JAIST Repository

https://dspace.jaist.ac.jp/

iUy UUg o

Title goooosuouoooooooooo
Author(s) oo, 00

Citation

Issue Date 2021-03

Type Thesis or Dissertation

Text version

ETD

19/ 17480

URL http://hdl . handle.net/ 101
Rights
Description Supervisor: goooag, ooooooo

HEN

AIST

JAPAN
ADVANCED INSTITUTE OF
SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology



Abstract

In recent years, the use of embedded microprocessors has been increasing with pre-
vailing IoT (Internet of Things) and RTOSs are commonly used to develop a real-time
system effectively. By using an RTOS, a complicated procedure can be divided into tasks
with real-time scheduling based on the preemptive and priority-based task scheduling,
and a real-time application can be developed easily with using RTOS functions such as
task management, task dependent synchronization, synchronization and communication.
While there are advantages for using an RTOS, an RTOS itself consumes additional mem-
ory, computational resources and power. Based on these points, our research objectives
are as follows: (1) Build an application adaptive processor core. (2) Remove unused codes
in RTOS kernel, while leaving necessary functions such as checking possible errors. (3)
Implement hardware RTOS to reduce the amount of software resources and execution
time. (4) Remove unused codes in a hardware RTOS as well as a software-only RTOS. (5)
Build automatic development environment with which we can perform the items above.

In order to achieve the objectives, we adopted MIPS32 architecture for a processor
core and illustrated the method for analyzing an application program and generating the
application adaptive processor core circuit. In addition, we implemented two- to eight-core
multi core processor on an FPGA and showed eight-core processor can be implemented
on a relatively small FPGA with application adaptive processor cores.

Regarding RTOS, we proposed a framework to generate application adapted hard-
ware RTOS and software-only RTOS. For the specification of an RTOS, we adopted
uITRON4.0 for the research as it is widely used and its specification is open in public.
We propose the methods, “Removing Unnecessary Codes Caused by Fixed Attributes”
and “Removing Unnecessary Codes Caused by the Way of Calling”, for generating an
application adaptive RTOS kernel. For the former method, as each system call is spec-
ified with attributes through parameters in a configuration file, functions which are not
specified in the configuration file can be deleted from the RTOS kernel. For the latter
method, error codes for system calls are defined in the RTOS specification whereas codes
for checking errors which never occur in the application program remain in some cases.
Since those codes are redundant when an application program is fixed, it is shown that
how unnecessary error checking can be removed. In addition, we explained the structure
of the hardware RTOS, which consists of RTOS Hardware Wrapper and RTOS Hardware
Core. We propose an environment to generate an application adaptive processor core
and a hardware/software-only RTOS kernel in a fully automatic manner.

For the evaluation of the effect of the proposal, we applied the proposed methods to
several application programs and measured FPGA resources, RTOS kernel execution time
and the size of the software parts. As a result, it can be seen that the hardware resources
and the size of a software part of an RTOS kernel are reduced, and that the system call
execution time is improved.

Keyword: processor, MIPS, RTOS, nITRON, configuration, system call, FPGA, adap-
tation



