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Abstract

The surveillance system is widely deployed in several applications for observing the
characteristic of target density because it has an advantage in low installation and main-
tenance costs. In a traffic surveillance system, this characteristic is usually applied in a
traffic light control system (TLCS) from the number of vehicles. It helps to control the
period of traffic lights and prevent any traffic accidents from vehicles. Besides, the traffic
characteristic is useful information for road users to avoid crowded regions, including ve-
hicles, people, and others. Since this system utilizes computer vision-based techniques, it
is sensitive to outdoor environments (e.g. lighting conditions, traffic viewpoints, and so
on). In addition, hardware with low performance usually is deployed in the surveillance
system. It means that the system should be compact and requires low computational
cost for operation. Therefore, density estimation cannot be operated properly under any
circumstances without concerning these conditions.

Recently, there are several related studies on density estimation. It is well known
that density is originally estimated by detecting and counting their regions in the input
image. The counting target regions were classified by their visual features (appearance
and motion features). Instead of relying on a detection-based approach, recent studies
focused on end-to-end learning methods relied on regression-based approaches. These
approaches concern holistic features which are visual features extracted from whole input
images predicted by a prediction model. The holistic features are utilized for mapping
dense regions into density maps which represent the change of object density, where their
ground truth was prepared by a convolution between Gaussian distribution and target
coordinates corresponding to the target sizes. Nowadays, the task of vehicle counting
via a regression-based approach is riddled with a scale-aware model to handle scaling
problems. Prediction models are usually designed by several stacked CNNs in parallel,
which are called multi-column network architectures. In short, one stack of CNN is used
to predict density maps on a specific size of the vehicle. However, these techniques have
problems related to practical application as follows:

• With the variation of camera viewpoints, the target sizes can be calculated accu-
rately resulting in the misclassification for density map formulation in the ground
truth of an estimation network.

• Recent regression models with multi-column network architectures have a large num-
ber of model parameters and high computational costs using several network archi-
tectures for various target sizes.

The purpose of this study is to examine the only one stack of CNN, which is called
a single-column network architecture, and reduce computational costs and model param-
eters while keeping similar counting accuracy to multi-column network architectures. It
also should not suffer from a scaling problem by avoiding the utilization of target sizes. It
found that the target size can be categorized by their local densities which are related to
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distances of their neighbor target for preparing the ground truth. The proposed prediction
model chooses to investigate the connections between feature maps from different layers,
where holistic features of small and large objects can be extracted from feature maps in
shallow and deep layers, respectively. The connection can be done by skip connections to
integrate feature maps from shallow layers with another in deeper layers. This process,
which is called forward connections, can recover the holistic features of small objects. On
the other hand, the backward connections are introduced by extracting feature maps from
deep layers to combine with the shallower layer. It can be expected that information on
a deep layer can help to optimize the shallow layer, where the performance in an earlier
stage can be improved. Considering the quality of a density map, feature maps in every
layer should have the same resolution to prevent information loss from adjusting their res-
olutions. Then, pooling layers are replaced with a dilated convolutional layer. Therefore,
the contributions of this dissertation can be summarized as follows:

• Instead of relying on the target size, the proposed density map utilizes average
distances among target samples where it is designed for visualizing the difference
pattern of various vehicle densities (high and low density regions).

• To reduce computation cost, a single column network architecture for vehicle density
estimation is designed by including skip connections and dilated convolutions to
extract holistic features from intermediate convolutional layers and keep semantic
information for density map estimation, respectively.

Since vehicle density estimation is mainly focused on this research, all models are
evaluated by the common criteria for vehicle density accuracy. The state-of-the-art of
regression-based approach was implemented for comparison. In addition, well-known
CNNs with skip connections (e.g. U-net, Resnet, and Densenet) were also applied for
analysis. The empirical results show that the proposed prediction model with backward
connections achieved a vehicle density accuracy 92.47 % which is close to accuracy of
state-of-the-art (93.33 %). From this result, the achievement is summarized as follows:

• In the density map configuration, the target size estimated by an average distance
of the target is insensitive to camera viewpoints.

• From the point of view of counting accuracy, the proposed method with a single-
column network achieves a promising result which is close to the vehicle counting
accuracy from a multi-column network or network with a large number of model
parameters.

Moreover, the proposed network satisfies with the minimum requirement of TLCS and
it is effective to reduce under-counting errors. However, there is a room for improvement
in other datasets consisting of overlapping target regions or crowd counting datasets.

Keyword: surveillance system, vehicle density estimation, regression model, skip
connection, dilated convolution, traffic analysis.
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Chapter 1

Introduction

In recent years, the number of vehicles is exponentially increased, especially in urban
areas. The traffic on the road has become complicated, causing traffic congestion and
car accidents. It reveals that an enormous amount of time and money is wasted (e.g.
5.5 billion hours of time delay and 2.9 billion gallons of fuel wastes in urban areas) due
to traffic congestion from 2000 to 2010 [47]. It predicts that the congestion cost will
increase from $121 billion (in 2011) to $199 billion (in 2020). A Traffic Control System
(TLCS) typically utilizes static the interval of traffic lights at intersections and does not
provide priority to emergency vehicles such as ambulances, firefighters, and police cars.
It possibly causes a loss of lives, damage or destruction of property, and increase fuel
costs, pollution, and congestion. To improve system performance, the interval of traffic
lights should be dynamically adjusted according to a traffic attribute in each location.
Therefore, the traffic attribute is the main factor in traffic management.

A typical Traffic Light Control System is depicted in Figure 1.1, consisting of four
functions (e.g. information collection, data diffusion, required activities planning, and
suitable action implementation). To carry out these functions, a Road Side Unit (RSU)
with several sensors and a Traffic Management Centre (TMC) is located at the corner and
center of the intersection as shown in Figure 1.1. These sensors collect the real-time traffic
attributes (e.g. vehicle density, type of vehicle, average waiting time, and pollution) and
relay the traffic attributes to RSU. Finally, RSUs gather all information and send it to
TMC for evaluating the proper green and red traffic light intervals. This research focuses
on vehicle density estimation for the data collection system in TLCS mentioned above.

It is well known that a traditional inductive loop detector is replaced with a surveillance
camera at signalized intersections [32] because it provides a low cost for installation and
maintenance. The TLCSs with a surveillance camera is known as Video Imaging Vehicle
Detection Systems (VIVDS). A typical VIVDS consists of three key components: one
or more video cameras, a central image processor, and detection software. Surveillance
cameras are utilized for recording a video at each junction. A central image processor
unit analyzes the video signals from the cameras. Since programmable detection zones
and detectors are set up in the central image processor, the detection zones and detectors
are activated when vehicles pass the detection zones or detectors. The performance of
VIVDS is depended on visual features and various conditions of traffic videos (e.g. camera
viewpoints, lighting conditions, weather, and so on). The visual feature represents a
characteristic of objects (e.g. shape, texture, color, and so on). The errors in VIVDS are
categorized into false detection and missed detection. A false detection occurs when a
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Figure 1.1: A typical Traffic Light Control System [58]

detector is activated by vehicles in adjacent lanes, vehicle shadow, the shadow of buildings
or trees, and abnormal driving. False detection usually results in more counts than the
true counts in the field. A missed detection occurs when a detector is not properly
triggered while a vehicle passes through the detector.

1.1 Vehicle density estimation using computer vision

As mentioned in the previous section, vehicle density estimation using a surveillance
video relies on a visual feature in computer vision. These features are utilized to ex-
tract vehicle presence on the road. The visual features are categorized into two types:
appearance-based and motion-based features. Similar to the human visual system, ve-
hicles are identified from their appearances, compared with other objects in the traffic
images. Appearance features represent the vehicle characteristic, for example, class, sizes,
shapes, and colors. These attributes are employed as prior knowledge to segment fore-
grounds (containing the objects of interest) from backgrounds (its complementary set).
Several appearance features were utilized as vehicle cues (e.g. symmetry, color, edge
(horizontal/vertical), shadow, and so on). At daytime, as shown in figure 1.2a, shapes of
vehicles are salient where they can be extracted to detect vehicles. However, the features
mentioned above are hardly identified in the nighttime as shown in figure 1.2b. The only
salient visual features are headlights, rear lights, and beams. Since appearance-based fea-
tures currently suffer from lighting conditions, a problem can be solved by using a specific
detector in various illuminations. Appearance features are deployed in the daytime, while
a night-time detector utilizes a headlight as the main feature. Therefore, many studies
only focus on one or two lighting conditions.

Since vehicles are moving objects in traffic videos, motion-based features can be ex-
tracted for vehicle density estimation, where regions are considered as foreground (moving
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(a) (b)

Figure 1.2: Examples of traffic images in (a) daytime and (b) night time [89].

objects) and background. These features are deployed to distinguish between the fore-
ground and background in images. Unlike appearance-based features, the motion-based
feature employs temporal information or frame sequence to detect moving objects. Mov-
ing regions can be extracted by finding the difference between two consecutive frames.
Since motion-based features are usually deployed without any prior knowledge, they are
insensitive to vehicle appearances in various conditions of traffic videos. However, they
are sensitive to noises in the complex background and lighting conditions in traffic videos.
In addition, objects with low and high speed cannot be archived by this technique.

The schematic flow of vehicle density estimation is depicted in Figure 1.3. After
vehicle features were extracted in the first step, the classifier has a role to distinguish
between vehicle and non-vehicle objects in images. Classifiers learn the characteristics
of vehicle features statistically and learn a decision boundary between the vehicle and
non-vehicle objects. To optimize appearance-based classification performance, huge inter-
class variability should be extracted. It is well known that Convolution Neural Network
(CNN) achieves promising object recognition and classification performance [93]. Most
recent studies deploy deep learning techniques based on CNN for vehicle identification
and detection. In addition, CNN can be utilized for extracting features and classifying
objects at the same time. However, a large amount of data is required for deep learning
techniques compared with a statistical approach.

In the last step, vehicle regions obtained from classifiers are counted. The vehicle
counting approach is categorized into two types [73], i.e., detection-based and regression-

Input images Feature extraction

Vehicle classifier

Vehicle countingVehicle density

Figure 1.3: Schematic flow of vehicle density estimation.
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Figure 1.4: Example of detection-based approaches, where blue and red bounding boxes
are represented as vehicle locations in the images [88].

based approaches. The detection-based approach focuses on visual features of the vehicle
in classifiers, where a sliding window detector is used to detect vehicles in the scene. The
main goal of detection-based approaches is to extract vehicle regions in an image. As a
result, vehicle regions are represented as bounding boxes for localization and tracking as
shown in Figure 1.4. It means that the number of bounding boxes is calculated as vehicle
density. In addition, the results from this approach can be deployed for other applications
for traffic analysis (e.g. vehicle type identification, speed measurement, and so on). Even
though various applications rely on detection-based approaches, its performance suffers
from traffic images with high vehicle density because vehicle appearance is occluded from
other objects or vehicles.

Since the detection-based approach was not successful for vehicle counting in the pres-
ence of the extremely dense crowd and high background clutter, this issue was solved by
using a regression-based approach. This approach learns a linear mapping between holis-
tic features and corresponding objects to generate density maps, thereby incorporating
spatial information in the learning process. Unlike detection-based approaches, local-
ization and tracking are ignored by applying an algorithm for estimating image density
whose integral over any region in the density map giving the count of objects within that
region as shown in Figure 1.5. The regression-based approach has two main components
as follows:

• Density map shows the spatial distribution of vehicles in specific regions, where
they are formulated from holistic features in the regression approach. Gaussian pro-
cess regression is usually employed to compute a density map from low-level features.

• Prediction model predicts the density map from input images. This model can be
designed with various learning algorithms (e.g. random forest regression, decision
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Figure 1.5: Schematic flow of regression-based approaches for vehicle counting [61].

tree, and so on). However, CNNs are usually deployed in recent studies because of
their success in numerous computer vision tasks.

In the recent studies of traffic analysis, both detection-based and regression-based
approaches were studied to deploy their specific application. Since various traffic density
is evaluated in VIVDS, especially in traffic images with high vehicle density, regression-
based approaches are mainly focused in this research.

1.2 Traffic video conditions

Since visual features depend on the resolution and contrast of traffic videos, the image
quality becomes one of the main factors for vehicle density estimation. The specification
of a traffic surveillance camera is based on regulation in different areas. Unfortunately,
traffic video quality typically has low resolution and low frame rate to reduce power
consumption and installation/maintenance cost [51]. In addition, color information is not
available in some areas. The typical specification [21] of traffic videos can be summarized
as follows:

• The video compression (MPEG4, H261, H263, H264, and H265)

• Resolution (176× 120, 352× 240, 720× 480)

• Frame rate (1 to 30 frame per second)

Figure 1.6 reports a survey of the average frame rate in traffic surveillance. Since the
typical video frame rate is around 25 - 30 frames/second (fps), most traffic videos (with
frame 6 -10 fps) cannot accurately estimate motion features because motion trajectory
is not visible in the video with low fps. By contrast, the video resolution has increased
by ∼ 10x that of frame rate, showing the importance of more resolution vs fps in video
surveillance. Therefore, appearance-based features should be deployed in VIVDS to han-
dle practical circumstances.

Since the traffic videos are recorded in an outdoor environment, image quality depends
on its environments (illumination and weather). Illumination is divided into daytime and
nighttime as shown in Figure 1.2. They affect image intensity and contrast which help to
visualize the texture or appearance of vehicles in a video. The illumination is sensitive to
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Figure 1.6: Average frame rate usage [30]

the natural light source (e,g, sun, moon, and so on) as summarized in Table 1.1. At the
point when traffic cameras are deployed in a dark environment (i.e., 0 Lux), vehicles can
not be captured by cameras. In this condition, artificial light sources (e.g. street light,
headlight sources, and so on) help illuminating traffic images. However, these lights can
affect the color cues in the traffic images.

On the other hand, the weather can be divided into normal and adverse weather.
Normal weather is the best condition of vehicle density estimation in VIVDS, by giving a
promising performance of vehicle counting and detection. In practical cases, the vehicle is
difficultly counted in adverse weather because of high occlusion, vagueness, and blurring.
Figure 1.7 illustrates examples of traffic videos with adverse weather. a traffic image with
a blizzard is ambiguous between background and foreground as shown in Figure 1.7a. an
appearance feature can not extracted when a vehicle is covered with snow in Figures 1.7b
and 1.7c. In addition, rain or water blurs images in Figure 1.7d.

Time period Conditions Luminance intensity (in Lux)
Daytime Sunny 10,000 - 1,000,000
Daytime Cloudy 100 - 10,000
Daytime Dawn twilight 1 - 10
Nighttime Full moon over head 0.1 - 1
Nighttime Quarter moon 0.01 - 0.1
Nighttime Sunny starlight 0.001 - 0.01
Nighttime Cloudy starlight 0.0001 - 0.001

Table 1.1: Various outdoor illumination conditions at different places [63].
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(c) (d)

Figure 1.7: Examples of traffic images with adverse weather in (a) blizzard, (b) snow fall,
(c) wet snow, and (d) the rain [87].

1.3 Motivations and Research goal

As described in previous sections, the vehicle density estimation method should count
the number of the vehicle in various vehicle density, to handle the exponential growth of
vehicle. Since a detection-based approach suffers in high vehicle density, a regression-based
approach is concerned in this research. However, their recent studies deploying prediction
models require a large number of training parameters and memory space because of several
CNNs called multi-column network architecture. one stack of CNN was deployed for
handling various vehicle density, calculated from vehicle sizes. These conditions are not
suitable in VIVDS, mentioned in section 1.2, which deploys videos with low frame rate
and low power consumption. Therefore, there are drawbacks of these approaches which
are summarized as follows:

• Actual vehicle sizes cannot be obtained due to occlusion in many cases, causing an
error in density map estimation.

• Due to a large number of the model parameter, the traffic density might not be
reported within a time requirement in VIVDS by using a multi-column network.

My objective of this study is to examine the single-column network requiring only one
CNN in a prediction model. The advantage of this approach is the reduction of com-
putational costs and the number of model parameters. The proposed method chooses
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to investigate intermediate layers of CNN whose features generate a density map of the
vehicle in a different size, by using skip-connection techniques. To minimize semantic
information loss in deeper layers, dilated convolutional layers are applied in this research.
Without referring to vehicle size, vehicles are categorized by average distances to their
neighbor vehicles described in Chapter 3. Therefore, the research contributions are sum-
marized as follows:

• Density map by geometry-adaptive kernels is proposed by calculating average dis-
tances among target samples where it is designed for solving an occlusion problem
and local density is taken into account.

• Without implementing several CNNs, a single-column network is enhanced by using
skip connections and dilated convolutions to increase counting accuracy and density
map quality.

From the above statement, the significance of this study is stated that the promising
performance for object counting can be achieved by the single-column network, where it
can be further developed as a backbone network in future work. With a compact size
of the proposed backbone model, it can minimize the hardware requirement for further
development. In addition, the proposed method can be applied in other datasets because
a supervised learning-based technique was applied.

1.4 Structure of the Dissertation

The remaining parts of this thesis are organized as follows:

• Chapter 2 shows a review of related studies of object counting in the detection and
regression-based approaches. The literature review mainly focuses on recent stud-
ies with CNN by visualizing and analyzing their network architectures in different
circumstances. Finally, the problem of size estimation in the multi-column model is
defined and find possible solutions.

• Chapter 3 defines the requirements and conditions of input data related to the
proposed method. density map formulation is described by proposing the density
map by geometry-adaptive kernels. Limitations of traditional density maps are
mentioned. It also covers the comparison between traditional and proposed density
maps where they are evaluated in various vehicle density.

• Chapter 4 explains contributions and illustrates the architecture of the prediction
model visually. The network configuration is defined in detail (e.g. receptive field
sizes, number of parameters, and so on) which affects by the time or memory con-
sumption of the system. Since the number of training images is insufficient, the
training process is described to overcome this issue.

• Chapter 5 evaluate and report the performance of the proposed density map and
prediction model. The common criteria of density estimation evaluation are defined
and it shows the minimum requirement of VIVDS. The advantages and drawbacks
are analyzed in different conditions and aspects, compared with existing methods,
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related to detection and regression-based approaches. Since the previous studies are
evaluated by their own criteria, their performance is converted to common criteria
for comparison.

• Chapter 6 summarizes knowledge studied from this research. It describes the
achievements of the experimental results in a previous section and discusses the
proposed methods relevance to the existing crowd and vehicle density estimation
methods. Besides, drawbacks are identified and discussed to give direction for future
research.

1.5 Summary

In this chapter, vehicle density estimation related to VIVDS was discussed. To minimize
installation and maintenance costs, computer vision-based techniques were deployed in
VIVDS. The techniques for vehicle density estimation are categorized into detection-based
and regression-based approaches by using the appearance and motion features of vehicles.
Even though computer vision-based techniques are usually employed, they are sensitive
to traffic video conditions (e.g. lighting conditions, camera viewpoints, and so on). In
addition, the RSU is typically compact and low system specification providing low frame
rates and image resolution. Therefore, the primary goal is to minimize the number of
model parameters and computational cost for vehicle density estimation by focusing on
a single-column network, while this network has similar performance to a multi-column
network.
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Chapter 2

Literature Review

There is a vast amount of literature on vehicle density estimation. Since the recent study
usually focuses on the change in vehicle density, object counting is taken into account in
their works. Object counting based on computer vision techniques is primarily depended
on vehicle detection or localization, where the number of the target is obtained from
the target region as mentioned in the previous chapter. With the exponential growth
of vehicles, vehicle detection suffers from an occlusion problem in traffic videos with
high vehicle density or crowd images. To solve this issue, traffic images are regressed
to low-level images, called a density map, which is formulated to the number of vehicles.
Therefore, vehicle density estimation is categorized into the detection and regression-based
approaches, described the following sections:

2.1 Detection-based approach

Initial works in this field focused primarily on the detection style framework, where a
sliding window detector is used to detect object in the image. This information is utilized
for counting the number of the object. Vehicle detection is an approach for extracting
vehicle regions (foreground) from background regions. These regions are classified by
visual features obtained by the following methods:

2.1.1 Appearance-based methods

Same as the human visual system, vehicles are recognized from their appearances, com-
pared with other objects in the traffic videos. Due to a limitation of memory and time
consumption in VIVDS, low-level features (e.g. color, shadow, symmetry, and edge) are
typically extracted for localizing vehicle regions. These features are simple, efficient, and
of great usefulness in vehicle-related information extraction which is described below.

• Color provides rich information in visual features because vehicle regions usually
have higher color saturation than background regions (roads). This information is
usually extracted in various detection application related to vehicle counting (e.g.
vehicle lights [14] in night time and license plates [1]). Since a traffic video is
sequence of RGB or grayscale images which are sensitive to lighting conditions,
their images are converted into different color model (HSV [60, 62], YCBCr [86, 15],
CIELab [10]) to reduce the effects of lighting conditions.
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• Shadow is often detected along with a vehicle, where it is critical for improving
the accuracy of vehicle detection and tracking. Shadows are typically classified
by their shapes and colors. The shape of a shadow is classified by the shape of
the object and lighting conditions, which can be exploited to detect the shadow
[94]. However, a vehicle shadow may cause many problems such as merging, shape
distortion and a loss of objects due to illumination changes. On the other hand,
color information typically utilizes color models based on contrast [5], brightness
[31], mean and variance of all color components [31].

• Symmetry is the main properties of manufactured products, including vehicles. In
frontal and rear viewpoints, the image of a vehicle usually has symmetry property
which is for detection cues in VIVDS. These cues usually are defined by the symme-
try axis [48] which help to indicate the center lines of symmetrical objects. Then,
they can be classified by symmetrical features (e.g. SIFT [49], SURF [7], and so
on). However, this information is sensitive to camera viewpoints because current
video cameras are installed at locations with different angles and views. Therefore,
symmetry is not suitable for vehicle detection.

• Edge has been widely deployed in VIVDS because of low computational complexity.
Traditional edge detection is employed by spatial filters such as Sobel, Canny, or
Prewitt filters to generate vertical and horizontal edge maps. In a state-of-the-
art of vehicle detection-based approach, multi-scale edge fusion [57] was to locate
target vehicles. Edge often plays the role in provision of contour information, while
other features mentioned above provide contextual information to extract vehicle
candidates.

Even though low-level features are extracted fast, the appearance-based method with
only one low-level feature is not able to provide promising performance and represent all
useful information. Therefore, previous studies usually combine contextual and contour
information. This solution extracts visual features of a vehicle in a more effective manner.
On the other hand, the traditional method usually constructs a feature descriptor from
those low-level features. Feature descriptors efficiently localize an object in traffic videos.
In ideal cases, descriptors should deal with various objects and robust to various camera
viewpoints. In addition, it is invariant to geometric transformation [44]. The feature
descriptors are described as follows:

No Appearance feature descriptors
Camera

viewpoints
Application domain

1 Underneath, vertical edge, symmetry [13] Rear Highway scene detection

2 Sketch, texture, color, flatness [45] Front
Complex urban traffic
conditions (with occlusion)

3 Color, corner and edge [80] Top Parking area
4 HOG and Haar-like features [83] Rear Freeway
5 Shadow, illumination entropy, edge [75] Rear Overtaking
6 Appearance & edge based feature [16] Oblique Blind-spot detection

Table 2.1: A brief summary of vehicle detection approaches based on feature fusion.
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Figure 2.1: Structure of Convolutional Neural Network (CNN) [39].

• Histogram of the gradient (HOG) calculates the edge of gradient structure for
representing a characteristic of a local shape because edge information is insensitive
to camera viewpoints and lighting conditions. Several types of HOG were deployed
in VIVDS. Pyramid Histograms of Oriented Gradients (PHOG) was extracted from
traffic images as basic features [40]. Three different configurations involving horizon-
tal (H-HOG), vertical (V-HOG) and concentric rectangular (CR-HOG) descriptors
were proposed to perform in a more cost-efficient manner than the original HOG
[4]. By employing symmetry properties, symmetry HOG vectors were developed for
vehicle verification [16].

• Haar-like feature was first introduced by Viola and Jones [82] where it includes
edge, line, and center-surround features for representing the vehicle characteritristic.
This descriptor was deployed in many vehicle detection approaches. Harr-like feature
extraction method was used to represent a vehicle’s edges and structures [90]. A
2D triangle filter was proposed based on Haar-like features to detect vehicles [90].
Sivaraman and Trivedi [75] provided a general learning framework using Haar-like
features. The computation of Haar-like features is fast. However, the dimension of
this feature vector generated from images is high [83]. An operation of dimension
reduction was then applied to decrease memory space.

Table 2.1 illustrates the examples of vehicle detection with various feature descriptors.
It shows that their algorithms were focused on specific purposes (application domains)
and camera viewpoints. As a result, they were not deployed in practical environments. In
recent years, VIVDS was improved by utilizing deep learning techniques. CNN is the most
popular deep learning technique for vehicle detection. It optimizes target’s features from
feature representation mentioned above. Input data is divided into training and testing
input data, where they are trained by convolution with several image filters, called CONV
in each layers, as shown in Figure 2.1. As a result, fully connected layers (fc) is classifier
resulting recognition results.

Detection using CNN usually perform either in monolithic style or part-based ap-
proaches. The monolithic detection approach focuses on the feature representation of
whole vehicles. Region with CNN (RCNN) [26] is currently state-of-the-art for vehicle
detection in a monolithic approach. In general, CNN is deployed for classifying object
classes without localization. Instead of applying sliding windows in whole images, RCNN
deploys region proposal techniques to extract possible regions containing targets. Then,
candidate regions were classified by CNN as shown in Figure 2.2. Region proposal tech-
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niques can be done as following steps:

1. Generating initial sub-segmentation regions

2. Using greedy algorithm to recursively merge similar regions.

3. Using the generated regions to produce the final candidate region proposals.

Since RCNN is state-of-the-art in this field, several studies implemented and developed
RCNN for various purposes. Geometric proposals for Faster R-CNN (GP-FRCNN) [2]
rank the generic region proposals with an approximate geometric estimate of the scene.
However, this simple extension requires scale adjustments (e.g., anchors, layer resolution).
GP-FRCNN is effective for smaller and larger objects and does not require an explicit
geometric formulation. Lightweight SSD based on ResNet10 with dilations (SSDR) [3]
focused on the reduction of time computation based on Resnet 101, pruning can be done on
a per-channel basis by eliminating less important channels in convolution filters. R-CNN
with Sub-Classes (RCNNSC) [68] is based on training in different sub-class to improve
performance accuracy. Instead of using a single object class (i.e., the vehicle) to train
on the R-CNN, multiple sub-classes of vehicles (i.e., car, van, bus, and others) are used,
such that the RCNN learns respective features of each vehicle class better. Faster R-CNN
with ResNet101 (FRCNN-Res) [34] employs the Faster R-CNN architecture, where the
ResNet-101 model is used to adjust the performance on the training set.

On the other hand, part-based detection was designed for solving occlusion problems,
especially in traffic videos with high vehicle density. The most popular one in these
approaches is the Deformable Part Model (DPM) [18] which constructs boosted classi-
fiers for specific vehicle parts (e.g. windshields, doors, wheels, and so on) to estimate
the vehicle counts in a designated area. The distinct parts are detected based on an
appearance feature to identify and localize vehicles. DPM consists of a global root fil-
ter and part filters, represented as red and yellow circles shown in Figure 2.3, to detect
and track vehicles on road using part-based transfer learning. Region-based Deformable
Fully Convolutional Network (DFCN) [85] is based on Resnet-101 as a backbone, where a
deformable model is combined to provide accurate localization and correct classification
of objects for stationary cameras mounted near signalized traffic intersections. Vehicle
detection by independent parts (VDIP) was introduced in [76] for urban driver assis-
tance. Front, side, and rear parts were trained independently using active learning. Part
matching classification using a semi-supervised approach form vehicles oblique view from
independently detected parts. A rear view vehicle detection was considered in [79] based
on multiple salient parts that include license plate and rear lamps. For part localization,
distinctive color, texture and region features were extracted. Then Markov random field
model was used to construct a probabilistic graph of the detected parts. Vehicle detec-
tion was accomplished by inferring the marginal posterior of each part using loopy belief
propagation.

2.1.2 Motion-based methods

Since vehicles are usually moving objects in traffic videos, motion can be utilized as
features. In motion features, regions can be considered as foreground (moving objects)
and background. These features are used for extracting or separating moving objects from
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Figure 2.2: The procedure of Region with Convolutional Neural Network (RCNN) [26].

backgrounds which are static regions in images. Unlike appearance-based method, motion-
based method applies temporal information or frame sequences to detect moving objects.
In addition, they are insensitive to vehicle types because prior knowledge of appearance
is not required. Frame difference is the most popular technique of motion-based methods
because of low computational cost, where the pixel-wise difference was computed within a
frame sequence. However, it is sensitive to noise and lighting conditions in a traffic video.
In addition, the drawback of frame difference is that there are holes in the vehicle regions
when the objects move slowly. On the other hand, vehicle trajectory is not present when
the objects move fast. Background subtraction [53] is extended work from frame difference
by referring a reference frame or background model which is utilized for comparison with
current frames. Its flow chart is shown in Figure 2.4, where there are three types of
background model as follows:

• Parametric background modelling is estimated by uni-modal probability den-
sity function, and update the distributions parameters. Frame averaging [37] is
conventional by averaging intensity within a frame sequence from the summation
of N frames within a frame sequence. To improve its performance, Gaussian filter
[92], median filter, and sigma-delta estimation [54] were added. There is a remaining
challenge for parametric background modeling such as slow or temporary stopped
vehicles, lighting conditions, and traffic images with high vehicle density.
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Figure 2.3: Part-based detection models where red and yellow circles are represented as
root and part filters, respectively [76].

Image sequence

Background modeling

Background subtraction

Threshold selection

Motion detection

Extracted foreground

Figure 2.4: Schematic flow of moving object detection by background subtraction [29].

• Non-parametric background modeling keeps a sample of intensity values for
each pixel in the input images, where probabilistic representation is estimated.
Based on recent studies, the examples method of this techniques are Kernel Density
Estimation (KDE) [20] and codebook [41]. These techniques were adapted with
rapid changes in the environment resulting in high detection sensitivity. However,
it requires space for storing samples of intensity from frame sequences. Therefore,
it is not suitable for the long-time application.

• Predictive background modeling is employed in modeling the change of pixel
intensity of moving objects, similar to Kalman filter [38], where the intensity of
background models are predicted based on previous information. In addition, these
techniques are applied for vehicle tracking in traffic monitoring.

Apart from two motion features mentioned above, an optical flow is also a popular
motion based features [23], where the optical flow corresponds to gradient orientations
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Figure 2.5: A typical pipeline of regression-based approach [50].

and directions of moving objects. The main concept of optical flow is matching two pixel
by using temporal and gradient information. Moving objects can be extracted on the
high displacement of gradient directions and magnitudes. This feature has a low impact
on occlusion. It provides an accurate motion vector which is suitable for a variation
of camera motions, lighting conditions, and complex or noisy background. However, its
computational complexity is increased because the trajectory is computed from all pixel
intensity within images.

2.2 Regression-based approach

In recent years, the number of vehicles is increased dramatically which results traffic jam
or high vehicle density on the road. This circumstance is called a crowded scene where
vehicle regions are extremely overlapped. A detection-based approach suffers from object
occlusion and various their scales in high density. To solve this problem, the regression-
based approach was designed to handle crowd scenes. Instead of extracting target features
separately, the regression-based approach avoids actual segmentation. The regression-
based approach relies on holistic features which represents characteristics of object density
(e.g. foreground, edge, and texture) as shown in Figure 2.5. The properties of holistic
features (e.g. the foreground area and the number of edge) are derived within a perspective
map or a region of interest (ROI) as depicted in Figure 2.5. A regression model has a role
to establish a direct mapping of property to the number of object in the image.

2.2.1 Holistic feature representation

Similar to a detection-based approach, holistic features must be defined for crowd repre-
sentation or abstraction. Feature representation concerns about the extraction, selection,
and transformation of low-level visual properties in an image or video to construct inter-
mediate input to a regression model. The holistic features are categorized as follows:

• Foreground segment features are utilized in most previous works for counting
object in crowd scenes. These features are obtained by background subtraction in
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Figure 2.6: The example of Gray-level co-occurrence matrix [50].

motion-based methods (e.g. mixture of Gaussian-based technique [77], mixture of
dynamic textures-based method [12], and so on) and semantic segmentation [51].
Various holistic features can be derived from the extracted foreground segment (e.g.
area, perimeter, block count and so on). Even though foreground segment features
are popular in a regression-based approach, background subtraction is sensitive to
lighting conditions.

• Edge features carry complementary information of the local and internal patterns
[11]. Object density can be described by edge representation, where images with
low and high density present coarse and complex edges, respectively. Since edge
features are insensitive to illumination, they can solve a problem related to lighting
conditions by foreground segment features. Common edge features (e.g. coarse
edges, edge orientation, and Minkowski dimension [55]) are usually employed for
counting objects.

• Textured and gradient features visualize the spatial information of objects in
the scenes. Crowded texture and gradient patterns carry strong cues about the
number of obejects in a scene. In particular, high-density crowd regions tend to
exhibit stronger texture response with distinctive local structure compared to the
low-density region. These features can be represented by two approaches, Gray-level
co-occurrence matrix (GLCM) [27] or local binary pattern (LBP) [59], as depicted
in Figures 2.6 and 2.7 respectively.

2.2.2 Traditional regression model

After feature extraction and perspective normalization, the regression model has an im-
portant role to formulate the holistic features and predict the number of objects within
the regions of interest. A regression model might have a broad class of functional forms
as follows:

• Linear regression formulates the given feature in form of a linear equation com-
prising N observations {xn} where n = 1, 2, 3, ..., N corresponding with continuous
target values {yn}. The goal of this regression is to predict the value of y (the num-
ber of objects) for given variable x [8]. The simplest approach is to compute linear
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Figure 2.7: The example of local binary pattern operator [59].

regression function f(x,w) that involves a linear combination of the input variables
as shown in Eq. (2.1).

f(x,w) = w0x0 + w1x1 + ...+ wNxN (2.1)

In a sparse scene, linear regression is satisfied for object counting because the map-
ping between the observations and object count typically presents a linear rela-
tionship. Nevertheless, given a more crowded environment with severe inter-object
occlusion, it may have to employ a nonlinear regression to adequately capture the
nonlinear trend in the feature space. However, linear regression can obtain a large
number of unnecessarily observed data x occurring in high-dimensional features,
where some of the variables are not effective for prediction. In addition, some of
them might be highly co-linear. The unstable estimation of parameters occur [8],
leading to very large magnitude in the parameters and therefore a clear danger of
severe over-fitting.

In addition, parameters in the linear model is typically obtained by minimizing the
sum of square errors in Eq. (2.2), where φ(x) is a vector of basis function of input
vectors (x) and w is set of weights denoted as w0, w1, w2, ..., wN . Previous works
usually deploy Gaussian and sigmoidal basis functions for their works.

E(w) =
1

2

N−1∑
n=0

{yn −wTφ(x)} (2.2)

• Partial least squares regression (PLSR) [25] addresses the problem of the co-
linearity from linear regression. PLSR projects both input X = {xn} and output
Y = {yn} into a latent space, with a constraint such that the lower-dimensional
latent variables describe the covariance between X and Y as much as possible.
Formally, the PLSR decomposes the input and target variables as described in Eqs.
(2.3) and (2.4).

X = TPT + εx (2.3)

Y = UQT + εy (2.4)
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where T and U are score matrices, with the column of T being the latent variables
of X and Y, respectively P and Q are known as loading matrices [25] and ε is the
error terms. This decomposition are made to maximize the co-variance of T and U.

• Kernel ridge regression is another solution for relaxing co-linearity problems. A
regularization term to error function of linear regression was added shown in Eq.
(2.2). A simple regularization is given as 1

2
wTw as written in Eq. (2.5).

ER(w) =
1

2

N−1∑
n=0

{yn −wTφ(x)}+
λ

2
wTw (2.5)

where λ is a constant value to control the trade-off between the penalty and the fit
which is determined by cross-validation. Using this particular choice of regulariza-
tion term, a error function of ridge regression (ER) is obtained.

Kernel ridge regression is a non-linear version of ridge regression which is achieved
by kernel trick [71]. This technique is used for enlarging dimensional feature space
by defining inner product between basis functions shown in Eq. (2.6) where k(x,x

′
)

is a kernel function which has typical choices of linear, polynomial, or radial basis
function (RBF) kernels. The regression function is illustrated in Eq. (2.7), where α
are Lagrange multipliers and f(x, α) is a regression model.

k(x,x
′
) = φ(x)Tφ(x

′
) (2.6)

f(x, α) =
N−1∑
n=0

αnk(x,xn) (2.7)

• Support vector regression [91] focuses on reduction of time complexity in Eq.
(2.7) which achieves sparseness in α in Eq. (2.7) by applying the concept of support
vectors to determine the solution which can result in faster testing speed than Kernel
ridge regression that sums over the entire training set. Its regression function can
be written in Eq. (2.8).

f(x, α) =
∑
SV s

(αn − α∗
n)k(x,xn) + b (2.8)

where αn and α∗
n are represented as Lagrange multipliers, k(x,xn) denotes the ker-

nel, and b is the offset. The error function for this regression is ε-insensitive error
function [81].

• Gaussian processes regression [69] is one of the most popular nonlinear regres-
sion model for counting objects in images with high density. It allows the possibly
infinite number of basis function driven by the data complexity, and it models un-
certainty in regression problems elegantly, where regression can be written in Eq.
(2.9).

f(x) ∼ GP (m(x), k(x,x
′
)) (2.9)
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Figure 2.8: The example of input data of regression model based on CNN where RGB
images (top) and their density maps (bottom) [64].

where GP is a Gaussian processes specified by mean function (m(x) and co-variance
function or kernel (k(x,x

′
)). The main disadvantage of Gaussian processes regres-

sion is its poor tractability for a large number of training sample.

• Random forest regression [17] is scale-aware nonlinear regression. A random
forest consists of randomly trained regression trees, which achieve better generaliza-
tion than a single over-trained tree. Each tree in a forest splits a complex nonlinear
regression problem into a set of sub problems, which is handled by weak learners
such as a linear model. To train a forest, one optimizes an energy over a given
training set and associated values of target variable. The regression function was
computed by averaging individual posterior distribution as shown in Eq. (2.10).

f(x) =
1

T

∑
pt(y|x) (2.10)

where T is the total number of trees in the forest, pt(y|x) is the posterior of tth tree.
The weakness of Random forest regression is that it is poor in extrapolating points
beyond the value range of the target variable within the training data.

2.2.3 Regression model based on CNN

In recent years, CNN is also usually deployed in regression-based approach with promis-
ing counting accuracy performance. Instead of using holistic features, input images are
formulated as a non-linear function corresponding to a number of objects called ’density
map’ as illustrated in Figure 2.8. The density map visualize the level of density where
high values are represented as high density. Regression model based on CNN utilizes deep
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Figure 2.9: Overview of counting method [9] where deep network (top) is used in combi-
nation with a shallow network (bottom) to address scale variation across images.

learning techniques for learning non-linear functions from the crowd scene to their corre-
sponding density maps or corresponding counts. Based on the property of the regression
model, we classify the approaches into the following categories [73]:

• Common CNNs utilize basic CNN layers in their networks. These standard CNN
usually be deployed as an initial deep learning approach for crowd counting and
density estimation.

• Scale-aware models modify object into more sophisticated models that are in-
sensitive to camera viewpoints and scale. This robustness is achieved by different
techniques (e.g. multi-column, multi-resolution networks, and so on).

• Context-aware models focus on local and global contextual information present
in the images for improving counting accuracy.

• Multi-task frameworks deploys various techniques beside object counting to
achieve low estimation errors (e.g. foreground-background subtraction, velocity es-
timation, and so on).

Since our goal focused on the evaluation of various condition in traffic videos, scale-
aware models are only described in this section which is summarized as follows:

1. Boominathan et al. [9] combine deep and shallow fully convolutional networks to
predict the density map for a given crowd image as shown in Figure 2.9. The
combination of two networks gives the robustness to non-uniform scaling of crowd
and shooting conditions. Patches from the multi-scale image representation are
sampled to make the system robust in scale variations.

2. Zhang et al. [95] propose multi-column based architecture (MCNN) as shown in
Figure 2.10for solving various density and caemra shooting conditions. The proposed
method ensures robustness to a large variation in object scales by constructing a
network consisting of three columns corresponding to filters with receptive fields of
different sizes (e.g. large, medium, small, and so on). These different columns are
designed to provide different object scales present in the images.

3. Kumagai et al. [42] utilize multi-column networks depicted in Figure 2.11 for han-
dling the various scale of a target while aiming of predictor for selecting suitable
networks for prediction. The architecture consists of a mixture of expert CNN and
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Figure 2.10: Overview of single image crowd counting via multi-column network [95]

Figure 2.11: Overview of Mixture of CNN for crowd counting [42]
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Figure 2.12: Overview of Fully Convolutional Network for crowd counting [56]

a gating CNN that selects the appropriate CNN among the experts according to
the appearance of the input image. Gating CNN predicts appropriate probabilities
for each of the expert CNN. These probabilities are further calculated as weighting
factors to compute the weighted average of the predicted count by all the expert
CNNs.

4. Marsden et al. [56] design a deep, single column, fully connected network illustrated
in Figure 2.12 utilizing for generating crowd density maps. The greater model capac-
ity improves the FCNs ability to learn the highly abstract, nonlinear relationships
present in crowd counting datasets.

5. Sam et al. [70] argue the better performance by training regression models with
a particular set of training patches by leveraging variation of crowd density within
an image. The switch classifier is trained to select the optimal regression model for
a particular input patch where the switch and independent regression models are
alternatively trained as shown in Figure 2.13.

6. Onoro and Sastre [61] develop Hydra CNN that learns a multi-scale non-linear
regression model. The network consists of 3 heads and a body with each head
learning features for a particular scale depicted in Figure 2.14. Each head of the
Hydra-CNN is constructed using the CNN model whose outputs are concatenated
and fed to the body. The body estimates the density map while the different heads
extract image descriptors at different scales.

To solve scale problems, multi-column networks and combination of deep and shallow
networks were proposed [9, 42, 61, 70, 95]. Their achievements are limited by number
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of networks and receptive sizes depended the scales of objects in the dataset, mostly on
human or head counting. In addition, they are often difficult to satisfy the real-time
application because of large amount of model parameters in multiple networks. Even
though [56] is designed as a single column network, it has ineffective results in a testing
or inference stage by performing a multi-scale averaging.

2.3 Summary

This chapter describes the related work of object counting which are categorized into
detection-based and regression-based approaches. A detection-based approach is usually
focused by many studies, where this approach extracts target regions (foreground) from
background regions. In the vehicle detection, appearance features are usually extracted
from low-level features (e.g. color, symmetry, edge, and so on) to high-level features which
are obtained from a deep learning technique (RCNN). In addition, vehicle regions are
extracted by using the motion features which are obtained from background subtraction,
optical flows, and others. Since the detection method with motion features is applied
without prior knowledge, they are insensitive to vehicle types because prior knowledge of
appearance is not required. However, vehicles with low and high speed cannot be archived
by this technique.

On the other hand, regression-based approaches are designed for solving an occlusion
problem which occurs in traffic videos with high vehicle density. Instead of extracting
vehicle regions, regression-based approaches establish a direct mapping between these
properties and the number of objects in the image, while avoiding actual segmentation
of individual or track of features. In recent years, CNN has a main role to design a
regression-based approach called ”prediction model”, where a multi-column network was
constructed to handle various vehicle sizes and density. However, these techniques have a
large number of parameters and computational cost. Therefore, this study is focused on
a single-column network which has less computational costs and number of parameters.
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Figure 2.13: Overview of Switching CNN [70]

Figure 2.14: Overview of Hydra-CNN [61]
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Chapter 3

Density Map Pre-processing

To estimate the number of vehicles in given images by applying a regression model based
on CNN, the neural configuration should be designed to formulate the output of the
regression model. The given outputs are utilized as the ground truth divided into 2 types
(estimated count and density map). An estimated count indicates the number of vehicles
in given images in form of an integer. On the other hand, a density map visualizes spatial
or continuous density information (e.g. the number of the vehicle in one kilometer) and
this information is formulated into the number of vehicles. Even though the regression
model by estimating vehicle count as output is end-to-end learning, this research is favor
on vehicle density map for the following reasons:

• Density map provides more information on partial distribution in specific regions
within the given images. It means that the density map is useful in other applications
and insensitive to various image conditions containing the same number of vehicles.

• In the learning process by CNN, the model is adapted to the sizes or density of
vehicles. Therefore, it is more suitable for arbitrary inputs whose perspective effect
varies significantly, and it consequently improves the accuracy of crowd counting.

Since traditional methods for vehicle counting are detection-based approaches, their
datasets of traffic videos as shown in Figures 3.1a and 3.1b provide only vehicle locations
as ground truth. This ground truth is annotated by bounding boxes (vehicle regions) and
dots (vehicle centroids) depicted in Figures 3.1c and 3.1d, respectively. To convert this
information into a density map, image processing techniques are deployed where they are
described as the following sections:

3.1 Traditional density-map computation

As mentioned in the previous section, the ground truth of vehicle detection and counting
usually provides us vehicle locations. This information is formulated as delta functions
(δ) computed by Eq. (3.1), where H is a centroid matrix, N is the total number of the
vehicle in given images, and (xi, yi) are vertical and horizontal coordinates of ith vehicles,
respectively. To compute density map (D), Gaussian kernels (G) are convoluted with H
as calculated in Eq. (3.2). Gaussian kernels are calculated in Eq. (3.3) where (Sx, Sy)
is vertical and horizontal dimensions of input images. As a result, the density maps
contain several Gaussian or normal distributions. According to the property of normal
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(a) (b)

(c) (d)

Figure 3.1: Examples of input data for density map computation where (a,b) input images
and (c,d) their localization ground truth annotated as bounding boxes and centriods
(yellow dots), respectively.

distribution, integration of normal distribution convoluted with delta function is equal to
one. Therefore, the number of vehicles or an actual count (F ) can be calculated by the
summation of a density map as shown in Eq. (3.4).

H(x, y) =
N∑
i=1

δ(x− xi, y − yi) (3.1)

D(xi, yi) = H(x, y) ∗G(xi, yi, σ) (3.2)

G(x, y, σ) =
N∑
i=1

(
1

σ
√

2π

Sx∑
x=1

Sy∑
y=1

{e−
(x−xi)

2(y−yi)
2

2σ2 }) (3.3)

F =
Sx∑
x=1

Sy∑
y=1

{D(x, y)} (3.4)

The main factor of the density map relies on spread parameters (σ). Figure 3.2 depicts
density maps calculated by various σ and conditions of traffic videos. It shows that larger
values of σ provide larger distribution areas causing overlapping regions in density maps,
especially in traffic images with high vehicle density as shown in 2nd and 4th columns of
Figure 3.2. This configuration reduces the counting accuracy calculated by Eq. (3.4) as
shown in Table 3.1. On the other hand, smaller σ gives better accuracy. However, the
characteristic between regions with high and low density have a similar pattern where
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Figure 3.2: Visualization of density maps calculated by using Eq. (3.2) from input images
(1st row) with σ = 4 (2nd row), σ = 8 (3rd row), σ = 12 (4th row), σ = 16 (5th row), and
σ = 20 (6th row).
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Number of vehicles by
1st

column
2nd

column
3rd

column
4th

column
5th

column
Ground truth 36 33 24 46 14
σ = 4 36 33 24 46 14
σ = 8 36.01 32.99 24 46.03 13.99
σ = 12 35.90 32.88 23.93 45.87 13.95
σ = 16 34.68 31.75 23.11 44.3 13.47
σ = 20 31.80 29.11 21.19 40.62 12.35

Table 3.1: The summation of the number of vehicle calculated by Eq. (3.2) from traffic
images in Figure 3.2

they are hard for training by regression or prediction models. Their empirical results will
be discussed in section 3.3.

3.2 Density map via geometry-adaptive kernels

In the previous section, the density map was computed by calculating Gaussian kernels.
It showed that the density distribution in each region of given images depends on σ. The
performance of counting accuracy also relies on values of σ. However, the normal distri-
bution computed by traditional methods is overlapped with each other while deploying
too large value of σ, especially in regions with high vehicle density. On the other hand,
regions with low vehicle density do not display their continuous density by using low val-
ues of σ. It means that spread parameters should be changed by vehicle density in each
region as shown in Figure 3.3, where low and high values of σ correspond to high and
low vehicle density respectively. Therefore, a modified density map (Dm) is written in
Eq. (3.5), where σi, xi, yi are a spread parameter, vertical, horizontal coordinates for ith

vehicle, respectively.

Dm(xi, yi) =
N∑
i=1

δ(x− xi, y − yi) ∗G(xi, yi, σi) (3.5)

Small σ value for

high vehicle density

Large σ value for

low vehicle density.

Figure 3.3: The relationship between spread parameters and vehicle density from traffic
images with high and low vehicle density[64].
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Number of vehicles by
1st

column
2nd

column
3rd

column
4th

column
5th

column
Ground truth 36 33 24 46 14
β = 0.2 36.01 32.99 23.95 46.02 13.52
β = 0.4 27.42 24.36 19.36 43.25 9.66
β = 0.6 19.28 17.02 16.55 39.37 6.98
β = 0.8 13.38 11.86 13.92 34.28 4.98
β = 1.0 11.26 10.00 12.67 31.54 4.24

Table 3.2: The summation of the number of vehicles calculated by Eq. (3.7) from traffic
images in Figure 3.4

Since vehicle size is related to vehicle density as shown in Figure 3.3, vehicle size can
be taken into account for estimating their spread parameters (σi). However, the vehicle
size is not accurately extracted due to the occlusion problem and the variation in a camera
viewpoint, and it is also difficult to find the relationship between vehicle size and density
map. To solve this problem, the distance among vehicles was utilized as a factor of σi.
For each vehicle in given images, a distance to its k nearest neighbors are denoted as
{ di1, di2, di3, ..., dik }. Hence, σi is evaluated from the average distance between vehicles,
which are inversely proportional to vehicle density, as depicted in Eq. (3.6).

σi =
β

k

k∑
j=1

dij (3.6)

where β is a constant factor to control σi. In other words, the centroid matrix is convoluted
with density kernels which is adaptive to the local geometry around each data point,
referred to as geometry-adaptive kernels. As a result, a modified version of the density
map can be used for calculating an actual count (Fm) from Eq. (3.7).

Fm =
Sx∑
x=1

Sy∑
y=1

{Dm(x, y)} (3.7)

Similar to the traditional method for computing density maps, β is an important factor
to indicate the performance of counting accuracy and the value of σ. Figure 3.4 illustrates
the density map implemented by calculating Eq. (3.5) with various β and k = 5. Regions
with high and low vehicle density can be distinguished easily based on their intensities
within the density map while utilizing small values of β. On the other hand, density maps
with large values of β have high counting errors because of overlapping regions.

3.3 Evaluation and comparisons

To select the most suitable density map for prediction models, both techniques for com-
puting density maps with traditional methods and geometry-adaptive kernels, described
in previous sections, were evaluated by feeding density maps to a prediction model and
comparing their counting accuracy. This evaluation is used to find the best configuration
to compute density maps.

In the experiment, traffic images are obtained from the TRANCOS dataset [64] which
is a novel benchmark for extremely overlapping vehicle counting in traffic congestion.
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Figure 3.4: Visualization of density maps calculated by using Eq. (3.5) from input images
(1st row) with β = 0.2 (2nd row), β = 0.4 (3rd row), β = 0.6 (4th row), β = 0.8 (5th row),
and β = 1.0 (6th row).
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More details are described in chapter 5. The counting accuracy was calculated by mean
square error (MSE) and mean absolute error (MAE) which is the standard evaluation
criteria for density map prediction. They were calculated by Eqs. (3.8) and (3.9). y and
ŷ are actual and predicted counts (from prediction model) within images, respectively,
calculated from Eqs. (3.4) and (3.7). We deployed MCNN [95] as shown in Figure 2.10,
which is the state-of-the-art of crowd counting, for evaluating density maps in a different
configuration. All density maps were trained by using the same hyperparameters (the
number of epochs = 100 and batch size = 2).

MSE(y, ŷ) =
1

N

N∑
i=1

(yi − ŷi)2 (3.8)

MAE(y, ŷ) =
1

N

N∑
i=1

|yi − ŷi| (3.9)

3.3.1 Counting accuracy evaluation

Figures 3.5 and 3.6 show MSE and MAE from traditional density maps with various
spread parameters. As expected, this result shows that σ is one of the factors for counting
accuracy. Density maps with low (σ < 2) or high (σ > 2) values of σ gave a high error in
both MSE and MAE, where the density map (σ = 2) is considered as a baseline because
it generates the minimum errors. On the other hand, MSE and MAE from the prediction
model trained by density map via geometry-adaptive kernels have a similar characteristic,
as shown in Figures 3.7 and 3.8, where the density map (β = 0.3) is considered as a
baseline with the same reason. The empirical results show that the density map via
geometry-adaptive kernels is more suitable for training in prediction models because of
lower minimum error (at their baselines).
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Figure 3.5: Mean square error of traditional density map predicted by MCNN [95].
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Figure 3.6: Mean absolute error of traditional density map predicted by MCNN [95].
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Figure 3.7: Mean square error of density map via geometry-adaptive kernels predicted by
MCNN [95].
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Figure 3.8: Mean absolute error of density map via geometry-adaptive kernels predicted
by MCNN [95].

In density maps with high values of σ and β, their errors in MSE and MAE come from
the overlapping regions in density maps mentioned in the previous sections. These regions
cause counting errors calculated by Eqs. (3.4) and (3.7). On the other hand, predicted
density maps generated by applying low values of σ and β does not distinguish in various
vehicle density. More details are discussed in sub-section 3.3.2.

3.3.2 Predicted density map assessment

From previous sections, the prediction model was evaluated by the patterns on density
maps in different vehicle density or perspective as a factor for density map configuration.
Therefore, this section describes the empirical results related to the quality of predicted
density maps. As described at the beginning of the chapter 3, actual density maps were
employed as ground truth in a loss or cost function while training. It means that a
prediction model generates predicted density maps that have the same patterns as actual
density maps to reduce training errors.

To evaluate the empirical results, a traffic image containing both low and high vehicle
density, as shown inside blue and red circles in Figure 3.9, respectively, is employed by
the prediction model. Figure 3.10 depicts traditional density maps (in the first row) and
predicted density maps (in the second row) of Figure 3.9. The empirical results show that
density maps with σ less than baseline (σ = 2) can not capture the patterns in low vehicle
density as shown in Figure 3.10d compared to its actual density map (Figure 3.10a). On
the other hand, two other configurations, Figures 3.10e and 3.10f can not extract pattern
in high vehicle density compared to their actual density maps (Figures 3.10b and 3.10c).
Therefore, counting error in traditional density maps is reduced from losing Gaussian
distribution in images, especially in high vehicle density.

For another density map, spread parameters which are controlled by β improves quality
of predicted maps as shown in Figure 3.11d to 3.11f, especially in baseline (β = 0.2).
However, density maps with β = 0.1 have the pattern in low vehicle density similar
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Figure 3.9: An example of traffic image [64] containing low and high vehicle density within
blue and red circles, respectively.

to high vehicle density as shown in Figure 3.11a where their Gaussian distributions are
disappeared in some regions. On the other hand, more overlapping regions appear in
density maps with a higher value of β resulting in incomplete prediction. Their results
can be improved by training with more epochs.

3.4 Summary

This chapter describes the pre-processing step for a regression-based approach. Since
most of the dataset is related to detection-based approaches, their ground truths are
typically annotated as bounding boxes (vehicle regions) and dots (vehicle centroids). The
actual density map typically are convoluted with Gaussian kernels controlled by spread
parameters (σ) to formulate actual density maps. However, this technique is ineffective
for classifying the different information between regions with high and low vehicle density.
Therefore, we propose density maps via geometry-adaptive kernels where each location is
convoluted with different σ. The spread parameters of the vehicle (σ) are controlled by
average distances to its nearest neighbors. Both methods are evaluated by feeding them
into the prediction model. The empirical result shows that proposed density maps have
fewer counting errors and it was applied in this study.
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(a) (b) (c)

(d) (e) (f)

Figure 3.10: Traditional density maps computed from Figure 3.9 with (a) σ = 1, (b) σ = 2
(baseline), and (c) σ = 9, where (d) - (f) are their predicted density maps, respectively.

(a) (b) (c)

(d) (e) (f)

Figure 3.11: Density maps via geometry-adaptive kernels computed from Figure 3.9 with
(a) β = 0.1, (b) β = 0.3 (baseline), and (c) β = 0.5, where (d) - (f) are their predicted
density maps, respectively.
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Chapter 4

Vehicle-density Estimation
Framework

The prediction model is considered an important part of a regression-based approach
because it is end-to-end learning which extracts holistic features and estimates the number
of vehicles in images. As mentioned in section 1.3, this study aims to examine the single-
column network which has a less computational cost and the number of parameters than
the multi-column network. Besides, skip connections and dilated convolutions were also
employed to improve counting accuracy and preserve semantic information in a predicted
density map, respectively. This chapter describes the prediction model for vehicle-density
estimation in the following sections:

4.1 Backbone network architecture

First of all, the structure of a prediction model must be indicated (e.g. the number of
layers, kernel sizes, and so on). The state-of-the-art prediction model in crowd counting,
MCNN [95], was analyzed. Their network architecture is an original concept to apply
multiple CNNs to handle objects with different sizes located in different density, a multi-
column network. There are three CNNs consisting of three networks to handle objects
with small, medium, and large sizes as shown in Figures 4.1a, 4.1b, and 4.1c, respectively.
Each network has different kernel sizes to extract an object’s features with different sizes.
The final results combined from three networks give promising results.

To design the proposed single-column network, the backbone network architecture
was selected from one of three networks that have the lowest errors. The most dominated
networks are utilized along with skip connections to replace the multi-column network
with the single-column network. The dominated network was selected by calculating
MSE and MAE in Eqs. (3.8) and (3.9) shown in Table 4.1, where S-net, M-net, and

MCNN networks S-net M-net L-net
MSE 185.88 146.83 148.25
MAE 11.94 10.27 10.36

Table 4.1: MSE and MAE of MCNN in S-net, M-net, and L-net shown in Figures 4.1a,
4.1b, and 4.1c, respectively.

37



Input images

5 × 5 conv 24

pooling 2 × 2

3 × 3 conv 48

pooling 2 × 2

3 × 3 conv 24

3 × 3 conv 12

Up 2 × 2

Up 2 × 2

Predicted
density map

(a)

Input images

7 × 7 conv 20

pooling 2 × 2

5 × 5 conv 40

pooling 2 × 2

5 × 5 conv 20

5 × 5 conv 10

Up 2 × 2

Up 2 × 2

Predicted
density map

(b)

Input images

9 × 9 conv 16

pooling 2 × 2

7 × 7 conv 32

pooling 2 × 2

7 × 7 conv 16

7 × 7 conv 8

Up 2 × 2

Up 2 × 2

Predicted
density map

(c)

Figure 4.1: CNNs for crowd counting from MCNN [95] which handle objects with (a)
small, (b) medium, and (c) large scales.
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L-net are corresponded to networks in Figures 4.1a, 4.1b, and 4.1c, respectively. It shows
that M-net has the most optimal results. Therefore, M-net was selected in our network.
Since one kernel will be computed in a thread of GPU and 8 threads are run in parallel,
several kernels should be divisible into 8 to optimize the memory consumption. If the
number of kernels is 7, one thread will be a wasted resource. On the other hand, another
computation period must be provided if the number of the kernel is more than 8. Besides,
Up-sampling layers, as shown in green boxes of Figure 4.1, distort predicted density maps
where counting accuracy might be reduced. An example of the distortion is depicted in
Figure 4.2, where Figures 4.1a and 4.1b are an input image and its actual density map.
it shows that a predicted density map computed by M-net (Figure 4.2c) has quite an
agitated pattern compared to its actual density map as selected as a backbone network
in the proposed method.

To solve distortion problems, convolutional (Conv) layers are inserted as decoders, as
shown in Figure 4.3, to recover the information lost by pooling layers. Figure 4.2d depicts
a predicted density map computed by Figure 4.3a. It shows that its pattern is more
similar to an actual density map (Figure 4.2b), and the amount of noise is reduced. The
proposed backbone network architectures are designed into three versions with different
number of kernels, where they are represented as Model A-1 (Figure 4.3a), Model A-2
(Figure 4.3b), and Model A-3 (Figure 4.3c). The counting accuracy is affected by the
number of kernels, where their experimental results are discussed in chapter 5.

In the next step, the receptive field and the kernel size will be analyzed. They found
that the Conv layer can be replaced with another layer that has the same receptive field
size [84]. The receptive field sizes are computed in Eq. (4.1), where rn is the receptive field
size to the nth layer, kn is the kernel size of nth Conv layer, and jn is the distance between
two adjacent features of nth layer which is calculated by Eq. (4.2) with convolution stride
in nth layer (sn).

rn+1 = rn + (kn+1 − 1)× jn (4.1)

jn+1 = jn × sn+1 (4.2)

As shown in the equations above, the receptive field relies on the kernel size and the
number of Conv layers. It means that backbone network architectures are reconstructed
by adding more layers and changing kernel size, which results in the same receptive fields.
By employing Eq. (4.1), 7×7, and 5×5 Conv layers are converted into stacks of three and
two 3×3 Conv layers, respectively. Figure 4.4 shows an example of equivalent convolution
between 5 × 5 convolutions and stacked 3 × 3 convolutions generating the same output
sizes. By using stacks of 3× 3 Conv layers, its advantages are summarized as follows:

• The number of model parameters was reduced due to the smaller sizes of kernels.
For example, the number of parameters in 7 × 7 Conv layers is 49. On the other
hand, only 27 parameters are trained from stacks of 3× 3 Conv layers.

• Even though fewer parameters are provided by stacks of 3 × 3 Conv layers, non-
linear neuron parameters are calculated where stacks of convolution layers have a
higher-level feature map than only one Conv layer.

Figure 4.5 shows modified versions of Models A-1, A-2, and A-3, which are denoted as
Models B-1 (Figure 4.5a), B-2 (Figure 4.5b), and B-3 (Figure 4.5c), respectively. These
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(a) (b)

(c) (d)

Figure 4.2: The experimental result on distortion of predicted density maps where (a)
input image, (b) actual, (c), and (d) predicted density maps computed from M-net and
Model A-1, respectively.

models were designed by replacing 5× 5 and 7× 7 Conv layers with stacks of 3× 3 Conv
layers mentioned above, where a promising performance is expected.

4.2 Network architecture with skip connections

To overcome the multi-column network, the feature map in different layers of the single-
column network are extracted for handling vehicles located in various vehicle density.
Feature maps are categorized into low-level and high-level feature maps. Low-level feature
maps represent the simple texture or structure of objects (e.g. lines, corners, gradient,
and so on). On the other hand, complicated textures (e.g. faces, whole bodies, and so on)
are represented by high-level features. Figure 4.6 illustrates the typical structure of CNN
from low-level to high-level features corresponded to shallow and deep layers, respectively.
In this study, deep layers are utilized to extract features of large vehicles located in low
vehicle density. Shallow layers are more accurate and robust in counting extremely small
vehicles with high vehicle density.

To extract a feature map from shallower or deeper layers, skip connections are deployed
in the proposed method. It is well known that prediction models using CNNs require a
large number of layers to increase counting and classification performance. Instead of
designing deep networks, the skip connection was proposed by reusing low-level feature
maps, where its advantages are summarized as follows:

• Information degradation is reduced during the training process similar to the resid-
ual block identity mapping.

• The low information for prediction is recovered by integrating a low-level feature
map from a shallower layer.
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Figure 4.3: The proposed backbone network for solving distortion problems consisting of
3 versions, (a) Model A-1, (b) Model A-2, and (c) Model A-3.
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Figure 4.4: 5× 5 convolutions vs the equivalent stacked 3× 3 convolutions [19]

CNNs with skip connections usually extract low-level features from the shallower layer
to deeper layers, for reconstructing high-level features. It is called as forward connections.
However, CNNs with forward connections may not aware of information from deep layers
and it is very hard for training. If high-level features maps are fed by shallow layers,
more informative features are extracted in the earlier stage using backward connections,
extracting high-level features from deeper layers to shallower layers. Their information is
described as follows:

4.2.1 Forward skip connection

As described in the previous section, a forward skip connection extracts feature maps
from shallower layers to increase prediction and counting accuracy. Feature maps from
shallower and deeper layers are combined by concatenation as shown in Eq. (4.3), where
xL is the input of Lth Conv layer resulting yL, n is a scalar constant value, and F (xL)
is a Conv layer function that consists of multiple convolutions and non-linear activation
functions (ReLU).

yL = F (xL) +WLxL−n (4.3)

To concatenate two feature maps, their sizes must be the same. It denotes that
{HL,WL, DL} represents as height, width and depth. Then, WL is added into Eq. (4.3)
to adjust H and W of the feature map, where WL is a convolutional transformation of
the Lth layer. Since the research goal of this study is to minimize time complexity and
the number of model parameters, WL should be ignored. The proposed prediction model
is designed from U-net [66], where feature maps with the same sizes are concatenated to
each other. Therefore, Eq. (4.3) are written as Eq. (4.4) without WL, where NL is the
number of convolution layers in prediction models.

yL = F (xL) + xNL−L (4.4)

Figure 4.8 depicts the prediction model with a forward connection, where f is a factor
to control the number of the kernel in each Conv layer. It shows that the feature maps
from encoded Conv layers (Conv1, Conv2, and Conv3) are concatenated with input feature
maps of decoded Conv layers (Conv5, Conv6, and Conv7), respectively.
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Figure 4.5: The proposed backbone network for reducing number of model parameters
consisting of 3 versions, (a) Model B-1, (b) Model B-2, and (c) Model B-3.
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Figure 4.6: Structure of CNNs corresponded to level features and vehicle density [52].

4.2.2 Backward skip connection

The design of backward connections is opposite to forward connections, where the features
from deeper layers are extracted and concatenated with feature maps from shallower
layers, as shown in Figure 4.9. These connections are denoted as Eq. (4.5). It is well
known that CNN is a hierarchical network where deep layers require a low-level feature
to construct their feature maps. Therefore, the design of the prediction model shown in
Figure 4.9 is not deployed in the practical configuration.

yL = F (xL + yNL+L) (4.5)

To solve this problem, this study proposed techniques for extracting high-level features
which are summarized as follows:

• Master-slave network (MS) creates two networks called master and slave net-
work. Master networks have a role as a prediction model for predicting density maps
and counting the number of vehicles. On the other hand, slave networks have only
one role to feed the master networks with high-level feature maps. The slave net-
work is not provided with any backward skip connections from the master network
and its predictions are ignored. However, both networks are optimized to minimize
losses. The skip connections are denoted as Eq. (4.6).

ymL = F (xmL + ysNL+L) (4.6)

where ymL and ysL are feature maps obtained from Lth convolution layer of master
and slave networks, respectively. xmL is an input of Lth Conv layer of master net-
works. Both master and slave networks have the same network architecture (e.g.
the number of Conv layers, kernel sizes, and so on) as shown in Figure 4.10.

• Batch transfer (BT) is a training procedure extracting high-level features from
predictions that were trained by earlier batches of images. Since CNN is a method
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Figure 4.7: CNNs with (a) Forward and (b) Backward connections.

for finding specific characteristics or features from multiple images in different con-
ditions, it is assumed that traffic images have a similar pattern of vehicle density and
their feature maps are reused for other batches. The skip connections are denoted
as Eq. (4.7).

ybL = F (xbL + yb−1
NL+L) (4.7)

where xbL is input of Lth Conv layer of bth batch trained prediction resulting ybL.
Figure 4.11 shows training procedures in the first three batches, where zero metrics
are initially deployed as high-level feature maps in the prediction trained by the first
batch of traffic images.

• Pre-trained map (PT) uses the same concept of MS but the slave and master
networks are separately trained. Since MS has two networks for optimizing their
weights, more memory is required twice to predict the number of vehicles. To solve
this problem, a transfer learning technique was added to PT. Slave networks have a
role as pre-trained networks to calculate high-level features fed to master networks.
Figure 4.12 shows the structure of the backbone with PT, where F1, F2, and F3
represent pre-trained feature maps for concatenating with low-level feature maps of
master networks.
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Figure 4.8: The proposed backbone network with forward connections.
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Figure 4.9: The proposed backbone network with backward connections.
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Figure 4.10: The proposed backbone network via slave and master networks where the
predicted density map 1 are used for weight optimization in a slave network, while counting
results are obtained from the predicted density map 2.
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Figure 4.11: The proposed backbone network with batch transfer trained by the first
three batches of images.
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Figure 4.12: The proposed backbone network with Pre-train map where F1, F2, and F3
are pretrained feature maps from a slave network.
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4.3 Network architecture with dilated convolutions

In general, the structure of the prediction model usually includes pooling and Up-sampling
layers to increase the size of the receptive field. However, the previous study [46] proved
that resizing feature maps, with pooling and up-sampling layers cause an error in object
counting calculated in Eq. (3.7) because valuable information might be lost. Then, the
Conv layers should only be employed in the prediction model without resizing feature
maps. As a large number of Conv layers, it will require more model parameters for weight
optimization. To solve this problem, pooling and up-sampling layers were replaced with
dilated convolutions. The dilation convolution is obtained from Eq. (4.8).

y(m,n) =
M∑
i=1

N∑
j=1

x(m+ r × i, n+ r × j)w(i, j) (4.8)

where (m,n) is the vertical and horizontal coordinates of the feature map and y(m,n)
is the output of a dilated Conv layer from their input features (x(m,n)) and weights
(w(m,n)) with the height and width of M and N , respectively. The parameter r is
the dilation rate, where the normal convolution are assigned with r = 1. The dilated
Conv layer can increase the size of the receptive field exponentially without resizing. In
addition, the experiment from [46] has proved that the counting accuracy is improved by
increasing the quality of the predicted density map with dilated convolutions. Based on
our experiment, a backbone network with a dilated rate = 2 is selected because it gives
the most optimal performance of the density map prediction. To keep a feature map
resolution, all Conv layers use zero-padding to maintain the previous size.

Let Conv (3, 16, 1) is represented as a Conv layer with 3 × 3 kernel sizes, the number of
filter = 16, and a dilated rate = 1. With the advantage of the dilated convolution, network
architectures with backward connections can be modified by adding dilated convolution
from section MS, BT, and PT as shown in Figures 4.13, 4.14, and 4.15, respectively, where
dilated convolutions are represented as yellow rectangular boxes.

4.4 Summary

This chapter describes the network architectures of the prediction model in this study.
First of all, our backbone network was designed from the state-of-the-art crowd counting
where their kernels are changed to a stack of Conv layers (3× 3) for reducing the number
of model parameters. To increase prediction performance, we propose a prediction model
with a skip connection consisting of forward and backward connections. The prediction
model with forward connections employs concatenation between low-level and high-level
feature maps with the same dimensions. On the other hand, models with backward
connections are a reverse version of forward connection consisting of three versions. First,
another network was designed without concatenated feature maps and transfer its high-
level feature map to a master network. Second, high-level feature maps are transferred
from previously trained batch networks by initializing concatenated feature maps in the
first batch as zero matrices. Third, the slave network is also employed but it has a role
as pre-trained networks to provide its high-level feature map for a master network. In
the final version, dilated convolutions were introduced to recover information loss from
pooling and up-sampling layers while keeping the size of the receptive field.
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Figure 4.13: The proposed backbone network with slave and master networks and dilated
convolutions where predicted density map 1 are used for weight optimization in a slave
network, while counting results are obtained from a predicted density map 2.
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Figure 4.14: The proposed backbone network with batch transfer and dilated convolutions
trained by the first three batches of images.
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Figure 4.15: The proposed backbone network with Pre-train maps and dilated convolu-
tions where F1, F2, and F3 are pretrained feature maps from a slave network.
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Chapter 5

Experimental Results

This chapter describes empirical results where the proposed methods and related studies
were evaluated. The chapter was divided into 4 sections, experimental setup, vehicle
counting evaluation of the prediction model, and analysis on a predicted density map.
First, the experimental setup gives information about pre-processing factors related to the
evaluation of the prediction model. Second, the empirical results were analyzed in different
aspects. Third, the factor on the quality of the predicted density map was discussed. In
the last section, the proposed prediction model was evaluated in other datasets, in addition
to vehicle density estimation. Their descriptions are shown as follows:

5.1 Experimental setup

5.1.1 Hardware and software specification

Since the aim of my study is to examine the single-column network requiring only one
CNN in a prediction model, where computation cost is concerned. Therefore, PC speci-
fication computing and optimizing trainable parameters should be described to compare
time complexity and memory consumption. The hardware specification is summarized as
follows:

• CPU: Intel Xeon E5-2680v2 10Core

• GPU: NVIDIA Tesla K40

• Memory: 64GB

In addition, the prediction models were implemented by Python 3.5.6. Figure 5.1
shows that the models implemented with Pytorch, Tensorflow, and Keras have a different
training time. In our experiment, all prediction models were implemented by Tensorflow
1.10.0 because less computational cost is required than the other two libraries.

5.1.2 Traffic image dataset

As mentioned in Chapter 1, the traffic analysis based on computer vision is prominent for
traffic monitoring systems. Then, several traffic datasets for vehicle detection were intro-
duced to evaluate the proposed method in various applications in ITS. This subsection
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Figure 5.1: Average training time from well known CNNs implemented with Pytorch,
Tensorflow, and Keras [67].

provides the list of benchmark datasets for vehicle density estimation. their overviews
and characteristics are briefly introduced as follows:

• PASCAL VOC dataset [22] is one of the well-known dataset for object detection,
including vehicle detection. The principal challenge is to evaluate the detection al-
gorithm for each object category, where images in the dataset can be categorized
into 20 classes. object annotation is provided for the twenty classes. all images are
annotated with bounding boxes for every instance of the twenty classes for the clas-
sification and detection challenges. In addition, their attributes (e.g. ’orientation’,
’occluded’, ’truncated’, and ’difficult) are specified with bounding boxes.

Objects with the vehicle class have 7 instances. The images containing vehicle classes
were captured in different camera viewpoints as shown in Figure 5.2. However, their
camera viewpoints are different from traffic videos recorded by a surveillance system.

• KITTI dataset [24] provides traffic videos recorded by cameras installed on vehi-
cles. This dataset is deployed for object detection, and other tasks. Figure 5.3 shows
example images from this dataset, where their traffic images are categorized into
city, residential, and road areas shown in Figures 5.3a, 5.3b, and 5.3c, respectively.

The object class is denoted as ’vehicle’, ’Truck’, ’Pedestrian’, ’Person (sitting)’,
’Cyclist’, ’Tram’ and ’Misc’ (e.g., Trailers, Segways, and so on). For each image, the
translation and rotation are provided in 3D, while the other two angles are assumed
to be close to zero. Furthermore, vehicle density and truncation are specified.

• UA-DETRAC Benchmark Suite [89] contains traffic images recorded by 100
surveillance cameras with high resolutions. Traffic videos have been labeled their
detailed attributes (e.g. vehicle category, weather, occlusion ratio, and scale) in the
dataset. In each scene, vehicles are marked with their locations and attributes as
shown in Figure 5.4. Besides, ignorance regions are specified. These regions contain
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Figure 5.2: The example of images from PASCAL VOC dataset [22] containing objects
with vehicle classes and complete annotations at various viewpoints.

(a) (b) (c)

Figure 5.3: The examples of images from the KITTI dataset [24] recorded at (a) city, (b)
residential, and (c) road areas.
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vehicles that were not annotated or detected because they have very small sizes
illustrated in Figure 5.4 as dark regions.

The real-world part of the UA-DETRAC dataset is captured under three occlusion
status as fully visible, partially occluded by other vehicles and partially occluded by
background, and different degrees of truncation as vehicle parts outside the image.
To achieve a training distribution, the multi-scale vehicles including small (0 - 50
pixels), medium (50 - 150 pixels), and large (more than 150 pixels) are extracted to
train the predicition model.

Figure 5.4: The examples of images from UA-DETRAC Benchmark Suite [89].

• TRANCOS dataset[64] presents the dataset of traffic images with extremely over-
lapping vehicles. Figure 5.5 depicts the examples of traffic images in this dataset.
These images show how challenging the problem if extremely overlapping vehicles
are captured by a traffic surveillance camera.

The dataset consists of 1244 images. They have been acquired from a selection
of public traffic surveillance cameras provided by the Directorate General of Traf-
fic (DGT) of the Government of Spain. The cameras selected monitor different
highways in Madrid, which typically presents heavy traffic congestion.

To select a suitable dataset, their images should have the same characteristic of traffic
surveillance images in practical circumstances. Typically, public authorities install cam-
eras in high positions (over the road) to capture whole traffic scenarios as large as possible.
It implies that traffic images from PASCAL VOC [22] and KITTI datasets[24] are not
suitable for VIVDS. As mentioned in section 1.2, Most of the traffic videos have low res-
olutions and frame rates, where traffic images from UA-DETRAC Benchmark Suite [89]
hardly employed in practical circumstances. Therefore, TRANCOS dataset is selected for
the evaluation of vehicle density estimation in this study.

5.2 Vehicle counting evaluation of prediction model

This section describes the performance of the proposed prediction models mentioned in
Chapter 4. Each model is evaluated in the following subsections. Since this study is
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Figure 5.5: The examples of traffic images from TRANCOS dataset [64].

related to VIVDS in the traffic light control system, their evaluation criteria should be
calculated in this experiment. Based on the Departments Approved Product List (APL)
[6], the minimum accuracy of each traffic attributes for VIVDS are as follows:

• Density: 95 % (normal weathers) and 90% (adverse weathers).

• Occupancy: 90 % (normal weathers) and 85% (adverse weathers)

• Speed: 90 % (normal weathers) and 85% (adverse weathers)

The counting results are reported within 1 - 10 seconds. vehicle density accuracy
was calculated in Eqs. (5.1) and (5.2), where V Tlni and V T ∗

lni
are total vehicle density

in ith lane from prediction models and ground truths, respectively. V Alni and V A are
vehicle density accuracy in the ith lane and its average values, respectively. N is the total
number of lanes in the traffic images. Since most related works are evaluated by MSE
and MAE calculated in Eqs. (3.8) and (3.9), respectively, their vehicle density accuracy
was obtained by using Eq. (5.3) where M is the number of tested images.

V Alni = 100−
|V Tlni − V T ∗

lni
|

V T ∗
lni

× 100 (5.1)

V A =

∑N
i=1 V Alni

N
(5.2)

V A = 100− MAE ×M
V T ∗ × 100 (5.3)

As observed in the evaluation metric, the estimation network was only evaluated in
image-level performance (MSE and MAE). Even though point-level performance (Recall
and Precision) in detection-based method provides more valuable information, it was not
taken into account as following reasons:
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• With low resolutions of targets and images, a predicted location from the density
map is difficulty estimated directly from the centroid matrix (H) in Chapter 3, due
to a high crowd density.

• In case where the density pf target is high, every target is generally located in
most parts of ROI. Inaccurate target localization is not extremely effective for a
regression-based approach in the practical application.

5.2.1 Ablations on the backbone network

The backbone network with various modifications is evaluated in this subsection. As
mentioned in section 4.1, backbone networks are designed from one stack of MCNN [95]
resulting Model A-1, A-2, and A-3 as shown in Figure 4.3. Besides, their kernel sizes
were modified by using 3× 3 Conv layers resulting Model B-1, B-2, and B-3 as shown in
Figure 4.5. Their evaluation performance is shown in Table 5.1. It shows that prediction
models using stacks of 3 × 3 Conv layers have higher average accuracy. Varying the
number of trainable parameters reveals that models A-2 and B-2 has the highest accuracy.
Even though models A-3 and B-3 have a larger number of trainable parameters, their
performances are reduced. This error is caused by an overfitting problem. Therefore,
model B-2 will be employed for the rest of the experiments. For time complexity, training,
and testing time for each model depends on the number of trainable parameters. However,
their time consumption might not satisfy the minimum requirements of VIVDS because
our hardware specification is different from the practical configuration. This information
will be used for comparison with other models in the next subsection.

Model name No. Trainable parameter MAE VA (%)
Training
time (s)

Testing
time (s)

A-1 138,833 9.40 76.24 0.096 0.07
A-2 552,609 6.29 84.09 0.16 0.07
A-3 2,204,993 8.12 79.47 0.33 0.07
B-1 111,185 5.37 86.43 0.089 0.06
B-2 443,553 4.13 89.55 0.12 0.07
B-3 1,771,841 5.46 86.2 0.21 0.06

Table 5.1: Vehicle counting accuracy by using prediction models with reducing kernels
sizes

Figure 5.6 illustrates the density error (Dv) from proposed prediction models: mod-
els A-1, A-2, and A-3 (Figures 5.6a, 5.6a, and 5.6c respectively). The density error is
calculated by using Eq. (5.4), where y and ŷ are actual and predicted counts, respec-
tively. The positive and negative values of Dv indicate the quality of over-counting and
under-counting errors, respectively. They show that the density error, especially in under-
counting error, is reduced when more parameters are extracted. However, the predicted
count is decreased. On the other hand, the density error from models B-1, B-2, and B-3,
shown in Figures 5.7a, 5.7b, and 5.7c respectively, are effective to reduce under-counting
error. However, the over-counting error was not solved by their models, especially in a
large number of vehicles (> 50 vehicles).
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Dv(y, ŷ) = ŷ − y (5.4)

5.2.2 Ablations on the skip connection and dilated convolution

This subsection describes the effect of skip connections and dilated convolutions. As
mentioned in section 4.2, prediction models with skip connections were categorized into
forward and backward connections. In addition, pooling and Up-sampling layers were
replaced with dilated convolutions to avoid information loss by resizing images in Section
4.3. Table 5.2 shows the counting accuracy of model B-2 with and without skip connec-
tions. The experimental results show that models with skip connections increase density
accuracy, especially in models with backward connections (MS, BT, and PT). Even though
MS has a high accuracy than FC, MS requires more memory space for trainable param-
eters. The performance from the model with BT is not significantly improved. It proves
that the characteristic among traffic images are varied to each other. On the other hand,
dilated convolutions can help to increase VA around 1% from backward connections where
their benefits are effective to the quality of density maps discussed in Section 5.3. Since
PT with dilated convolution has the best counting accuracy in this research, it will be
compared with other prediction models in the next subsection.

In terms of the density error calculated by Eq. (5.4), the density error is depicted in
Figures 5.8a, 5.8b, 5.8c, and 5.8d from model B-2 with FC, MS, BT, and PT, respectively.
By adding skip connections, the predicted count is closer to the actual counts than model
B-2 results shown in Figure 5.7b. In the skip connection, It shows that FC and MS suffer
from under-counting errors, while PT and BT have the same problem on over-counting
and under-counting errors. On the other hand, dilated convolutions are effective to reduce
under-counting error, especially in high vehicle density as shown in Figure 5.9. However,
it can be seen that the density error from prediction models with dilated convolution (MS
and BT) are increased on traffic images containing 20 − 40 vehicles as shown in Figures
5.9a and 5.9b respectively. It shows that models with a large number of parameters from
MS and BT are hard to be optimized by dilated convolutions. Meanwhile, PT with dilated
convolutions is ineffective for this issue as shown in Figure 5.9c.

Model name
No. Trainable

parameter
MAE VA (%)

Training
time (s)

Testing
time (s)

B-2 443,553 4.13 89.55 0.12 0.07
B-2 (FC) 491,937 3.70 90.65 0.12 0.09
B-2 (MS) 983,874 3.38 91.46 0.54 0.21
B-2 (BT) 491,937 3.98 89.96 0.36 0.13
B-2 (PT) 491,937 2.99 92.47 0.33 0.11
B-2 (MS) with dilated Conv 983,874 2.46 93.79 0.55 0.20
B-2 (BT) with dilated Conv 491,937 4.96 87.47 0.35 0.13
B-2 (PT) with dilated Conv 491,937 3.01 92.40 0.34 0.11

Table 5.2: Vehicle counting accuracy by using prediction models with skip connections
consisting models B-2 with forward connections (FC), master-slave network (MS), Batch
transfer (BT), and pre-trained map (PT) with and without dilated convolutions.
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Figure 5.6: The density error from TRANCOS dataset [64] by using (a) model A-1, (b)
model A-2, and (c) model A-3.
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Figure 5.7: The density error from TRANCOS dataset [64] by using (a) model B-1, (b)
model B-2, and (c) model B-3.
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Figure 5.8: The density error from TRANCOS dataset [64] by using (a)FC, (b) MS, (c)
BT, and (d) PT.
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Figure 5.9: The density error from TRANCOS dataset [64] by using (a) MS, (b) BT, and
(c) PT with dilated convolutions.
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5.2.3 Counting accuracy with related works

This subsection analyzes the empirical results for comparing related works to our pro-
posed methods. Our prediction model was compared with the multi-column network for
the crowd counting model consisting of MCNN [95], Hydra Net [61], and Tracount [78].
Besides, well-known classification networks with skip connections were analyzed (U-net
[66], Resnet-101 [28], and Densenet-201 [33]) which have a large model structure. Their
counting accuracy is shown in Table 5.3. The empirical result shows that our proposed
model overcomes prediction models for crowd counting (MCNN, Hydra Net, and Tra-
count) in terms of MAE because their networks are more suitable for people counting.
Meanwhile, well-known methods with skip connections have better counting accuracy, es-
pecially in Resnet-101 (93.33%). The proposed model with the highest accuracy (PT with
dilated Conv) has similar accuracy (93.37%) to related works while requiring less train-
able parameters and computational cost. Since traffic videos with adverse conditions are
also included, the results from the proposed models are acceptable for their requirements
(90%).

In term of time consumption (training and testing time), related models in Table 5.3
spend time consumption more than modified models in Tables 5.1 and 5.2. It proves that
our proposed prediction model is overcome in terms of time consumption and model com-
pactness. However, the problems related to high vehicle density and adverse conditions
can not be solved by our methods.

Figures 5.10 and 5.11 depict the density error generated by related works. In crowd
counting models, the empirical results show that MCNN has high errors in both under
and over-counting errors as shown in Figure 5.10a. On the other hand, Hydra Net and
Tracount has a problem in only over-counting error as shown in Figures 5.10b and 5.10c,
respectively. With a large model parameter, over and under-counting errors from model
with skip connection has better results as shown in Figures 5.11a, 5.11b, and 5.11c re-
spectively, where the difference between actual and predicted count does not exceed 40
vehicles.

Model name
No. Trainable
parameter

MAE VA (%)
Training
time (s)

Testing
time (s)

B-2 (PT) with dilated Conv 491,937 3.01 92.40 0.34 0.11
MCNN [95] 1,333,705 11.05 72.07 0.11 0.05
Hydra Net [61] 2,725,760 10.99 72.23 0.21 0.15
Tracount [78] 3,938,224 8.12 79.48 0.31 0.25
U-net [66] 24,339,281 5.13 84.50 0.48 0.18
Resnet-101 [28] 51,505,684 2.64 93.33 0.65 0.23
Densenet-201 [33] 26,933,105 3.6 90.09 0.78 0.26

Table 5.3: Vehicle counting accuracy by using crowd counting model consisting of MCNN
[95], Hydra Net [61], and Tracount [78] and well-known classification networks with skip
connections consisting of U-net [66], Resnet-101 [28] , and Densenet-201 [33].
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Figure 5.10: The density error from TRANCOS dataset [64] by using (a) MCNN [95], (b)
Tra-count [78], and (c) Hydra-net [61].
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Figure 5.11: The density error from TRANCOS dataset [64] by using (a) Resnet-101, (b)
Densenet-201, and (c) U-net.
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5.3 Analysis on the predicted density map

Since the density map was utilized for optimizing a prediction model and calculating
the number of vehicles as a predicted count, the quality of a density map is one of the
important factors for counting accuracy. As far as I am aware, there is no standard rule to
measure density map quality. In this research, the predicted density map was evaluated
by comparing its actual density map and classifying the density error which is either
over-counting or under-counting error. The region of a predicted density map that has a
higher or lower intensity than the actual density map is recognized as over-counting or
under-counting error, respectively. Our predicted density map was observed in different
aspects described as follows:

5.3.1 Object scale and vehicle density

In this research, low and high-level of features are considered as features of vehicles with
small and large scales that are located in high and low vehicle density, respectively. Figures
5.12 and 5.13 show examples of traffic images with low (9 vehicles) and high (50 vehicles)
vehicle density, respectively. Their input images are shown in (Figures 5.12a, 5.13a)
and (Figures 5.12b, 5.13b) respectively. By improving low-level features with backward
connections, the predicted density map by PT with dilated Conv is effective to formulate
low vehicle density as shown in Figure 5.12c. Similar results are also formulated by other
related works (e.g. MCNN (Figure 5.12d), Resnet-101 (Figure 5.12g), and U-net (Figure
5.12i)). Since the size of the object is related to the vehicle density and the camera
viewpoint, prediction models can be misclassified between low and high density causing
over-counting error as shown in Figures 5.12e, 5.12f, and 5.13h.

On the other hand, the traffic image with high vehicle density usually has various
vehicle sizes, i.e. smaller and larger vehicles located at top and bottom of images as
shown in Figure 5.13a. The experiment shows that crowd counting models, including the
proposed method, is ineffective for counting small vehicle causing under-counting errors
as shown in Figures 5.13c, 5.13d, 5.13e, and 5.13f. In addition, over-counting errors from
misclassifciaiton still be occurred in their results. On the other hand, predicted density
maps from Resnet-101 (Figure 5.13g), Densenet-201 (Figure 5.13h), and U-net (Figure
5.13i) has less sensitive to small vehicle sizes, where U-net has better counting accuracy
in high vehicle density as shown in Figure 5.11c.

5.3.2 Traffic image quality

Since traffic images from the TRANCOS dataset are captured in different locations, their
image quality is varied from outdoor environments and camera viewpoints. In the outdoor
environment, the adverse condition (e.g. foggy, rainy, snowy, and so on) is a serious
problem in this research because vehicles can not be seen clearly as shown in Figure 5.14a
and its actual density map (Figure 5.14b). The empirical results show that predicted
density maps from the proposed method can not be formulated in the area occluded by fog
as shown in Figure 5.14c. Similar results also occurred in other crowded counting models
(Figures 5.14d, 5.14e, and 5.14f) and semantic segmentation models (Figures 5.14g, 5.14h,
and 5.14i). Therefore, the adverse condition is a major concern for an under-counting
error.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.12: The example of prediction errors on the traffic image with low vehicle density
(10 vehicles) consisting of (a) input image, (b) actual, and (c) predicted density maps by
PT with dilated convolutions, (d) MCNN, (e) Hydra net, (f) Tracount, (g) Resnet-101,
(h) Densenet-201, and (i) U-net.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.13: The example of prediction errors on the traffic image with high vehicle density
(40 vehicles) consisting of (a) input image, (b) actual, and (c) predicted density maps by
PT with dilated convolutions, (d) MCNN, (e) Hydra net, (f) Tracount, (g) Resnet-101,
(h) Densenet-201, and (i) U-net.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.14: The example of prediction errors on the traffic image in an adverse con-
dition consisting of (a) input image, (b) actual, and (c) predicted density maps by PT
with dilated convolutions, (d) MCNN, (e) Hydra net, (f) Tracount, (g) Resnet-101, (h)
Densenet-201, and (i) U-net.

On the other hand, Figure 5.15a shows an example of a traffic image with high bright-
ness. Even though the ground truth (Figure 5.15b) indicated that all road regions should
be formulated in the predicted density map, some part of them is still ignored in the pre-
diction models. The experimental results show that the proposed method is still ineffective
in regions containing small vehicles as shown in Figure 5.15c causing under-counting er-
rors, but more regions were formulated than other related works, MCNN (Figure 5.15d),
Hydra net (Figure 5.15e), Tracount (Figure 5.15f), and U-net (Figure 5.15i). With the
large number of model parameters, the predicted density maps formulated by Resnet-
101 and Densenet-201 is insensitive to this issue as shown in Figures 5.15g and 5.15h,
respectively.

5.3.3 Traffic images with Non-vehicle objects

Besides under-counting errors caused by various vehicle density and image quality in
previous subsections, the over-counting error is also concerned in this research. The
major cause of the over-counting error is non-vehicle objects (e.g. traffic signs, bridges,
buildings, and so on) which were formulated as vehicles in predicted density maps. This
problem increases the number of vehicles in the traffic image. Figure 5.16 shows the
example of traffic image in urban with several buildings where an input image and an
actual density map are shown in Figures 5.16a and 5.16b, respectively. The experimental
result shows that these counting errors usually be located outside the road regions as
shown in the proposed predicted density map (Figure 5.16c) within red circles. The
predicted density map of MCNN shown in Figure 5.16d has noise and distortion because
of the combination among three CNNs. Other related crowd models, Hydra net (Figure
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.15: The example of prediction errors on the traffic image with high bright-
ness consisting of (a) input image, (b) actual, and (c) predicted density maps by PT
with dilated convolutions, (d) MCNN, (e) Hydra net, (f) Tracount, (g) Resnet-101, (h)
Densenet-201, and (i) U-net.

5.16e) and Tracount (Figure 5.16f) have similar predicted density maps. These errors are
caused by the variation of vehicle characteristics which might be overlapped with other
non-vehicle objects. On the other hand, the remaining models can solve this significant
problem as shown in Figures 5.16g, 5.16h, and 5.16i.

5.3.4 Effect on the dilated convolution

With the advantage of a dilated convolution, it is expected to preserve the semantic
information in a predicted density map. In the previous section, Table 5.2 shows that
PT with dilated convolutions has better counting accuracy. To prove our hypothesis in
the predicted density map, two prediction models (PT with and without dilated Conv)
were evaluated. These figures consist of input images (Figure 5.17a) and their predicted
density maps produced by PT without dilated convolutions (Figures 5.17b) and PT with
dilated convolutions (Figures 5.17c). For vehicle counting, empirical results show that
dilated convolution generates more detail in predicted density maps, especially in high
crowd density with small vehicles within red rectangular boxes. Therefore, it indicates
that the error from the under-counting error is reduced in the proposed method.

5.4 Other applications

Since this prediction model is classified into a supervised learning technique for object
counting, crowd counting (besides vehicle counting) can be tested in this experiment. This
section describes the counting accuracy of our prediction model in other applications. In
this experiment, there are two datasets for counting evaluation as follows:
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.16: The example of prediction errors on the traffic image with non-vehicle ob-
jects consisting of (a) input image, (b) actual, and (c) predicted density maps by PT
with dilated convolutions, (d) MCNN, (e) Hydra net, (f) Tracount, (g) Resnet-101, (h)
Densenet-201, and (i) U-net.

(a) (b) (c)

Figure 5.17: The example of effect on dilated convolutions from vehicle counting where
(a) input images and their predicted density maps generated by (b) PT without and (c)
with dilated convolutions, respectively.
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Table 5.4: Counting accuracy in ShanghaiTech and UC CC 50

Prediction models ShanghaiTech A ShanghaiTech B UCF CC 50
RMSE MAE RMSE MAE RMSE MAE

MCNN [95] 173.2 110.2 41.2 26.2 509.1 377.6
CP-CNN [74] 106.2 73.6 30.1 20.1 - -
Switching-CNN [70] 135 90.4 33.4 21.6 - -
HSRNet [96] 100.3 62.3 11.8 7.2 - -
Deep-stacked [35] 150.6 93.9 33.9 18.7 - -
C-CNN [72] 141.7 88.7 22.1 14.9 - -
Rodriguez et al. [65] - - - - 487.1 493.4
Lempitsky et al. [43] - - - - 541.6 419.5
PT with dilated Conv 165.56 87.31 19.41 15.76 507.96 358.83

• Shanghaitech Dataset: It is the dataset for crowd counting, targeting humans in
the crowd image. This large-scale crowd counting dataset was introduced by [95].
It contains 1198 annotated images, with a total of 330, 165 people and the central
coordinates of their heads. This dataset consists of

- part A: There are 300 training and 182 testing images collected randomly crawled
from the internet.

- Part B: There are 400 training and 316 testing images taken from crowded scenes
on Shanghai streets.

• UCF CC 50 Dataset: Their crowd images were published by [36]. This dataset
consists of 50 crowd images obtained from the internet. It is a very challenging
dataset because The number of images is limited and the crowd count of the image
changes dramatically. The total number of head (annotations) is 63, 974 for these
50 crowd images. The number of people is between 94 and 4, 543 with an average of
1, 280 individuals per image. Since this dataset provides a small number of crowd
images, this dataset was evaluated by using estimation networks trained by the
ShanghaiTech dataset (Part A and Part B).

The prediction model was evaluated by two evaluation metrics, MSE and MAE, which
were calculated in Eqs. (3.8) and (3.9), respectively. the proposed method was evaluated
and compared with other related works. The experimental results were obtained from
their configurations. Table 5.4 illustrates the counting accuracy of the proposed method
and other estimation networks. The counting accuracy in each dataset are described as
follows:

In the first dataset, the experimental process has analyzed this dataset into two groups
(Part A and Part B). As shown in Table 5.4, the counting accuracy from estimation
networks in Part A is worse than that in Part B because the crowd images obtained from
part A have a wide range of crowd density (from 0 to 1500 people) and image resolution.
Therefore, the estimation network trained by a crowd image in part B can achieve more
accurate results. Compared with counting accuracy, our empirical results cannot overcome
other prediction models, especially CP-CNN [74] and HSRNet [96]. Figures 5.18 and 5.19
show density error from ShanghaiTech Part A and B, respectively, where HSRNet was
utilized for comparison. In part A, figure 5.18a clearly shows that HSRNet trends have
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Figure 5.18: The density error from ShanghaiTech Part A by using (a) HSRNet [96] and
(b) PT with dilated Conv.

over-counting errors. On the other hand, PT with dilated Conv has similar density errors
from 0 to 400 people but it has a problem related to under-counting errors, especially
in high crowd density (> 500 people). In part B, both counting accuracy from HSRNet
(Figure 5.19a) and our models (Figure 5.19b) have less density error than part A because
their image conditions (e.g. camera viewpoints, resolution, and so on) is similar. Similar
to Part A, our counting accuracy in part B has an under-counting error in high crowd
density as shown in Figure 5.19b.

In the second dataset, UCF CC 50 contains a small number of crowd images. This
experiment utilized pre-trained weights from ShanghaiTech Part A for evaluating the
counting accuracy in UCF CC 50 because both crowd images in UCF CC 50 and part A
are obtained from the different websites, where they have various resolutions and lighting
conditions to handle the testing data (UCF CC 50). Table 5.4 shows that our performance
outperforms other estimation networks in MAE, but obtain lower robustness in RMSE.
Compared with density error, both counting accuracy from Rodriguez et al. [65] (Figure
5.20a) and PT with dilated Conv (Figure 5.20b) have similar performance. However,
they cannot handle a large number of people (> 1500 people), which is out of range in
crowd images obtained from the ShanghaiTech Part A. From this experiment on human
counting, it shows that our prediction models are not effective on ShanghaiTech and
UCF CC 50 datasets. based on the difference between vehicle and human counting, it
can be described in the following aspects:

• The crowd density: Since humans have smaller sizes than vehicles in a crowded
image, the crowded image from human counting usually has higher overlapping
regions in its actual density map. It requires prediction models with a large number
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of model parameters to improve the predicted density map quality and counting
accuracy. Therefore, our compact model is less effective, especially in high crowd
density.

• Camera viewpoints: The traffic surveillance cameras are typically located in specific
locations. Then, vehicles are captured with a similar angle and camera viewpoints.
However, the crowded images for human counting have various camera viewpoints.
Therefore, the prediction model is hard to predict the number of the object under
various image conditions.

5.5 Summary

This chapter describes the experiment for prediction models which were implemented
with the same configuration for a fair comparison. Traffic images from different datasets
were analyzed to select the most suitable dataset for evaluation. TRANCOS dataset was
selected because there are more realistic traffic images that have low resolution and they
are captured at the top views. The experiment is evaluated by vehicle density accuracy
based on the Departments Approved Product List (APL). The empirical results show that
the proposed models with skip connections have similar accuracy performance with other
related works deploying less trainable parameters and time consumption. On the other
hand, dilated convolution can help to increase counting accuracy and recover regions with
small objects in the predicted density map. However, it reveals that the factor related to
time complexity is not only the number of parameters but The backward connections (MS,
BT, and PT) are other factors for computation time. In addition, there are significant
errors where the prediction models are ineffective in images with high crowd density and
adverse conditions, as shown in an experiment on human counting.
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Figure 5.20: The density error from UCF CC 50 by using (a) Rodriguez et al. [65] and
(b) PT with dilated Conv.
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Figure 5.19: The density error from ShanghaiTech Part B by using (a) HSRNet [96] and
(b) PT with dilated Conv.
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Chapter 6

Conclusion and Future work

6.1 Conclusion

The surveillance system is widely used for analyzing the characteristic of target density
(e.g. human, vehicle, and so on) in specific areas and formulate the number of targets.
Traffic light control system (TLCS) is one of the services of Vehicle Imaging Vehicle
detection system (VIVDS) to control the optimal time for green, yellow, red lights, af-
ter acquiring the vehicle density from sensors. Nowadays, there are several sensors for
counting or estimating the number of vehicles on the road (e.g. loop detector, ultrasonic
camera, surveillance system, and so on), where surveillance system is widely deployed
because they provide low cost of installation and maintenance. Since the surveillance
system is operated in the outdoor environment with a low specification device installed in
RSU, the density estimation should be insensitive to lighting conditions and has less time
consumption. Even though recent estimation methods using deep learning-based tech-
niques achieved much higher accuracy, they require a large number of model parameters
for training. Therefore this study is focused on the single-column model which has fewer
parameters and computational cost. Besides, the proposed method should handle various
traffic video conditions (e.g. lighting conditions, and so on).

It is well-known that density estimation or object counting is categorized into the
detection and regression-based approaches. The detection-based approach is initially in-
troduced for estimation, where target regions are extracted and counted. A recent study
related to detection-based approaches has two types (appearance and motion-based meth-
ods). The appearance-based approach analyzes the targets texture and characteristics for
extracting their regions. However, their appearances are sensitive to video conditions
(e.g. camera viewpoint, lighting conditions, and so on). On the other hand, motion-
based approaches are detection techniques without pre-knowledge information which is
insensitive in any environment, but video sequences are required for this method. Then,
the deep learning-based technique is introduced with promising performance. The most
popular detection-based approach using deep learning is RCNN utilizing region proposal
and CNN. However, this method requires a large number of model parameters.

Since a detection-based approach has a limitation on the occlusion problem, it is
ineffective to an image with a large number of targets obtained from a surveillance system.
This approach extracts holistic features from a whole input image instead of extracting a
specific feature from each target. Regression-based approaches establish a direct mapping
between these properties and the number of targets in the image called density map
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while avoiding actual segmentation of individual or track of features. The main challenge
is focused on scale-aware to handle various vehicles within images. Recent studies also
utilize multiple CNNs to handle objects of different sizes, but more network parameters
are required. Therefore, our main research is concerned with a single-column method
requiring only one CNN to minimize computational cost.

This dissertation contributes to density-aware traffic density estimation from traffic
images in different traffic video conditions. The proposed method formulates the density
map using average distances of the vehicle instead of vehicle sizes because the actual sizes
cannot be accurately obtained in practical circumstances. Therefore, our density maps
were computed by convoluting with a Gaussian kernel in different spread parameters for
different locations. These techniques enable to visualize the different patterns between
the region with low and high vehicle density, more than utilizing traditional methods in
different camera viewpoints.

The proposed prediction model was designed from one stack of MCNN. They are
modified by deploying a convolutional layer with the smallest kernel sizes while preserving
the receptive field sizes. The main contribution of this study is to utilize skip connections
to improve the accuracy of the single-column model. The skip connections were designed
as forward and backward connections that extract low-level and high-level feature maps
to emphasize deep and shallow layers, respectively. Since CNN typically is designed as
a feed-forward model, the high-level feature maps can not be extracted directly. This
dissertation proposes three techniques to handle this problem. First, another model is
designed as slave networks to only generate high-level features. Second, the high-level
features can be transferred from a trained prediction model in different images called
batch transfer. Third, the slave network can be used as a pre-trained network for the
master network, where this technique is called a pre-trained map. In addition, pooling
and up-sampling layers were replaced with dilated convolutions to avoid information loss
while resizing.

All experiments were run by Python with Tensorflow to fairly compare accuracy per-
formance and computational cost. The dataset is obtained from the TRANCOS dataset
because their traffic images are more realistic to the practical application. Besides, human
counting is evaluated in this experiment, where their images were obtained from Shang-
haitech and UCF CC 50 datasets. The experimental results show that all hypotheses
described in our contribution are achieved as follows:

• The proposed density map using estimated vehicle size by average distance overcome
the traditional method by providing more information to distinguish regions with
high from low density.

• The proposed prediction model achieved comparable accuracy with related works
(especially Resnet-101) while reducing the number of model parameters. In addition,
both of them fulfills the requirement in VIVDS.

6.2 Future work

Since this research has been studied for a half-century, there have always some aspects
of any work that can be improved and expanded upon by future research. This may
be caused by the limitations of time and resources, or other unforeseen difficulties. Our
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research works might remain an unsolved problem and new topics appear continuously.
Therefore, it is the wish of the author to suggest some ideas regarding the future direction
of this work which is summarized as follow:

• A routing algorithm for skip connections will be explored to handle an object with
a small scale and high density, especially in human counting.

• Since our algorithm is simulated in hardware with high performance, the practical
circumstances will be implemented by using hardware used in real applications.
Then, the minimum requirement related to time consumption can be decided.

• The factors related to time consumption will be analyzed. The experiment indicated
that our models with skip connection have much amount of training and testing time
even though their number of parameters is the same. It means that there are other
factors related to computational cost where they can be further analyzed to solve
this problem.

• In the proposed method, sizes and scales of vehicles are formulated by using their
spatial information (average distances) to compute density maps, where the vehicle
with large and small scale should be located at low and high traffic density, re-
spectively. The experimental results show that this hypothesis might fail on traffic
images with only high traffic density and small scales. The computation density
maps should be fixed and they should represent the objects with different scales.
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