative named “Society 5.0”.
It is also one of the core technologies enabling sustainable economic and
social developments. This next-generation electrical power system integrates
the traditional electrical grid and computer technology to enhance the
automation, connectivity, and communication of the different power network
components. In recent years, various attacks have been made on the smart
grid system, which lead to serious harmful consequences.

The smart grid structure is complex and includes two essential parts:
network communication and the power grid. Researchers need to consider the
relationship between these components for further system investigation and
improvement. Moreover, it is not a trivial activity to implement a real smart
grid system for the cybersecurity experiment and validation process, since
it entails high risk of destroying the electrical infrastructure and equipment,
resulting in enormous economic consequences and even in danger regarding
human lives. As a result, in this critical domain where testing on a real system
is so hazardous, simulation and analysis techniques can be considered as an
effective solution to make smart grid cybersecurity experimentation possible.

The attack simulation and analysis tools are mainly applied to simulate
attacks and emulate the actual circumstances in which these attacks occur,
particularly system settings and network topologies. The application of
real incident simulation tools to cybersecurity experimentation is a primary
factor for enhancing the efficacy of the experimentation process. Due to
its pioneering characteristics, not many research studies currently exist on
practical cybersecurity experimentation for the smart grid. To the best of our
knowledge, this is one of the first research works that thoroughly addresses
this important issue.

This dissertation identifies the need for realistic cybersecurity exper-
imentation for the smart grid and formulates the corresponding system
design requirements. A general architecture for smart grid cybersecurity
experimentation, which fulfills these specifications, is also introduced. To
deal with the great system complexity but still achieve our goal, we divided
smart grid cybersecurity experimentation into two parts: the co-simulation
approach and the analytical modeling approach. The specifications, general
architectures and methodologies of both are determined and detailed herein.

In the co-simulation approach, we introduced and implemented GridAt-
tackSim. This novel co-simulation framework enables the simulation of smart
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grid infrastructure characteristics, allows various cybersecurity attacks to be
simulated, and evaluates their consequences. A case study was performed
with two different test feeders to validate the functionality of GridAttackSim.

In the analytical modeling approach, we first provided a literature review
on the current state-of-the-art for smart grid attack analysis. The most
promising directions were then applied to design and implement GridAttack-
Analyzer (Cyber Attack Analysis Framework for Smart Grids). A case study
with various attack scenarios was conducted to validate this framework.

This dissertation’s main contribution is a methodology that can effectively
support realistic cybersecurity experimentation for the smart grid. This
methodology was implemented in the form of the two frameworks mentioned
above, GridAttackSim and GridAttackAnalyzer. Using these frameworks,
researchers can determine the consequences of various attack types, thus
making possible the early development and evaluation of new anomaly
detection methods and mitigation even before their actual implementation.
Moreover, the frameworks can also be used to define effective approaches
for the implementation of smart grid technology, for instance, to determine
efficient communication requirements for device operation.

In addition, the systems can be used for cybersecurity training of IT
experts and cybersecurity professionals. For example, based on evaluating
various security metrics, IT experts and cybersecurity professionals can
discover all the possible attack paths, and determine which vulnerable devices
on those paths should be protected in advance to prevent the most significant
damage. It also becomes possible to compare the effectiveness of specific
device-level strategies deployed for different devices. For the network level,
the performance of various defense strategies for smart grid systems can be
assessed. Furthermore, our work can help system planners to estimate the
attack damage cost on a smart grid system.

Keywords: smart grid, cybersecurity experimentation, simulation, co-
simulation, attack analysis.
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Chapter 1

Introduction

1.1 Overview

Conventional electrical grids are defined as central power stations that gen-

erate and supply electricity to the consumers. Traditionally, electricity was

distributed without much energy consumption management and monitoring.

Currently, both developed and developing nations want to construct vast

electricity infrastructures to ensure economic development. Thanks to devel-

opments in technology, the management process of loads and equipment has

been improved. These loads and devices are programmed to track particular

parameters or to run according to schedules. A new and smart power system

is currently being facilitated by the integration of information technologies

and communications into the conventional electricity grids. This trendy

power grid system is known as the smart grid—a term that incorporates

information technology, two-way communication, and security application

to electrical grids. Interestingly, there are a variety of ways in which the

definition of a smart grid can be clarified. However, the most commonly

acknowledged is the interoperability of electricity, information technology,

and communication, to improve the electrical power system serving loads

and ensure end-use applications development.

In 2016, the Japanese Cabinet launched its “Society 5.0” initiative [5] to

design new strategies for economic and social development. This program

envisions a future super-intelligent society that will benefit humanity with

a better quality of life and a shift in social norms. The smart grid is

described as one of the keys supporting Society 5.0. Furthermore, the
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U.S. Department of Homeland Security (DHS) [6] defined the smart grid

as a “special” critical infrastructure supporting necessary services to sustain

society and ensure economic development since it is essential to many of the

18 critical infrastructures.

A recent report conducted by the Center for Strategic and International

Studies (CSIS) surveyed Information Technology (IT) decision-makers in

eight countries. The study indicated that 82% of organizations addressed

a lack of cybersecurity abilities, and 71% agreed that this skill shortage

results in direct and determinable consequences to their institutions [7]. As of

January 2019, the USA faced a shortage of nearly 314,000 cybersecurity pro-

fessionals among 716,000 current total employed cybersecurity professionals,

according to the National Initiative for Cybersecurity Education (NICE) [8].

Organizations are still facing significant difficulties in the recruitment of

cybersecurity experts. Data obtained from recruitment websites showed that

there had been an increase in the number of unfilled cybersecurity positions

by over 50% since 2015 [9]. Therefore, there is an urgent need for highly-

skilled technical cybersecurity staff.

1.2 Motivation

Cybersecurity has become a major challenge for smart grid systems. In

2014, almost one-third of the cybersecurity incidents reported by the U.S.

Industrial Control Systems Cyber Emergency Response Team (ICS-CERT)

was targeted the energy sector [10].

In 2007, an attack on Iran’s nuclear power plant slowed down the

country’s critical nuclear power development [11]. This attack was conducted

using Stuxnet, a powerful and organized virus designed to penetrate the pro-

grammable industrial system. A substantial part of the uranium enrichment

cycle activity could also be slowed down and completely blocked.

By 2014, more than 1000 energy firms [12] had been targeted by a

professional hacker team called Dragonfly. The group had successfully broken

into the core systems that control energy companies in North America and

Europe. Dragonfly gained access to these systems mainly through malware
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in emails, websites, and third-party programs. The attackers’ intention was

cyber espionage, but the intrusion was fortunately detected before it could

interrupt or damage electricity supplies in the affected areas.

On 25 December 2015, during the Ukrainian civil war in Donbass, 80,000

civilians were forced into the dark [13] due to a cyber attack targeting an

electrical power station in Ivano-Frankivsk. This assault was triggered by

the use of a BlackEnergy Trojan horse and spear-phishing. Created by a

hostile actor, BlackEnergy can destroy hard drives, remove data, and control

infected computers. Furthermore, after attacking the companies, a concerted

denial of service attack was carried out on the telephone numbers of the firm

operating the power station. Correspondingly, it was impossible for users to

either get help or notify the companies of the collapse.

The DHS reported that 2017 saw a considerable increase in the number

of cyberattacks, further expanding in 2018, ranging from more than 4,300

French network cyberattacks to intrusion into the US electricity companies.

These security incidents prove that cyberattacks can happen and that

actual, tangible consequences exist in the real world. This sparked a period

of intense cyberattacks that spread through isolated viruses and radical

hacker groups. These attacks on smart grid networks can be conducted

by governments and coordinated groups, and can lead to blackouts and even

infrastructure destruction.

In [14], various studies on the competence profiles of cybersecurity experts

are analyzed. The researchers concluded that success at individual and

team levels could only be achieved by a proper combination of technical

knowledge and soft skills. Utilizing attack simulation tools is considered

as a solution to reach the goal. The tools are mainly applied to simulate

attacks and emulate the actual circumstances in which these attacks take

place, particularly system settings and network topologies. The application

of the real incidents simulation tools for cybersecurity training is believed to

be the primary factor in enhancing the efficacy of the training process [15].

Co-simulation refers to the simultaneous execution of two or more simula-

tion models, depending on the interfaces and required runtime. In addition,

the smart grid is a complex power grid and network interconnected system.
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Co-simulation technology is, therefore, proposed as a potential approach to

overcome these complexities. Although there has been a rapid increase in

consideration of the benefits of smart grid vulnerability assessment, to our

best knowledge, research has been limited and not thoroughly investigated

in this area. Very little effort has been put into investigating the potential

damage of attacks and evaluating their impact on the system. Therefore,

a new framework should be developed to support smart grid attack co-

simulations fully.

In addition, several studies have proposed technologies to combine the

attack tree and attack graph in multiple layers to resolve the scalability

issue of the single-layered model [16,17]. Graphical Security Models (GrSM)

based on the Common Vulnerability Scoring System (CVSS) are an emerging

technology to analyze attacks on the smart grid system. However, there have

been only a few works that focus on smart grid attack analysis using GrSM

and CVSS.

1.3 Aims and Approach

The objective of this research is to develop a methodology that can effectively

support realistic smart grid cybersecurity experimentation. Using the top-

down model, we first determine the design requirements for this system.

Then, we design the general architecture for the smart grid realistic cyber-

security experimentation. Then, the requirement for each component of the

general architecture is defined. Finally, the target system can be built. The

research questions are:

• RQ1. What are the requirements for cybersecurity experimentation for

smart grids? How can we design and implement a system that fulfills

these requirements?

We identify the need for realistic cybersecurity experimentation for

smart grid and system design requirements by investigating the re-

lated research in the field. To deal with the system complication

but still achieve our goal, we divide the smart grid cybersecurity
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experimentation into two components: the co-simulation approach and

the analytical modeling approach. We figure out their specifications

and general architectures.

• RQ2. Is it possible to jointly simulate the cyber network and the

physical system?

We propose a new co-simulation architecture to allow simulations of

smart grid infrastructure properties and communication networks to

answer this issue. A more detailed discussion is presented in Chapter

4.

• RQ3. How can we include cyber attack simulation in a smart grid

environment for experimentation purposes?

To address this question, our proposed co-simulation framework can

simulate various cybersecurity attacks and evaluate their consequences.

Our methodology is illustrated in Chapter 4.

• RQ4. Is it possible to develop an analytical model that analyzes the

attack propagation path?

To address this question, we propose an analytical modeling approach.

First, we provide an analytical literature review of current state-of-

the-art attack analysis. We aim to indicate the promising direction

for smart grid attack analysis. We apply this finding to assess the

security of the smart grid system. Finally, we not only highlight the

advantages of the promising direction for smart grid attack analysis

but also illustrate its applicability and validation by analyzing a real

case with attack scenarios.

1.4 Main Contributions

The main contributions of this research are:

1. We determined the requirements that need to be fulfilled to design

realistic cybersecurity experimentation for smart grids. We designed a

general architecture for a realistic smart grid cybersecurity experimen-

tation that fulfills these requirements. We divided the structure into
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two approaches: co-simulation and analytical modeling.

2. We conducted a comprehensive study of the existing research on smart

grid attack co-simulation and analysis.

3. We proposed GridAttackSim, the co-simulation framework that fa-

cilitates the simulation of the various customized smart grid system

topologies that involve both power grid and network components. We

also introduced GridAttackAnalyzer, one of the first smart grid attack

analysis frameworks. Both of these frameworks are designed to enable

researchers to easily create, modify the experimentation content, and

facilitate their interaction with the system.

4. We conducted several case studies using various power grid test feeders,

network models, and attack types to validate the proposed frameworks.

1.5 Outline

The remainder of this dissertation is organized as follows:

• Chapter 2 provides the conceptual model of the smart grid. The back-

ground of smart grid co-simulation and smart grid attack analysis are

introduced. A comprehensive study of the existing research on smart

grid attack co-simulation is described. Moreover, a comprehensive

study of the existing research on attack analysis using GrSM and CVSS,

ranging from (1) traditional networks, (2) emerging technologies, to

(3) smart grid, is summarized. Finally, the security metrics calculation

method is briefly described.

• Chapter 3 identifies the necessity and the requirements for realistic cy-

bersecurity experimentation for smart grid. By using the requirements,

an architecture of a realistic smart grid cybersecurity experimentation

is designed. Its components, including co-simulation and analytical

modeling approaches, are discussed.

• Chapter 4 discusses in detail the architecture of GridAttackSim - a

Cyber Attack Simulation for Smart Grids. Its components, including

preprocessing module, attack pattern library, GridLAB-D, ns-3, FNCS
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broker, and model manager, are addressed. Further, chapter 4 intro-

duces the implementation of GridAttackSim. A case study with the

simple test feeder and IEEE 13 node test feeder is represented.

• Chapter 5 explains the architecture of GridAttackAnalyzer - a Cyber

Attack Analysis on Smart Grids. Its components, including input,

processing, and output, are addressed. Besides, the last section of this

chapter mainly introduces the implementation of GridAttackAnalyzer.

A case study with the PNNL test feeder and simplified network model

is represented.

• Chapter 6 presents the evaluation of GridAttackSim and GridAttack-

Analyzer from several perspectives.

• Chapter 7 discusses the potential applications of GridAttackSim and

GridAttackAnalyzer for cybersecurity research and training.

• Finally, chapter 8 summarizes the results and outlines future research

directions.
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Chapter 2

Background and Related Work

2.1 Background

2.1.1 Smart Grid Conceptual Model

The smart grid conceptual model, which was introduced by the National

Institute of Standards and Technology (NIST) [1], provides a descriptive

overview of the development of smart grid. It presents a visualized dia-

gram illustrating how seven smart grid domains, including Bulk Generation,

Transmission and Distribution, Operations, Service Providers, Markets, and

Customers, can be incorporated. Each domain and its sub-domains consti-

tute the conceptual roles and services of the smart grid. Further, it also

concentrates on application integration, cybersecurity, data management,

and network connection. Figure 2.1 shows a high-level, overarching logical

architecture representing several significant relationships between current

applications of the seven domains. It is a practical model to define which

current applications can be an appropriate candidate for a specific smart grid

function as well as determine the proper communications paths between these

applications. Additionally, the diagram helps to detect possible interactions

between the intra-domain and inter-domain applications as well as their

potential interactions. In this research, the smart grid conceptual model

is used as the standard model to develop our cybersecurity experimentation

framework, which aims to cover almost all of the smart grid domains.
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Figure 2.1: Logical model of legacy systems mapped onto conceptual domains
for smart grid information networks [1].

2.1.2 Smart Grid Co-simulation

Co-simulation is defined as the incorporation of several simulation models

to improve the overall efficiency and accuracy of the simulation. It is an

efficient method to capture the interaction between communication and

electricity grid components. Numerous systematic research efforts regarding

smart grid modeling and simulation and the concept of attack patterns

have been undertaken in recent years. A thorough overview of the most

current simulation tools and their smart grid applications has been provided

in our previous study [18]. The GridLAB-D, ns-3, and FCNS combination

is suggested as a potential approach for smart grid research. Two basic

case studies have been carried out using the IEEE 13 node feeder model to

verify that the combination can simulate security threats in the smart grid

environment. There are technical limitations on the number of attack types,

smart grid models, and power grid models. Also, the result visualization

function was omitted. The framework design, GUI application, and attack
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schedule function have not been taken into account. Consequently, the study

provides a starting point for the current investigation. In other words,

this research attempts to extend our previous research by addressing the

limitations mentioned earlier.

2.1.3 Smart Grid Attack Analysis

Vulnerability scanners are widely understood to assess security threats by

identifying the number, type, and location of the vulnerabilities within

the network. Common Vulnerabilities and Exposures (CVE), maintained

by MITRE Corporation, provides an up-to-date list of publicly-known

vulnerabilities and exposures [19]. This CVE glossary explores the vul-

nerabilities and utilizes the Common Vulnerability Score System (CVSS)

to assess vulnerabilities level [20]. CVSS provides a systems approach

to capture critical vulnerability characteristics through quantitative scores

that represent their severity. To support evaluation and prioritization of

organizations’ vulnerability management processes by IT experts, security

analysts, and cybersecurity professionals, CVSS scores can be converted into

a qualitative representation, ranging from low to medium, high, or critical.

These numerical scores can also be taken as inputs to generate the Graphical

Security Model (GrSM) [21].

GrSM is a significant technology to identify the security posture of

networked systems and evaluate the effectiveness of security defenses. Since

it provides a visualization of how a system can be hacked through attack

paths, countermeasures to prevent the attacks from reaching the target can

be developed. Attack Tree (AT) [22] and Attack Graph (AG) [23] are two

essential components of GrSM. The structure of an AT contains a root node

as the attack goal and leaf nodes to represent different ways of achieving that

goal. Each node represents a sub-target, and children of the node form the

paths to accomplish this sub-target. There are two types of nodes, namely,

AND nodes and OR nodes. Once an AT is built, CVSS values can be assigned

to the leaf nodes; then, the security metrics calculation can be conducted. An

AG visualizes all paths through a system that results in a circumstance where

10



attackers can successfully achieve their target. Cybersecurity professionals

can utilize attack graphs for detection, defense, and forensics.

2.2 Related Work

2.2.1 Co-simulation Technology

EPOCHS (Electric Power and Communication Synchronizing Simulator)

[24] is one of the first simulation models developed for smart grid systems.

EPOCHS is built on top of PSLF, a commercial electric simulator, and ns-

2, an open-source network simulator. This partial open-source project was

developed to investigate the impacts of communication networks on elec-

tromechanical conditions. EPOCHS consists of a wide variety of applications,

including wide-area monitoring and management. However, the EPOCHS

plan does not include a cyberattack simulation function.

Testbed for Analyzing Security of SCADA Control Systems (TASSCS)

[25] intends to enhance cyberattack detection and recovery techniques, es-

pecially for SCADA-based control systems. Several simulation technologies

were integrated into TASSCS, consisting of OPNET simulation, PowerWorld

simulation, and hardware. Modbus, which is a type of SCADA system

architecture and communications methodology, supports a simulation-based

control system. Further, the simulation results detail how ASPS is useful in

detecting and solving DoS and HMI attacks’ consequences.

SGsim [26] is a simulation framework that can be used to simulate

different smart grid applications in real-time. It consists of OMNET++,

the backend for communication, and OpenDSS, a power simulation. Fur-

thermore, SGsim supports smart grid communication-related standards, such

as IEEE C37.118, and the standard smart grid tools, including openPDC.

The primary purpose of SGsim is to monitor how communication affects

control actions. In the smart grid research community, it has been considered

the premier simulation tool. Unfortunately, the supported standards, smart

grid components, and case studies for this framework are currently limited.

Similar to EPOCHS, the cybersecurity attack simulation feature is omitted.
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NeSSi2 [27] is a network simulation application built on the interface

of a JIAC service agent. The framework focuses on protection scenarios;

for instance, attack analysis and assessment of countermeasures. The study

in [28] inherited the architecture of NeSSi2 and extended it with a safety

model, as well as demonstrating the effect of attacks on AMIs’ network. For

communication and power networks, an open ring topology, which is usually

deployed in the big cities in Germany, is defined. NeSSi2, however, is only

able to model and determine the effects of the DDoS attacks on critical

infrastructure.

SCADASim [29] is a SCADA simulation that allows the integration of

external devices and applications. The architecture of SCADASim is de-

signed by using a discrete event simulation engine (OMNET++) and modules

that communicate with each other by transferring messages. Furthermore,

this discrete event simulation engine permits the incorporation of external

programs such as sockets, source code, and shared libraries into SCADASim.

Even though SCADASim is a virtual tool, it can estimate the effect of attacks

on real applications and devices. It is possible to simulate four attack

categories on a smart grid system, consisting of eavesdropping, spoofing,

man-in-the-middle, and DDoS.

The Attack Simulation Toolset for Smart Grid Infrastructures (ASTO-

RIA) [30] is a framework for smart grid attack simulation and evaluation.

ns-3 and PY-POWER were used as network and power flow simulators at

the core of ASTORIA, respectively. As a broker, Mosaik was introduced

to allow for the integration between these simulators. Through a simulated

environment, ASTORIA enables the injection of attacks and the evaluation

of their consequences. These attacks are instantiated by the Attack Profiles,

consisting of generic formatted configuration files. They enable multiple

attack parameters, such as attack schedule, attack type, intensity/frequency,

and target and source components, to be configured. Denial of Service (DoS)

and malicious software infection attacks, which are the two familiar cyber-

attacks on the SCADA system, were simulated. The research does not,

however, identify clear security assessment metrics. In addition, only the

vulnerabilities are highlighted in the system by presenting sampled data.
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Table 2.1: Smart grid co-simulation tools
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Although both electricity grid and communication network simulations

are capable of these simulation techniques, they are typically used in small,

limited networks. The simulation approaches are designed in particular for

certain circumstances that are difficult to expand. Furthermore, implement-

ing and using the present architecture for co-simulation is very complicated.

IT specialists, managers, and researchers are required to build a network

model or incorporate proprietary software in an unusual environment. Fur-

ther, there is little research on simulating smart grid cybersecurity attacks.

Moreover, in the current co-simulation tool, attack schedule ability is usually

omitted. Furthermore, recent studies integrate only a few attack types.

FNCS (Framework for Network Co-Simulation) [31] is a High-Performance

Computing (HPC) simulation platform. The FNCS broker maintains the

communication between ns-3 and GridLAB-D, which are the network and

power grid simulators, respectively. Certainly, it facilitates a synchronized

simulation in configurable time steps.

Table 2.1 illustrates the development of various simulation tools in the

energy domain over time.

2.2.2 Attack Analysis Technology

A thorough overview of the most current analysis tools and their smart grid

applications has been provided in our previous study [32].

2.2.2.1 Attack Analysis for Traditional Networks

Today, attacks targeting information systems are becoming gradually more

sophisticated. Attackers can combine and exploit multiple vulnerabilities to

run an attack. The research in [33] pointed out that probabilistic attack

graphs can be used to analyze and draw all attack paths. This method

can help mitigate risks and maximize the security of enterprise systems.

The authors use available tools for generating attack graphs in enterprise

networks to indicate potential steps that allow attackers to hit their targets.

Additionally, the CVSS score, a standard used to evaluate the severity of

computer systems’ security vulnerabilities, is used to estimate the security
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risk.

Hyun Chul Joh et al. [34] indicated that risk could not be evaluated by a

single cause. Independent multiple causes need to be considered to estimate

the overall risk. Based on likelihood and impact values, a risk matrix is

built to classify causes. The risk matrix is used to rate risks, and therefore,

serious risks can be recognized and mitigated. Their study also addressed

the software vulnerability life cycle. From the method of risk evaluation

for every single vulnerability using stochastic modeling, the authors defined

conditional risk measures to evaluate risk by combining both the essence and

accessibility of the vulnerability. They provided the mathematical basis and

demonstrated this approach by experimental validation.

The existing approaches to assess a network security metric using aggre-

gation of CVSS scores can result in valuable semantics of individual scores

to be lost. The research [35] drilled down into the basic metric levels to

get dependency relationships in order to obtain better semantics. These

relationships are signified by an attack graph. This approach used three

separate aspects of the CVSS score to explain and aggregate the basic

metrics. This helped maintain the corresponding semantics of the individual

scores.

The work in [36] used Bayesian networks to propose a risk management

framework, called Bayesian Attack Graph (BAG). This framework allows

administrators to estimate the possibility of network compromise at various

levels. Security risk management with BAG comprises threat analysis, risk

assessment, loss expectancy, potential safeguards, and risk mitigation anal-

ysis. This component enables administrators to execute static and dynamic

risk assessments, and risk mitigation analysis. Security risk mitigation with

BAG is formulated as a Multiobjective Optimization Problem (MOOP),

having a low complexity for optimization.

In approaches of attack graph-based risk management, a study [37]

proposed a framework of risk assessment and optimization to generate a

graph using a genetic algorithm for drawing attack paths. The framework was

presented by six steps: attack graph generation, likelihood determination,

loss estimation, risk determination, optimization, and high-risk attack paths.
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Table 2.2: Attack analysis using GrSM and CVSS (Y: Yes, Blank: No)
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The proposed genetic algorithm finds the highest risk for building a minimal

attack tree. This is also computed with huge graphs when very large attack

paths are explored.

In their research into risk assessment for IT systems, Ugur Aksu et al. [38]

proposed a quantitative methodology for evaluating the vulnerability in the

system. Like other approaches, in this study, the CVSS metrics (base and

temporal scores) are used to calculate the probability of attack success,

attack risk, and the attack impact. The attack paths can be determined

corresponding to the generation of the attack graph-based risk of a CVE

on an asset. They measure risks not for only single CVEs but also for

a collection of CVEs on the assets, elements, and attack paths in each

IT system. Nevertheless, the authors did not evaluate the likelihood of a

potential attack when analyzing the cybersecurity risk that may occur inside

the network.

2.2.2.2 Attack Analysis for Emerging Technologies

The Internet of Things (IoT) brings many innovations in numerous domains;

however, its security is a challenge. In order to analyze and address

security issues in IoT, the research in [39] proposed a framework for security

modeling and assessment, building graphs of security models, evaluating

security levels, and recommending defense strategies. The framework can

find attack scenarios in five stages: preprocessing, security model generation,

visualization and storage, security analysis, and alterations and updates.

This research demonstrated the framework’s ability to reduce the impacts of

possible attacks in cases studies of two IoT networks.

In the context of dynamic networks in which the configuration changes

over time, Simon et al. [40] presented the Temporal-Hierarchical Attack

Representation Model (T-HARM) with two layers for analyzing the security

problems in the network. Therein, the upper layer contains the temporal

hosts’ reachability information, whereas the lower layer shows the changes of

vulnerabilities correlating with each host by defining AT and AG. The attack

paths, attack cost, attack success probability, and attack risk were calculated
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based on the metrics of the CVSS base score. However, the authors did not

explore the likelihood of exploitable vulnerability in investigating a dynamic

network’s security.

In a study on automating security assessment for the IoT environment,

Ge et al. [41] proposed a graphical security model used to find the potential

attack before it occurs [39]. The authors conducted experiments with three

different IoT networks in the context of smart home, environment sensor,

and healthcare wearable device monitoring. The 3-layer Hierarchical Attack

Representation Model (HARM), an extended version of HARM, is used to

find all potential attack paths. This extended one consists of an attack

tree (AT) for each node in the network topology. The authors analyzed the

security problems of IoT devices regarding specific vulnerabilities according

to various metrics like attack success probability, attack cost spent by

hackers, attack impact, and the time to compromise these vulnerabilities. To

quantify the severity of vulnerabilities for a network element, the CVSS is

used to compute the aforementioned metrics. They also supported the feature

of choosing the most effective defense strategies for mitigating potential

attacks. Nevertheless, this work neither discussed the security likelihood

nor visualized the attack graph.

Erxia Li et al. [42] presented a quantitative model in Distribution Au-

tomation Systems (DASs) for attack analysis based on CVSS and ATs. To be

more specific, their modeling method is considered from the perspective of the

attacker’s behavior. Each step of the complete attack process is considered to

calculate the node attack probability. Therein, the root tree is the ascertained

component in the system, while an attack that can occur in certain DASs is

represented by each leaf node of the AT. Three metrics of CVSS, namely,

base, time, and environment score, are used to compute the maximum

probability of each potential path for intruding on the network. The max

score indicates the most vulnerable path to be patched with the most defense

strategies. Although this framework can generate the quantitative attack

graph, it does not support the feature of graph visualization.

Seongmo et al. proposed CloudSafe [43], a tool for automated security

assessment in a cloud environment, which is implemented in the Amazon
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AWS. It consists of two phases: information collection and HARM genera-

tion. Firstly, the researchers built a cloud information gathering interface for

further data storage and security analysis. Then, this module is integrated

with HARM by modifying the security information retrieved from the first

phase. In quantifying security, the probability of successfully exploiting a

vulnerability is calculated by the metrics of CVSS on the Reachability Graph

(RG), which is saved in a database after mapping inter-VM connections in

cloud targets. Moreover, the researchers also provided attack cost, risk, and

impact information correlating with each cloud vulnerability. Nevertheless,

graph visualization is not supported.

Meanwhile, a study by Taehoon Eom et al. [44], focused on the computa-

tion of possible attack graphs for real-time intrusion detection and response

in Software-Defined Networking (SDN). They used the HARM model with

security metrics depending on the information of the flow table and SDN

components. All possible attack paths that are pre-computed by HARM

and full AG can evaluate the security issues of the network system prior to

an attack detected. It is useful to estimate possible attack paths from the

point of detection to formulate effective remedies. The authors used the base

score of CVSS to measure the severity of vulnerabilities and the probability

of attack success in the network entities in detail. The impact attack metric

was directly inherited from CVSS. Additionally, in accordance with the

reduction of scalability complexity, the authors also built attack graphs based

on modeling network nodes and their vulnerabilities onto multiple layers.

The main reason for this is that the SDN consists of many components

and network elements, causing security assessment not to be scalable in

enumerating all possible attack scenarios. By leveraging from HARM, the

authors generate 2-layer HARM, where each host in the higher layer has a

corresponding AT in the lower layer. The lower layer is a collection of ATs,

where each AT is the representative of the vulnerability information for each

upper layer node, i.e., SDN network node. Nonetheless, this study lacks the

support of graph attack visualization and likelihood recommendation.
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2.2.2.3 Attack Analysis for Smart Grid

An attacker collects information from the high-level aim of a target and then

takes low-level actions. Kristian Beckers et al. [45] delivered a method that

can show the attackers’ steps. This method gathers information of a system

at the low-level presentation to analyze high-level probabilistic attributes.

The attacker’s high-level aims are drawn as an attack tree and actions at a

low level are drawn as an attack graph. The research combined both the

attack tree and attack graph for mapping the aims of the attacker to actions.

This combination was applied to a smart grid. This proposal helps system

administrators prevent possible attacks.

The acceleration of the smart grid technologies makes power delivery

systems easy to use as well as meet the needs of intelligence and efficiency.

However, insider and outsider attacks that may harm to the smart grid

system have recently occurred in real cases. Hence, there is more attention

from researchers to deeply understand security levels in these systems in

order to implement defense methods for disaster prevention to avoid the

consequences of intrusion attacks.

Besides, Yatin et al. [3] presented the methodology of risk assessment for

cyber-physical attacks in the smart grid system. They concentrated on one

primary function, power delivery, to narrow down the system’s number of

attacks. The Bayesian Attack Graph for Smart Grid (BAGS) tool is used to

quantify the probability of attack success, and the likelihood of attack relying

on the CVSS base score when successfully exploiting vulnerabilities. The

authors also considered the attack risk to help power engineers decide on the

security budget and patch management to protect the system in which system

components are susceptible to easy compromise by intruders. They also

applied reinforcement learning for resource allocation in the cyber domain

of smart grid to generate the optimal policy that recommends whether to

conduct the assessment and patching of the vulnerability in the network.

However, this work did not take into account the attack cost for hackers

when attempting to compromise the cyber system. Graph visualization is

also ignored in its implementation.
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In [46], Rounak presented a Bayesian attack tree to model CPS vulner-

abilities for SCADA’s security assessment. This work concentrated on the

perspective of prioritizing important vulnerabilities in SCADA that are likely

to be first identified and generate attack paths to the target element. This

is to avoid comprehensive modeling of every element in the CPS. For each

type of vulnerability, the probability of successfully exploiting is considered

in accordance with the skill level of the intruder. Also, their skill level reflects

the time it takes to compromise the system that contains the vulnerability.

The CVSS metric is used to calculate the probability that a vulnerability is

successfully exploited. Further, the impact on the power grid as well as the

risk of the cyber attack on each attack path is also assessed in the cyber-

system. However, the lack of attack graph visualization and likelihood are

shortcomings of this study.

2.2.2.4 Security Metrics Calculation

To compute the likelihood of compromise in a smart grid environment, Yatin

et al. [3] used the base score of CVSS to compute the exploitability of a

vulnerability. Based on the probability ranges, they matched each potential

attack with the corresponding qualitative value of likelihood.

Besides, Ge et al. [41] proposed some metrics to analyze the security

problems for an IoT-enabled system. In general, this framework takes

IoT topology, vulnerability information, and security metrics from security

decision-makers as its input to generate an extended HARM model. Then,

the graph visualization of the IoT network topology with attack paths is

produced. Subsequently, the security analysis is conducted, relying on the

set of IoT nodes, vulnerabilities, and potential attack path information.

The analysis result is then used to determine the most appropriate defense

strategies for vulnerable nodes in the network.
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2.3 Summary

For smart grid attack co-simulation, our previous research [18] argued that

it is possible to co-simulate with ns-3, FNCS, and GridLAB-D. Furthermore,

the co-simulation performance was improved by 20%. Unfortunately, few

studies have evaluated the implications of cyber attacks against the smart

grid system based on this combination. Consequently, our research was

carried out to fill the FNCS study gap by introducing a robust and extendable

attack pattern library with an attack schedule, a friendly GUI, and a result

visualization function.

For smart grid attack analysis, the framework for automating security

analysis of IoT proposed in [41] is the most advanced in terms of coverage,

ranging from Attack Tree (AT), Attack Graph Generation (AGG), attack

success probability (p), attack cost (ac), attack impact (aim), and attack risk

(r). Furthermore, the formulae to calculate security metrics were explained

in detail. However, the scope of the framework focuses on the general IoT

system. Therefore, there are still limitations in attack graph visualization,

likelihood, and smart grid application. Attack graph visualization is a

practical method for cybersecurity experts and even novices to examine

the system’s activities and investigate all potential cyber attacks. By using

likelihood, the possibility of an attack can be ranked, which strongly supports

the risk assessment process. The lack of research on smart grid attack graph

visualization and likelihood creates a gap in the field. Consequently, we

utilize the framework to bridge the gap in the current research.
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Chapter 3

General Architecture for Smart

Grid Cybersecurity Experimen-

tation

3.1 Design Requirements

The smart grid structure is complicated with two essential parts: network

communication and the power grid. Researchers need to consider the

relationship between these components for further system investigation and

improvement. Unfortunately, it is usually impossible to implement a real

smart grid system for the cybersecurity experiment and validation process

because of their potentially dangerous consequences. Accordingly, system-

level modeling and simulation tools are necessary for a smart grid cyberse-

curity experimentation system. Therefore, a cybersecurity experimentation

system for smart grid should meet the following specifications, which are

summarized in Figure 3.1.

• Power grid component: the experimentation system should be able to

reproduce the behavior of a power grid network and the interaction

between its components.

• Network component: the experimentation system should be able to re-

produce a smart grid network’s behavior by calculating and simulating

interactions between various network entities.

• Security component: the experimentation system should be able to

simulate, emulate, and analyze various types of attacks on the smart
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Figure 3.1: Cybersecurity experimentation for smart grids in general

grid system. The security component is a set of databases and

configurations to start an attack on the system.

3.2 Concern in Smart Grid Cybersecurity Re-

search

These requirements should be fulfilled to create realistic cybersecurity ex-

perimentation for smart grids. Due to its structure being complicated, it is

inefficient to design a single, smart grid cybersecurity experimentation system

that meets all of the requirements above. Therefore, to simplify the system

but still accomplish our goal, we break down the smart grid cybersecurity

experimentation into two components: simulation approach and analytical

modeling approach.

The intention of simulation and analytical modeling approaches is to

enhance understanding of the system’s performance under various conditions.

On the one hand, through certain assumptions about how a method

progresses, an analytical model is a mathematical abstraction that can be

generalized to deal with different working conditions. In some instances,

it is possible to determine a solution, and a result can be obtained in

a wide variety of situations. The analytical model’s strength is that it

provides a generalized method for obtaining performance results by using a

mathematical formulation under different conditions. The model’s accuracy

must be taken into account through the validity of the assumption that the
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Figure 3.2: Number of publications related to smart grid attack simulation
and analysis from 2010 to 2019.

mathematical formula is derived. To estimate the modeling and measurement

model, some uncertainties can be addressed with a stochastic model.

On the other hand, a simulation model also makes assumptions of the

model and the process’s behavior that it is simulating. A simulation model

is applied when it is impossible to derive the result using the analytical

formulation since the model is too large, or the exact solution cannot be

obtained. It is only useful for specific applications and should be executed

multiple times to compensate for the influence of numerical calculations. For

several application scenarios, the simulation should be re-executed to confirm

the findings. A simulation model can be recognized as useful when it has been

shown to operate under numerous circumstances and is not dependent on a

single case study.

The analytical approach should be preferred when the two methods are

available, and simulation can be applied to verify the assumptions and

models’ validity. When the two approaches can be used, preference should
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be given to the analytical approach, and simulation can be used to validate

the assumptions and the models. Since the simulation aims not to verify the

model but to validate the reality of the modeling process, the assumptions

applied by the simulation model could be slightly different from the analytical

model for better analysis.

Therefore, using the simulation approach is one possible direction take to

conduct cybersecurity experimentation for smart grids. On the one hand, the

power grid and the network should be simulated independently. On the other

hand, the interaction between them should be captured. Consequently, these

specifications not only complicate the system architecture but also reduce its

performance. Co-simulation is an emerging technology to deal with this issue.

The application of simulation (co-simulation) and analysis for smart

grid cybersecurity experimentation research has been increasing in recent

years. Figure 3.2 shows the number of publications related to smart grid

simulation and analysis from 2010 to 2019. The data on the table were

acquired from Google Scholar by searching the keywords. The search pattern

for smart grid attack co-simulation is (“Smart Grid” OR “Smart Grids”)

AND (“Simulation” OR “Co-simulation”) AND (“cybersecurity” OR “cyber

security” OR “security”); while the keywords for smart grid attack analysis

searching are (“Smart Grid” OR “Smart Grids”) AND (“Analysis”) AND

(“cybersecurity” OR “cyber security” OR “security”).

The relationship between the general cybersecurity experimentation for

smart grids and the two approaches is shown in Figure 3.3. The co-simulation

approach and analytical modeling approach are discussed in the following.

3.3 Co-simulation Approach

Co-simulation is the coordination of two or more simulation models, which

differ in their runtime and representation. It can simulate the network and

the power grid separately. Moreover, co-simulation enables the reciprocal

relationship between the physical power grid and the communication network

to be monitored. Instead of developing and constructing a new combined

simulation environment, multiple specialized simulation environments are
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Figure 3.3: The two approaches of smart grid cybersecurity experimentation

connected into a single distributed environment.

Reuse and separation are two critical criteria for the incorporation of

smart grid components. The objective is to make the different simulators’

modules available for combined simulations, which run independently and

only exchange data when needed. The combination allows users to imple-

ment and examine different communication and power hardware/protocol

integration. Fortunately, there are various robust network simulations as

well as power grid simulation tools. Therefore, one of the advantages of

this integration is reusing existing models and frameworks and their well-

validated libraries.

Unfortunately, the aforementioned integration commonly complicates

the simulators’ codebase, introduces bugs, and sometimes replicates work

that has already been completed. The adaptation also poses numerous

difficulties that need to be overcome, such as differences in time scales, time

synchronization, communications delays, and appropriate model reuse. To

overcome these challenges, a reliable middleware or broker should be placed

in the middle of the co-simulation approach’s architecture to monitor and

control the two smart grid components’ communication.

Further, to manage the co-simulation activity, a general manager is
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Figure 3.4: The general architecture of the co-simulation approach for smart
grid cybersecurity experimentation.

needed. It receives attack data and configuration from the security com-

ponent then transfers to the power grid simulation and network simulation

as well as awakes the middleware to conduct a simulation session.

Therefore, the design requirements for co-simulation space should contain

five components:

• Security Component

• General Manager

• Power Grid Simulation

• Middleware (Broker)

• Network Simulation

The general architecture of the co-simulation approach for smart grid cyber-

security experimentation is illustrated in Figure 3.4.

3.4 Analytical Modeling Approach

Another possible direction to take to conduct cybersecurity experimentation

for smart grids is by utilizing the analytical modeling approach, which aims

to create a model for smart grid attack analysis.

An attacker may launch various attacks, such as DoS attacks, eavesdrop-

ping, node controlling, and node capture, by exploiting the system vulnera-

bilities. Attack analysis focuses on all possible attack paths where the system

28



Security
Database

Network 
Model

Power Grid
Model

Analysis
Manager 

Security Metrics
Calculation

Figure 3.5: The general architecture of the analytical modeling approach for
smart grid cybersecurity experimentation

(or network) is accessed or compromised by utilizing technical capabilities to

exploit a vulnerability. With the existence of several complicated threats,

the ability to discover possible attack scenarios and minimize the effect of

malicious attacks is becoming a significant problem. The attack analytical

results allow the researchers or security decision-makers to determine which

part of the network is the most vulnerable, evaluate the various defenses’

efficacy, and decide how to secure the network most effectively; hence,

minimizing the potential attacks’ impact.

Securing a network involves an in-depth analysis of regular operations and

vulnerabilities. Such analysis is tiresome and error-prone. The conventional

attack analysis classifies attacks based on information of reported attacks.

Hence, such an approach can not be extended to new (unknown) incidents.

The concern is even more severe in emerging environments where very few

reported threats are available, such as the smart grid. The study on modeling

the security of the smart grid is also limited due to its pioneering nature.

Researchers can gain several benefits by using attack analysis:

• Firstly, the model provides the ability for researchers to capture all

potential attack paths, meaning it is no longer limited to the protection
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of particular attacks.

• Second, it enables researchers to analyze the security of different smart

grid attack scenarios.

• Finally, it offers an intuitive way of analyzing security flaws in sys-

tems and assessing possible counteractions since the sequences of the

attackers’ measures are captured in the model.

The main challenge in attack analysis is the security metrics calculation,

for instance, how to correctly compute all possible attack paths. Therefore,

security metrics calculation is one of the requirements for the analytical

modeling approach.

Additionally, to control the attack analysis activity, a general manager

is required. Attack data and configuration from the security component are

acquired, then transferred to the power grid model and network model. The

security metrics calculation component receives attack data from the security

component as well as the smart grid model from the power grid model and

network model. Finally, the security metrics are calculated and analyzed.

Figure 3.5 shows the requirements to design the architecture of the

analytical modeling approach for smart grid cybersecurity experimentation,

including:

• Security components

• General manager

• Power grid model

• Network model

• Security metrics calculation

3.5 Approaches Comparison

Despite their similarities, the co-simulation approach and analytical modeling

approach are implemented with different intentions.

The co-simulation approach makes assumptions of the model and the

process’s behavior that it is simulating. The approach enables analysts

to simulate different attack types on the smart grid system. Additionally,

30



these security metrics can be compared against normal operation and attack

scenarios. Therefore, the co-simulation approach advances the experience of

recreating vulnerability manipulation strategies and involves exercises, for

instance, using the same methods and technologies adopted by attackers.

Further, it enables the design and implementation of cybersecurity defense

methodologies to anticipate similar future attacks.

Analytical modeling is a mathematical abstraction under different con-

ditions. It allows researchers to determine all possible attack paths and

calculate the selected security metrics. Plus, the attack graph can be

generated. Therefore, this approach gives researchers a deeper understanding

of the phenomena relevant to exploitation and patching of vulnerabilities.

3.6 Summary

In this chapter, we identify the need for realistic cybersecurity experimen-

tation for smart grid. The design requirements of the system are outlined.

To deal with the system complication but still achieve our goal, we divide

the smart grid cybersecurity experimentation into two components, including

the co-simulation approach and analytical modeling approach, and offer their

specifications and general architectures.

This research aims to design and develop a smart grid cybersecurity

experimentation system for smart grids that fulfills the aforementioned

requirements. The core technologies of this research are GridAttackSim -

Cyber Attack Simulation on Smart Grids and GridAttackAnalyzer - Cyber

Attack Analysis on Smart Grids. GridAttackSim follows the conceptual

model of the co-simulation approach, while GridAttackAnalyzer inherits the

architecture of the analytical modeling approach.

The developed frameworks can be used to understand the power and

network system monitoring, analyze the nature of cyber-attacks, and in-

vestigate their impact on the smart grid’s operation. GridAttackSim and

GridAttackAnalyzer are discussed in the next chapters.
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Chapter 4

GridAttackSim: Cyber Attack

Simulation for Smart Grids

4.1 GridAttackSim Architecture

In this section, we proposed GridAttackSim, the Smart Grid Attack Co-

Simulation framework, which is shown in Figure 4.1. The architecture of

GridAttackSim is based on the co-simulation approach, where the power

grid and communication network components are integrated. The ability

to perform different attack simulations is also provided. GridAttackSim is

comprised of six core modules, including the preprocessing module, attack

pattern library, GridLAB-D, FNCS broker, ns-3, and model manager.

4.1.1 Preprocessing Module

There are two components of the preprocessing module, including com-

munication configuration files generation and GLM append. The purpose

of this module is to prepare the environment and configure the FNCS

simulator properly to connect the FNCS broker applications. An appropriate

configuration requires at least a global unique simulator term. Additionally,

the simulator should specify the topics for which the broker is subscribed.

The GLM append function’s input is a raw IEEE test feeder file in

GridLAB-D format (.glm), created initially by PNNL (Pacific Northwest

National Laboratory), U.S. Department of Energy. It adds the fncs msg

and auction objects into the input file to configure the GridLAB-D process

connection and FNCS broker.
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Figure 4.1: The architecture of GridAttackSim.

The communication configuration files generation function obtains the

total number of houses, market ID, and prefix of the controller inside each

house as the input. The generated files are a .txt file and a .zpl file. The

txt-formatted file’s aim is to configure the communication between the FNCS

broker and the ns-3 process. The zpl-formatted file or FNCS ZPL (ZeroMQ

Property Language) configure file, which is based on the ZPL structure,

configures the simulator to subscribe to the topic of interests, such as market

ID, market-clearing price, submit bid state, the price’s standard deviation,

and average price.

For each simulator, a corresponding “fncs.zpl” file should be available.

This fncs.zpl is expected to be in the actual working directory that awakes

the simulator by default. An example of a fncs.zpl format file is shown in

33



Figure 4.2: The fncs.zpl format example.

Figure 4.2.

4.1.2 Attack Pattern Library

GridAttackSim makes it possible to inject attacks and evaluate their conse-

quences in a simulated environment. These attacks are instantiated through

the attack pattern library. It helps model the nature, intensity, and schedule

of an attack on the smart grid infrastructure. The attack pattern library

contains a standardized JSON configuration format file to enable behaviors

of various attack types to be defined.

During the simulation process, different attack parameters settings are

allowed, such as the target components, attack type, and the start time and

end time. Table 4.1 shows the attack pattern library structure. The library

enables the run-time reconfiguration to explore a wide variety of attacks

against the same smart grid architecture.

The combination of three sub-modules introduced by research in [47],

including attack type, attack schedule, and attack target, can attain different

attacks. By extending the aforementioned approaches, it is possible to model

an attack’s behavior, including the type of attack that may be carried out

(what question), when the attack may occur (when question), and which
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Table 4.1: The structure of attack pattern library

Sub-Module Object Description
type_id The ID of Attack Type

type_name The name of the attack

description Attack description

affected_value The values need to be changed on the simulation system to conduct an attack

target_id The ID of the affected component
target_name The name of the Smart Grid's component

description The description of the Smart Grid's component

file The core system files need to be over-written to conduct an attack

schedule_id The schedule ID 

description The description of the schedule

file The .glm file where the attack schedule is defined
start_time The start time of the attack  
end_time The end time to the attack

Attack Type

Attack Target

Attack Schedule

parts of the system may be targeted (where question).

The attack type sub-module is employed to address the “what” question.

It is utilized to characterize specific types and categories of attacks. Indeed,

the sub-module is responsible for different types of malicious actions to be

executed on the system.

Along with defining a particular type of attack, it is necessary to specify

the targeted device. The attack target sub-module aims to answer the

“where” question. It sets the vulnerable parts of the smart grid system

that are affected in a specific attack circumstance. The type of target can

be very different such as nodes, networks, end-point regularities, and control

systems.

The attack schedule sub-module represents the times when a particular

attack type is conducted. Its goal is to solve the “when” question. The

schedule decides when to conduct a particular attack type.

4.1.3 Ns-3

ns-3 [48], a successor of ns-2, is an open-source network simulation framework

specifically designed for simulation, networking studies, and training. First

released in 2008, this powerful network simulator has been widely accepted
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in the network research community. A robust network model library with

IP-based applications (TCP, UDP), routing, protocols for multicasting, and

wired and wireless networks is provided at the top of the tool’s architec-

ture. An ns-3 process consists of four principal modules, including an ns-

3 core, simulated communication network, time sync module, and network

application module. These components aim to sustain all other simulator

components. Although the core of ns-3 is developed using the C++ language,

both CMDENV, Python scripting, the OTcl interface, and TKENV are

supported. Consequently, developers can continue to develop and modify

simulations without understanding the C++ language or recompiling ns-3.

Furthermore, with the Python language support, the tool enables improved

scalability and enhanced software integration.

4.1.4 GridLAB-D

GridLAB-D [49], which is an open-source, time-series simulation developed

by PNNL, is the pioneer of modern power distribution simulation systems.

GridLAB-D can simulate all of a power grid system’s features from substation

to the end-users’ power consumption. A GridLAB-D process has four central

modules, consisting of the GridLAB-D core, interface module, time sync

module, and other modules. In order to enhance sophisticated applications,

the combination consistently incorporates high-level simulation methods as

well as high-performance optimization methods. GridLAB-D has several

important features. For example, its end-use models, including devices,

equipment, and user models, are combined with the modern agent-based

simulation methods. In addition, GridLAB-D is driven by energy resources

distributed models, such as the distributed generator and storage models, and

load shedding infrastructure. GridLAB-D also enables the retail market mod-

eling services, including selecting contracts, metering technologies, SCADA

modeling, and businesses and transactions simulation. Furthermore, it allows

external connections with different other tools, such as Matlab, MySQL,

SynerGEE, Microsoft Excel, and Microsoft Access. Also, GridLAB-D can

be combined with a range of third party data management and analysis
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tools. The tool was validated by applying the standard analysis methods

of distribution as well as the existing simulation approaches. Therefore,

GridLAB-D is invaluable for regulators, stakeholders, service managers, and

even consumers.

4.1.5 FNCS Broker

The FNCS broker assists the communication between ns-3 and GridLAB-D

simulators. It facilitates co-simulation with multiple platforms such as single,

multiple, cluster, and cloud nodes. On one side, ns-3 is designed to simulate

data communication networks and monitor the operation of the system. On

the other side, the power grid is simulated by GridLAB-D. In the core of the

architecture, the FNCS broker is installed to maintain the communication

between ns-3 and GridLAB-D. However, all FNCS-federated simulators are

required to register with the FNCS broker, which enables the simulator’s

centralized process control. Moreover, the FNCS’ design intention is to reuse

existing simulators to enable a real-time co-simulation environment. The

time synchronization steps are calculated in conjunction with the next time

steps in the simulators and depending on whether there are messages in

transit.

4.1.6 Model Manager

The model manager serves as the smart grid attack simulation engine, which

is in the central component GridAttackSim. By implementing this module,

the combination of simulation scenarios is managed, and the execution of the

simulations is controlled. Further, the model manager also implements both

simulators’ initialization, configuring the power grid topology, the simulators’

parameters, and the network model. It wakes up the preprocessing module

to prepare the simulation environment when the simulation of a scenario is

initiated. Firstly, the resource models, consisting of the network and power

grid models, are loaded. Then, if the user selects an attack type, the attack

pattern library will be called. Consequently, the power grid and the network

models’ cores are updated. Then, the model manager executes both the three
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main components of GridAttackSim, including GridLAB-D, ns-3, and FNCS

broker. Finally, the simulation results are loaded and visualized.

4.2 Implementation and Selected Results

We discuss the proof-of-concept prototype of GridAttackSim in this section.

A smart grid co-simulation application using the Python programming

language was developed based on the architecture presented in the previous

chapter. The GridAttackSim desk application (GUI) shown in Figure 4.3

was created by Tkinter [50], a binding Python to the Tk GUI toolkit.

Figure 4.3: Desktop application (GUI) of GridAttackSim.

This section is organized as follows. Firstly, the smart grid model

overview is described. Then, the specifics of two smart grid applications

are presented, including demand response and dynamic pricing. Later, we

describe the supported attack types. Finally, the detail of running the

simulation and visualizing the results is discussed in the last subsection.

4.2.1 Smart Grid Model

The smart grid model consists of two critical parts: the communication

network and the power grid models. Hence, to model a smart grid system,

both ns-3 and GridLAB-D are required. There are a particular number of

houses in each smart grid model that act as dynamic power consumption or
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residential loads. Each of the residential loads is equipped with a Heating,

Air Conditioning (HVAC) system, and ventilation, which are managed by

a specific passive controller. Figure 4.4 shows an example of a smart grid

model with 73 houses and an IEEE 13 node test feeder.

4.2.1.1 Network Model

An ns-3 network model with several nodes representing smart meters installed

in the residential load was developed for the communication networks. These

smart meters are organized into small groups forming local networks. An IP

address was also provided for each smart meter; then, it was mapped to

the given name for each GridLAB-D model’s residential load. Each group’s

collected data are routed to a data aggregator by an edge network node

through a point-to-point communication connection. UDP has been used

as the communication protocol since it is a connection-free protocol that

results in a lower transmission delay than TCP. The ns-3 CSMA (Carrier

Sense Multiple Access) device models a simple Ethernet bus network, which

is the CSMA/CD (Carrier Sense Multiple Access with Collision Detection)

transmission protocol. The ns-3 CSMA/CD model was utilized to define data

rates and delay values in this study. Ns-3 is a powerful simulator for network

modeling. Consequently, it is possible to apply it to more complicated

network models in the future.

4.2.1.2 Power Grid Model

A GridLAB-D power grid model was developed based on the simple test

feeder, the 4 node and 13 node IEEE test feeders [51]. These test feeders’

objective is to present a distribution system model that represents a broad

class of analytical and design difficulties. Initially, these test feeders were

created to test new methods of power flow. However, due to their convenience

and accessibility, the test feeders have been utilized for various studies.

These test feeders’ general structure involves (1) substations represented

as the energy provider, (2) transformers to adjust the voltage levels, (3)

meters to measure the power consumption, (4) loads to consume energy,
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Figure 4.4: Smart grid model: (a) The network model and (b) the power grid model of IEEE 13 node test feeder
with 73 houses.
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and (5) transmission lines.

The simple test feeder [52] is a tiny test feeder created by PNNL to test

the FNCS function. It comprises a substation swing bus and residential

loads. This substation consists of a swing bus with a nominal voltage of

7200 V and a power rating of 1500 kW each phase (4500 kW in total). A

total load meter to measures power consumption is installed between the

transformer substation and residential loads. In addition, the collected data

enable the substation to adjust the supply of power to the system. Through

triplex meters, the residential loads link to the power line.

IEEE 4 node test feeder, or the 4-bus feeder [53], was originally created

in 2001, ten years after the original 1991 IEEE test feeders were released. By

providing a simple model, the test feeder has the capability of a program to

analyze all the possible three-phase transformer connections. Additionally,

it steps up and steps down operations in various balanced and unbalanced

load scenarios. Due to their small size, the test feeder error rate is expected

to be less than 0.05%. Thus, the 4-bus feeder is widely used in distributed

energy resources research and power flow analysis.

The IEEE 13 node test feeder, or the 13-bus feeder [54], was first

introduced in 1992. During the Power and Energy Society Summer Meeting

in 2000, this small and highly loaded test feeder was approved. It features

many of the standard technologies employed in current grids, such as shunt

capacitor banks, voltage regulators, underground and overhead lines, and

unbalanced loads. Operating at 4.16 kV, the 13-bus feeder aims to ex-

periment with common features of distribution analysis applications. It is

the starting point for power-flow convergence problems in highly unbalanced

systems research.

4.2.2 Smart Grid Applications

A range of smart grid applications is available, including Demand Response

(DR), Dynamic Pricing (DP), Advanced Metering Infrastructure (AMI),

Wide-Area Monitoring, Protection, and Control (WAMPAC), and Phasor

Measurement Units (PMU). High bandwidth communications are necessary
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for several smart grid applications, such as DR and DP, to facilitate high-

speed, cybersecurity, wide-area monitoring. Nevertheless, these standards

do not apply to all smart grid applications; for example, AMI only has to

update billing once every 24 hours.

Peak demand is when the power consumed by the network is highest,

which can strain the electricity grid and cause power outages. Hence,

reducing peak demand is an emerging difficulty for the energy industry. The

construction of the electrical system should receive more financial investment

to tackle this problem. Unfortunately, this expense will contribute to rising

electricity costs. However, research has shown that demand for 25% of the

distribution and 10% of the generation and transmission assets, which is

worth more than 100 billion dollars, is less than 400 hours a year. Fortunately,

the smart grid system can reduce peak demand by applying DP and DR.

Accordingly, we have implemented DR and DP as models to prove results.

DR refers to adjustments in a consumer’s power usage to balance supply

with demand. During periods of high demand, DR endeavors to ensure a

reliable power supply by enabling consumers to minimize or adjust their

energy consumption dynamically. It aims to adjust the end-users’ power

usage instead of adjusting the energy supply to the system. As a result, users

can play an active role in electric grids’ operation, unlike most conventional

power grid systems. Accordingly, the service provider has numerous benefits,

for example, emergency operations, control services, and a reduction in peak

load.

DP is a price model that allows utility companies to create flexible

electricity prices based on current market demands. DP is a proper tech-

nology to enhance the DR function. Critical Peak Price (CPP), Time-of-

Use (TOU), and Real-Time Price (RTP) are the three methods for DP

price determination. RTP has successfully allowed price elasticity to be

estimated at different times. Therefore, this form of DP is currently utilized

in developed countries.

In this research, the dynamic residential loads or the houses participated

in a transitive energy market and submitted the quantity and price bids to

the auction system to enable DR and DP function. In response to current
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demand, the substation determines the maximum power provided to the end-

users and energy cost for the market. The reference bids price and control

signals are transmitted to the market controller by both demanders and the

supplier in a finite time interval. On the one hand, the supplier bids the

maximum power and the price that it can supply to the system at a given

time. On the other hand, demanders bid power they can forgo at a given

price. To realistically delay communications between components, all bids

and price signals are transmitted via the aforementioned ns-3 model. The

bidding process is stopped after the specified time cycle, typically from 5

to 15 min. Then, the market-clearing process is started. In this process,

both supply and demand bids have been sorted. Supply bids are sorted

from lowest to highest. In contrast, demand bids are sorted from highest to

lowest. The curves are then generated by the total quantities of these values.

The intersection of curves is essentially the clearing price and the demand

quantity. The passive controller in the HVAC system adjusts the thermostat

control band by moving the temperature band or increasing the hysteresis

after receiving the clearing quantity from the market for each time interval.

This cycle continues for each interval.

4.2.3 Supported Attacks

The attack categories of GridAttackSim were constructed based on a cy-

bersecurity guideline created by the European Union Agency for Cyber-

security (ENISA) [55]. To cover all the threats that threaten the smart

grid system directly, ENISA has classified the threats into six categories

based on the summarization of advanced guidelines from NISTIR 7628 [56],

enhancing security throughout the supply chain (IBM Center) [57], and smart

grid information assurance and security technology assessment (Sacramento

State) [58], and others. The six high-level attack categories are (1) nefarious

activity, (2) eavesdropping, interception, and hijacking, (3) outages, (4) un-

intentional data damage, (5) deliberate data damage, and (6) other threats.

In the scope of this research, we focused on two well-known categories:

(1) nefarious activity and (2) eavesdropping, interception, and hijacking.
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A nefarious activity is defined as a deliberate action targeting the core

infrastructure and the network of the smart grid system by conducting ma-

licious activities with the intention of either stealing, altering, or destroying

a specified target. It categorizes the most common threats on the smart

grid system, including Advanced Persistent Threats (APTs), DNS attacks,

channel jamming, generation and use of rogue certificates, identity theft,

injection attacks, malicious code, social engineering, unauthorized access to

systems, and web-based attacks.

Eavesdropping/interception/hijacking is the set of actions that aims to

listen to, modify, interrupt, seize control, or delete the transmitted data of a

smart grid communication without permission. It contains the main network-

related threats, such as information theft, man-in-the-middle, network re-

connaissance, routing attacks, replay of messages, smart meter connection

hijacking, and wardriving.

Based on the two well-known attack categories mentioned earlier, the

nine typical attack types are selected. They are organized into four groups,

comprising channel jamming, malicious code, injection attacks, and replay

of messages.

Channel jamming is the term used to describe the intentional actions

of jamming, blocking, disrupting, or interfering with the transmission of

authorized wireless communications by decreasing the Signal-to-Inference-

Plus-Noise Ratio (SINR). Channel jamming is a kind of DoS attack. These

attacks aim to make smart grid resources inaccessible for internal and

external users. The attack targets are various layers of the network and

applications, such as physical and data links.

Injection attacks are a wide range of attack vectors that enable an adver-

sary to inject untrusted input data or code to a software system, mainly in

the end-point systems. Such an attack is actualized by an interpreter as part

of a command or query that changes the way the program is executed. The

two variants of injection attacks are malicious code injection and malformed

data injection.

Malicious code means any code in any component of a program or

script that has an adverse impact, security violation, or causes destruction
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of a smart grid system. Depending on the installed software, these can

threaten a smart grid in the functioning of all associated IT segments.

Malicious code consists of numerous threats, such as exploit kits, worms,

trojans, backdoor/trapdoor, service spoofing, and ICMP-flooding attacks.

For the framework implementation, the attack simulations on a smart

grid system have been conducted by altering the input values of GridLAB-D

and ns-3 simulators. The configuration of the attack pattern library with

the variables that need to be changed to simulate an attack is summarized

in Table 4.2. Note that different types of attacks might affect the same

variables, yielding multiple possibilities for diagnosis.

4.2.4 Co-simulation Management

The simulation is ready to run after the smart grid model, application,

attack category, and type of attack have been selected. The model manager

module calls the preprocessing module, and accesses the attack pattern

library and network model. At this time, the environment is configured,

and the simulation can be executed. Three terminal windows are opened,

one for the ns-3 process, one for the GridLAB-D operation, and the last

for the fncs broker. Once the simulation finishes, it is possible to track what

occurred in the system, how the attacks disrupted the network activity, which

components were compromised, and what the consequences of the attack are,

all in the same application, which is a key contribution of our GridAttackSim

approach.

Data input and output are an essential part of any simulation, and

simulations with the combination of FNCS, GridLAB-D, and ns-3 are no

exception. After finishing the simulation, the outputs in the CSV (Comma-

Separated Values) format can be loaded. It is a basic file format used

mostly for storing tabular data, for example, a database or spreadsheet.

Furthermore, they are the primary method for recording simulation results.

The framework uses the recorder and collector objects of the GridLAB-D

tape module to create aggregated values over the entire model or a time-

series of selected values. The outputs can include but are not limited to
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Table 4.2: The configuration of the attack pattern library

No Type Variants Assets Affected Target Components Variables Affected Normal Value New Value Variables Description
data_rate_cluster 10 Mbps 1 Mbps

delay_cluster 3 ms 100 ms 

data_rate_peer_to_peer 4 Mbps 0.5 Mbps

delay_peer_to_peer 3 ms 100 ms 

data_rate_cluster 10 Mbps 1 Mbps

delay_cluster 3 ms 100 ms 

data_rate_peer_to_peer 4 Mbps 0.5 Mbps

delay_peer_to_peer 3 ms 100 ms 

4 Cluster delay_cluster 3ms 400 ms

5 Peer-to-Peer delay_peer_to_peer 3 ms 400 ms

6 max_capacity_reference_bid_quantity 150 KW 250 KW
High Maximum 
Capacity Bid 

7 max_capacity_reference_bid_quantity 150 KW 50 KW
Low Maximum Capacity 
Bid 

8
End-point 
systems

End-point system 
applications
Controller inside the 
house

comfort_level 1 0.1 Comfort Level

proxy_clear_price 0.042676 3.8

9 proxy_price_cap 3.8 7.6

1

2

3

Attack Pattern Configuration

Channel jamming Distributed denial of 
service

Communication 
networks

Malicious code
Exploit kits
Virus/Worms/Trojans/
Malware

End-point 
systems

Control Center Price

DNS attacks Data Rate/Delay

Cluster

Cluster and Peer-to-
Peer Combination

Peer-to-Peer

Data Rate/Delay

Injection attacks

Malicious code 
injection
Malformed data 
injection

Control systems 
Control systems (The 
Auction System) 

DNS flood attack
Communication 
networks
Node
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the power load, clearing price, clearing quantity, and the voltages of a single

node or the whole system. By using the friendly GUI, users can select the

simulation outputs and then visualize the results. This function enables the

users to quickly make a visual comparison between the regular operation and

attack scenarios. Therefore, the behavior, impact, and consequence of the

attacks can be easily recognized. Currently, line graphs and bar graphs are

supported.

4.2.5 Selected Results

In this section, the results achieved in our experiments are demonstrated.

The study analyzed the consequences of the simulated cyber-attacks on the

energy providers and their customers in terms of financial and operational

losses, total loads, clearing price, and clearing quantity. The principal objec-

tive of our research is to introduce a smart grid co-simulation environment

that can be extended to simulate and analyze the various type of attacks

and analyze their impact. Note that developers and smart grid researchers

interested in attack simulation can easily extend the proposed framework

with additional attack pattern libraries and simulation scenarios. However,

only some selected results are discussed in this paper due to the scope of this

study. In addition, the results of the simple test feeder, which is the smallest

in this study, and the IEEE 13 node test feeder, which is the largest, are

shown. The attack types selected, channel jamming and injection attack,

are two of the most common attack types on the smart grid system defined

by ENISA. Indeed, the co-simulation results in both metrics, including the

total real-time load, current market-clearing price, current market-clearing

quantity, and economic impact, are visually significant, which strongly

supports cyber-security training for IT experts, cyber-security professionals,

and even advanced/interested end-users.

In our study, the co-simulator uses FNCS, GridLAB-D, and ns-3 on Intel

Core i7 CPU 3.1 GHz with a Linux 64-bit operating system and 16 GB

DDR3 RAM to carry out the simulation. Based on the models mentioned in

Section 4.2.1, we consider two typical case studies with the simple test feeder
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and IEEE 13 Node. In these models, the default data rate for point-to-point

connectivity and local area networks are 4 Mbps and 10 Gbps, respectively.

Additionally, the default transmission delays are set as three milliseconds for

both. According to the available climate databases, a one-day simulation

period from 00:00:00 21 July 2009 until 00:00:00 22 July 2009 was run

through, using the weather information from the National Solar Radiation

Database (NSRDB) of Seattle, WA, USA.

4.2.5.1 Channel Jamming Attack

The simple test feeder model is used in this case study. The GridLAB-D

model comprises 255 houses participating in a transactive market. Accord-

ingly, the ns-3 model contains a 250-node network divided into groups of 20.

The default price cap and maximum capacity bid quantity are set as $3.78

and 1500 kW, respectively.

In this circumstance, we assumed that, by directly transmitting an inter-

ference signal, an adversary could completely block wireless communications,

disturbing the normal operation, leading to execution problems, or even

disrupting the control system. The attack was simulated by increasing the

communication delays until the total load, cleared market price, and cleared

quantity had been significantly affected. Eventually, the data rate of point-

to-point connectivity and local area networks were sequentially adjusted from

4 Mbps and 10 Gbps to 0.5 Mbps and 1 Gbps, while the delay values were

increased from 3 ms to 100 ms. The purpose of this scenario is not only

to demonstrate the consequences of a chanel jamming attack but also to

illustrate how a dysfunctional network system affects the energy market.

Figure 4.5 shows the results obtained in a one-day simulation for normal

operation and the channel jamming attack scenarios. In Figure 4.5a, we

can see the total real-time load of the system collected at the substation’s

meter. Figure 4.5b presents the current market-clearing quantity, while the

current market-clearing price is demonstrated in Figure 4.5c. Figure 4.5d

presents the economic impact of the attack. Although the clearing quantity

curves are identical, the clearing price and the total load curves are partly
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distinct from normal and attack situations. The peak hours are noticed

from around 16:00 until around midnight. At approximately 16:00, the total

feeder load exceeds the market’s pre-defined maximum capacity bid quantity.

As a result, the market-clearing price has been increased to flatten energy

consumption at the capacity limit as well as encourage more DR. Since there

is more energy demand, the market-clearing price jumps to the price cap

3.8$/kWh, significantly affecting the cleared price for nearly 5 hours. At

around 22:00, the clearing price curve under the channel jamming attack

suddenly dropped to around $1, then slowly decreased to low prices. These

low prices encouraged customers to purchase more energy. Consequently, the

total load curve due to the channel jamming attack fluctuated and reached

over 1600 kW. Note that, in a normal operation scenario, the clearing price

and total load curves only decrease after the peak period.

These differences are caused by a significant number of delayed bids,

especially re-bids later in the market interval. Since more packets have

been lost under the simulated channel jamming attack, the delivery ratio

of packets is statistically insignificant. If the average package delivery ratio

in the normal scenario is 100%, this channel jamming attack decreases 20.14%

of the typical package delivery ratio. The lack of real-time data transmission

between end-users and market controllers leads to a market malfunction.

Because the interval re-bids do not fully arrive at the auction system before

the clearing market process, the system uses out-of-date data to calculate

the bid curve. While this failure does not affect the result in most market

clearings, at 22:00, the issue is sufficiently large to influence the results due

to the continuously stressed system and high price. Thus, the performance

of DR and DP is not obvious.

As shown in Figure 4.5d, this circumstance affords end-users significant

profit; nevertheless, energy suppliers suffer considerable losses. Considering

that the energy consumption and bill amount in normal operation are 100%,

this attack can provoke more than 3.2% of energy consumption and a financial

loss of 2.9% to the electric utility in a short period of only 24 h.

A promising option to avoid channel jamming attacks is the use of

jamming mitigation technologies, for instance, the identification of trigger
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Figure 4.5: Channel jamming attack with the simple test feeder: (a) total load, (b) current market-clearing quantity,
(c) current market-clearing price, and (d) economic impact of the attack.
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nodes, as discussed in [59].

4.2.5.2 Injection Attack

The IEEE 13 node test feeder model is applied in this case study. For the

GridLAB-D model, there are 73 houses participating in a transactive market.

Therefore, there are also 73 network nodes in the ns-3 model. These nodes

are divided into groups of 20. The pre-defined price cap is $3.78, and the

maximum capacity bid quantity is set as 150 kW.

The false data injection attack was recently identified as a notable type

of cyber attack against large-scale smart grid measurement and monitoring

systems. To support their final goal of misleading the system operation

and control centers, the adversaries exploit system vulnerabilities then inject

malicious code to manipulate the data collected from the network. In this

simulation, we assumed that the injected malicious code in the control center

of the auction system could modify the maximum bid quantity from 150 kW

to lower (50 kW) or higher (200 kW) values. In contrast, the default data

rate and delay values are not affected in this scenario. By analyzing the

total energy used, market-clearing quantity, and market-clearing price, the

experiment aimed to evaluate the efficiency of the dynamic pricing as well as

the performance of the DR application under the cybersecurity attack.

The results of normal operation and injection attack in a 24 h simulation,

including (a) the total load, (b) market-clearing quantity, (c) market-clearing

price, and (d) economic impact, are presented in Figure 4.6. The attack

schedule was set as specified by the peak hours, which are from 14:00 to

21:00. Only the window of interest, including one hour before and after the

attack period, is shown.

More electricity is supplied to the market by injecting a fake 200 kW

maximum capacity bid. Hence, the price is comfortable most of the time

except for the two-hour rush period starting from 18:00 when the clearing

price suddenly jumped up to the price cap. As a result, consumers can

afford to use more energy even during the rush period without being overly

concerned about their monthly bills. If the energy consumption and bill
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Figure 4.6: Injection attack with IEEE 13 node: (a) total load, (b) current market-clearing quantity, (c) current
market-clearing price, and (d) economic impact of the attack.
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amount in the normal scenario are 100%, as shown in Figure 4.6d, 107.6%

of energy was consumed in this attack. Consequently, the highest total load

was 210 kW in this scenario. However, the end-users paid just 18.1% of the

bill amount, which means the power company dropped 81.9% of their profit

in only a 9-hour period of the window of interest, from 13:00 to 22:00. This

is the most profitable scenario for the end-user.

By injecting a false, small maximum capacity bid at 50 kW, less electricity

is provided to the auction market. Consequently, the clearing price immedi-

ately hit the price cap at the beginning of the attack period and maintained

the $3.78 value until it finished. Unfortunately, the efforts of end-users to

adapt their electricity usage have limited impact, and DR function is less

efficient. Therefore, the total energy consumption in this attack is 3.2%

higher than the normal scenario, as depicted in Figure 4.6d. The highest

total load is nearly 200 kW. This is the most severe economic impact for the

end-user, with a 153.1% bill amount increase when compared to the normal

scenario.

Therefore, to achieve a win-win situation between the energy suppliers

and end-users, injection attacks should be considered and prevented. Various

technologies to detect and prevent injection attacks are discussed in [60–65].

4.3 Summary

Based on the general smart grid cybersecurity experimentation’s co-simulation

approach, we designed the architecture of GridAttackSim (Cyber Attack

Simulation for Smart Grids). The details of GridAttackSim’s six compo-

nents, consisting of the preprocessing module, attack pattern library, ns-3,

GridLAB-D, FNCS broker, and model manager, were described. Both the

communication network and power grid components are integrated into the

designed architecture of GridAttackSim. Moreover, it enables the simulation

of various attack types.

We carried out a comprehensive survey of the current approaches in

this area and then introduced GridAttackSim, a smart grid cybersecurity

co-simulation framework. Our approach features a stable, user-friendly
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interface (GUI), an extendable set of attack patterns, and a powerful attack

simulation tool with an attack schedule resulting in visualization functions.

Moreover, case studies with and IEEE 13 node and the simple test feeders

were performed to validate GridAttackSim. Our proposed framework allows

different smart grid metrics to be compared between normal operation and

attack scenarios, such as the energy consumption, current market-clearing

quantity, current market-clearing price, economic impact of an attack, and

bill amount. Therefore, we expect that GridAttackSim can be utilized by

both cybersecurity professionals and IT experts to analyze the smart grid

attack consequences. In addition, it can be applied for cybersecurity training.

The network model design is the primary issue faced in GridAttackSim.

The basic network model applied in our case study should not be treated

as the only solution that can be created using ns-3 since it is a robust

network simulator. The current framework also supports three types of

test feeder, including a test system of the IEEE 13 node test feeder model.

The maximum number of houses (or dynamic loads) can be up to 1000

houses. GridAttackSim simulates a combined CPS model where both the

communication and power system models are jointly solved and synchronized

at every iteration. Hence, for this 1000-house model, the proposed framework

is doing an adequate amount of computational tasks. Since GridAttackSim

is quite flexible; extending the work with a bigger network is also possible.
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Chapter 5

GridAttackAnalyzer: Cyber At-

tack Analysis for Smart Grids

5.1 GridAttackAnalyzer Architecture

Based on an attack analysis approach where it is possible to intercorporate

the different smart grid components and enable the ability to analyze different

cyberattack scenarios, we introduce GridAttackAnalyzer - Cyber Attack

Analysis Framework for Smart Grids, which is illustrated in Figure 5.1.

GridAttackAnalyzer is centered on eight primary components: the database,

smart grid model, security settings, database manager, attack analysis

manager, security model generator, security model evaluator, and output.

5.1.1 Input

GridAttackAnalyzer allows attacks to be investigated and their impact to be

evaluated. By using the smart grid database, these attacks are instantiated.

The database structure is provided in Table 5.1. It is organized by using

a structured JSON-format file. Such a database is the input to enable

reconfiguration to examine a wide variety of attacks on the same smart

grid architecture. This searchable database comprises three sub-modules,

including the smart grid model, smart grid devices, and CVE list.

There are two essential components of a smart grid system, including the

power grid and network models. Various research has been completed to

model each smart grid component. On the one hand, several distribution

test feeders, which vary in complexity, scale, and control data, are developed
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Figure 5.1: The architecture of GridAttackAnalyzer.

in recent decades. Each test feeder contains several residential loads or

houses. In order to enhance the attack analysis, these houses are clustered

into smaller areas. This information is stored in the database. On the other

hand, numerous network architectural models were designed for the smart

grid system. The connections between smart grid devices form the network

model. Since GridAttackAnalyzer aims to allow the users to optimize the

network model, these connections are not physically stored in the database.

The network model is configured later by users.

Smart grids involve various energy measures and operations, for instance,
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Table 5.1: The database structure of GridAttackAnalyzer.

Sub-Module Object Description
ID ID of the Smart Grid Model
list_name Name of the Smart Grid Model
streets_and_houses List of the streets and the corresponding houses
description Smart Grid Model description
ID ID of the Smart Grid device
device_name Name of the Smart Grid device
CVE_list The CVE list of the Smart Grid device
group Group of the device (HAN, NAN, SCADA)
description Smart Grid device description
ID ID of the CVE
description CVE description
CVSS_Base_Score_2.0 CVSS Base Score 2.0
Impact_Subscore Impact Subscore
Exploitability_Subscore Exploitability Subscore

Smart Grid Model

Smart Grid Device

CVE

smart meters, smart appliances, and Supervisory Control and Data Ac-

quisition (SCADA). A smart meter or a smart electric energy meter is an

equipment that measures electrical data, for example, current, electricity

consumption, power factor, and voltage levels. Smart meters enhance the

visibility of energy usage, power consumption behavior, and customer billing.

Besides, it enables various smart grid applications, for instance, dynamic

pricing and demand response. Smart appliances have the ability to respond

to the dynamic pricing and demand response signals. These applications add

additional value for smart grid appliances through intelligent control, power

management, and network technologies. In addition, one feature of designing

the smart grid’s capability is incorporating SCADA systems to allow the

utilities to track and control network equipment remotely. The information

of these smart meters, smart appliances, and SCADA devices are organized

in the database. The structure includes ID, name of the device, the CVE list

of the device, group, and description.
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5.1.2 Processing

Each of the smart grid devices has a corresponding CVE List. The list is

collected from the National Vulnerability Database (NVD) website [66] by

searching the smart grid device’s name. Each CVE is stored in the database

under the components of the CVE List sub-module.

The database manager module is the interface that interacts with the

end-users, attack analysis manager, and database to capture and analyze an

attack. It first obtains data from the database, then enables the users to

select the power grid and network model from the smart grid model module,

attack entry point, attack target, and vulnerability scores from the security

settings module. The information is then transmitted to the attack analysis

manager module to start the processing stage.

5.1.2.1 Attack Analysis Manager

The attack analysis manager, which is in the central part of the smart grid

attack analysis system, serves as the engine of GridAttackAnalyzer. On the

one hand, it implements the attack analysis’s initialization, configuring the

network model, the power grid topology, and the security setting. On the

other hand, it manages the composition of the attack analysis scenarios and

controls the attack model generator and attack model evaluator’s execution.

When analyzing a scenario, the attack analysis manager module uses the

data from the data manager module to prepare the analysis environment.

Then, the data are transferred to the attack model generator for the next

steps.

5.1.2.2 Security Metrics Calculation

The security metrics are calculated using the security model generator and

security model evaluator modules inherited from the research in [41]. When

the network is constructed, the security model generator module takes the

network topology and vulnerability information as inputs to compute all

possible attack paths in the smart grid network.
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In this approach, a set of nodes is defined as T . There is an attack tree

att = (A,B, c, g, root) for each node t ∈ T . Attack success probability (p) is

the value to measure the probability of success when an attacker is attacking

the target. At the level of the node, p is measured by Eq. (5.1) for each

inner node of an attack tree. The value of attack success probability at the

node t ∈ T is the attack success probability value of the root of the attack

tree corresponding to the node by Eq. (5.2)

At the path level, the value of attack success probability of an attack path

is also measured by Eq. (5.3). This value is the metric of the probability

that an attacker can compromise the target over the attack path.

pb =

{
Πa∈c(b)pa; b ∈ B, g(b) ∈ AND

1− Πa∈c(b)(1− pa); b ∈ B, g(b) = OR
(5.1)

pt = proot (5.2)

pap =
∏
t∈ap

pt; ap ∈ AP (5.3)

Attack cost (ac) is the value of measuring the cost of an attack spent for

successfully attacking a target. At the level of node, the values of attack

cost are calculated by Eq. (5.4) and Eq. (5.5) for each inner node and node

t ∈ T of an attack tree. At the path level, the measure is the cost spent

by an attacker to compromise the target over the attack path. This cost is

calculated by Eq. (5.6).

At the network level, the measure is the minimum cost for an attacker

compromising the target in the company of all possible paths. The cost of

network level is given by Eq. (5.7).

acb =

{ ∑
a∈c(b)

aca; b ∈ B, g(b) ∈ AND

min
a∈c(b)

aca; b ∈ B, g(b) = OR
(5.4)

act = acroot (5.5)

acap =
∑
t∈ap

act, ap ∈ AP (5.6)
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AC = min
ap∈AP

acap (5.7)

Similarly, the attack impact (aim) value of an attack path is computed by

taking the sum of the attack values of each node. Then, at the network-level,

the attack impact is the maximum value among all potential paths. The aim

values are calculated by the following formulas:

aimb =

{ ∑
a∈c(b)

aima; b ∈ B, g(b) ∈ AND

max
a∈c(b)

aima; b ∈ B, g(b) = OR
(5.8)

aimt = aimroot (5.9)

aimap =
∑
t∈ap

aimt, ap ∈ AP (5.10)

AIM = max
ap∈AP

aimap (5.11)

The risk on attack paths (r) is defined as the expected value of the impact

on an attack path. It is computed as the summation of the product of the

probability of attack success prt and the amount of damage aimt h belonging

to an attack path ap, as following:

rb =

{ ∑
a∈c(b)

pra × aima; b ∈ B, g(b) ∈ AND

max
a∈c(b)

pra × aima; b ∈ B, g(b) = OR
(5.12)

rt = rroot (5.13)

rap =
∑
t∈ap

prt × aimt, ap ∈ AP (5.14)

R = max
ap∈AP

rap (5.15)

By using the security metrics, the security evaluator can perform three

functions. The first one is to output the analysis results directly. The second

one is to the other to generate and export a CSV-format output file. The

final function is to generate the AG automatically. In addition, attack paths

are classified based on attack success probability and matching into five-level:
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rare, unlikely, possible, likely, and almost certain.

5.1.3 Output

Data input and output are essential parts of any analysis system, and our

attack analysis on the smart grid is no exception. AG and security metrics,

including attack success probability, attack cost, attack impact, attack risk,

likelihood, are the outputs of GridAttackAnalyzer. After finishing the attack

analysis process, the outputs in the CSV format can be loaded. It is a simple

file format used mainly to store tabular data, for instance, a spreadsheet or

a database. By using the user-friendly GUI, the analytical outputs can be

selected and visualized. GridAttackAnalyzer allows users to generate AG

automatically. In addition, the number of attack paths is visualized based

on the likelihood classification. This function facilitates the users to make

a visual comparison between the attack scenarios quickly. Consequently,

the characteristics of the attacks can be easily distinguished. Currently, bar

graphs are supported.

5.2 Implementation and Selected Results

We discuss the proposed framework’s proof-of-concept prototype in this

section. Using a Python binding to the Tk GUI toolkit named Tkinter [50],

the previous section’s architecture has been applied to develop a smart grid

attack analysis desktop application. The interface GridAttackAnalyzer is

depicted in Figure 5.2.

5.2.1 Smart Grid Model

Among these test feeders, IEEE feeders [67] and PNNL taxonomy feeders [68]

are widely accepted in the smart grid research community. On the other

hand, numerous network architectural models were designed for the smart

grid system [69], [70]. The IEEE feeders have been applied in our previous

research in [18] and [71]. Therefore, the selected PNNL taxonomy feeders for
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Figure 5.2: GridAttackAnalyzer desktop application (GUI)
.

the power grid and network models applied for the smart grid case study are

discussed in the scope of this research.

5.2.1.1 Power Grid Model

The increasing integration of smart grid technologies in the U.S. electricity

networks highlights the significance of test feeders’ availability, which allows

us to study the impact of attacks for such cyber-physical models.

Due to its large size and the various utilities, the existing electricity grids

in the U.S. present a wide range of topologies and equipment. Therefore,

test feeders should reflect these differences based on factors, for instance,

the voltage level and climate region. To respond to this demand, PNNL

introduced a set of 24-node radial distribution test feeders for taxonomy
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representing the continental region of the U.S. in 2009. These distribution

test feeders have been developed with a clustering algorithm comprising of

17 different utilities and their 575 current feeders. The continental region

was divided into five climate zones to perform this categorization, where 35

associated statistical and electrical characteristics were investigated.

Among 24 prototypical feeders, the advantage of R4-12.47-2 is that it

represents a combination of a moderately populated urban area with a

lightly populated suburban area. Further, the less populous area is mainly

comprised of single-family residences, which is ideal for our case study. The

power grid infrastructure is shown in Figure 5.3. There are 352 residential

houses in the system. Each house was extended by a smart meter to collect

electricity consumption data. In order to enhance the performance control,

these houses are clustered into five smaller areas, namely, A, B, C, D, and

E.

5.2.1.2 Network Model

The infrastructure of smart grid is divided into three major communication

networks, namely Home Area Network (HAN), Neighbor Area Network

(NAN), and Wide Area Network (WAN) [72]. The research in [73] introduced

two distinct types of HAN architecture to represent its relationship with the

utility. In the first architecture, the smart meter monitors all the house

appliances to manage the grid. The disadvantage of this architecture is

that all devices have to communicate through the same networking protocol.

Therefore, the second architecture in which all the devices connect to the

smart meter through a gateway is introduced to deal with the difficulty of

multiple communication protocols.

We show the smart grid communication network with the gateway based

on the selected structure of the power grid in Figure 5.4. Note that the

model was simplified for the purposes of our case study. The household in the

network model reflects each house in the power grid model. Moreover, these

households are clustered into smaller areas in the same way as the residential

houses are clustered in the power grid model. Each house is equipped with
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Figure 5.3: The Pacific Northwest National Laboratory (PNNL) taxonomy
feeders - R4-12.47-2 [2].

.

five smart appliances, including a smart TV, a smart thermostat, a robot

vacuum cleaner, a smart light, and an IP camera. The gateway handles

incoming messages from the smart devices and forwards those relevant to

the smart meter. Then, these data are transmitted from the smart meter to

the area concentrator. Five area concentrators are corresponding with five

areas A, B, C, D, E. They receive the data, then transfers it to the central

concentrator. Finally, these data are gathered at the SCADA system.

Each device or node in the system is given an ID that follows a regular

pattern including device name, area, and house ID. For instance, the ID

of a smart TV belongs to house number 1 of area A is denoted as TVA1 .

Similarly, we have ThermostatA1 , CleanerA1 , LightA1 , CamA1 , GatewayA1 ,

and MeterA1 as the IDs of the smart appliances of the area A’s first house. In
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Figure 5.4: Simplified network model (part of smart grid) with gateway used
in our case study.

addition, ConcentratorA, ConcentratorB, ConcentratorC , ConcentratorD,

and ConcentratorE represent the concentrators for each area A, B, C, D, and

E, respectively. FEP , Communication Server, ICCP , EMS/DRP serve

as the IDs for the FEP, Communications, ICCP, and EMS/DRP servers in

the defined smart grid network model.

5.2.2 Devices and Vulnerabilities

A vulnerability is a weakness, flaw, or error detected inside a security system

that can be taken advantage of by nefarious actors to compromise a secure

network. By using sequences of commands, pieces of software, or even open-

source exploit kits, hackers can exploit which vulnerabilities can be leveraged

for malicious activity. In the considered circumstance, we assume that the

CVE list shown in Table 5.2 was the vulnerabilities exploited by attackers.

The hackers can use any HAN device, including smart tv, smart thermostats,

robot vacuum cleaners, smart lights, and IP cameras, one by one or even all

of them as the entry points to start an attack. Additionally, some smart grid
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Table 5.2: Short CVE list for smart grid devices

No Smart Devices CVE Lists

1 Smart TV
CVE-2018-13989, CVE-2019-9871,

CVE-2019-11336, CVE-2019-12477,
CVE-2020-9264

2 Smart Thermostat CVE-2018-11315, CVE-2013-4860

3 Smart Vacuum Cleaner
CVE-2018-10987, CVE-2018-17177,
CVE-2018-20785, CVE-2019-12821,

CVE-2019-12820

4 Smart Light
CVE-2020-6007, CVE-2019-18980,

CVE-2017-14797

5 IP Camera
CVE-2020-3110, CVE-2020-11949,

CVE-2020-11623

6 Gateway
CVE-2018-3911, CVE-2018-3907,
CVE-2018-3909, CVE-2018-3902,
CVE-2018-3879, CVE-2018-3880

7 Smart Meter CVE-2017-9944

8 Concentrator CVE-2020-1638

9 FEP
CVE-2019-6810, CVE-2018-4838,

CVE-2019-14813

10 ICCP Server CVE-2015-6574, CVE-2006-0059

11 Communication Server
CVE-2020-9391, CVE-2019-6454, 

CVE-2019-14813

12 EMS/DRP Server CVE-2020-9391, CVE-2019-6454, 
CVE-2019-14813

devices in the substations and the SCADA system can be used as the entry

points for an attack.

5.2.3 Attack Scenarios

We assumed that nearly 2% of 352 residential houses in the system, which

are all of the smart devices inside seven households, contain vulnerabilities.

In detail, there are two houses in each area A and B, as well as one house in
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each area C, D, and E, that have vulnerabilities.

Four attack scenarios were considered in this research:

1. Single-entry attack model: in this model, one type of device has

vulnerabilities. Therefore, attackers can only exploit this kind of device

inside the infected houses to conduct an attack. For instance, all

smart TVs of seven selected houses contain different types of CVEs.

Consequently, these smart TVs can be exploited by attackers as the

entry points and compromised to perform further attacks. This basic

scenario is used to introduce the users to the system’s functions.

2. Multiple-entry attack model: in this model, all types of devices in

the seven selected houses have vulnerabilities. Accordingly, attackers

can potentially exploit all of these devices to carry out an intrusion.

This scenario can be considered as combining all available devices in

the aforementioned single-entry attacker model. This scenario aims to

equip the researchers with attack analysis ability.

3. Multiple-entry attack model with patch: in this model, patching is

used to fix the vulnerabilities in a specific type of device. This scenario

extends the multiple-entry attacker model by integrating the patching

as a defense strategy. For example, all vulnerabilities of all smart TVs

inside the system have been fixed. Hence, they can not be used as the

entry points by the attacker to conduct the attack. This scenario is

applied to introduce the users about the patching function.

4. Massive attack model: this circumstance extends the multiple-entry

attacker model by expanding the attack target to the SCADA system’s

core. This scenario aims to demonstrate the massive attack analysis

ability of the system. The users can learn how a massive attack happens

and what the consequences are.

A Front End Processor (FEP) is a computing device that interfaces to

SCADA system a number of networks. For practical reasons such as avoiding

the necessity for a new pair of modems, FEP can be considered a central

node in the network model. On the one hand, its function is to establish

a solid communication link from HAN and NAN devices, for instance, the
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street concentrators and substations. On the other hand, it ensures the

connection with the SCADA system. FEP aims to offload the SCADA system

from transmitting and receiving data, managing the peripheral devices, error

correction and error detection, and packet assembly and disassembly.

Since the power system goes through numerous operating states such

as normal, alert, emergency, and restorative, EMS (Energy Management

System) is designed to maintain the capability of the system by monitoring

its behavior and making decisions to get it back to normal operation. Further,

EMS also supports the demand response (DRP) application. The operation

of EMS relies on data acquired by SCADA. It is on the top level of our

applied network model.

The attack goal of scenarios from 1 to 3 is to control the FEP, while

EMS/DRP is targeted in the final circumstance. If a smart grid device has

more than one vulnerability, attackers can randomly select one vulnerability

to conduct the attack.

Note that GridAttackAnalyzer enables users to select the smart grid

devices to form a network model, as well as decide entry points and targets

freely. Therefore, considered attack scenarios are not the only solutions.

The system allows researchers to create new experimentation content, add

and modify CVE values easily. Hence, more attack scenarios can be an-

alyzed. Additionally, more vulnerability rates can be selected and tested.

Fortunately, the result at a 2% rate is visually significant.

5.2.4 Attack Analysis Running and Results Visualiza-

tion

To start an attack analysis session, a user selects a smart grid model. There

is a “Show” button next to the smart grid model dropbox to visualize the

smart grid model structure. Next, smart grid connection and CVE selection

types should be selected. Currently, two smart meter connection types,

including “via a gateway” and “direct connection”, as well as two CVE

selection types, namely, “manually” and “automatically”, are supported.

Devices and the corresponding vulnerability should be selected by clicking
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Figure 5.5: An example of CVE information.

on their checkboxes. An “Info” button is located next to a corresponding

CVE to show the CVE information, including CVE description, CVSS Base

Score v2.0, Impact Subscore, and Exploitability Subscore. An example of

CVE information is shown in Figure 5.5.

After the smart grid model, smart meter connection, CVE selection type,

and devices and vulnerability are defined, the system is ready to create the

source file by clicking on the “Generate File” button. This source file is a

CSV-format file that contains all of the necessary data for an attack analysis

session. GridAttackAnalyzer enables users to modify this source file before

starting an analysis session by two options. The first option is to open the

CSV-format file and manually to change the data. This option allows users

to modify the source file freely. However, it is sometimes time-consuming and

error-prone. Another option is selecting a specific IoT device, then update

its CVE information. By using this option, the error-prone issue can be

eliminated.

When the source file is ready and the entry points and targets are selected,
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the attack analysis session is ready to be started by clicking on the “Run”

button. After finishing the attack analysis process, the outputs are stored in

the CSV-format files. On the one hand, the attack graph source file, which

contains the information of all attack paths, can be accessed by clicking on

the “Graph Source File” button. Plus, all paths can be gathered to form

an attack graph and visualized by selecting “Attack Graph” button. On the

other hand, the calculated security metrics are also archived in a CSV-format

file. It can be accessed by selecting the “Security Metrics” button. Finally,

these security metrics can be visualized for the result comparison between

different attack scenarios. Currently, bar charts are supported. Visualization

examples are discussed in the next section.

5.2.5 Selected Results

By applying the mathematical formulas discussed in subsection 5.1.2.2, we

calculate the security metrics values in node, attack path, and network level.

These security metrics are the attack success probability (p), attack cost

(ac), attack impact (aim), and attack risk (r). Based on the range of p

adapted from the research at [3] and [4], the attack paths are classified into

five categories, including rare (0.0 ≤ p ≤ 0.19), unlikely (0.2 ≤ p ≤ 0.39),

possible (0.4 ≤ p ≤ 0.59), likely (0.6 ≤ p ≤ 0.79), and almost certain (0.8 ≤
p ≤ 1) paths. These categories are summarized in Table 5.4. The network

level analysis results are shown in Table 5.3. Accordingly, the scenarios from

one to five denote the results for the single-entry attack model, scenario six

represents the results for the multiple-entry attack model, the scenarios from

seven to eight for results from multiple-entry attack model with patch, and

the last scenario represents the massive attack on the smart grid system.

5.2.5.1 Single-entry Attack Model

We can see that attacking the smart TVs and smart lights have the maximum

success probability (p) from the metrics values 1. However, the attack cost

(ac) caused by compromising the smart lights is higher than for the smart

TVs. Accordingly, there are 16 attack paths, which contain 8 almost certain

70



T
ab

le
5.

3:
A

tt
ac

k
an

al
y
si

s
re

su
lt

s

p
c

ai
m

r
To

ta
l

Ra
re

U
nl

ik
el

y
Po

ss
ib

le
Li

ke
ly

Al
m

os
t 

Ce
rt

ai
n

1
Sm

ar
t

TV
N

o
1

21
.7

33
.9

33
.9

16
0

3
0

5
8

2
Sm

ar
t

Th
er

m
os

ta
t

N
o

0.
65

19
.7

33
.9

22
.0

35
16

0
2

8
6

0

3
Ro

bo
t

Va
cu

um
Cl

ea
ne

r
N

o
0.

86
21

.7
33

.9
29

.1
54

16
1

6
2

4
3

4
Sm

ar
t

Li
gh

t
N

o
1

21
.7

30
.3

30
.3

16
1

9
2

0
4

5
IP

Ca
m

er
a

N
o

0.
8

19
.7

33
.9

27
.1

2
16

0
7

2
5

2

6
Al

l
N

o
1

19
.7

33
.9

33
.9

80
2

27
14

20
17

7
Al

l
Sm

ar
t T

V
1

19
.7

33
.9

33
.9

64
2

24
14

15
9

8
Al

l
Sm

ar
t T

V
an

d
Sm

ar
t L

ig
ht

0.
86

19
.7

33
.9

29
.1

54
48

1
15

12
15

5

9*
Al

l
N

o
0.

39
22

.0
9

36
.2

9
14

.1
53

12
5

66
59

0
0

0

* 
M

as
si

ve
 A

tt
ac

k

N
um

be
r o

f P
at

hs
 

Sc
en

ar
io

En
tr

y 
Po

in
t

Pa
tc

h
Se

cu
rit

y 
M

et
ric

s

71



Likelihood Probability Ranges
(p)

Rare 0.0–0.19

Unlikely 0.2–0.39

Possible 0.4–0.59

Likely 0.6–0.79
Almost Certain 0.8–1.0

Table 5.4: The classification of attack paths based on the probability ranges
adapted from [3] and [4].

paths, for attackers to reach the FEP via the smart TVs’ entry points.

Consequently, intruders are more likely to choose smart TVs as entry points.

At the network level, attack cost is the minimum cost, while attack impact

is the maximum loss caused by an intruder to compromise the target among

all potential paths. Therefore, an ideal path for attackers to compromise

the target may not exist even in the single-entry attacker model. As an

evidence, the path from TVA2 to FEP , which is shown in the following, has

the minimum attack cost at 21.7, maximum attack success probability at 1,

and maximum attack risk (r) and impact (aim) at 33.9:

• Attackers → TVA2 → GatewayA2 → MeterA2 → ConcentratorA →
FEP

However, the following path from TVB1 to FEP has the maximum impact

at 33.9 but lower attack success probability:

• Attackers → TVB1 → GatewayB1 → MeterB1 → ConcentratorB →
FEP

After analyzing the smart grid system, attackers can determine which

paths to hack based on their intention. This knowledge can be used by

security experts to protect the system against an attack.
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5.2.5.2 Multiple-entry Attack Model

By providing more entry devices, attackers possess more paths to conduct

an attack. It is more likely that the smart grid system will be hacked since

among 80 paths, there are 17 almost certain, 20 likely, and 14 possible paths,

respectively. In this scenario, attackers need to spend less cost at 19.7.

However, the attack impact and attack risk are highest at 33.9. Similarly,

smart TVs and smart lights should be protected first in order to prevent the

attackers from breaking into the system.

5.2.5.3 Multiple-entry Attack Model with Patch

We modify the vulnerability information for smart TVs or both smart TVs

and smart lights separately.

Since the potential attack paths are caused by both smart TVs and smart

lights, the impact of patch function on smart TVs is not obvious. The attack

success probability, attack impact, and attack risk remain the same as the

multiple-entry attacker model. However, the total paths have been decreased.

The almost certain paths are modified from 17 to 9.

By eliminating the vulnerabilities of both smart TVs and smart lights,

we decrease the attack success probability and attack risk. However, the

attack cost and attack impact have not changed. This is due to the smart

thermostats and IP cameras, which cost attackers less effort to compromise

but can cause more significant consequences. The number of almost certain

paths has been reduced to 5. Therefore, based on the analysis results, it is

evident that protecting both smart TVs and smart lights is more effective

than protecting either of them.

5.2.5.4 Massive Attack Model

In this scenario, attackers can use all of the HAN devices to start an

attack. The target is the EMS/DRP server. Since more entry devices are

provided, there are more paths to conduct an attack. There are a few serious

vulnerabilities in this scenario. Therefore, the attack success probability is

just 0.33, and the attack risk is just 14.15. Among 125 attack paths, there are
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Figure 5.6: An example of attack graph generated by a case study

59 unlikely paths and 66 rare paths. However, attackers need to spend more

effort since they have to compromise more devices to reach the target. The

attack cost is 22.09, which is the highest in all scenarios studied. Similarly,

the attack impact is high at 36.29. Therefore, more effort is required to

conduct this attack. However, there is an enormous consequence if attackers

achieve the target.

5.2.6 Result Visualization Example

One of the main functions of GridAttackAnalyzer is to analyze the attacks on

the smart grid system. To enable users to understand the attack graph easily,
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Figure 5.7: Attack analysis result visualization
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GridAttackAnalyzer automatically generates the attack graphs. Using attack

graphs, all of the possible attack paths for attackers to reach the targets are

obvious. Plus, an attack graph that needs to be considered, for instance,

the highest attack success probability, is highlighted. The automatic attack

graph generation is one of our key contributions to fill the gap in the

current research. An example of an attack graph generated automatically

by GridAttackAnalyzer using attack success probability metrics is shown in

Figure 5.6.

Along with the CSV format output files, GridAttackAnalyzer allows

users to visualize the results. The security metrics, including attack success

probability, attack impact, attack cost, and attack risk, can be visualized.

Moreover, the number of attack paths, classified from rare, unlikely, possible,

likely, and almost certain, can be highlighted in charts. The CSV-format out-

put files’ data are too numerous or complex to be represented appropriately

in the text and without using substantial space. This function gives the user

the ability to compare the result of different attack scenarios. Using charts,

data can be displayed, and further exploration of an analysis result can be

invited. An example of attack analysis result visualization is shown in Figure

5.7. Currently, the bar chart type is supported.

5.3 Summary

The architecture of GridAttackAnalyzer (Cyber Attack Analysis for Smart

Grids) is designed based on the general smart grid cybersecurity experi-

mentation’s analytical modeling approach. In this chapter, the details of

GridAttackAnalyzer’s key components were described. The input is the com-

bination of the smart grid model, security settings, and database to prepare

the analysis session’s environment. Also, the preprocessing components are

employed to calculate the security metric. GridAttackAnalyzer enables the

analysis of various attack types. The implementation of GridAttackAnalyzer

is discussed in the next chapter.

To facilitate its use, a user-friendly GUI was developed for GridAttack-

Analyzer using the Python Tkinter. To validate GridAttackAnalyzer, a case
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study using the smart grid network model with gateways and R4-12.47-2

PNNL taxonomy feeders was conducted.

In the vulnerability analysis process, GridAttackAnalyzer is enriched by

determining all possible attack paths and calculating the selected security

metrics. Crucially, our proposed framework can generate the attack graph

automatically.
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Chapter 6

Evaluation

In this chapter, we conduct an evaluation of GridAttackSim and GridAttack-

Analyzer in terms of functionality and user evaluations, as follows:

• Functionality evaluation: the surpassing functions of both frameworks

were compared with the related studies.

• User evaluation: cybersecurity researchers were invited to employ the

frameworks in practice, then give feedback by filling in the System

Usability Scale (SUS) evaluation forms.

6.1 Functionality Evaluation

6.1.1 Evaluation Method

Both GridAttackSim and GridAttackAnalyzer have integrated the power

grid model, network model, and security components. Therefore, the two

frameworks meet the requirement for cybersecurity experimentation, as dis-

cussed in Chapter 3. To highlight the surpassing functions of GridAttackSim

and GridAttackAnalyzer, we compare their functionalities with the related

research.

On the one hand, the comparison criteria of GridAttacksim are focused

on the extendable ability of the power grid model, network model, attack

type, and attack schedule, which are considered essential functions of an

attack co-simulation framework. On the other hand, GridAttackAnalyzer

is evaluated by comparing the ability to calculate various interest metrics,

including attack success probability, attack impact, attack cost, attack risk,
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Table 6.1: Functionality evaluation of GridAttackSim (Y: Yes, Blank: No)

Power Grid 
Model

Network 
Model

Attack 
Type

1 2011 TASSCS Y Y Y
2 2012 SCADASim Y
3 2014 SGsim Y Y
4 2014 GridSpice Y Y
5 2015 ScorePlus Y Y
6 2016 ASTORIA Y Y Y
7 2017 CPSA Y Y
8 2018 FNCS Y Y
9 2019 SimApi Y
10 2019 ERIGrid Y Y
11 2019 HELICS Y Y
12 2021 GridAttackSim Y Y Y Y

Extendable
Name

Last 
update

No
Attack 

Schedule

and likelihood.

The comparison results are shown in Table 6.1 and Table 6.2, respectively.

6.1.2 Evaluation Results

The current smart grid co-simulation approaches are mainly designed for

specific scenarios that are too complicated to expand. Additionally, these

studies usually omit the attack schedule functionality of the co-simulation

system. Further, few frameworks allow to integrate or develop a new attack

type on their current system. Since many projects have been finished, the

current software update and technical support are not available. Therefore,

GridAttackSim is more prosperous than other related frameworks in terms

of the ability to extend the power grid model, network model, attack type,

and attack schedule, as shown in Table 6.1.

For smart grid attack analysis, many research did not consider the full

attack metric calculation when hackers attempt to compromise the cyber

system. Moreover, attack graph visualization and likelihood are also ignored

in the implementation. Additionally, smart grid attack analysis is still a

new area of research. GridAttackAnalyzer is one of the pioneering frame-
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Table 6.2: Evaluation of GridAttackAnalyzer (Y: Yes, Blank: No)

Attack Graph 
Generation

Attack Graph 
Visualization

Attack Success 
Probability Attack Cost Attack Impact Attack Risk

1 2011 Security Risk Analysis of Enterprise Networks 
Using Probabilistic Attack Graphs Y Y Y Y

2 2011
Defining and Assessing Quantitative Security 
Risk Measures Using Vulnerability Lifecycle 
and CVSS Metrics 

Y Y Y

3 2012 Aggregating CVSS Base Scores for Semantics-
Rich Network Security Metrics Y Y

4 2012 Dynamic Security Risk Management Using 
Bayesian Attack Graphs Y Y Y Y Y

5 2014
Determining the Probability of Smart Grid 
Attacks by Combining Attack Tree and Attack 
Graph Analysis 

Y Y Y

6 2014 Attack Graph-Based Risk Assessment and 
Optimisation Approach Y Y Y Y

7 2015 A Framework for Modeling and Assessing 
Security of the Internet of Things Y Y Y Y Y Y

8 2016 Security Modelling and Analysis of Dynamic 
Enterprise Networks Y Y Y Y

9 2017 A Quantitative CVSS-Based Cyber Security Risk 
Assessment Methodology For IT Systems Y Y Y Y

10 2017 A framework for automating security analysis 
of the internet of things Y Y Y Y Y Y

11 2018 A Comprehensive Analysis of Smart Grid 
Systems against Cyber-Physical Attacks Y Y Y Y Y Y

12 2019 CloudSafe: A Tool for an Automated Security 
Analysis for Cloud Computing Y Y

13 2019
Quantitative Model of Attacks on Distribution 
Automation Systems Based on CVSS and 
Attack Trees 

Y Y Y

14 2020 A Bayesian Attack Tree Based Approach to 
Assess Cyber-Physical Security of Power System Y Y Y Y Y

15 2020
A Framework for Real-Time Intrusion 
Response in Software Defined Networking 
Using Precomputed Graphical Security Models 

Y Y Y Y Y

16 2021 GridAttackAnalyzer Y Y Y Y Y Y Y Y

No Year Research Attack 
Tree 

Attack Graph Security Metrics Calculation
Likelihood
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works for smart grid attack analysis to the best of our knowledge. Hence,

GridAttackAnalyzer is more useful than other related frameworks in smart

grid application and security metrics calculation, including attack success

probability, attack cost, attack impact, attack risk, as well as likelihood, as

shown in Table 6.2.

6.2 User Evaluation

6.2.1 Evaluation Method

Along with the functionality evaluation, we also conducted an external

user evaluation. Particularly, ten participants, who are Ph.D. candidates

in cybersecurity or related topics, were invited to use GridAttackSim and

GridAttackAnalyzer. There are five participants from JAIST and five from

other institutions.

We held a session to introduce the functions of GridAttackSim and

GridAttackAnalyzer to each participant. After this session, a user guide

was provided to the participants. Each of the 10 Ph.D. students attempted

to conduct the case studies introduced in section 4.2 and 5.2. As a result, all

the participants succeeded in reproducing the case studies results. Further,

they were encouraged to use the frameworks to simulate and analyze new

case studies. After completing the experiment, participants were asked to

complete a usability questionnaire to measure their satisfaction with the

frameworks’ cognitive-load.

A reliable tool for measuring usability, System Usability Scale (SUS), was

applied to measure users’ experiences. First introduced in 1996 by Brooke

[74], this well-known standardized questionnaire accounts for more than 40%

of post-test questionnaire usage [75]. The structure of SUS is simple with

a 10-item attitude Likert scale, ranging from 1 for “strongly disagree” to 5

for “strongly agree”. Even for a small sample of participants, it has been

proved to produce very reliable results compared to alternatives [76]. The

outcome of SUS is a single score on a scale from 0 to 100. The qualitative

interpretation of SUS scores is defined by research in [77] as follows:
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Figure 6.1: SUS questionnaire for GridAttackSim

• 0 ≤ SUS Score < 36: Poor

• 36 ≤ SUS Score < 51: OK

• 51 ≤ SUS Score < 72: Acceptable

• 72 ≤ SUS Score < 85: Good

• SUS Score ≥ 85: Excellent

The questions used in the questionnaire for GridAttackSim is shown in

Figure 6.1, and is the same as the GridAttackAnalyzer’s SUS questionnaire.

Among the 10 questions, five are positive and five are negative, whereby a

negative item alternates each positive. By alternating these negative and

positive statements, the participant is made to read every question and try

to think whether they agree with it or not.

The score contributions from each question, ranging from 1 to 5, were

used to calculate the SUS score as follows:

• The score contributions from the odd items: the scale position minus

1.

82



Table 6.3: SUS Results for GridAttackSim and GridAttackAnalyzer

No Frameworks Maximum Value Minimum Value Mean Standard Deviation

1 GridAttackSim 87.5 55 74.3 9.5

2 GridAttackAnalyzer 90 60 72.2 10.2

• The score contributions from the even items: 5 minus the scale position.

Scorei =

{
ai − 1, if i%2 6= 0

5− ai, if i%2 = 0
(6.1)

• The overall SUS value in the range of 0 to 100: the 10 question’s total

score is multiplied by 2.5.

SUSj = 2.5×
10∑
i=1

Scorei (6.2)

The average SUS score was calculated by the 6.3 equation where n is the

number of participants.

SUS =

∑n
j=1 SUSj

n
, n ∈ N (6.3)

6.2.2 Evaluation Results

The analysis reflects the result values of SUS for GridAttackSim and Gri-

dAttackAnalyzer, which are shown in Table 6.3. Standard deviation, which

is the dispersion measure of a data set from its average, was calculated by

the 6.4 equation where σ is the data standard deviation, N is the data set

size, xi is defined for each value, and µ is the mean of the data set.

σ =

√∑
(xi − µ)2

N
(6.4)

The SUS mean score is 74.3 for GridAttackSim and 72.2 for GridAttack-
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Analyzer, respectively. These mean scores can be considered as acceptable

(SUS > 70) for both frameworks. The standard deviation are 9.5 and 10.2

for GridAttackSim and GridAttackAnalyzer. Also, the minimum scores

are above 51, which is acceptable for both frameworks. Comparing these

usability values, we can see that the users were satisfied with the frameworks’

usability.

6.3 Summary

In this section, the functionality and user evaluations of GridAttackSim and

GridAttackAnalyzer were conducted.

For the functionality evaluation, the surpassing functions of GridAt-

tackSim and GridAttackAnalyzer were compared with the related research.

The results show that our frameworks are more useful than other related

frameworks in terms of comparison criteria.

For the user evaluation, ten cybersecurity researchers were invited to

use GridAttackSim and GridAttackAnalyzer and then gave feedback based

on the System Usability Scale (SUS) questionnaire. The SUS scores were

calculated. The results show that users were satisfied with the usability of

GridAttackSim and GridAttackAnalyzer.
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Chapter 7

Discussion

7.1 Physical Attack Simulation and Analysis

As evidenced in the actual smart grid incidents mentioned in Section 1.2,

cyber-attacks can lead to disturbances that transcend the virtual world and

damage the physical system. In other words, physical attacks on the smart

grid can affect the system’s stability, leading to loss of load. As a result, power

stakeholders, including utility companies, transmission system operators,

and distribution system operators, may face severe economic pressures.

Therefore, it is essential to undestand the consequence of a physical attack

on the smart grid system.

Compromising the availability, integrity, or confidentiality of a part of

cyberinfrastructure is the first step that an attacker needs to conduct before

attempting to damage the physical smart grid system. GridAttackAnalyzer is

mainly designed to analyze an attack’s characteristics in terms of attack tree,

attack graphs, and security metrics. Therefore, utilizing GridAttackAnalyzer

is a preliminary approach to understanding the effect of a physical attack on

smart grid systems.

In GridAttackSim, various metrics, including the total load, current

market-clearing quantity, current market-clearing price, economic impact of

an attack, and bill amount, can be measured and compared both in normal

operation and attack scenarios. At the core of GridAttackSim, GridLAB-D

can simulate and monitor the characteristics of substations, meters, power

lines, and residential and devices inside these loads, including clothes washer,

dishwasher, dryer, microwave, occupant load, plug load, refrigerator, and
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water heater. These characteristics can include the voltages, phases, real

and imaginary components of a specific smart grid device. Moreover, these

values can be aggregated as a maximum, minimum, average, count, mean,

standard deviation, mean bias error (1st moment), variance (2nd moment),

or kurtosis (3rd moment) [78]. Therefore, while we have not conducted such

experiments, by leveraging the functionality of GridLAB-D, GridAttackSim

potentially has the ability to simulate the consequences of a physical attack

on the smart grid system.

By combining the functionalities of both GridAttackSim and GridAttack-

Analyzer, the characteristics and consequences of an attack on the smart grid

physical system can be simulated and analyzed.

7.2 Potential Applications

7.2.1 Application for Research

The conceptualization and realization of engineered systems, of which the

smart grid is one of the most prominent cyber-physical systems, have often

needed significant consideration in all the development process stages, from

the requirement analysis, design and validation, to the implementation.

Testing a smart grid system is not a trivial activity since it entails high

risk of destroying the electrical infrastructure and equipment, resulting in

enormous economic consequences or even danger to human lives. As a

result, in this critical domain, where testing on a real system is prohibited,

simulation techniques can be considered an effective solution. With the

combination of the power grid and network models, GridAttackSim can be

employed for the animation and assessment of smart grid behavior, to identify

device vulnerabilities and corrective strategy in various attack scenarios

before its implementation. Therefore, for smart grid system developers,

GridAttackSim can be used not only to assess the consequences of various

attack types but also to enable early development and evaluation of new

anomaly detection and mitigation methods before their implementation.

Since GridAttackSim enables researchers to create new attack models freely,
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it allows the experimentation and validation of the proposed attack modeling

approach in a realistic case study. Moreover, the framework can be used

to determine the most effective approaches to implementing smart grid

technology, particularly for communicating specifications for effective system

operation.

Conventional planning and management of information security starts

with risk evaluation, which identifies risks to critical components and the

corresponding loss expectation. Several researchers have suggested risk

management approaches by constructing network protection models, utilizing

paradigms such as attack trees and attack graphs, and then defining attack

paths in these models. Unfortunately, most of these models fail to consider

the capabilities of the attackers; for instance, the likelihood of a specific at-

tack being conducted. Without the factors mentioned above, security threats

and their consequences might be misjudged. Therefore, by examing security

metrics, smart grid researchers can use GridAttackAnalyzer to investigate all

potential attack paths, then determine which device included in the paths

should be protected first. Additionally, the effectiveness of device-specific

management strategies can be compared. The performance of the smart grid

system’s defense strategies can be measured at the network level. Moreover,

GridAttackAnalyzer can help researchers estimate the attack’s damage cost

on the proposed smart grid system.

7.2.2 Application for Training

7.2.2.1 Overview

The Japanese National Center of Incident Readiness and Strategy for Cy-

bersecurity (NISC) reported that cybersecurity personnel are not adequately

trained and is insufficient [79]. The CSIS 2016 survey found that only 23%

of educational programs in the USA adequately train graduates to enter the

cybersecurity industry [80]. In 2018, the professional association ISACA

found that 61% of companies participating in a survey believed that less

than half of the candidates for cybersecurity jobs were qualified for the

position [81]. These problems are caused by the current competence gap

87



between knowledge, practical experience, and essential soft skills acquired

from the cybersecurity training programs and the actual demands from the

organizations.

IT professionals, cybersecurity specialists, and end-users must acquire a

thorough knowledge of preventing and responding to these security incidents.

However, Information and Communications Technology (ITC) issues, such

as integrating renewables, computer networks, and cybersecurity, are usually

not fully covered in conventional training and education approaches. There

is a need for realistic cybersecurity training for smart grids. To fill the

gap in the current research, the smart grid realistic cybersecurity training

design requirements should be clarified. Furthermore, realistic cybersecurity

training for smart grids should be implemented by applying these design

requirements. To the best of our knowledge, this is one of the first studies

aimed at addressing this current issue in the field.

The research in [82] identified three main components for a typical

cybersecurity training system:

• Attack-oriented training: including practical activities on penetration

testing, using the same tools and methodologies applied by real attack-

ers.

• Defense-oriented training: focusing on the vulnerability protection

mechanisms to strengthen system security.

• Analysis/forensics-oriented training: providing a deeper understanding

of the vulnerability exploitation and patching.

These categories are not mutually independent, and cybersecurity profes-

sionals can only accomplish the readiness required to resolve cybersecurity

incidents effectively through their combination. All training exercises should

be conducted based on real-world situations. Complex network environments

are typically required to simulate attacks in real circumstances, particularly

the system settings and network topologies.

The prior research from [83] also indicated the requirements that should

be met to conduct training exercises that prepare trainees for realistic

incidents:
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1. All three aspects of cybersecurity training, including attack, defense,

and forensics, should be combined in the training activity.

2. The system should have the ability to actively “respond” to the

activities of trainees, for instance, via appropriate defense strategy for

attack training and suitable attacks for defense practice.

3. Trainers should adequately manage the hands-on exercises, both in

scenario reproducibility and training content.

4. To enhance the effectiveness and reach, there should be a low entrance

barrier for participating in the training.

By integrating a training content component in the smart grid cyber-

security experimentation general architecture, as shown in Figure 7.1, our

proposed framework can support cybersecurity training activity.

7.2.2.2 Training Content

Training content is an essential part of any training system. It includes all

resources and information given to trainees to develop their cybersecurity

awareness and abilities. Training content can be in various forms, for

instance, text, static video and visual, audio, and interactive factors. What

content should be included in the training course depends on the objective

and desired outcome. A realistic smart grid cybersecurity training system

should be designed to convey the training contents to the learners effectively.

This training content should be organized and stored in the database prop-

erly. Further, there should be no barrier for trainers to create new training

content or modify the existing training content. There are various smart

grid cybersecurity guidelines from renowned institutions, such as NIST [56],

the European Union Agency for Cybersecurity (ENISA) [55], Smart Grid

Information Assurance and Security Technology Assessment (Sacramento

State) [58], and IBM Center [57]. Many common attack types, which should

be considered, are identified and classified in these guidelines. Moreover,

various case studies that can be used for cybersecurity training are shown.

Therefore, the designed system should be able to support the application of

the training content extracted from these guidelines.
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Training Content

Figure 7.1: Cybersecurity training for smart grids in general

The co-simulation approach should be able to simulate the various types

of attacks on the smart grid. Therefore, its training content should be

designed to educate trainees on the attack characteristics. Additionally, the

training content should include knowledge about the power grid and network

communication, which are the smart grid’s two primary components. A more

in-depth understanding of these systems is essential to appreciating the smart

grid system’s complexity.

The analytical modeling approach should be able to analyze different

types of smart grid attacks. The publicly known information-security

vulnerabilities and exposures database should be used to form the training

content. Hence, the attacks’ consequences can be highlighted in the training

content. Moreover, the attack path should be included in the training content

to inform trainees on how the hacking attempt is successful.

The reciprocal relationship between our proposed requirements for a real-

istic smart grid cybersecurity training and the general realistic cybersecurity

training is clarified as:

1. The combination of power grid, network, and security components

provides the ability to conduct both three aspects of cybersecurity

training, including attack, defense, and forensics.
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2. The system can actively respond to trainees’ activities when carrying

out a power grid and network simulation or analysis.

3. Trainers can modify the security component to adjust the hands-on

exercises, both in training content and scenario reproducibility. The

structure, architecture, and model of the power grid and network com-

ponents can be easily modified to accommodate the training demand.

4. Since there are just three main components, the system’s complex can

be mitigated. Therefore, a low entrance barrier for participating in the

training can be satisfied.

GridAttackSim advances the recreating vulnerability manipulation strate-

gies experience and involves exercises, for example, using the same tech-

niques used by attackers. Furthermore, it allows the cybersecurity defense

methodologies design and implementation to anticipate similar future at-

tacks. Hence, it can support (1) attack-oriented training and (2) defense-

oriented training.

GridAttackAnalyzer enhances trainees’ more in-depth knowledge of the

phenomenon relevant to exploitation and patching of vulnerabilities. Hence,

it can support analysis/forensics-oriented training.

7.3 Summary

In this section, we introduced the ability to simulate and analyze the physical

attack of GridAttackSim and GridAttackAnalyzer. The characteristics and

effects of an attack on the smart grid physical structure can be simulated

and evaluated by integrating the two frameworks’ functionalities.

In addition, the potential applications of GridAttackSim and GridAttack-

Analyzer for research and training activities have been discussed.

On the one hand, experimenting with a smart grid system is not trivial

because it carries a high risk of electrical infrastructure and equipment

destruction, which has enormous economic implications or harmful effects

on our lives. Therefore, GridAttackSim and GridAttackAnalyzer can be

considered as an effective solution for smart grid research activity.
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On the other hand, cybersecurity personnel are not adequately trained

and the training provided is insufficient. Our proposed framework can

enhance the cybersecurity training activity by combining the training con-

tent component with the smart grid cybersecurity experimentation general

architecture. Hence, GridAttackSim and GridAttackAnalyzer can be seen as

practical applications for smart grid training activities.
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Chapter 8

Conclusion and Future Work

8.1 Summary and Contributions

We are in the Society 5.0 era, when technology is transforming the way

people live, communicate, and interact with each other. One of the critical

elements of Society 5.0 is the smart grid, which includes the network and

power grid components. In recent years, there have been several cyber attacks

on smart grid systems that have caused significant repercussions, such as loss

of confidential data, blackouts, power equipment destruction. Therefore, it

is essential to protect smart grid systems against cybersecurity attacks.

The smart grid structure is complex, having two essential parts: network

communication and the power grid. Researchers need to consider the

relationship between these components for further system investigation and

improvement. Evidently, it is not a trivial activity to implement a real smart

grid system for the cybersecurity experiment and validation process since it

entails high risks for destroying the electrical infrastructure and equipment,

resulting in enormous economic consequences or even potential loss of for

human lives. As a result, in this critical domain, where testing on a real

system is prohibited, simulation and analysis techniques can be considered

an effective solution to reach the goal.

The attack simulation and analysis tools are mainly applied to simulate

attacks and emulate the actual circumstances in which these attacks occur,

particularly system settings and network topologies. The application of the

real incidents simulation tools for cybersecurity experimentation is believed

to be the primary factor in enhancing the efficacy of the experimentation
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process. Due to its novel status, few research studies have focused on

practical cybersecurity experimentation for smart grids. To the best of our

knowledge, the present research is one of the first works to address this

current issue in the field.

This dissertation identified the need for practical cybersecurity experi-

mentation for the smart grid. We indicated the system design specifications

as one of the key contributions. Furthermore, a general smart grid cyber-

security architecture that satisfies these requirements was implemented. To

deal with the complications of the system but still accomplish our objective,

the smart grid cybersecurity experimentation is divided into two parts: co-

simulation and analytical modeling approaches. Their requirements and

general architectures were defined.

Although both communication networks and power grids can be simulated

by current technologies, they are usually designed for small and limited

networks. Therefore, we implemented ns-3, a robust network simulator, and

GridLAB-D, a feature-rich power grid simulator, to tackle this issue. In

addition, as they support different programming languages, external libraries,

and APIs, our GridLAB-D and ns-3 can be extended easily. However, this

interoperation introduces numerous challenges, such as time synchronization,

differences in time scales, flexible model reuse, and data transmission delays.

One promising direction to deal with this problem is applying the FNCS

broker to efficiently control and handle this combination.

One of our contributions is the introduction of GridAttackSim, a frame-

work that reproduces a real smart grid environment with different cy-

bersecurity attacks and then assesses their effects, all in one place. In

addition, built-in attack profiles and the user-friendly GUI enable users to

execute simulations and analyze the results automatically without a thorough

knowledge of software technology, abstracting the underlying complexity of

the integration tools. While most related studies support a few types of

attacks, more types of attacks can be included in GridAttackSim due to the

extensive pattern library for IT experts and electrical utilities interested in

enhancing smart grid security. Although the attack schedule function has

been omitted by most of the current research, GridAttackSim fills this gap
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by introducing the attack schedule capability.

It is possible to implement the framework for cybersecurity training for

customers. For example, visualizing graphics allows end-users to understand

the economic consequences of attacking smart grid systems. For system

operators, the framework can be used to evaluate the effects of different types

of attacks and enable the early development and assessment of new methods

for the detection and mitigation of anomalies prior to their implementation.

The framework can also be applied to identify the most efficient smart

grid technology implementation strategies, particularly for communicating

specifications for effective system operation.

Significantly, cybersecurity is at the core of modern technologies. In this

research, we conducted a comprehensive and systematic survey of various

attack analysis studies using the combination of Graphical Security Model

(GrSM) and CVSS. We reviewed the state-of-the-art techniques, ranging

from traditional networks to emerging technologies for the smart grid.

Numerous metrics of interest have been examined to accomplish this goal,

namely, Attack Tree (AT), Attack Graph Generation (AGG), Attack Graph

Visualization (AGV), attack success probability (p), attack cost (ac), attack

impact (aim), attack risk (r), likelihood, and smart grid application.

As cyber attacks on the smart grid systems can cause serious issues,

protecting the smart grid system from attackers is extremely important.

Attack analysis is one of the advanced technologies to investigate and

evaluate attackers’ activities. This information is invaluable to defense of

the smart grid system. However, there is little research focus on smart grid

attack analysis using GrSM.

We introduced GridAttackAnalyzer, a smart grid attack analysis frame-

work. By applying the PNNL Taxonomy Feeders R4-12.47-2, smart grid

network model with the gateway, a smart grid case study with four attack

scenarios, including a single-entry attack model, multiple-entry attack model,

multiple-entry attack model with patch, and massive attack model, has been

carried out. All potential attack paths have been determined, and the values

of the selected security metrics have been calculated during the vulnerability

analysis process. Further, our research is enriched by the automated Attack
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Graph generation capacity.

This knowledge can be used for cybersecurity training of IT experts and

cybersecurity professionals. Based on evaluating various security metrics,

IT experts and cybersecurity professionals can determine all possible attack

paths, then decide which devices included in the paths should be protected

at first. Plus, the effectiveness of specific device-level strategies deployed for

different devices can be compared. For the network-level, the performance

of the smart grid system’s defense strategies can be measured. Furthermore,

our work can help system planners estimate the attack’s damage cost on the

proposed smart grid system.

The source code of GridAttackSim and GridAttackAnalyzer have been

uploaded on Github and can be found at [84] and [85].

8.2 Future Work

As future work, GridAttackSim and GriAttackAnalyzer can be extended to

integrate more power grid test feeders and network models. For example,

there are various other test feeders available, such as EPRI Representative

Feeders [86], PG&E Prototypical Feeders, Benchmark Models for Low-

Voltage Distribution Feeders [87], Agent-Based Distribution Test Feeder with

Smart-Grid Functionality [88], Test Feeder for DG Protection Analysis [89].

More case studies could also be conducted in the future, for instance by

collecting various smart grid attack types and CVEs to further validate our

GriAttackAnalyzer framework.
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