JAIST Repository

https://dspace.jaist.ac.jp/

iUy UUg o

Title goooosuouoooooooooo
Author(s) oo, 00

Citation

Issue Date 2021-03

Type Thesis or Dissertation

Text version

ETD

19/ 17480

URL http://hdl . handle.net/ 101
Rights
Description Supervisor: goooag, ooooooo

HEN

AIST

JAPAN
ADVANCED INSTITUTE OF
SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

Doctoral Dissertation

A Study on Automatic Generation of Embedded Processors and Real-Time
OS Adapted to Applications

Tetsuo Miyauchi

Supervisor: Professor Kiyofumi Tanaka

School of Information Science
Japan Advanced Institute of Science and Technology

March, 2021

Abstract

In recent years, the use of embedded microprocessors has been increasing with pre-
vailing IoT (Internet of Things) and RTOSs are commonly used to develop a real-time
system effectively. By using an RTOS, a complicated procedure can be divided into tasks
with real-time scheduling based on the preemptive and priority-based task scheduling,
and a real-time application can be developed easily with using RTOS functions such as
task management, task dependent synchronization, synchronization and communication.
While there are advantages for using an RTOS, an RTOS itself consumes additional mem-
ory, computational resources and power. Based on these points, our research objectives
are as follows: (1) Build an application adaptive processor core. (2) Remove unused codes
in RTOS kernel, while leaving necessary functions such as checking possible errors. (3)
Implement hardware RTOS to reduce the amount of software resources and execution
time. (4) Remove unused codes in a hardware RTOS as well as a software-only RTOS. (5)
Build automatic development environment with which we can perform the items above.

In order to achieve the objectives, we adopted MIPS32 architecture for a processor
core and illustrated the method for analyzing an application program and generating the
application adaptive processor core circuit. In addition, we implemented two- to eight-core
multi core processor on an FPGA and showed eight-core processor can be implemented
on a relatively small FPGA with application adaptive processor cores.

Regarding RTOS, we proposed a framework to generate application adapted hard-
ware RTOS and software-only RTOS. For the specification of an RTOS, we adopted
uITRON4.0 for the research as it is widely used and its specification is open in public.
We propose the methods, “Removing Unnecessary Codes Caused by Fixed Attributes”
and “Removing Unnecessary Codes Caused by the Way of Calling”, for generating an
application adaptive RTOS kernel. For the former method, as each system call is spec-
ified with attributes through parameters in a configuration file, functions which are not
specified in the configuration file can be deleted from the RTOS kernel. For the latter
method, error codes for system calls are defined in the RTOS specification whereas codes
for checking errors which never occur in the application program remain in some cases.
Since those codes are redundant when an application program is fixed, it is shown that
how unnecessary error checking can be removed. In addition, we explained the structure
of the hardware RTOS, which consists of RTOS Hardware Wrapper and RTOS Hardware
Core. We propose an environment to generate an application adaptive processor core
and a hardware/software-only RTOS kernel in a fully automatic manner.

For the evaluation of the effect of the proposal, we applied the proposed methods to
several application programs and measured FPGA resources, RTOS kernel execution time
and the size of the software parts. As a result, it can be seen that the hardware resources
and the size of a software part of an RTOS kernel are reduced, and that the system call
execution time is improved.

Keyword: processor, MIPS, RTOS, nITRON, configuration, system call, FPGA, adap-
tation

Acknowledgments

I am most grateful to all people who have supported me to submit this disserta-
tion, directly and indirectly. Especially, I would like to express my heartfelt gratitude to
my supervisor, Professor Kiyofumi Tanaka of Japan Advanced Institute of Science and
Technology (JAIST) for his patient guidance. My study began at the discussion with Pro-
fessor Tanaka for my project paper’s theme in my master course. Without his orientation,
I could not complete the dissertation. I was always given useful comments in detail when
I submitted papers until just before the deadline. Attending international conferences
with him was also good experiences and I obtained lots of valuable advices for the pre-
sentation. I would also like to appreciate Professor Mineo Kaneko of JAIST, advisor for
minor research project. He enlightened me as to suggestions for the dissertation especially
for related work as well as my minor research project. I appreciate Professor Yasushi In-
oguchi of JAIST, second supervisor, who gave me helpful comments, which increases the
value of the dissertation. Furthermore, I appreciate Professor Yasuo Tan of JAIST and
Professor Hironori Nakajo of Tokyo University of Agriculture and Technology for their
comments on the dissertation. I learned a lot from their comments. In addition, I would
like to thank all of professors in JAIST whose lectures I attended. All lectures without
exception were very interesting and helpful for my background of continuous research. I
also thank all members of Tanaka laboratory in Tokyo satellite and I feel it was precious
experiences to have participated in a summer workshop and joint seminar with members
in the Ishikawa campus. Their studies stimulated me to keep studying. Finally, I would
like to express my appreciation for my family, who has encouraged me and supported my
daily life.

Contents

1 Introduction 1
1.1 Background 1
1.2 Contribution L 7
1.3 Structure of Dissertation L. 8

2 Related Work 9
2.1 Related Work 9

2.1.1 Processor Core Adaptation, 9
2.1.2 RTOS Kernel Adaptation 10
2.1.3 Software Overhead Mitigation 11
2.1.4 Hardware Scheduler 00 11
2.1.5 Hardware RTOS 11
2.1.6 Adaptation for Hardware RTOS Functions 12

3 Construction of Automatic Development Environment for Adaptive Pro-
cessor Core 14
3.1 Structure of Processor Core 14
3.2 Analyzing Application Program 18

3.2.1 Building Application Program 18
3.2.2 Analyzing Object Code 18
3.2.3 Extracting Instructions L. 18
3.2.4 Analyzing Object Code and Dependency Patterns 19
3.3 Selecting Processor Resources with Used Instructions and Dependency Pat-
terns oL 23
3.4 Generating Application Adaptive Processor Core Circuit 24
3.5 Experimental Result oo 25
3.5.1 Application Programs L. 25
3.5.2 Evaluation of Processor Adaptation 27
3.5.3 Discussion 27
3.6 Multicore 28
3.6.1 Cache 28
3.6.2 Multicore Configuration Environment 29
3.6.3 Building Application Program 31
3.6.4 Analyzing Object Codes 31
3.6.5 Evaluation of Multi Core 31
3.7 Summary of this Chapter. 35

4 Framework for Building Fine-Grained RTOS
4.1 Configuration Framework 0.
4.2 RTOS Structure
4.3 Software Adaptation
4.3.1 Removing Unnecessary Codes Caused by Fixed Attributes
4.3.2 Removing Unnecessary Codes Caused by the Way of Calling
4.4 Hardware Adaptation
4.4.1 Structure of Hardware RTOS
4.4.2 Interface to RTOS Hardware
4.4.3 RTOS Hardware Wrapper
4.4.4 RTOS Hardware Core
4.5 Development Processo
4.5.1 Parsing RTOS configuration file
4.5.2 Analyzing Application Program
4.5.3 Outputting Directives
4.5.4 Static Resource Creation,
4.5.5 RTOS Hardware Core
4.5.6 Generating Software Object File
4.5.7 Generating Adaptive Processor Core
4.5.8 Creating Software Program Object
4.5.9 TImplementationo
4.6 GUIL e
4.7 Summary of this Chapter. o
5 Evaluation
5.1 OVerview
5.2 FPGA Resources
5.3 Execution Time
54 RTOS Kernel Size
5.5 Discussion
5.6 Summary of this Chapter.
6 Conclusion
6.1 Summary of the Dissertation L.
6.2 Conclusion
6.3 Future Work
Appendix A
AT INIT ..o e
A2 WAIT . . . e
A3 CHECK e
A4 SETATTR o
A5 TASKSTATUS
A6 SEMSTATUS
A7 FLGSTATUS o
A8 DTQSTATUS
A9 CHECKTASK e

i

A10 CHECKSTATUS e e 82

A 11 ACTCNT . . 83
A12 SEMCNT 83
A.13RDYDEQUEUE 83
A 14 SEMDEQUEUE 84
A1S5CHGPRI 84
A 16 SEMENQUEUE e 84
A17TFLGDEQUEUE 85
A IS FLGENQUEUE 85
A19DTQDEQUEUE 85
A20 DTQRCVENQUEUE 86
A21 DTQSNDENQUEUE e 86
A22 DTQDATA e 86
A23 RDYENQUEUE 87
A24 HIGHEST 87
A25END . . . 88
A20 ENDSWITCH s e 88
Bibliography 90
Publications 97

1l

List of Figures

1.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1
4.2

4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16

5.1

Task sequence. 2
Memory map. 17
Analyzing application program. L. 19
Example of the disassemble. 20
Example of selecting multiplexer. 24
Example of multiplexer selection. 25
Example of selecting multiplexer (Adapted). 26
Multicore processor structure. 29
Multi core configurator GUL. 30
Example of matrix (Multi core). oL 32
Example of the directives. 38
Example of the directives: Case(1) Both the priority order and fifo order

are used. 38
Example of the directives: Case(2) Only the priority order is used. 39
Example of the directives: Case(3) Only the fifo order is used. 39
Analyzing process.o 40
Hardware implemented part of RTOS system call (act_tsk). 45
Example of system call software part (act_tsk). 46
Processor structure with RTOS hardware. A7
Structure of RTOS hardware. 47
System call software flow. 48
State transition. 49
TCB structure. 51
Example of a configuration file. 0. 58
Development environment.o 59
Development environment for software RTOS. 60
GUI tool. e 61
The Basys3 board. 63

v

List of Tables

2.1 Comparison of ASIP and the proposed method. 10
2.2 Comparison between OSEK-based configuration and the proposed method. 11
2.3 Comparison in terms of RTOS hardware adaptation. 13
3.1 Instructionset. o 14
3.2 Processor core resources. 27
3.3 Processor core resources in detail (Qsort[63]). 28
3.4 Multicore processor implementation results (1-8 cores) (Matrix). 31
3.5 2way 32bit address. 33
3.6 2way 16bit address. 33
3.7 lway 32bit address. 34
3.8 1lway 16bit address. 34
4.1 System call and error cause (sig-sem). 41
4.2 System call and error cause (isig-sem). 41
4.3 System call and error cause (pol.sem). 41
4.4 System call and error cause (waisem). 42
4.5 Addresses for RTOS system calls. 42
4.6 States of RTOS hardware wrapper. 44
4.7 Operations for RTOS hardware core. 48
4.8 TCB registers and I/O (Before).o L 52
4.9 TCB registers and I/O (On queuing). 52
5.1 FPGA resources (semflgdtq).o 64
5.2 FPGA resources (semflg, sem02). 65
5.3 FPGA resources (flg02, dtq). 66
5.4 FPGA resources (Cooker, Pot). 67
5.5 FPGA resources (w/o RTOS, Availability). 68
5.6 FPGA resources (sem02). 69
5.7 RTOS kernel execution time (usec). 71
5.8 RTOS kernel execution time in the maximum frequency. 72
5.9 RTOS kernel size (bytes). L L 73
5.10 RTOS kernel size (sem02) (bytes). 74
5.11 Comparison between automatic and manual adaptation. 74
AT INIT. . ..o 78
A2 WAIT. . . . e 78
A3 CHECK. e 79

A4 SETATTR. . . . e 79

A5 TASKSTATUS. . o o oo 80
A6 SEMSTATUS. . . o oo 80
A7 FLGSTATUS. . o o oo o 80
A8 DTQSTATUS. . .« o oo 81
A9 CHECKTASK. . . o\ oo, 81
A0 CHECKSTATUS. © o o o oo 82
ATLACTONT. oo 83
AI2SEMONT. . oo 83
AI3RDYDEQUEUE. . . . o oo 83
AJ4SEMDEQUEUE. . . . o o 84
A5 CHGPRL . . o oo 84
A6 SEMENQUEUE. . . . o oo 84
AITFLGDEQUEUE. . . . o oo 85
AISFLGENQUEUE. . . . o oo 85
A19DTQDEQUEUE. . . . o oo 85
A20 DTQRCVENQUEUE. . . . o\ oo 86
A21 DTQSNDENQUEUE. . . . o oo 86
A22DTQDATA. . o o oo 86
A23RDYENQUEUE. . . . o oo 87
A24HIGHEST. . o oo 87
A25END. . o oo 88
A26 ENDSWITCH. . . o oo 89

vi

Chapter 1

Introduction

1.1 Background

In recent years, the use of embedded microprocessors has been increasing with prevailing
[oT (Internet of Things). There are too many home appliances with embedded micro
processors to list. For example, a smart phone, a television set, a pot, a cooker, a smart
speaker, an air conditioner, a printer, a copy machine, a washing machine, a refrigerator,
a microwave oven and so on have embedded processors. In an automobile, more than
a couple dozen microprocessors are used to control a vehicle. From the perspective of
hardware, in the embedded system, when the size of a device and substrate increases, the
cost of the appliance also increases so that reducing the size is essential for a product.

Since a processor embedded in an appliance works only for a dedicated system, de-
signing an application specific processor has been studied. ASIP in the literature [1],[2]
is one of the examples of a study for such a processor. In the literature [3], to reduce the
size of memory, changing the CPU bit-width was studied.

From the perspective of software, RTOS (Real Time Operating System) is commonly
used for the embedded system. One of the commonly used RTOS specification is ulTRON
in Ref.[4], which has task management functions, task dependent synchronization func-
tions, synchronization and communication functions. With an RTOS, it is possible to
easily abstract hardware, use synchronization/communication and benefit from real-time
scheduling based on the preemptive and priority-based task scheduling. In addition, a
complicated processing can be divided into tasks.

Here, we illustrate a simple example in Fig.1.1 to show the advantages of using task
division. There are three tasks, Task A, Task B and Task C. The priority of Task A is the
highest, Task B is the middle and Task C is the lowest. We consider the following case.
Firstly, Task C works and wakes up Task A. As the priority of Task A is the highest, Task
A is executed just immediately after it is woken up. Task A wakes up Task B, but Task B
does not work immediately since the priority of Task A is higher than Task B. In execution
of Task A, Task A waits for a semaphore due to no resources of the semaphore. As the
Task B is ready to execute, Task B is executed and returns a semaphore resource. In this
case, Task A resumes executing as Task A is the highest priority. When a procedure of
Task A is finished, Task A goes to sleep, then Task B resumes executing. In terminating
a procedure of Task B, Task B goes to sleep and Task C executes again. An example of
a task code is shown below.

Task A Task A
(first half) (latter half)
I
wup_tsk | wai_sem sig_sem slp_tsk
) Y
Task B Task B
(first half) (latter half)
wup_tsk slp_tsk
Task C Task C
o (first half) (latter half)

Figure 1.1: Task sequence

~~ Example of a task set (task A) (excerpt).

/* priority: high */
void taska()

{
ER ercd;

while(1) {
/* wait for wake up */
ercd = slp_tsk(Q);

/* wake up task B */
ercd = wup_tsk(TASKB);

/* Process for task A */
/x .. x/

/* wait for semaphore */
ercd = wai_sem(SEM_ID1) ;

/* Post process */

VA I Y

\}

Example of a task set (task B)(excerpt).

/* priority : middle */

void taskb()
{
ER ercd;
while(1) {
/* wait for wake up */
ercd = slp_tskQ);
/* Process for task B */
VA SV
ercd = sig_sem(SEM_ID1) ;
/* Post process */
VAT
}
N J
~~ Example of a task set (task C)(excerpt).
/* priority : low */
void taskc()
{
ER ercd;
while(1) {
/* Process for task C */
/x ... %/
/* wake up task A */
ercd = wup_tsk(TASKA);
/* Post process */
/¥ ... %/
}
NS J

taska(),taskb(), and taskc() are the source code of Task A, Task B, and Task C,
respectively. Initially all tasks are started, but Task A and Task B go to the sleep state,
so that Task C starts to execute as Fig.1.1. Each task invokes system calls to behave as
described above. The source code reveals that just invoking system calls can realize the
task transition. An example of implementing the same procedure without using RTOS is

as follows.

Example of a procedure w/o RTOS (main).

int firstflag_a = TRUE; /* TASK A */

|

int firstflag b = TRUE; /* TASK B */
int firstflag_c = TRUE; /* TASK C */
int state_taska = NOTREADY;
int state_taskb = NOTREADY;
int state_taskc = READY;
int seml = 0; /* semaphore */
int main()
{
while(1) {
if (state_taska == READY) {
taska();
} else if (state_taskb == READY) {
if (state_taska == WAIT) {
taska();
}
taskb();
} else if (state_taskc == READY) {
if (state_taska == WAIT) {
taska();
}
if (state_taskb == WAIT) {
taskb();
}
taskc();
} else {
/* there is no ready task */
continue;
}
}
return(0) ;
}

N

~~ Example of a procedure w/o RTOS (Task A).

void taska()
{
if (firstflag_a == TRUE) {
/* first half */
firstflag_a = FALSE;

if (seml == 0) {
/* semaphore is not acquired */
/* return to the main loop */

/* task A state is WAIT x/
state_taska = WAIT,;
return;

} else {
/* semaphore is acquired */
seml = 0;
/* do a job for Task A */

/* finish task A */
/* As latter half of task A is finished, */
/* do again from the first half */

firstflag_a = TRUE;
state_taska = NOTREADY;
return;
}
} else {

/* latter half */

if (seml == 0) {
/* semaphore is not acquired */
/* return to the main loop */

/* task A state is WAIT x/
state_taska = WAIT,
return;

} else {
/* semaphore is acquired */
seml = 0;
/* do a job for Task A */

/* finish task A */

/* As latter half of task A is finished, */
/* do again from the first half */
firstflag_ a TRUE;

state_taska NOTREADY;

return;

\}

~~ Example of a procedure w/o RTOS (Task B).

void taskb()
{
if (firstflag_b == TRUE) {
/* first half */
firstflag b = FALSE;

/* Return semaphore to execute task A */
seml = 1;
return;
} else {
/* latter half */
firstflag_b = TRUE;
/* task B is finished */
state_taskb = NOTREADY;

return;
}
}
N
~~ Example of a procedure w/o RTOS (Task C).
void taskc()
{
if (firstflag_c == TRUE) {
/* first half x/
firstflag c = FALSE;
/* wake up task A */
state_taska = READY;
/* wake up task B */
state_taskb = READY;
return;
} else {
/* latter half */
firstflag _c = TRUE;
return;
}
}
N J

taska(),taskb(), and taskc() are functions working in a similar way. As can be seen
from the code, it needs global variables to control the task behavior, such as firstflag_a
firstflag b, firstflag_c, state_taska, state_taskb and state_taskc. As each
function executes two parts of the function, firstflag_a, firstflag b and firstflag c
are used for controlling the task transition. state_taska, state_taskb and state_taskc
store the current task state. seml is used to store the count of the semaphore. In
addition main function is necessary to invoke each procedure. Generally speaking, it is
recommended that the module coupling should be low in designing software, whereas
the example without RTOS needs several global variables to control and communicate
functions, so that high module coupling is inevitable. In an actual system, much more
global variables are necessary so that the source code will become more complicated,
which makes readability and maintainability worse.

As explained above, using RTOS has advantages to developing embedded systems.
In the literature [5], the advantages and disadvantages of using RTOSs for small mi-
crocontroller system development are discussed. The literature illustrates that software
productivity can be improved with using RTOSs in system development. However, when
RTOSs are used for small microcontrollers, the literature also described disadvantages
that an RTOS itself consumes additional memory, computational resources and power.
As an example of a small microcontroller, the flash ROM size of a microcontroller family
in Ref.[6], having various applications, ranges from 1Kbyte to 512Kbytes, which cannot
be ignored for the memory consumption of an RT'OS kernel.

Since using RT'OS has benefit in designing embedded applications as mentioned above,
our motivation for the research comes from the requirement for mitigating overhead of an
RTOS. An RTOS kernel following uITRON4.0 specification in Ref.[7] is usually provided
as a library format, so that only specific system calls which are actually used in an
application program are linked with an application program, which means a program
code for unused system calls does not occupy the memory space. However, the unit of
the selection of codes is a whole system call, which is too rough for the limited memory
resource. In order to reduce the overhead of software part, hardware RTOS is effective.
Since hardware resource is related to cost of the production, reducing hardware resources
is also required. Based on the points above, when an application program is fixed, our
research objectives are as follows.

e Build an application adaptive processor core.

e Remove unused codes in RTOS kernel, while leaving necessary functions such as
checking possible errors.

e Implement hardware RTOS to reduce the amount of software resources and execu-
tion time.

e Remove unused codes in a hardware RTOS as well as a software-only RTOS.

e Build automatic development environment with which we can perform the items
above.

In this dissertation, in order to evaluate the proposed method, we implement a prod-
uct to which adaptation is applied on an FPGA device. While FPGA devices including
microprocessor hard cores are prevailing in recent years, since the target of this study
includes small/low-cost IoT devices, we consider low-cost FPGA devices without micro-
processor hard cores as the subject of this dissertation. = Here, we call it “adaptation”
to eliminate unnecessary functions for an application. A product to which adaptation is
applied is called an “adaptive” or “adapted” product. The following Chapters explain
our proposal to achieve the objectives above in detail.

1.2 Contribution

Since the process described in this dissertation can be applied for generating an appli-
cation adaptive processor core and RTOS, the main contribution of this dissertation is
summarized as follows.

e Propose a method for generating an application adaptive processor core automati-
cally.

e [llustrate how we configure a fine-grained RTOS kernel.

e Explain the way to create hardware RTOS and configure application adaptive hard-
ware RTOS automatically.

e Show the automatic development environment.

Since the number of IoT devices including processors is increasing extremely, a de-
velopment environment for producing low cost and effective devices in a short period of
time is desired. Recently, advances of technology make it possible to implement functions
which a target system needs in a device, which is called SoC (System on Chip). While
functions embedded in a device depend on a target system, a processor core and RTOS
are commonly used technology so that it can be said that this dissertation contributes to
revealing the method for creating application adaptive devices.

1.3 Structure of Dissertation

This dissertation is organized as follows. Related work regarding adaptation of a proces-
sor core and OS kernel, software overhead mitigation, and hardware implementation for
RTOS functions is reviewed in Chapter 2. We explain about construction of automatic
development environment for adaptive processor core in Chapter 3. In this chapter, a pro-
cessor structure for our target is explained and how we analyze an application program
and construct an adapted processor core for the application is illustrated. In Chapter
4, we propose a framework for building fine-grained RTOS including software adaptation
and hardware adaptation. For software adaptation, we describe a method for building
an application adapted system call. For hardware adaptation, the way of implementing
RTOS functions as hardware and the method for building an application adapted hard-
ware are proposed. Chapter 5 shows the effect of RTOS configuration, which includes
an evaluation for hardware resource usage, software size for system calls, and system call
execution time. Finally, in Chapter 6, we summarize this dissertation and discuss about
future work.

Chapter 2

Related Work

2.1 Related Work

In this chapter, we review related works for this dissertation. As there are several ap-
proaches to customize microprocessors according to a requirement, we oversee studies for
processor core adaptation. Then the overviews of RTOS related adaptation are summa-
rized. First, the way of RTOS kernel adaptation in software is described. Next, several
researches regarding that a part of functions of an RTOS is implemented in hardware are
shown as a method for software overhead mitigation. Especially, a hardware scheduler has
been studied since scheduler is a core component of an RTOS, so that we review previous
studies for a hardware scheduler. Finally, we explain studies for implementing a whole
RTOS system call function in hardware.

2.1.1 Processor Core Adaptation

For a processor core embedded in an FPGA, there are two ways to implement one: hard
macro processors and soft macro processors. While hard-macro processors are built-in
along with FPGA resources, soft processors are constructed with programmable resources
in an FPGA. Cortex-A9 in Zyng-7000 in Ref.[8] is an example of a hard-macro processor.
Hard processors have an advantage in performance and size while they are not flexible for
changing structures. On the other hand, MicroBlaze of Xilinx in Ref.[9] and NioslII of Intel
in Ref.[10] are examples of soft processors provided as software macro IP in an FPGA.
Soft processors are configurable so that they can be customized according to running
applications and can be extended with acceleration circuits if necessary.

To create an application specific processor, there are several approaches as follows.
ASIP (Application-domain Specific Instruction-set Processor) is a technology for build-
ing a processor which is optimized for an application program. ASIP methodologies are
surveyed in the literature [1],[2]. Table 2.1 summarizes a comparison of features between
ASIP and the proposed method. For generating an application specific processor, ASIP
needs to analyze an application program manually and create a tool set including a com-
piler for the processor. For creating the tool set, ASIP provides a tool called ASIP Meister,
which has an interface to input the register length, the number of registers and the num-
ber of pipeline stages. Xtensa of Tensilica in the literature [11] is a commercial processor
which can be customized for target applications. This processor can be optimized for an

Table 2.1: Comparison of ASIP and the proposed method.

Feature ASIP[2] Proposed Method

Program analysis Manual Automatic

Generate a processor | Manual translation to ADL! | Generate by a tool
ADL is synthesized to HDL

Instructions Add dedicated instructions Use existing instructions
Registers Add special purpose registers | Not add new registers
Development tool set | Need to extend an existing Able to use an existing tool set

tool set for new instructions

embedded application by sizing and selecting features and adding new instructions. The
literature [3] proposed to change the CPU bit-width to reduce the size of memory in a
processor. In these approaches, the processor needs to be tuned manually. As another
approach, selecting a subset of instructions from an existing instruction set is introduced
in the literature [12],[13]. In this approach, existing software development tools including
compilers can be applied. The techniques for selecting instructions show that the selec-
tion according to application programs simplifies the processor’s microarchitecture and
reduces the amount of hardware resources and it is illustrated that about 50% of instruc-
tions among the full instruction set are actually used for several applications, and that the
method is effective in reducing area and improving clock speed in the evaluation result. In
their study, the analysis of program codes does not take into account dependency between
instructions which determines necessity of forwarding paths. (That is, forwarding logic is
always equipped even when it is unnecessary for the program.)

2.1.2 RTOS Kernel Adaptation

While an RTOS kernel software is usually provided as a library format, that is not enough
for adapting to an application program. The configuration of an RTOS kernel adapted
to an application system has been studied. In the literature [14], techniques for automat-
ically reducing the memory footprint of general-purpose operating systems on embedded
platforms are described. In this literature, hand-written assembly codes in the kernel
are analyzed with a decompilation technique, and unused codes and duplicated codes are
eliminated. However, as the target operating system of this literature is Linux, the mean-
ing of unused codes is different from ours. In order to build an application specific RTOS
kernel, OSEK in Ref.[15], which is an RTOS kernel commonly used in the automotive
industry, defines OIL (OSEK Implementation Language) for description of application
specific objects. This description is used as system configuration information, and a con-
figurator generates a tailored RTOS which consists only of application specific objects
and actually-used system calls. The literature [16] describes an example of OSEK-based
RTOS, the main objective of which is to verify a generated RTOS, where configuration
information and application codes are analyzed and an OS-application interaction graph
is extracted for verification. Table 2.2 shows comparison between OSEK-based adaptation
and our proposed method in terms of the level of RTOS kernel adaptation.

! Architecture Description Language

10

Table 2.2: Comparison between OSEK-based configuration and the proposed method.
Feature OSEK-based[15][16] Proposed Method
RTOS adaptation | Object/System call level | Code-fragments (Fine-grained) level

2.1.3 Software Overhead Mitigation

In order to mitigate software overhead in terms of resources and latency when RTOS is
used, implementing some of the functions as hardware has been studied. SoCLC (SoC
Lock Cache) hardware mechanism to improve the performance of lock latency is proposed
in the literature [17],[18] and its framework for designing is explained in the literature
[19]. A modular microkernel architecture in hardware is demonstrated in the literature
[20]. In the literature [21], a configurable hardware scheduler architecture is presented.
This scheduler provides three scheduling disciplines: priority-based, rate monotonic and
earliest deadline first. This shows the advantage of modularity and the improvement
of the performance. In the literature [22], three scheduler models are implemented: (i)
SoRTS (Software Real-Time Scheduler), (ii) Co-SoRTS (Co-processor Software Real-Time
Scheduler), and (iii) HaRTS (Hardware Real-Time Scheduler). It is concluded that Co-
SoRTS and HaRTS present the best results for hard real-time applications, while SORTS
is suitable for soft real-time systems. The literature [23] and [24] show an ITRON based
RTOS extended to support multithread processing for Responsive Multithreaded (RMT)
Processor. As this implementation is dedicated to an RMT processor, the approach is
different to a general-purpose processor.

2.1.4 Hardware Scheduler

A hardware scheduler with a new task-queue architecture to support various schedul-
ing algorithms such as time sliced priority scheduling, Earliest Deadline First, and Least
Slack Time is described in the literature [25]. RT-SHADOWS in the literature [26],[27]
is a hardware scheduler and APIs to provide hardware multi-thread support, which is a
subset of the task management APIs. In the literature [28], with SOPC (System On Pro-
grammable Chip), an architecture that co-schedules hardware and software with RTOS
was discussed. The literature [29] and [30] proposed an interrupt scheduler called REMON
(Real-Time Embedded Monitor). The scheduler is implemented in hardware to improve
performance in executing switching of the ISR (Interrupt Service Routine). While this
proposal implemented the scheduler in hardware, other functions of RTOS were not im-
plemented in hardware. In the literature [31], earliest deadline first (EDF) scheduler is
implemented in hardware. The literatures [32] and [33] show the method and evaluation
result of implementing the scheduler function of TinyOS, an OS for sensor nodes. All the
hardware implementations mentioned above are only for performance improvement and
do not take adaptability to a target application into account.

2.1.5 Hardware RTOS

There are several studies for implementing a whole RTOS system call function in hard-
ware. Silicon TRON in the literature [34],[35],[36],[37] provides basic functionalities of

11

pITRON in hardware as a peripheral chip and the performance was evaluated in the
literature [38]. The literature [39] explained that a part of uITRON functions, such as
task management, task dependent synchronization functions, semaphore, eventflag, and
interrupt management were implemented in hardware. The literature [40] shows an idea
for extracting RTOS kernel functions from UML description of an application program,
whereas the detailed method was not described. In the literature [41], a real-time ker-
nel coprocessor is implemented in an ASIC, which is called RTU. It has eight priorities
and RTOS functions such as semaphore, eventflag, watchdog and priority preemptive
scheduling. A real-time multithreaded operating system kernel, hthreads, is presented
in the literature [42]. It has a shared memory programming model similar to POSIX
Threads. In the system on CPU/FPGA chips, hardware threads and software threads
can exist and they are scheduled by a hardware scheduler component, which performs
first-in-first-out, round robin and priority-based scheduling algorithms. In the literature
[43], general-purpose RTOS functions with APT interfaces and a dedicated CISC processor
are implemented in an FPGA. ARTESSO [44],[45],[46] is a hardware RTOS, which pro-
vides more than 30 system calls. The specific feature of the RTOS hardware is a Virtual
Queue, which is a queue structure with a tournament circuit to select an element in the
queue. They enhanced the architecture to a multi-core processor in the literature [47]
and studied to implement on ARM-based SOC in the literature [48],[49]. However, these
RTOSs do not have a function to adapt to an application program automatically.

2.1.6 Adaptation for Hardware RTOS Functions

Simple and Effective hardware based Real-Time Operating System (SEOS) in the litera-
ture [50] provides adaptability for hardware RTOS. SEOS adaptation consists of hardware
and software processes. However, these processes need to be applied manually. In the
literature [51], OSEK-based RTOS hardware, called OSEK-V processor, is implemented
with an application system after analysis of the application program, but it is not flexible
to updates of the application. In the literature [52], a method of generating full hardware
implementation where tasks as well as RTOS are implemented in hardware is described.
To synthesize tasks for hardware, there is some restriction to tasks (e.g., no mutual exclu-
sion). In this literature, adaptation of RTOS is not described. It is described that error
checking in act_tsk takes 21 cycles while only 1 cycle is needed with our method and also
unused hardware resources can be deleted in our method. Table 2.3 shows comparison in
terms of RTOS hardware adaptation.

While studies for implementing RTOS functions in hardware mentioned above have
been conducted for several years, we have been studying to reduce runtime and resource
overhead by adapting RTOS kernel functions and processor functions to an application
program. We confirmed an effect of implementing a primitive RTOS kernel operation as
hardware in the literature [53]. After that, we proposed a hardware RTOS implementation
in a system-call level in the literature [54]. However, automatic adaptation environment
is not shown in the literature. In this dissertation, we explain our method for developing
an application-specific system with RTOS in detail.

12

Table 2.3: Comparison in terms of RTOS hardware adaptation.

Feature SEOS[50] OSEK-V[51] Ref.[52] Proposed Method
Specification SEOS OSEK TOPPERS/APS3 | I TRON4.0
Processor NIOS-II Tailoring based on | No CPU MIPS32

Rocket RISC-V
Platform Altera Cyclone-11 | Xilinx Zyng-7020 | Xilinx Artix-7 Xilinx Artix-7

Software Part

Simple API for

No software

No software

Simple API for

interfacing purpose | part part interfacing purpose
Hardware Part Major OS All of All of Major OS

functionalities OSEK system RTOS system functionalities
RTOS Adaptation | Manual Automatic No adaptation Automatic

13

Chapter 3

Construction of Automatic
Development Environment for
Adaptive Processor Core

3.1 Structure of Processor Core

The techniques presented in Sections 3.1 to 3.5 are ones proposed in the author’s literature
[55],[56],[57]. In this study, we adopted MIPS architecture for a processor core since
the architecture is well-known and is commonly used in the market. The structure of
a processor core is 5-stage pipeline and the instruction set architecture is MIPS32 in
Ref.[58]. The feature of the processor core we implemented is explained below.

Instruction set

We implemented all of the instructions on the core instruction set in the literature [59]
except for load link instruction (11) and store conditional (sc), which are instructions for
a multi-processor core. Additionally, as the compiler (GCC) outputs several instructions
which are not on the list of the literature [59], the instructions, xor, xori, sra, sllv,
srav, srlv, srav, srlv, bgez, bltz, blez, bgtz, jalr, 1b, and 1h, are also implemented.
To execute multiplication and division, we implemented the instructions related to these
operations, mult, multu, div, divu, mfhi and mflo. mfcO is also implemented for a
processor control. All instructions we implemented are shown in the table 3.1.

Table 3.1: Instruction set.

Category Instruction | Description
Arithmetic operation | add Add
addu Add unsigned
addi Add immediate
addiu Add immediate unsigned
and And
andi And immediate
sub Subtract
subu Subtract unsigned

continue to the next page

14

Category Instruction | Description
lui Load upper immediate
Logical operation nor Nor
or Or
ori Or immediate
xor Exclusive or
xori Exclusive or immediate
Comparison slt Set on less than
sltu Set on less than unsigned
slti Set on less than immediate
sltiu Set on less than immediate unsigned
Shift sll Shift left logical
sra Shift right arithmetic
srl Shift right logical
sllv Shift left logical variable
srav Shift right arithmetic variable
srlv Shift right logical variable
Branch beq Branch on equal
bne Branch on not equal
bgez Branch on greater than or equal to zero
bltz Branch on less than zero
blez Branch on less than or equal to zero
bgtz Branch on greater than zero
Jump j Jump
jal Jump and link
jalr Jump and link register
jr Jump register
Load 1b Load byte
lbu Load byte unsigned
1h Load halfword
lhu Load halfword unsigned
1w Load word
Store sb Store byte
sh Store halfword
SW Store word
Multiplication mult Multiply
multu Multiply unsigned
Division div Divide
divu Divide unsigned
Register transfer mfhi Move from high
mflo Move from low
Control mfcO Move from coprocessor

15

5-stage pipeline

The processor core we implemented consists of the five stage pipeline, IF (Instruction
Fetch), ID (Instruction Decode), EX (Execution), MEM (Memory Access), and WB
(Write Back to a register) stages. IF is the stage for reading an instruction from the
instruction memory according to PC (Program Counter). With our implementation,
since a program for the processor is stored in a block memory on an FPGA in advance,
the instruction indicated by PC is read in synchronization with the clock. ID is a stage
for decoding the instruction and setting necessary controls to execute the instruction cor-
rectly. With this implementation, a decision for whether a branch is taken or not is made
in the ID stage. EX is a stage for working ALU (Arithmetic Logic Unit), the unit for
arithmetical or logical operations, and the unit for multiplication or division. MEM is
a stage for reading data from or writing to the data memory according to the address
calculated in the previous stage. WB is a stage for writing the calculated result back to
a register.

Branch decision

When a conditional branch instruction is executed, the decision of whether the control
proceeds to the following instruction (not-taken) or branches (taken) is made in ID stage.

Delay Slot

A conditional /unconditional branch instruction has one delay slot, so that the following
instruction of a branch instruction is always executed regardless of the branch decision.
We do not need to flush or stall an instruction in the delay slot. When a jump and link
instruction (jal, jalr) is executed, the return address for the instruction is the address of
PC+8.

Memory Map

The processor core we developed has 32Kbytes program area which is implemented with
a block memory configured as a single port ROM in the FPGA. Read-only data such as
a variable with constant expression is also stored in a block memory in the FPGA and
can be accessed with the addresses from 0x8000 to Oxbfff (16Kbytes). For variable data,
RAM area which can be accessed with the addresses from 0xc000 to Oxefff (12Kbytes)
is implemented in the logic block in the FPGA. I/O area such as the address of UART
control is memory mapped to the addresses from 0xf000 to Oxffff. RTOS hardware can
be accessed with the addresses from 0xf0000000 to Oxftftftff, which is explained in Section
4.1 in detail. This memory map is summarized in the Fig.3.1.

Forwarding Unit

When an instruction uses the results of the former instructions, the pipeline processing
does not have to be stalled as long as the results can be obtained via the pipeline registers
even if it has not been written back to general-purpose registers. The forwarding unit
detects these cases.

16

Oxffffffff
RTOS Hardware
Oxf0000000
Reserved
Oxf0010000 1/0
0x0000£000
RAM 12Kbytes
0x0000c0O0O
Read Only Data 16Kbytes
0x00008000
Program Area 32Kbytes
0x0

Figure 3.1: Memory map.

Detection of pipeline stall

When an instruction uses the results of the former instructions but the forwarding unit
cannot supply the results immediately, the pipeline has to be stalled. The pipeline-stall-
detection unit decides and controls the pipeline stall.

Clock Generation

We implemented the hardware circuit to an FPGA of Xilinx and used a clock generation
IP on the FPGA to convert the clock rate. The frequency of the clock source of the FPGA
is 100MHz and we used the clock generation IP to acquire a proper clock rate to execute
our target program.

UART Interface

In order to output data from the processor core, we implemented UART interface through
the 10O pin of an FPGA board and the data can be acquired with a terminal soft on PC.

17

7-Segment display and LEDs

On the FPGA board we used for the evaluation, Digilent Basys3 in Ref.[60], there are
4-digit 7-segment display and 16 user LEDs. These 1/O addresses are mapped to memory
addresses to access these 7T-segment display and LEDs, so that a write access to a des-
ignated address enables an application program to turn the 7-segment display or LEDs
on.

3.2 Analyzing Application Program

In order to generate an application adaptive processor core, we proceed to the following
steps. (Fig.3.2)

(Step 1) An object file for an application program is built. (Section 3.2.1)
(Step 2) An object file for the application program is analyzed. (Section 3.2.2)
(Step 3) Used instructions are extracted. (Section 3.2.3)

(Step 4) The object code is analyzed and the dependency patterns are searched. (Section
3.2.4)

(Step 5) Processor resources with used instructions and dependency patterns are se-
lected. (Section 3.3)

These steps are also applied to our environment illustrated in Section 4.5.

3.2.1 Building Application Program

Source codes of an application program which are written in C language or MIPS assembly
language are input, and C compiler is invoked to create an object file in executable format.
In our implementation, GCC compiler for MIPS is used.

3.2.2 Analyzing Object Code

After an executable object file is generated, an assembly code is extracted from the object
file. As we compile the source code with GCC compiler, the objdump command in GCC
compiler utility is available for the disassembling.

3.2.3 Extracting Instructions

From the result of disassembling, actually used instructions are extracted and resources of
a processor core to be used by the application program are determined. In disassembling
the code which has been generated on the first step, the result such as Fig.3.3 is output
and the instruction field is extracted to examine what instruction is used. We created
a list of instructions and resources in advance and the list shows which resources are
actually used for each instruction in an application program.

18

Input

Application Program

Configuration -

s \‘\
J (Step 1) *
It Building Application Program \l

L S
L : . ¢ :
: (Step 2) X
I Analyzing Object Code (Step 5) I
: \ J Selecting Processor :
o, l N Resources with Used 1
: (Step 3) Instructions and Dependency :
I Extracting Instructions Patterns 1
| . / 1
1]
L l \ :
1 (Step 4) 1
1 Analyzing Object Code and 1
| Dependency Patterns :
‘\ - J ,’

|
OutpuE

4

Processor Core

HDL Source Code

—— = - ——

Figure 3.2: Analyzing application program.

3.2.4 Analyzing Object Code and Dependency Patterns

In this implementation of the processor core, to detect forwarding and hazard, the for-
warding detection unit and hazard detection unit have to be implemented, whereas, if
there is no code sequence causing forwarding or hazard, we can omit the circuit of the
corresponding detection unit.

In this step, possibility of forwarding and pipeline stall is detected. The instruction
sequence for dependency between instructions is searched, then the necessity of each
forwarding or pipeline stall unit is decided. If some forwarding or pipeline stall patterns
are found not to occur, the corresponding forwarding units or stall detection circuits
are removed from the processor circuit. The details about the correspondence between
dependency patterns and forwarding/stall detection units are described below, which is
based on the literature [61].

19

-~ Example of Disassemble ~

00000288 <main>:
288: 27bdffe0 addiu $29,$29,-32
28c: afbf001c sw $31,28($29)
290: afb00018 sw $16,24($29)
294: 40806000 mtcO $0,$12
298: 3c020001 1ui $2,0x1
29c: ac40c034 sw $0,-16332($2)
2a0: 3c020001 1ui $2,0x1
2a4: ac40c010 sw $0,-16368($2)
2a8: 3c020001 1ui $2,0x1
2ac: ac40c004 sw $0,-16380($2)
2b0: 3c020001 1ui $2,0x1
2b4: ac40c02c sw $0,-16340($2)
2b8: 3c020001 1lui $2,0x1
2bc: ac40c014 sw $0,-16364($2)

Figure 3.3: Example of the disassemble.

Dependency related to forwarding units

When an instruction uses the result of the former instructions, the forwarding unit detects
the necessity of forwarding and designates the forwarding paths. If such dependencies are
not found, the forwarding detection unit and the corresponding paths can be removed.

Forwarding patterns are classified into five cases in our processor core.

1. Forwarding ALU result to the next instruction: When the result of ALU calculation
is used in the next instruction, the result is forwarded to the next instruction via a
pipeline register. An example is as follows.

add $10, $8, $9
sub $12, $10, $11

The two instructions, add and sub, have data dependency with respect to $10. The
forwarding unit detects the dependency in the instruction sequence and controls the
forwarding paths so that sub in EX stage immediately receives the result of add
residing in MEM stage.

2. Forwarding ALU result to the instruction immediately after the next instruction:

When the result of ALU calculation is used in the instruction immediately after
the next instruction, the result is forwarded to the instruction. An example is as
follows.

20

add $10, $8, $9
sub $14, $13, $12
v $11, 0($10)

In this example, 1w uses the result of add for address calculation. This type of
dependency is solved by forwarding the value in WB stage to EX stage.

3. Forwarding ALU result to conditional branch instruction: When the result of ALU
calculation is used in the conditional branch instruction just after the next instruc-
tion, forwarding from MEM stage to ID stage is performed. An example is as
follows.

add $10, $8, $9
sub $14, $13, $12
beq $10, $11, label

4. Forwarding ALU result to the following store instruction: When the result of ALU
calculation is used in the next store instruction as the stored value, the value in WB
stage is forwarded to MEM stage. An example is as follows.

add $10, $8, $9
sw $10, 0($11)

5. Forwarding from jal,jalr: Jump and link instructions (jal, jalr) write the return
address in $31 register. When the jump target instruction is a jump register in-
struction (jr) with $31, the return address being written in $31 is forwarded to jr.
An example is as follows.

jal label

nop
label:

jr $31

Dependency related to stall detection units

When an instruction uses the result of the previous instruction but the forwarding unit
cannot supply it immediately, the necessity of pipeline stall is detected by the stall detec-
tion unit. If such dependency is not found in the application program, the stall detection
circuits can be removed.

There are five cases where the pipeline stalls.

21

. Result of load instruction used by the next instruction: When the result of a load
instruction is used by the next instruction, the pipeline has to be stalled. An example
is as follows.

1w $8 0($9)
add $9, $8, $10

In this case, after add is stalled in ID stage for one cycle while 1w advances, it
receives, in EX stage, the value forwarded from WB stage.

. Result of ALU/load instruction used by the next conditional branch: When the result
of ALU calculation or the load instruction is used in the next conditional branch
instruction, pipeline has to be stalled. An example is as follows.

add $10, $8, $9
beq $10, $11, label

In this case, beq stalls in ID stage for one cycle and is given the value from MEM
stage. If the prior instruction is 1w, it needs two-cycle stalling.

. Result of load instruction used by conditional branch after the next instruction:
When the result of a load instruction is used in a conditional branch instruction
after the next instruction, the pipeline has to be stalled for one cycle. An example
is as follows.

lw $10, 0($9)
nop
beq $10, $11, label

beq stalls in ID stage for one cycle and is given the value from WB stage.

. Result of ALU used by jr or jalr: When the result of ALU calculation is used in
the next jump register or jump and link register instruction, the pipeline has to be
stalled. An example is as follows.

add $10, $8, $9
jr $10

In this case, jr stalls in ID stage for one cycle.

. Result of load instruction used by jr or jalr after the next instruction: When the
result of a load instruction is used in jr or jalr after the next instruction, the pipeline
has to be stalled. An example is as follows.

1w $10, 0($9)
nop

jr $10

In this case, jr stalls in ID stage for one cycle.

22

3.3 Selecting Processor Resources with Used Instruc-

tions and Dependency Patterns

Resources/components which are required for each instruction to be executed are listed
in advance. Similarly, the information about the units necessary for solving dependencies
is prepared. Using this list and information for correspondence between instructions/se-
quences and necessary components, once the analysis in the previous section is done,
all the processor resources for running the application program are fixed. The target
resources for configuration are described below.

1.

multiplexer: There exist several multiplexers in the processor core. Whether each
multiplexer is used or not depends on the selected instructions. If some instructions
are not actually used for the application program, the corresponding multiplexers,
related data paths, and control logic are removed.

Adder for PC: When a branch is taken, an adder is used to calculate the branch
target address. The current program counter value plus four (instruction size) and
immediate value are added. This adder is removed if the target program does not
include branch instructions, although it is not likely to happen.

Comparator for equality condition: Comparators for equality condition are used
for beq, bne instructions. If branch instructions with equality condition are not
included in the application, the comparators are removed.

Comparator for positivity condition: A comparator for positive condition is used for
bgez and bltz instructions. If the application does not include branch instructions
with positivity condition, this comparator is removed.

Comparator for negativity condition: A comparator for negativity condition is used
for blez and bgtz instructions. If branch instructions with negativity condition do
not appear, the comparator is removed.

Multiplier: A multiplier is used for multiplication. If the application does not include
multiplication instructions, this component is eliminated.

Divider: A divider is used for division. Embedded applications tend to avoid integer
division. Therefore, this is removed for many applications.

Forwarding unit: As described in Section 3.2.4, there are five cases for the forwarding
to work. While each case involves its detection circuit and related connections, we
remove them if the forwarding never happens.

Stall detection unit: There are five cases where the pipeline has to be stalled as
described in Section 3.2.4. While each case needs its detection circuit and related
connections, we remove them if the case is never met.

23

Data Address -Ib/Ibu ~ Ih/lhu

W [31:0] W Muxa
M MUX2 |,
ol N : -
[31:24] 8 [Sign Extension |-32 L
[23:16]
bu M_MUX5
[15:8] -
8 [Zero Extension | 32 32 \
[7:0]
32 32
Data— M_MUX3 h
31:16 - -
[31:16] 16 ['Sign Extension 32
_ lhu
[15:0] 16 [Zero Extension

Figure 3.4: Example of selecting multiplexer.

3.4 Generating Application Adaptive Processor Core
Circuit

For the resources described in the previous section, from the result of disassembling an
application program, actually used resources for the application program are selected.
Processor core descriptions and a macro definition file are the output in the previous step.
Selected resources for the processor configured for the target application are indicated by
the macro definition file. Figure 3.4 illustrates a part of the processor data path with
multiplexers, which are used for a byte data selection with the load instruction. The
multiplexer M_MUX2 is not used if there is not load byte data instruction in an application
program and the multiplexer M_MUX3 is not used if there is not load half word data
instruction in an application program. In addition, in the case that there is not load byte
data, the selection of M_MUX4 is not necessary. In order to make this selection possible, a
directive is inserted in the source code of the processor core described in HDL (Verilog)
in advance as the code of Fig.3.5.

In the case that M_MUX3 in Fig.3.4 is not used in an application program, memmux_3_nouse
is defined if there is not load half word instruction. On the other hand, if load half word
data is used, memmux_3_mux is defined. These defines are an output of a configuration
tool. Other resources are selected in a similar way. In the case that half word instruction
is not used in an application program, the circuit block becomes as in Fig.3.6. As we
can see from the figure, multiplexers, M_MUX3 and M_MUX5 are removed from the processor
core, which contributes to reducing the size of the processor core circuit.

Macro names are expressed in the format:

‘define Stage_ResourceNo_Selection

24

- Example of Multiplexer Selection

/* MUX2 MEM x*/
‘ifdef memmux_2_nouse
‘elsif memmux_2_mux
MUX8_4tol CORE_MUX8(.A(DATA_IN[31:24]), .B(DATA_IN[23:16]),
.C(DATA_IN[15:8]), .D(DATA_IN[7:0]1),
.SEL(DATA_ADDR[1:0]), .Z(DATA_IN2_.8));
‘else
/* ERROR */
Never Reached;
assign DATA_IN2_8 = 32’hf0200bad;
‘endif

Figure 3.5: Example of multiplexer selection.

The Stage part is as follows.

ID stage idmux
EX stage exmux
MEM stage memmux
WB stage wbmux

Resourcelo is a sequential number of each resource. If a multiplexer is selected, mux
or mux3 (for 3-to-1 multiplexer) is specified for selection. Otherwise, nouse is for the
unused multiplexer.

Using the results of the analysis process, the configurator makes a macro definition
file as follows.

‘define idmux_1_mux3
‘define idmux_2_mux
‘define idmux_3_mux
‘define idmux_4_mux3
‘define idmux_5_mux3

Synthesizing the source codes with the macro definition file, proper resources are
chosen to build the application specific processor.

3.5 Experimental Result

3.5.1 Application Programs

In order to evaluate the effect of the processor adaptation, we evaluated three applications,
the matrix multiplication, Rijndael and quick sort program. Features of these applications

25

— Data Address

- Ib/Ibu

W [31:0]
M_MUX2 |
[31:24] N\ 8 [Sign Extension 32
[23:16]
Ibu
[15:8] 8 - 32
701 Zero Extension
Data—

~ Ih/lIhu

N\A_IVI Ux4

\.\M_M UX5

32

32

Figure 3.6: Example of selecting multiplexer (Adapted).

are as follows.

e Matrix multiplication

In Matrix multiplication program, the size of matrices is relatively small, 4 x 4 since
the instruction set is not varied if the size of matrices is increased. The initial data
of the matrices are stored in Read only area, the address of which is shown in Fig.3.1
and the result of multiplication is stored in RAM for data area. This program uses
the multiplier. The actually used data of the matrices are shown below.

1 2 3 4 5 6 7 8 130 140 150 160
5 6 7 8 9 10 11 12 | | 306 332 358 384 (3.1)
9 10 11 12 13 14 15 16 | | 482 524 566 608 ’
13 14 15 16 17 18 19 20 658 716 774 832

Rijndael

Rijndael in Ref.[62] is a cypher algorithm which is commonly used as AES. In this
program, an encrypted data is stored in a Read Only Data area so that around 2.8K-
byte Read Only Data area is used for a table data which is used in the algorithm.
We confirmed the target data was properly decrypted with this algorithm.

Quick sort

Quick sort is a popular algorithm of sorting. In this evaluation, one hundred of
integer data are stored in Read Only Data area and the result is stored in RAM for
data area and is output with the UART interface on an evaluation board to confirm
correctness of the result. The application program from Ref.[63] is used.

26

Table 3.2: Processor core resources.

Resource Matrix Rijndael[62] Qsort[63] Full
LUT 3054(10.01%) | 3697(17.77%) | 3835(18.44%) | S431(40.77%)
LUTRAM | 1536(16.00%) | 1536(16.00%) | 1536(16.00%) | 1536(16.00%)
FF 1765(4.24%) | 1701(4.09%) | 1695(4.07%) | 1766(4.25%)
BRAM 11.50(23.00%) | 11.50(23.00%) | 11.50(23.00%) | 11.50(23.00%)
DSP 4(4.44%) - - 8(8.89%)
WNS (ns) 0.333 0.298 0.345 -0.205
Fmax (MHz) 69.575 69.406 69.634 67.065
Power (W) 0.238 0.223 0.226 0.34

3.5.2 Evaluation of Processor Adaptation

We evaluated the effect of the processor adaptation. Xilinx Artix-7 FPGA (XC7A35T-
ICPG236C) in Ref.[64] on the BASYS3 board of Digilent in Ref.[60] and the Xlinx devel-
opment tool Vivado 2018.3 are used for the evaluation. GCC 4.3.3 is used for the compiler.
For application programs described in Section 3.5.1, FPGA resources which each adaptive
processor uses are shown in Table 3.2. Full is a processor core which is not adapted to
an application program. The clock rate of the processor (CLK) is 68.0MHz, which is
generated by the IP core from the source clock rate of 100MHz. WNS stands for Worst
Negative Slack and Fmax is calculated by Fmax = 1000/((1000/(1000/CLK) —WNS))
in Ref.[65]. Power is Total On Chip Power, which is estimated by a Xilinx design tool,
Vivado in Ref.[66].

From Table 3.2, it can be seen that the number of LUT resources are reduced by 56.4%
(Rijndael) to 53.4% (Matrix) from the full set of the processor (Full) and Fmax is higher
than 68.0MHz for the adapted cases while the timing is not met in the Full, not adapted
case.

3.5.3 Discussion

Table 3.3 shows the resource usage of Qsort[63] to see the effect of the adaptation in detail.
The column “Adapted” is cited from Table 3.2 for the case of adaptation applied. The
column “w/ Multi.” is the case of “Adapted” with additional resources for multiplication.
The column “w/ Div. signed” is the case of “Adapted” with additional resources for
signed division as we can select the signed division and/or the unsigned division for the
resources of division. The column “w/o load half word” shows the resources of the case
that load half word instruction related resources are removed from “No Adaptation” as in
the Fig.3.6. It can be seen that about 0.3% of LUT can be reduced by the removing load
half word related resources. We can also see that 3.6% and 62.6% of LUT are increased
with multiplier and signed divisor, respectively.

27

Table 3.3: Processor core resources in detail (Qsort[63]).

Resource Adapted | w/ Multi. | w/ Div. | w/o load | No Adaptation
signed | half word

LUT 3835 3972 6235 8459 8486
LUTRAM 1536 1536 1536 1536 1536

FF 1695 1765 1767 1765 1766
BRAM 11.50 11.50 11.50 11.50 11.50
DSP — 8 — 8 8

WNS (ns) 0.345 0.244 -0.073 -0.219 -0.402
Fmax (MHz) | 69.634 69.147 67.664 67.002 66.191
Power (W) 0.226 0.235 0.292 0.342 0.34

3.6 Multicore

The techniques presented in this section are ones proposed in the author’s literature
[57], [67], [68] and [69]. In our study, we have developed multicore processors on an
FPGA for some specific applications. We tried to adapt the processor to each application
and confirmed that an eight-core processor could be implemented on a relatively small
FPGA. Then, we extended the development environment to make the multicore processor
adaptive to an application. This environment consists of application program analysis
and creation of optimum multicore processor RTL descriptions for the application. In the
following sections, we describe the functions of the development environment in detail and
show the evaluation results for the circuits which were generated by the environment.

A multicore processor is constructed with a combination of the cores adapted to the
application programs. Figure 3.7 shows the organization of an eight-core processor. The
number of cores is given to the development environment (configurator) in advance. Each
core has on-chip instruction memory (IMEM) which stores instructions (program codes)
it runs and is equipped with data cache. When a multicore processor is configured, the
configurator outputs Verilog-HDL descriptions for the indicated number of cores and the
coretop module (Fig.3.7) which connects the cores, the instruction memories and the data
caches.

3.6.1 Cache

For inter-processor communication, we implemented external memory interface with cache
memory so that all processor cores can access the commonly used data. In this study, we
implemented DDR2 memory interface on an evaluation board we used. Data which are
commonly used in processors are accessed through the cache memory interface. Each core
has a write-back cache memory, whose block size is 16 bytes (4 words). It takes one clock
cycle for each core to read from or write to its cache memory. The cache memory size,
the number of ways, and the width of memory addresses are selectable. One-way (direct-
mapped) or two-way set associative structure can be chosen. The size is configurable and
selected from 4KB, 8KB and 16KB for one-way cache, while 8KB (4KB+4KB), 16KB
(8KB+8KB), and 32KB (16KB+16KB) for two-way. In addition, the width of memory

28

FPGA

Coretop

IMEMO | Core0 CacheO

IMEM1 | Corel | Cachel

IMEM2 |- Core2 Cache 2

IMEM 3 Core 3 Cache 3 cache | |Memory ||| DDR2
IMEM4 | Core 4 Cache 4 control | control memory
IMEMS |- Coreb5 Cache 5

IMEM6 }— Coreb Cache6

IMEM 7 Core7 | Cache?7

Figure 3.7: Multicore processor structure.

addresses can be 16 bits or 32 bits, which leads to a direct influence on the size of tag
memory and the access delay/latency. When the target application processes relatively
small amount of data, the address width can be reduced according to the size of data set.
To support the multicore configuration, an arbiter is embedded in the memory control
module. The arbiter receives requests for accessing the external memory from the caches
and decides which request is prioritized. Implementing snooping mechanisms is avoided
to keep the hardware size and complexity small. Instead, data coherence is maintained
explicitly by, when needed, flushing updated data by software. The configuration in
terms of size, associativity, and address width has an effect on the processor size and the
maximum running clock frequency. The evaluation results are shown in Section 3.6.5.

3.6.2 Multicore Configuration Environment

We have developed the configuration environment to generate the multicore processor of
which each core is adapted to individual application programs.

Figure 3.8 shows the graphical user interface of the configurator, which accepts the
configuration settings and application files information, and invokes the automatic gener-
ation of the application specific processor descriptions. This configurator has the following
interfaces:

29

Configuraktor

of COREs

[2| v | Configure | Clear

Cache

of way Cache size (Kbytes) Address width (bits)
2 b 16 - ||32 -
Source Library

Source Path Library Path

.fsrc flib

Source Files Library Files

main.c util.c

sub.c ukil2.s

Object

Object PaLh

..Jjobject

Figure 3.8: Multi core configurator GUI.

of COREs| Selecting the number of cores

[

[Cache] Specifying the cache structure
[Source] Locating application’s source files
[Library] Locating library files

[Object] Designating object path
[Configure] Starting configuration

[Clear] Clearing generated objects

Before starting the configuration, the number of processor cores, the cache structure,
and the application program information are input in advance. The number of cores
can be chosen from one to eight. For the cache information, one-way (direct-mapped) or
two-way can be selected, and cache size can be selected from 4KB to 32KB. The width
of memory addresses can be 16 bits or 32 bits.

Application source code information is to be input before starting the configuration.
The source code path and file names of the application program are input in the configu-

30

Table 3.4: Multicore processor implementation results (1-8 cores) (Matrix).

of Cores 1 2 4 8 -
Adapted | Full | Adapted | Full | Adapted | Full | Adapted | Full | Available
Register 1,423 | 1,522 2,449 | 2,723 4467 | 5,388 8,169 | 9,133 54,576
LUT 2,186 | 8,593 3,885 | 16,415 7,351 | 38,9651 | 13,910 | 78,594t 27,288
Slice 758 | 2,680 1,277 | 5,047 2,742 - 5,025 - 6,822
RAMB16WER 14 14 26 26 50 - 98 - 218
RAMBSWER - - - - - - - -
DSP48A1 4 8 8 16 16 - 32 - 58
Min period (ns) 12.873 | 13.073 | 12.926 | 13.121 13.663 — 15.331 - —
Max freq. (MHz) 77.682 | 76.494 | 77.363 | 76.214 | 73.190 — | 65.227 - -

T It exceeds the maximum LUTs in this FPGA, so it cannot be implemented.

rator as well as the library path and file names the program uses. Besides that, the object
path, in which the configured Verilog-HDL files are generated, is designated.

3.6.3 Building Application Program

The configurator generates the processor circuit descriptions in HDL (Verilog). In the
first process of the configuration, the configurator invokes the compiler (GCC) with the
application source codes written in C language or MIPS assembly language and generates
the object codes.

3.6.4 Analyzing Object Codes

The object codes of the target application are analyzed in the way described in Section
3.2.

3.6.5 Evaluation of Multi Core

We have evaluated the multicore processor generated by the configuration environment
described in the previous sections with Spartan-6 xc6slx45 in Ref.[70] on Digilent Atlys
board in Ref.[71]. Xilinx ISE Design Suite 14.7 in Ref.[72] was used to implement a
processor circuit on the FPGA. The results of the processor implementation in terms of
the usage of resources and maximum frequency are shown below.

Evaluation Result

Table 3.4 shows the implementation results of one-core to eight-core processors for the
parallelized matrix multiplication program. In order to execute a program in parallel, the
calculation is separated in each processor core as shown in Fig.3.9. The program calculates
the product of matrixA and matrixB. matrixB is divided into the same number of the
processor cores in column direction and the divided part is assigned to each processor core
so that the calculation is performed in parallel. Here, N denotes the size of the matrix,

31

- Example of Matrix (Multi Core). ~

n = N;
ncols = N/N_CORE;
for (i = 0; i < mn; i++) {
for (j = (ncols * my_rank); j < (ncols * (my_rank + 1)); j++) {
for (k = 0; k < n; k++) {
matrixC[i] [j] += matrixA[i] [k]*matrixB[k] [j];
}
}
+

Figure 3.9: Example of matrix (Multi core).

N_CORE is the number of the processor core and my_rank shows the processor ID for
this processor core.

To compare the results in terms of adaptation, we evaluated the processors with and
without configuration. “Adapted” is the results by our configuration environment and
“Full” is the results without the configuration. “Available” is the maximum number
of resources in the target device we used (Spartan-6 xc6slx45). In these cases, cache
memories of the processors are configured as a 16KB two-way set associative cache with
32-bit addresses.

These results indicate that FPGA resources (Registers, LUTs, Slices, RAMBs and
DSP48A1s) to be used increase as the number of cores increases. The full set of instruc-
tions cannot be implemented on the FPGA device in the case of more than two cores,
since the total amount of the LUTs used by the cores exceeds the maximum number of
LUTs in this device. On the other hand, the adapted cores for the application can be
accommodated in the FPGA device even in the case of the eight-core processor.

The number of registers increases according to the number of cores. For the adapted
processor, it increases by 5.7 times (from 1,423 in the single-core to 8,169 in the eight-core)
while it increases by 6.0 times (from 1,522 to 9,133) for the full processor. Similarly, the
number of LUTSs in the adapted processor increases by 6.4 times (from 2,186 to 13,910)
and that in the full processor increases by 9.1 times (from 8,593 to 78,594).

When the resources are compared between the fully implemented processor and the
adapted one, the number of registers and the number of LUTSs are reduced by 6.50% (from
1,522 to 1,423) and by 74.6% (from 8,593 to 2,186), respectively, for the single-core. In
the case of the two-core, they are reduced by 10.1% (from 2,723 to 2,449) and by 76.3%
(from 16,415 to 3,885).

As the number of cores increases from one to eight, the maximum frequency decreases
by 16.0% (from 77.682 MHz to 65.227 MHz) for the adapted processor. In comparison,
the maximum frequency for the adapted processor is higher by 1.55% and by 1.51% than
the fully implemented one in the case of the single-core (77.682 MHz to 76.494 MHz) and
two-core (77.363 MHz to 76.214 MHz), respectively.

32

Table 3.5: 2way 32bit address.

Cache (bytes) 32K 16K 8K
Address (bits) 32 32 32
Register 2,449 2,449 2447
LUT 3,855 3,885 3,850
Slice 1,380 1,277 1,333
RAMB16BWER 42 26 6
RAMBSBWER 6 — 20
DSP48A1 8 8 8
Min period (ns) | 13.461 12.926 12.619
Max freq.(MHz) | 74.289 77.363 79.246

Table 3.6: 2way 16bit address.

Cache (bytes) 32K 16K 8K
Address (bits) 16 16 16
Register 2.350 2,351 2,349
LUT 3,739 3,798 3,806
Slice 1,380 1,206 1,224
RAMB16BWER 38 22 6
RAMBSBWER 6 4 20
DSP48A1 8 8 8
Min period (ns) | 13.455 12.918 12.61
Max freq.(MHz) | 74.322 77.411 79.302

Cache configuration

To evaluate the effectiveness of the cache configuration, we generated processors in chang-
ing the cache memory size, associativity, and width of memory addresses.

Table 3.5 and 3.6 show the results of two-way set associative in which the address
width is 32 bits and 16 bits, respectively. Table 3.7 and 3.8 are for one-way (direct-
mapped) caches with 32-bit and 16-bit addresses, respectively. In both cases, the number
of processor cores is two and each core is adapted to the matrix multiplication program.

The results demonstrate the effectiveness of reducing the cache memory size and the
number of bits for addresses. While the maximum frequency of the 32KB two-way cache
with 32-bit addresses is 74.289 MHz, that of the 8KB two-way cache with the same
address width is 79.246 MHz, which is higher by 6.67%. Similarly, when we compare the
maximum frequency between the 32KB two-way cache and 8KB two-way cache with 16-
bit addresses, the improvement is from 74.322 MHz to 79.302 MHz, which is 6.70%. In the
case of one-way with 32 bit addresses, the maximum frequency of the 4KB cache is higher
than that of the 16KB by 4.00% (80.587 MHz to 77.519 MHz). With 16 bit addresses, the
4KB cache is higher than the 16KB by 1.69% (81.679 MHz to 80.321 MHz). As a whole,
these results show that the reduction in the cache size contributes to raising the maximum
frequency. Shortening the address width has small effects on the running frequency. The

33

Table 3.7: 1way 32bit address.

Cache (bytes) 16K 8K 4K
Address (bits) 32 32 32
Register 2,419 2415 2411
LUT 3,537 3,525 3,515
Slice 1232 1235 1,247
RAMB16BWER 24 16 6
RAMBSBWER 2 — 10
DSP48A1 8 8 8
Min period (ns) 12.9 1247 12.409
Max freq.(MHz) | 77.519 80.192 80.587

Table 3.8: 1way 16bit address.

Cache (bytes) 16K 8K 4K
Address (bits) 16 16 16
Register 2,342 2338 2,341
LUT 3,511 3,519 3,511
Slice 1,344 1,326 1,263
RAMB16BWER 22 14 6
RAMBSBWER 2 2 10
DSP48A1 8 8 8
Min period (ns) | 12.45 12.307 12.243
Max freq.(MHz) | 80.321 81.255 81.679

improvement in the two-way caches is 0.06% at a maximum, while that in the one-way
caches is 3.61% for 16KB.

The effectiveness of the cache associativity is examined. In the case of 32-bit addresses,
while the maximum frequency of the 16 KB two-way is 77.363 MHz, that of the 16KB
one-way becomes 77.519 MHz which is higher by 0.202%. In the case of 16 bit addresses,
while the maximum frequency of the 16KB two-way is 77.411 MHz, that of the 16KB
one-way becomes 80.321 MHz which exhibits 3.76% improvement.

In terms of FPGA resources, while the number of registers or slices is almost the same
for all cache sizes, the total size of block RAMs (RAMB16 and RAMBS) is reduced as
the cache size shrinks. This is because the size of data arrays decreases. For example, the
32KB two-way cache requires forty-two RAMB16s and six RAMBS8s while the 8KB two-
way uses six RAMBI16s and twenty RAMSs. Similarly, the address width influences the
total size of block RAMs. With the 16-bit address width, four RAMB16s are eliminated
compared to the 32-bit width for the 32KB two-way cache. This is because the reduced
tag width occupies a shorter area in tag arrays. Focusing on the associativity, the same
trend can be observed for block RAMs.

In summary, comparison between the two-core full set (Table 3.4) and the adapted
two-core processor with the minimum cache size, 4KB one-way with 16-bit addresses
(Table 3.8) results in the conclusion that the combination of the adaptation to the target

34

instruction sequences and the configuration of cache memory improves the maximum
frequency by 7.17% (from 76.214 to 81.679) and reduces 14.0% (from 2,723 to 2,341) and
78.6% (from 16,415 to 3,511) of registers and LUTSs, respectively.

The evaluation results showed that our approach with resource reduction in instruction
execution as well as in cache memory is effective in reducing the occupied resources and
improving the maximum frequency. Although the fully implemented processor has the
limit of two cores in the small FPGA device, the adapted one which the configurator
generates can consist of eight cores. We can expect a sixteen-core processor to be built
in the same device depending on the application.

Our approach does not require that a new compact instruction set be designed to
reduce hardware sizes and improve running frequency. In addition, the configurator can
be applied with the existing instruction set without new compilers so that it helps to build
customized processors in a fully automatic manner.

3.7 Summary of this Chapter

In this chapter, we explained the method to generate an application adaptive processor
core with analyzing an application program and implementing only necessary resources
for the application program. Evaluation results with matrix multiplication, Rijndael and
quick sort show the reduction of FPGA resources and improvement of running frequency
in execution. Additionally, we implemented two- to eight-core processors on an FPGA
and evaluated the effect of the adaptation and the sizes of cache memory. It is shown that
the eight of adapted cores for the application can be accommodated in the FPGA device.
In contrast, only two cores can be implemented in the FPGA device when the adaptation
is not applied. =~ The proposed method does not need to introduce a new instruction set
to generate a processor core adapted to an application program so that we do not need to
develop a new compiler. We showed the method that the processor core can be generated
in a fully automatic manner.

35

Chapter 4

Framework for Building
Fine-Grained RTOS

4.1 Configuration Framework

Since the RTOS kernel is overhead for an application program, it is desirable that resources
for RTOS be small and the execution time be short.
This chapter describes our method to achieve the objectives listed in Chapter 1:

1. We show the structure of RTOS we developed and what unnecessary codes are in
Section 4.2.

2. In Section 4.3, the method to generate fine-grained RTOS in software RTOS is
explained.

3. In Section 4.4, what is implemented in hardware RTOS is described and how the
hardware is adapted to the application program is proposed.

4. We illustrate the detail of the automatic development environment in Section 4.5.

The framework presented in this chapter is based on the author’s literature [53],[54],
[56], [73], [74], [75] and [76].

4.2 RTOS Structure

We have implemented a software-only RTOS kernel and one which utilizes RTOS hard-
ware. The former does not use RTOS hardware so that all functions of RTOS work as
software on a processor.

Both of software-only RTOS and hardware RTOS are implemented as a subset of the
standard profile in the uITRON4.0 specification in Ref.[7]. Functions we implemented
in both software-only RTOS and hardware RTOS are as follows: Task Management
Functions (act_tsk, iact_tsk, can_act, ext_tsk, ter_tsk, chg pri), Task Dependent Synchro-
nization Functions (slp_tsk, wup_tsk, iwup_tsk, can_wup, rel wai, irel wai), Semaphores
(sig_sem, isig_sem, wai_sem, pol_sem), Eventflags (set_flg, iset_flg, clr_flg, wai_flg, pol flg),
and Data Queues (snd_dtq, psnd_dtq, ipsnd_dtq, fsnd_dtq, ifsnd_dtq, rev_dtq, prev_dtq).

36

Since the other system calls in the standard profile such as Fixed-Sized Memory Pool
Management and Mailboxes include similar error checking and multiple attributes, the
same adaptation techniques can be applied.

Hardware RTOS has a software part, which is the interface to RTOS hardware ex-
plained in Section 4.4.2. A software part of hardware RTOS is executed when hardware
RTOS is used.

A source file of each system call has codes for software-only RTOS and a software
part of hardware RTOS, which can be selectable by a directive. Whether a software-only
RTOS kernel is used or a hardware RTOS kernel is used is decided manually when the
adaptation tool runs.

4.3 Software Adaptation

Usually, only actually used system calls are linked with an application program as an
RTOS kernel is provided as a library format. Nevertheless, these system calls include
unnecessary codes for the application program. As defined in Section 1.1, we use the
terms “fine-grained” and “adaptive” RTOS in this dissertation for an RTOS kernel in
which unnecessary codes are eliminated by removing unnecessary codes caused by fixed
attributes explained in Section 4.3.1 and by the way of calling explained in Section 4.3.2.
Generating fine-grained RTOS is called “adaptation” in this dissertation.

4.3.1 Removing Unnecessary Codes Caused by Fixed Attributes

The technique presented in this section and the next section are ones proposed in the
author’s literature [75]. Some functions included in uITRON4.0 system calls are not used
according to the attributes specified through parameters in a configuration file. In this
case, the corresponding unnecessary code fragments can be removed from the source codes
by manipulating macro descriptions explained below.

Removing unnecessary code fragments is explained with wai_sem system call as an
example below. One attribute of wai_sem system call is specified by a parameter to the
static API, CRE_SEM described in a system configuration file. This attribute provides two
options for the wait queue, fifo order and priority order which are specified by TA_TFIFO
and TA_TPRI, respectively.

There are three cases:
(1) Both the priority order and fifo order are used
(2) Only the priority order is used
(3) Only the fifo order is used

Directives for the three cases are inserted in the source codes of the system call in
advance as in Fig.4.1. When both the priority order and the fifo order are used in the
application source codes, which is used has to be determined at runtime. In this case,
the code fragments for both the usages are located in the corresponding system call. The
result of a code after the attribute is analyzed are shown in Fig.4.2. When only the priority
order is used in the application, the code fragment only for it is validated. The result in

37

selecting only the priority order is shown in Fig.4.3. Similarly, only the fragment for the
fifo order is selected if it is the only usage in the application. This leads to reduction of
the code size and execution time. Figure 4.4 illustrates the result of Case(3), only fifo
order is selected.

~ Example of the Directives ~

#ifdef CHK_SEM_PRI
if ((p_sem->sematr & TA_TPRI) != FALSE) {
/* priority queue */
_kernel_queue_insert_tpri(...);
}
#endif /* CHK_SEM_PRI */
#ifdef CHK_SEM_FIFO
if ((p_sem->sematr & TA_TPRI) == FALSE) {
/* FIFO queue */
_kernel_queue_insert_prev(...);
}
#endif /* CHK_SEM_FIFO */
N J

Figure 4.1: Example of the directives.

~ Example of the Directives: Case(1) Both are used ———

if ((p_sem->sematr & TA_TPRI) != FALSE) {
/* priority queue */
_kernel_queue_insert_tpri(...);

b

if ((p_sem—>sematr & TA_TPRI) == FALSE) {
/* FIFO queue */
_kernel_queue_insert_prev(...);

}
- J

Figure 4.2: Example of the directives: Case(1) Both the priority order and fifo order are
used.

4.3.2 Removing Unnecessary Codes Caused by the Way of Call-
ing

Each system call in the pITRON4.0 specification includes code fragments for checking

errors. Although the uITRON4.0 specification implies that error detection can be omitted

for each main error class, it may fail to notice an error which has to be detected, leading
to unexpected troubles.

38

~ Example of the Directives: Case(2) Only priority order —

if ((p_sem->sematr & TA_TPRI) != FALSE) {
/* priority queue */
_kernel_queue_insert_tpri(...);

}
- J

Figure 4.3: Example of the directives: Case(2) Only the priority order is used.

~ Example of the Directives: Case(3) Only fifo order —

if ((p_sem->sematr & TA_TPRI) == FALSE) {
/* FIFO queue */
_kernel_queue_insert_prev(...);

}
- J

Figure 4.4: Example of the directives: Case(3) Only the fifo order is used.

In the method we propose, checking codes for errors which never occur in the appli-
cation are removed so that only necessary error checking exists in the object code. This
is done by analyzing the application program.

The procedure of checking each system call is as follows. First, C language preproces-
sor is applied to an application source file to expand header files and macro definitions.
Next, each call for system calls is checked and its parameters are extracted. From the
parameters, possible errors at runtime are identified and the corresponding macro def-
initions are output. Here, since parameters originally expressed as symbolic constants
defined in header files are translated into numeric values, the values are to be directly
considered. On the other hand, if a parameter is given as a variable, the parameter needs
to be checked at runtime, since the value of the variable is not decided statically. In
this case, a macro definition that indicates the necessity of checking of the parameter at
runtime is output. In addition, the information about the number of resources which is
passed from the system configuration analysis is compared to the usage of the resources.
The analyzing process above is illustrated in Fig.4.5.

The macro definition file created by the analysis of an application, a system configu-
ration file for pITRON4.0 convention, and RTOS kernel source codes are input to a cross
compiler environment for software-only RTOS kernel. For hardware RTOS kernel, the
macro definition file is passed to a hardware synthesizing tool with RTOS kernel HDL
source code as described in Section 4.5.

Each system call in the pITRON4.0 specification has one or more possible errors and
their causes. From Table 4.1 to Table 4.4 show the case of semaphore related system calls.
As for the E_ID error checking, if all semaphore IDs are confirmed to be within the proper
range, omitting semaphore ID checking has no effect on the behavior of the application
program, so that the code of the error checking is removed from the RTOS kernel and

39

RTOS Configuration File

Application Program

v

[Analyzing RTOS Configuration File]

]|, Statically Created Resource List

. .) Example:
Preprocessing an Application Program ercd = sig_sem(SEM_ID3) ;
T o

Extract Systtem Call Parameters ercd = sig_sem(3) ;

| Parameter List

L

Possible Error Check

k4

Output Hardware Definition (.v)
and Header File (.h)

-

Figure 4.5: Analyzing process.

the overhead can be reduced. For the E.NOEXS error checking, the step of the system
configuration file analysis recodes IDs for created resources (semaphores) in advance of
this error checking procedure. The list of these IDs is delivered to this procedure, so that
all the ID values used in the application are checked and, if they are all found in the
list, the code fragment for checking E_ZNOEXS is omitted. On the other hand, E_.CTX
cannot be checked statically since the error condition depends on the runtime situation
of the application program, so the symbol “—” is put in the fourth column of the tables.
Possibility of E_RLWALI can also be statically checked.

After all errors as well as fixed attributes are checked, a hardware definition file for the
hardware RTOS kernel, a file for static resource creation, and a header file are generated
by the adaptation tool as shown in Fig.4.14.

40

Table 4.1: System call and error cause (sig_sem).

System call | Error Description What is checked

sig_sem ECTX Context error —
EID Invalid Semaphore ID The range of semaphore 1D
E_NOEXS | Semaphore ID Non-existent | Whether ID is created by CRE_SEM
E_.QOVR | Queue overflow semaphore count

Table 4.2: System call and error cause (isig-sem).

System call | Error Description What is checked

isig_sem ECTX Context error -
EID Invalid Semaphore ID The range of semaphore 1D
E_NOEXS | Semaphore ID Non-existent | Whether ID is created by CRE_.SEM
E_.QOVR | Queue overflow semaphore count

4.4 Hardware Adaptation

Hardware RTOS consists of an RTOS hardware circuit and software part. To improve the
performance and reduce the footprint of software, RT'OS functions for static error check,
task status check, dynamic error check, queue operations, getting the highest priority task
and changing task status are implemented in the RTOS hardware circuit and it returns
the task ID of the runnable highest priority task while task switching is implemented
as software. Figure 4.6 illustrates a source code of act_tsk system call for software-only
RTOS as an example. Codes indicated by blue boxes are implemented in hardware in the
hardware RTOS. The software part of Hardware RTOS is described in Section 4.4.2 and
shown in Fig.4.7.

Since the source code of the RTOS hardware circuit is written in HDL (Verilog),
the adaptation method described in the previous sections can be applied to the RTOS
hardware circuit as well as the software-only RTOS, so that the hardware resources can
be reduced.

Table 4.3: System call and error cause (pol_sem).

System call | Error Description What is checked

pol_sem ECTX Context error -
EID Invalid Semaphore 1D The range of semaphore ID
E_NOEXS | Semaphore ID Non-existent | Whether ID is created by CRE_SEM
E-TMOUT | Poling failure semaphore count

41

Table 4.4: System call and error cause (wai_sem).

System call | Error Description What is checked
wai_sem ECTX Context error —
EID Invalid Semaphore ID The range of semaphore 1D

E_NOEXS | Semaphore ID Non-existent | Whether ID is created by CRE_SEM
E_RLWAI | Forced release from waiting | rel wai is called

Table 4.5: Addresses for RTOS system calls.

Address | R/W | Operation

0xftff0008 | R | Read RTOS return code

0xftff0100 | W | Issue RTOS system call

0xftff0104 | W | Set RTOS system call 1st parameter
0xftff0108 | W | Set RTOS system call 2nd parameter
0xffff010c | W | Set RTOS system call 3rd parameter
0xftff0110 | W | Set RTOS system call 4th parameter
0xftff0114 | W | Set RTOS system call 5th parameter
0xfftt0120 R | Read RTOS return parameter

4.4.1 Structure of Hardware RTOS

Figure 4.8 roughly shows a structure of the processor core and the RTOS hardware circuit
we have implemented. We designed the soft processor core, of which instruction set
architecture is MIPS32 in Ref.[58]. RTOS hardware is accessed by memory mapped 1/0.

Figure 4.9 depicts the RTOS hardware structure. The RTOS hardware consists of
two parts, “RTOS Hardware Wrapper” and “RTOS Hardware Core”. RTOS Hardware
Wrapper, which is the interface between the processor core and RTOS Hardware Core,
works as a state machine. When RTOS Hardware Wrapper receives an address, which
indicates a command to the RTOS hardware, and data, which indicates a system call
number or parameters, RT'OS hardware starts to work, so that an operation such as a
queue operation and input data (if any) are passed to RTOS Hardware Core.

4.4.2 Interface to RTOS Hardware

The structure of the system call software part is explained in this section. The software
running in the processor core reads from or writes to the addresses in Table 4.5.

“R” in the column “R/W” indicates that a value read from the corresponding address
is a return value from the hardware. On the other hand, “W” indicates that a value
is written to the address so that the value such as the system call number and other
parameter values is delivered to the RTOS Hardware Wrapper.

Before the software issues a system call, it writes the parameter values to the same
number of addresses (starting at 0xffff0104) as arguments defined for the system call.
After all the parameters are set, the software issues the system call.

A system call is issued by writing the system call number to the corresponding address

42

(0xffff0100). This makes the system call start by changing the state of the hardware.
Then, the software reads from the address for a return code (0xffff0008) so that it checks
completion of the processing and receives a task ID of the highest priority task and a return
value from the system call. That is, the most significant bit of the read value indicates the
completion of the RTOS hardware, and the lower bytes contain a highest-priority task ID
and a return code. This is a busy-waiting procedure where, after the software writes the
system call number to the address for “Issue RTOS system call” (0xffff0100), it repeatedly
reads from the address for “Read RTOS return code” (0xffff0008) until it finds the most
significant bit of 1. Then, it recognizes the lower bytes as a return code, and proceeds to
the following processing.

Some system calls return not only a return code but the other results through call
by reference. For example, wai flg returns a flag pattern through an address which a
parameter specifies. In this case, the result is obtained by reading from the address
dedicated to call by reference (0xffff0120).

Figure 4.10 is the flow of the software part procedure for act_tsk. The software part
code corresponding to Fig.4.10 is shown in Fig.4.7. Other system call functions follow
a similar flow and the software part code. The software part waits for returning from
hardware RTOS with polling. There is another option of using interrupt mechanisms for
the completion notification. We chose polling, not interrupt, since interrupt is disabled
in the system call function. In general, interrupt leads to overhead of detecting interrupt
cause and context switch, while polling leads to only reading a hardware register.

4.4.3 RTOS Hardware Wrapper

RTOS Hardware Wrapper is the interface between a processor core and RTOS Hardware
Core. In RTOS Hardware Wrapper, a hardware circuit which checks possible errors is
implemented, so the circuit can be reduced by adaptation. In RTOS Hardware Core,
TCBs (Task Control Blocks), queue headers and the circuit to control these resources
are implemented, which is explained in Section 4.4.4 in detail. With our implementation,
since RTOS Hardware Wrapper works as a state machine, the next state of each state
is decided by the current state and input data. All of states are shown in Table 4.6. In
the several states, an operation for RT'OS Hardware Core described in Table 4.7 is issued.
Which operation is issued is shown in the column Operation of the each state if there is an
operation for RTOS Hardware Core. The state transition is shown in Fig.4.11. Initially,
the state begins from INIT state after the system reset. Next, the state is in WAIT state
for waiting a system call invoked from an application program. After a system call is
called, the state goes to CHECK state to check possible errors. Then a state transits
to several states to perform the system call. If a task switch is possible, the state goes
to HIGHEST state, otherwise the state moves to END state and returns to WAIT state
to wait a system call. When there is a task switch, the state transits to ENDSWITCH
through END state and returns to WAIT state to wait a system call. The details are
explained in Appendix A.

43

Table 4.6: States of RTOS hardware wrapper.

State Operation Summary of the state

INIT — Initialize RTOS hardware registers.

WAIT — Wait for a system call invoked.

CHECK — Check parameters in a system call.

SETATTR — Set attribute to RTOS hardware internal registers.

TASKSTATUS TASKSTATUS | Check a task status.

SEMSTATUS SEMHEAD Check a semaphore status.

FLGSTATUS FLGHEAD Check an eventflag status.

DTQSTATUS DTQHEAD Check a data queue status.

CHECKTASK — The result of TASKSTATUS is checked.

CHECKSTATUS — The result of SEMSTATAUS, FLGSTATUS or
DTQSTATUS are checked.

ACTCNT — The activation count is increased.

SEMCNT — The semaphore count is increased.

RDYDEQUEUE PRIDEQUEUE | Release a task from the ready queue.

SEMDEQUEUE SEMDEQUEUE | Release a task from the semaphore waiting queue.

CHGPRI PRICHG Change the task priority.

SEMENQUEUE SEMENQUEUE | Queue the task to the semaphore waiting queue.

FLGDEQUEUE FLGDEQUEUE | Release the task from the eventflag waiting queue.

FLGENQUEUE FLGENQUEUE | Queue the task to the eventflag waiting queue.

DTQDEQUEUE DTQDEQUEUE | Release the task from the data queue waiting queue.

DTQRCVENQUEUE | DTQENQUEUE | Queue the task to the data queue waiting queue in
receiving data.

DTQSNDENQUEUE | DTQENQUEUE | Queue the task to the data queue waiting queue in
sending data.

DTQDATA — Data queue data is obtained.

RDYENQUEUE PRIENQUEUE | Queue the task to the ready queue.

HIGHEST PRIHIGHEST | Obtain the highest task priority.

END — To prepare to exit the RTOS hardware.

ENDSWITCH — Set the task switch request.

44

f/‘_1: if (tskid == TSK SELF) { I

2: tskid = CurrentTaskTd;

3: 1 .

4: tcb = &tchs[tskid]: Static efor check
5

6: J* check taskid #/

7: if ((tskid < 0) || (tskid >= | TSKID)) |

B: return(E_ID):

9:]

io:

11: /* not registered */

12: if (taskcontexts[tskid].stackbt == NULL) |

13: return (E_HOEXS) ;

14: }

15:

16: J/* check if this task is do yel i

17: if (tch->tskstat != TTS DMT) Thsk status check
18:

19: /* act_tsk gqueue over */

20: if (tckh-ractcnt < TMAX AC TYDnamic error check
21: tch-»actont += 1

22: } else |

23: return (E QOVE]) ;

24: }

25: '} Queus operation
26: rdyengueue (tskid, tchs[tskid ity}

27
28: /* Get the highest task id # Get the highest
29: highesttask = rdyhighesttas priority task
30:
31: tcbh->tskstat = TTS RDY:
- sta - Change task status
33: /* Task switch if necessary
o Task switch

Figure 4.6: Hardware implemented part of RTOS system call (act_tsk).

45

~ act_tsk (excerpt) ~

RTOSPARAM1 = tskid;
RTOSSYSCALL = CODE_ACT_TSK;

1

2

3

4: /* When RTOS HW finish, bit:31 is on */
5: while (((rtosreturn = PRIHIGHEST)

6: & 0x80000000) == 0);

.

8

9

highesttask = ((rtosreturn >> 16) & 0xff);
: errorcode = (rtosreturn & Oxff);
10:

11: if (errorcode == 0) {
12:
13: if (highesttask == 0) {
14:
15: /* No task switch */
16: return(E_0K) ;
17: } else {
18:
19: /* Task switch */
20: RunTask (highesttask) ;
21: return(E_0K) ;
22: }
23: } else {
24 :
25: /* Error case */
26: return((ER)errorcode) ;
27: }
\— J

Figure 4.7: Example of system call software part (act_tsk).

46

Control Unit

ALU Data .
Memory Multiplexer
Instruction | Register
PC ™ Memory File
| — RTOS
H/W
ALU Circuit
Control
Figure 4.8: Processor structure with RTOS hardware.
Addr |
= Output
Data RTOS Hardware Wrapper p
Operation, Input Datal TOutput Data

RTOS Hardware Core

Queue header TCB

Ready
Queue

Semaphore |}
Eventflag |I
Dato Queve ||

TCBI[O]
TCBI[1]
TCB[2]

Figure 4.9: Structure of RTOS hardware.

47

¥
() Get Highest
L act_tsk) priority task id
(Hardware . lr
Access) Set 1st parameter Get error code
Hard
E\cﬁés;"ﬁare Set Systemcall No
number
> 1 Yes
(Hardware :
Access) RTOS Switch task
Hardware context
finish? 1
Switch to another Return

task error
code

Figure 4.10: System call software flow.

Table 4.7: Operations for RTOS hardware core.
Operation Description
READYENQUEUE | Enqueue a TCB to a ready queue
READYDEQUEUE | Dequeue a TCB from a ready queue

PRIHIGHEST Return a task ID of the highest priority
PRICHG Change priority of a task

TASKSTATUS Return a task status

SEMHEAD Return a task ID of the top of a semaphore

waiting queue.

SEMENQUEUE Enqueue a TCB to a semaphore waiting queue
SEMDEQUEUE Dequeue a TCB from a semaphore waiting queue
FLGHEAD Return a task ID of the top of an eventflag
waiting queue

FLGENQUEUE Enqueue a TCB to an eventflag waiting queue
FLGDEQUEUE Dequeue a TCB from an eventflag waiting queue
DTQHEAD Return a task ID of the top of a data queue
DTQENQUEUE Enqueue a TCB to a data queue
DTQDEQUEUE Dequeue a TCB from a data queue

48

| INIT |
@tate corresponding\

HIGHEST
to system call
operations.
[WAIT H CHECK]—- SETATTR END ENDSWITCH]

Figure 4.11: State transition.

4.4.4 RTOS Hardware Core

RTOS Hardware Core consists of TCBs and queue headers for RTOS resources which have
a queue structure, that is a ready queue, semaphore waiting queue, eventflag waiting queue
and data queue. RTOS Hardware Wrapper requests operations described in Table 4.7 to
perform an RTOS core operation.

A module to control a task is called TCB (Task Control Block). The same number
of TCBs as tasks are implemented in RTOS Hardware Core. The number of TCBs are
decided when the adaptation tool works. Figure 4.12 is a TCB structure showing registers,
input and output signals of a TCB with omitting the clock signal and the reset signal.
The role of each signal is described below.

OPERATION_IN

This signal delivers the operation described in Table 4.7. According to this signal, each
TCB sets the register values and decides output signals. For example, when READYEN-
QUEUE signal is received, state, next_id and next_pri registers are set properly if the
TCB is the target of the ready queue operation.

WE_IN

This signal delivers a write enable signal for TCB registers. Only when this signal is set,
each TCB sets its own registers.

ID_IN

This signal delivers a task identifier for an operation. According to this signal, each TCB
decides whether this operation would be for this TCB or not.

49

PRI_IN

This signal delivers a task priority for a priority queue operation. The target TCB operates
the registers pri, state, next_id and next_pri according to this signal.

NEXT_ID_IN

This signal is input data for the register next_id. According to this input, the target TCB
sets the register next_id.

NEXT_PRI_IN

This signal is input data for the register next_pri. According to this input, the target
TCB sets the register next_pri.

NEXT ID_OUT

This signal is output data indicating the task ID, which is used to update next_id in a
relevant TCB when a queue operation is performed.

NEXT_PRI_.OUT

This signal is output data indicating the task priority, which is used to update next_pri
in a relevant TCB when a queue operation is performed.

Only a TCB which becomes prior to the inserted TCB or a TCB which is being deleted
generates valid values for outputs of NEXT_ID_OUT and NEXT_PRI_.OUT, while the
other TCBs output zeros. OR gates select the valid values and transmit them to all the
TCBs through NEXT_ID_IN and NEXT _PRI_IN inputs.

20

Input Hardware TCB Output
OPERATION_IN—— gpegisters - NEXT_ID_OUT

WE_IN—— id | |, NEXT PRI OUT
ID_IN— | [

PRI _IN — state
NEXT ID IN —— next_id
NEXT_PRI_IN — next_pri

Figure 4.12: TCB structure.

What is stored in the registers in Fig.4.12 is described below.

id stores task ID of this TCB.

pri stores a priority of this TCB.

state stores a state of this TCB.

next_id has a task ID of the next task in a queue.

next_pri indicates a task priority of the next task in a queue.

How a queue operation is performed with these signals and registers is described as
follows. We will show the case when tasks of id = 1, 2 and 4 are queued in a priority
queue, and a task of id = 3 is designated to be enqueued in the queue. Before queuing
operation, each register and signal in the TCBs are as Table 4.8. The task of id = 1 is
the top of the queue, and the task of id = 2 is the next of the task of ¢d = 1 since the
task of id = 1 has next_id = 2. As the task of id = 4 is the last task in the queue, nezt_id
= -1 and nezt_pri = 31, the maximum priority value in this configuration. In state row,
priQ means this TCB is queued in a priority queue, and Not in Q means this TCB is not
queued in any queue. X means this signal does not matter.

When the input signal of OPERATION_IN is READYENQUEUE, each TCB behaves

as follows.

e When the input signal of PRI_IN is greater than or equal to pri and PRI_IN is less
than next_pri, next_id and next_pri registers are set to the values of the input signals
of ID_IN and PRI_IN, respectively. NEXT_ID_OUT and NEXT_PRI_.OUT output

the old values of next_id and next_pri.

e When the input signal of ID_IN is the same as id in the TCB, next_id and next_pri
registers are set to the values of the input signals of NEXT_ID_IN and NEXT_PRI_IN,
respectively, and state is changed to priQ.

51

Table 4.8: TCB registers and 1/O (Before).

TCB 1 2 3 4
Registers | id 1 2 3 4
pri 1 3 2 5)
state priQ | priQ | Not in Q | priQ
next_id 2 4 0 -1
next_pri 3) 0 31
Input ID_IN X X X X
PRI_IN X X X X
NEXT_ID_IN X X X X
NEXT_PRI_IN X X X X
Output | NEXT_ID_OUT 0 0 0 0
NEXT_PRI.OUT | 0 0 0 0

Table 4.9: TCB registers and 1/O (On queuing).

TCB 1 2 3 4
Registers | id 1 2 3 4
T 1 3 2)
state priQ | priQ | Not in Q — priQ | priQ
next_id 2—=3] 4 0—2 -1
next_pri 3— 2) 0—3 31
Input ID_IN 3 3 3 3
PRIIN 2 2 2 2
NEXT_ID_IN 2 2 2 2
NEXT_PRI_IN 3 3 3 3
Output | NEXT_ID_OUT 2 0 0 0
NEXT_PRI.OUT 3 0 0 0

Table 4.9 shows the register values, input and output signals during the enqueuing
operation. next_id and next_priin TCB of a task of id = 1 are set to 3 and 2, respectively,
since PRI_IN = 2 is greater than priin TCB of a task of id = 1 and lower than next_pri. As
ID_IN = 3 and PRILIN = 2 are input, according to the aforementioned behavior, next_id
and next_pri in TCB of a task of id = 3 are set to 2 and 3, respectively.

As we can see from the explanation above, since each TCB can work in parallel, the
queue search is not necessary while software-only RTOS needs the queue search.

4.5 Development Process

In this section, we describe the procedure to configure RTOS by analyzing an application
and selecting functions which are actually used. The inputs of the environment are an
RTOS system configuration file and application program files, and the final outputs are the
source code of RTOS Hardware Core written with HDL, a file of hardware definition which

52

is a set of directives to create the adaptive hardware RTOS, a header file written with C
language to create an adaptive CPU core and a software program object to initialize the
block memory on the FPGA, which is called coe file. The format of coe file is defined by
Xilinx in Ref.[77]. This procedure consists of the following steps.

(Step 1) To generate an application specific RTOS kernel, static APIs in the RTOS
system configuration file are analyzed. (Section 4.5.1)

(Step 2) Application programs are analyzed. (Section 4.5.2)

(Step 3) A header file and a hardware definition file are output. (Section 4.5.3)
(Step 4) Source codes for RTOS resources creation are created. (Section 4.5.4)
(Step 5) RTOS Hardware core with necessary resources is created. (Section 4.5.5)
(Step 6) Software object file is generated. (Section 4.5.6)

(Step 7) Adaptive processor core is generated. (Section 4.5.7)

(Step 8) Software program object file is created. (Section 4.5.8)

(Step 9) A bitmap file for an FPGA is generated with the hardware synthesis and im-
plementation tool. (Section 4.5.9)

These steps in detail are explained in the following sections.

4.5.1 Parsing RTOS configuration file

The format of the configuration file follows pITRON4.0 specification in Ref.[7], which is
a collection of static system call APIs. Figure 4.13 shows an example of a configuration
file. In this phase, a list of IDs used in creating the specified kernel objects and the
other attributes (e.g. fifo or priority order, conditions for eventflags, etc.) are extracted.
This information is used both in the standard uI'TRON configuration process and in the
proposed adaptation procedure. We explain the procedure in detail in the following steps.
On the first step, the adaptation tool parses the configuration file to obtain the number
of RTOS resources and the attributes such as the number of tasks, a list of task ids and
task priorities to create, the number of semaphores, a list of semaphore ids to create, the
number of eventflags, a list of eventflag ids to create, the number of data queues, a list
of data queue ids to create, whether the waiting queue is task priority order or fifo order,
and the attribute of eventflags.

4.5.2 Analyzing Application Program

On the next step, application programs are analyzed to determine which system call
is used and check parameters in calling system calls. Before checking the application
pragrams, firstly these programs are passed to C language preprocessor to expand macro
definitions.

23

4.5.3 Outputting Directives

According to the number of resources obtained on the previous steps, macro definitions
as directives for generating an adaptive RTOS are output to a header file for a software-
only RTOS and a hardware definition file for RTOS hardware. Output definitions are as
follows.

Number of Resources
The number of resources such as tasks or semaphores is output as a macro definition.

Initial task priority list
A list of initial task priorities is output to be used in task creation.

Order of Waiting Queue
In the result of analyzing the configuration file, the order in waiting queue, priority
order of fifo order, is output.

Attribute of Eventflag
Whether TA_CLR attribute in creating an eventflag is used is checked since opera-
tion for clearing an eventflag can be omitted if TA_CLR attribute is not used.

Error Check

Macro definitions to leave only necessary error checking are output according to the
result of analyzing the configuration file and application program described in the
previous steps.

Module
Which module (semaphore, eventflag and data queue) is used is output. If a certain
module is not used, all of the code fragments related to the module can be omitted.

System call

Information on system calls which are actually used in the application program
is output as macro definitions. While necessary system calls can be linked with
the linker in generating software-only RTOS, these definitions are used in order to
implement the hardware RTOS in the same manner.

With this operation, an RTOS hardware core HDL (Verilog) code and hardware defini-
tions which are used for creating the adaptive RT'OS hardware are generated. In addition,
C language source codes for static resource creation and a header file to generate an adap-
tive software-only RTOS are created.

4.5.4 Static Resource Creation

Static Resource Creation (.c) is the C language source codes in which static RTOS re-
sources are created according to the result of analyzing the RTOS configuration file.
System calls for creating resources such as tasks and semaphores which are defined in the
configuration file are invoked in this file, which is generated by the tool.

o4

4.5.5 RTOS Hardware Core

In Fig.4.14, RTOS Hardware Core (.v) is the HDL source file for RTOS hardware core
circuit described in Section 4.4.4. This HDL source file is created according to the RTOS
system configuration file in the same manner as the static resource creation described
in the previous step. With including Hardware Definition (.v) in the HDL source file,
an adaptive RTOS hardware can be generated since the only necessary resources are
implemented in the RTOS hardware.

4.5.6 Generating Software Object File

The adaptation tool invokes a C compiler to generate a software program object. To
build a software-only RTOS kernel, Software Object file is generated from Header File
and Static Resource Creation with linking the RTOS kernel software library as well as
Application Program. To build a hardware RTOS, Software Object file is generated from
Application Program, the source codes of RTOS Kernel (software part), Header File and
Static Resource Creation. In both cases, the C compiler generates Software Object file in
the elf format.

4.5.7 Generating Adaptive Processor Core

After Software Object file explained in the previous step is generated, with the method
described in Section 3.2, an adaptive processor core is generated to implement the RTOS
hardware circuit. An adaptive processor core is generated with a macro definition file
created in the way described in Section 4.3.

4.5.8 Creating Software Program Object

In order to initialize memory cores for Xilinx FPGA, which we use as our evaluation
target device, Software Object file has to be converted to coe format in Ref.[77]. In our
environment, the Software Program Object file is converted from the elf format to coe
format and the file is to be used for initializing the block memory in the FPGA.

4.5.9 Implementation

In the previous steps, RTOS Hardware Core, Hardware Definition, Header File, Static
Resource Creation, Software Program Object and Macro Definition for Processor Core
are generated in our environment.

Finally, to make the hardware RTOS work, a bitmap file for an FPGA needs to be
generated with the hardware synthesis and implementation tool. RTOS Kernel H/W
Wrapper, RTOS Hardware Core, Hardware Definition, the hardware HDL codes of Pro-
cessor Core with Macro Definition, and Software Program Object are used to generate the
bitmap file for an FPGA as Fig.4.14 illustrates. On the other hand, RTOS Kernel H/W
Wrapper, RTOS Hardware Core and Hardware Definition are not necessary for generating
a software-only RTOS. That is shown in Fig.4.15.

95

4.6 GUI

A GUI (Graphical User Interface) tool we developed to invoke the environment described
in Section 4.5 is explained in this section. The tool is worked on Linux (Ubuntu) in
Ref.[78] with Python in Ref.[79]. Python is a general-purpose programing language and
has been commonly used in a wide range of applications. As Python supports several
platforms, the tool can be easily ported to another environment. For implementing
GUI, we used wxPython library in Ref.[80] for the API of GUI and referred the code of
fileHunter in Ref.[81] for file operation. That helped to create GUI interface easily. The
appearance of the tool is shown in Fig.4.16. The functions are illustrated below. The
item numbers below correspond to the numbers in the figure.

(1) This is the field to select a directory in which source files of an application program
is located. The directory path of the source files can be written.

(2) After the directory path of the source files is written, Select button is pushed to fix
the written source code path.

(3) This is the file list field to show the list of the files in the selected directory.

(4) The Object Directory text box is to set a directory for creating the object files which
are produced after analyzing and compiling the selected files.

(5) The RTOS system configuration file name in the source directory is indicated in this
text box. In analyzing RTOS resources, the configuration file is used to generate an
application adapted hardware.

(6) The Application files field is a list of the selected application program files. These
files are used to compile the source codes and analyze which system calls are used in
an application program.

(7) With Select RTOS radio button, we can select which RTOS is built, software-only
RTOS kernel or using hardware RTOS. If Hardware is selected, the software part of
the hardware RTOS is used for compiling the application program. If Software is
selected, the software-only RTOS is generated for the RTOS kernel.

(8) In selecting an RTOS configuration file in the File list window, the selected file is
input to the Config file text box when Config file button is pushed.

(9) In selecting a file in the File list window, the selected file is set to the Application
files window when Application button is pushed. In File List window, multiple files

can be selected at one time when files are selected with pushing the control key on
the PC.

(10) In selecting a file in the Application files window, the selected file disappears when
Delete button is pushed. In Application files window, multiple files can be selected at
on time when files are selected with pushing the control key on the PC. In this case,
all selected files disappear in the Application files window.

26

(11) In selecting a file in the Application files window, the displayed order of the selected
file moves up when Up button is pushed.

(12) In selecting a file in the Application files window, the displayed order of the selected
file moves down when Down button is pushed.

(13) After the RTOS configuration file and application program files are selected, Build
button is to be pushed to generate RT'OS Hardware Core, Hardware Definition, Macro
Definition and Software Program Object described in Section 4.4.

(14) In pushing Clean button, created object files are cleaned up.

(15) In pushing Exit button, the tool is closed.

4.7 Summary of this Chapter

In this chapter, we proposed a framework to generate an application adapted hardware
RTOS and software-only RTOS. We adopted uI'TRON4.0 for the RTOS specification and
showed the method to generate the application adapted RTOS kernel. “Removing Unnec-
essary Codes Caused by Fixed Attributes” and “Removing Unnecessary Codes Caused by
the Way of Calling” are explained for the method for generating an application adapted
RTOS. We developed the hardware RTOS to reduce the overhead of the software part in
an RTOS. The hardware RTOS we implemented consists of the RT'OS Hardware Wrapper
and RTOS Hardware Core. The RTOS Hardware Wrapper works as a state machine and
the RTOS Hardware Core manages queues and task control blocks. We showed the way
to reduce hardware resources with the method of removing unnecessary codes. In order to
generate the adaptive hardware and software part of RTOS, we described the development
environment and GUI tool. The proposed method does not need to update the RTOS
specification to generate an application adaptive RTOS in a fully automatic manner.

o7

-~ RTOS Configuration File

INCLUDE("\"main.h\"");
INCLUDE("\"rtosconfig.h\"");
INCLUDE("\"kernel_id.h\"");
INCLUDE("\"itron.h\"");
INCLUDE("\"test.h\"");

/* tskid, tskatr, exinf, task, itskpri, stksz, stk */

CRE_TSK (TASK_ID1, { TASK_ATR1, EXINF_1, taskl, TASK_PRI1, STACKSIZE1,
&stacktaskl [STACKSIZE1-1]});

CRE_TSK (TASK_ID2, { TASK_ATR2, EXINF_2, task2, TASK_PRI2, STACKSIZE2,
&stacktask2[STACKSIZE2-1] });

CRE_TSK (TASK_ID3, { TASK_ATR3, EXINF_3, task3, TASK_PRI3, STACKSIZES3,
&stacktask3[STACKSIZE3-1] });

CRE_TSK (TASK_ID4, { TASK_ATR4, EXINF_4, task4, TASK_PRI4, STACKSIZE4,
&stacktask4 [STACKSIZE4-1] });

CRE_TSK (TASK_ID5, { TASK_ATR5, EXINF_5, task5, TASK_PRI5, STACKSIZES,
&stacktask5[STACKSIZE5-1] 1});

/* semid, sematr, isemcnt, maxsem */

CRE_SEM (SEM_ID1, { SEM_ATR1, SEM_ISEMCNT1, SEM_MAXSEM1 });

CRE_SEM (SEM_ID2, { SEM_ATR2, SEM_ISEMCNT2, SEM_MAXSEM2 });
}),
)

CRE_SEM (SEM_ID3, { SEM_ATR3, SEM_ISEMCNT3, SEM_MAXSEM3
CRE_SEM (SEM_ID4, { SEM_ATR4, SEM_ISEMCNT4, SEM_MAXSEM4

I

I

/* flgid, flgatr, iflgptn */

CRE_FLG (FLG_ID1, { FLG_ATR1, FLG_PTN1 });
CRE_FLG (FLG_ID2, { FLG_ATR2, FLG_PTN2 });
CRE_FLG (FLG_ID3, { FLG_ATR3, FLG_PTN3 });

/* dtqid, dtgatr, dtqcnt, dtgqaddr */

CRE_DTQ (DTQ_ID1, { DTQ_ATR1, DTQ_CNT1, DTQ_ADDR1 });
CRE_DTQ (DTQ_ID2, { DTQ_ATR2, DTQ_CNT2, DTQ_ADDR2 });
CRE_DTQ (DTQ_ID3, { DTQ_ATR3, DTQ_CNT3, DTQ_ADDR3 });

Figure 4.13: Example of a configuration file.

o8

(Software
part)

Object file

RTOS Kernel
Processor Core

(-v)

H/W Wrapper
(.v)

Hardware Synthesize and Implement Tool

Figure 4.14: Development environment.

29

Compiler (gcc)

Software
Object file
(a.out)

Processor Core

(.v)

Hardware Synthesize and Implement Tool

Figure 4.15: Development environment for software RTOS.

60

sourceDirectory (1)

| select | (2)

a|

FileList (3)

Name Modified Size

dispatcher.s 2019-11-1011:58 2825

inthandler.c 2019-11-10 11:58 2230

kernel 2020-11-03 13:40

kernel_id.h 2020-09-26 18:15

g

main.c 2019-11-10 11:58

g

2020-11-03 14:43

3

sub_rice_time.c 2019-11-10 11:58 20965

Configuration Tool

Obiect Directory (4)

[.job)

Configfile (5)

f system_rice.cfg

Application files (5)

Name
sub_rice_time.c
userhandler_cook_time.c
inthandler.c

Modified
2019-11-10 11:58
2019-11-10 11:58
2015-11-10 11:58

Figure 4.16: GUI tool.

61

Size

831

(7) Select RTOS
© Hardware
© Software

(8) ‘ F1 Config file

(9) ‘

(10) ‘ F3 Delete
(11) F4Up

(12) rsoomn ‘

(13)"

F2 Application

F6 Build ‘

(14)‘ F7 Clean ‘

B —

Chapter 5

Evaluation

5.1 Overview

This chapter presents the effect of the method explained in Chapter 3 and 4. To evaluate
the proposal, we implemented the processor core and the hardware RTOS in an FPGA so
that the improvement of execution time of system calls and reduction of software resources
and hardware resources against software-only RTOS without adaptation can be seen with
several application programs.

The architecture of the processor core is the one described in Section 3.1 and RTOS
hardware is described in Section 4.4, which are implemented in an FPGA, Xilinx Artix-7-
FPGA (XC7A35T-ICPG236C) on the evaluation board of Digilent Basys 3 FPGA Board
with the Xilinx development tool, Vivado® Design Suite 2018.3. The Basys3 board is
shown in Fig.5.1.

The processor core we implemented runs at 68.0MHz and executes MIPS32 instruction
set in Ref.[58]. GCC 4.3.3 is used for the compiler. The RTOS kernel is configured to be
either a software-only kernel described in Section 4.2 or a kernel with RTOS hardware in
Section 4.4. Which RTOS kernel is used is selectable when the system is configured. We
evaluated the effects of application adaptation described in Section 4.3 for the software-
only RTOS kernel and RTOS hardware implementation described in Section 4.4 comparing
with the software-only RTOS kernel without application adaptation.

5.2 FPGA Resources

Table 5.1, 5.2, 5.3, 5.4 and 5.5 illustrate the number of FPGA resources occupied by the
processor core and RTOS hardware, and worst negative slack (WNS), Fmax and Power.
Percentages in the parentheses indicate the rates to the whole resources of the devices we
used for the evaluation.

LUT, LUTRAM, FF, BRAM and DSP are configurable resources in an FPGA and
the maximum number available is shown in the column of “Available” in Table 5.5. LUT
is a six-input look-up table implemented in Artix-7-FPGA, Xilinx FPGA in Ref.[82].
LUTRAM indicates the number of used resources of Distributed RAM. FF shows the
number of used flip-flops. BRAM is Block RAM, which is used to store instructions and
read only data for the processor core described in Section 3.1. DSP is used when the

62

Figure 5.1: The Basys3 board.

processor core needs multipliers. For the detailed feature of FPGA resources, the user
guide in Ref.[82] can be referred.

The clock rate of the processor (CLK) is 68.0MHz, WNS stands for Worst Nega-
tive Slack, the value of which is shown after implementation and Fmax is calculated by
Fmaxz = 1000/((1000/(1000/68.0) — W NS)) in Ref.[65].

We evaluated programs as follows: “sem(02” (for semaphore test) and “fig02” (for
eventflag test) are from the pITRON4.0 TOPPERS kernel test suites in Ref.[83], “dtq”
(for data queue test) is our original program, “semflgdtq” is a combination of sem02,
flg02 and dtq, “semflg” is a combination of sem02 and flg02, and two programs, “Cooker”
and “Pot”, are from the literature [84], which are RTOS application programs for a rice
cooker and an electric pot, respectively. (Since the two test suites programs include all
error cases, intentional error checking codes among them are removed from the programs
to evaluate the effect of adaptation.)

In the row of CPU Adaptive in Table 5.1, 5.2, 5.3, 5.4, 5.5 and 5.6, “Yes” shows CPU
circuit is adapted with the method described in Section 3.4 and in the row of RTOS
Adaptive, “Yes” shows RTOS circuit is adapted with the method described in Section
4.4. Table 5.1 is the result of a program of semflgdtq, from which the effect of CPU
adaptation and RTOS adaptation can be seen. Table 5.2 shows the result of applying
CPU and RTOS adaptation to semflg and sem02. Table 5.3 shows the result of applying

63

Table 5.1: FPGA resources (semflgdtq).

CPU Adaptive No Yes No Yes
RTOS Adaptive No No Yes Yes

of Task 5 5 5 5

of Semaphore 4 4 4 4

of Eventflag 3 3 3 3

of Data Queue 3 3 3 3

LUT 11,546 (55.51%) | 6,706 (32.24%) | 11,226 (53.97%) | 6,430 (30.91%)
LUTRAM 1,536 (16.00%) | 1,536 (16.00%) | 1,536 (16.00%) | 1,536 (16.00%)
FF 3,528 (8.48%) | 3,460 (8.32%) | 3,517 (8.45%) | 3,448 (8.29%)
BRAM 7.50 (15.00%) | 7.50 (15.00%) 7.50 (15.00%) | 7.50 (15.00%)
DSP 8 (8.89%) — 8 (8.89%) —

WNS (ns) -0.507 0.044 -0.222 0.002
Fmax (MHz) 65.734 68.204 66.989 68.009
Power (W) 0.372 0.247 0.358 0.236

CPU and RTOS adaptation to flg02 and dtq. Table 5.4 shows the result of applying
CPU and RTOS adaptation to Cooker and Pot. Table 5.5 shows the result of w/o RTOS
Hardware and availability of the FPGA resources for comparison with other cases. The
column of w/o RTOS Hardware is the resource usage of only a processor core adapted to
semflgdtq. Effects of fine-grained configuration for RTOS kernel can be confirmed even
with simple programs such as the ones mentioned above.

From Table 5.1, we can see that the adaptation achieves a reduction in LUT and
FF by 44.3% (from 11,546 to 6,430) and 2.27% (from 3,528 to 3,448), respectively, com-
paring adaptive and no adaptive configurations for both CPU and RTOS in semflgdtq.
In addition, we can see that DSP resources can be deleted when the CPU is adapted.
From Table 5.2, since semflg does not include a data queue system call, it can be seen
that LUT and FF are reduced by 16.9% (from 6,430 to 5,343) and 22.9% (from 3,448
to 2,658), respectively, compared to semflgdtq with adaptation, due to the elimination of
data queue resources. The resources of sem02 show that we can further decrease LUT
and FF by 23.7% (from 6,430 to 4,905) and 32.4% (from 3,448 to 2,330), respectively,
since it does not have the resources of eventflag. Similarly, we can see the results that
the resources of fig02 and dtq are reduced due to the reduction of unused system call
resources in Table 5.3. For fig02, LUT and FF can be reduced by 14.1% (from 6,430 to
5,523) and 16.6% (from 3,448 to 2,875), respectively, compared to semflgdtq. For dtq,
LUT and FF can be reduced by 10.8% (from 6,430 to 5,733) and 12.4% (from 3,448 to
3,021), respectively, compared to semflgdtq. In Table 5.4, since Cooker employs only
the necessary number of resources, LUT and FF can be reduced by 4.9% (from 6,430 to
6,115) and 5.8% (from 3,448 to 3,249), respectively, compared to semflgdtq which uses
more semaphores, eventflags and data queues. The same trend can be seen in the results
for Pot.

64

Table 5.2: FPGA resources (semflg, sem02).

Name semflg semflg sem02 [83] sem02 [83]

No Adaptation w/o error w/o error

No Adaptation

CPU Adaptive Yes No Yes No
RTOS Adaptive Yes No Yes No
of Task 5 5))
of Semaphore 4 4 4 4
of Eventflag 3 3 0 0
of Data Queue 0 0 0 0
LUT 5,343 (25.69%) | 11,475 (55.17%) | 4,905 (23.58%) | 11,369 (54.66%)
LUTRAM 1,536 (16.00%) | 1,536 (16.00%) | 1,536 (16.00%) | 1,536 (16.00%)
FF 2,658 (6.39%) | 3,496 (8.40%) | 2,330 (5.60%) | 3,464 (8.33%)
BRAM 7.50 (15.00%) 7.50 (15.00%) | 7.50 (15.00%) 7.50 (15.00%)
DSP - 8 (8.89%) - 8 (8.89%)
WNS (ns) 0.322 -0.132 0.008 -0.029
Fmax (MHz) 69.522 67.395 68.037 67.866
Power (W) 0.231 0.37 0.229 0.369

5.3 Execution Time

Table 5.7 illustrates comparison of each system call execution time among the cases of
hardware RTOS (w/ Hardware), adaptive software-only RTOS (Software w/ Adaptive),
and software-only RTOS without adaptation (Software w/o Adaptive).

Since execution of system calls can involve task switching, the table includes execution
times in both cases with task switching and without it. In the column of Task Switch,
“No” indicates that the system call is executed and completed without task switching.
Meanwhile, “Yes” corresponds to the situation where the system call execution includes
task switching.

The number of clock cycles taken for executing a system call is counted and the
execution time is obtained by converting the number of clock cycles to the duration of
the system call execution (usec), considering the processor core’s running clock frequency
of 68.0MHz.

The column of w/ Hardware shows the system call execution time (usec) of adaptive
RTOS hardware with the ratio to Software w/o Adaptive case. The column of Software
w/ Adaptive shows that the system call execution time (usec) of adaptive software-only
RTOS. In this case, each RTOS system call is executed on the processor without using
RTOS hardware, and the ratio of Software w/ Adaptive to Software w/o Adaptive is
shown. The column of Software w/o Adaptive illustrates the system call execution time
(usec) when RTOS kernel is not adapted to the application program.

From Table 5.7, it can be seen that, on average, w/ Hardware can reduce the execution
time to 71.8% and 40.2% for w/o Task Switch and w/ Task Switch, respectively, comparing
to software-only RTOS without adaptation. That means 1.39 times faster execution in the
case of w/o Task Switch and 2.49 times faster execution in the case of w/ Task Switch.
For the case of Software w/ Adaptive, it is reduced to 82.9% and 95.0%, respectively.

65

Table 5.3: FPGA resources (flg02, dtq).

Name flg02 [83] flg02 [83] dtq dtq
w/o error w/o error No Adaptation
No Adaptation

CPU Adaptive Yes No Yes No

RTOS Adaptive Yes No Yes No

of Task 4 4 3 3

of Semaphore 0 0 0 0

of Eventflag 3 3 0 0

of Data Queue 0 0 3 3

LUT 5,523 (26.55%) | 11,390 (54.76%) | 5,733 (27.56%) | 11,540 (55.48%)
LUTRAM 1,536 (16.00%) | 1,536 (16.00%) | 1,536 (16.00%) | 1,536 (16.00%)
FF 2,875 (6.91%) | 3,496 (8.40%) | 3,021 (7.26%) | 3,496 (8.40%)
BRAM 7.50 (15.00%) 7.50 (15.00%) | 7.50 (15.00%) 7.50 (15.00%)
DSP - 8 (8.89%) - 8 (8.89%)
WNS (ns) 0.321 -0.494 0.163 -0.135
Fmax (MHz) 69.517 65.790 68.762 67.381
Power (W) 0.232 0.37 0.241 0.37

That means 1.21 times faster execution in the case of w/o Task Switch and 1.05 times
faster execution in the case of w/ Task Switch. In the case of sem02 pol_sem and wai_sem
without task switching, the execution time of w/ Hardware is longer than that of Software
w/ Adaptive, the reason of which is that the semaphore count is simply implemented in
this operation and there is no queue operation or priority search involved. pol flg and
wai_flg without task switching have the same reason.

These results show that, except for a few cases without task switching, w/ Hardware
makes the system call execution time faster than Software w/ Adaptive. Especially, the
system call execution time with task switching is much reduced due to the reduction of
queue operation time with hardware. On the other hand, for Software w/ Adaptive, while
we can see the effect of removing unnecessary codes caused by fixed attributes and the
way of calling, the rate of the reduction of the execution time is lower in the case of w/
Task Switch since it does not accelerate queue operations.

Since the adaptation method explained in this dissertation never increases the exe-
cution time of system calls in any case, it does not have a negative effect for real-time
performance compared to the software-only RTOS without adaptation. In addition, queue
operation time does not fluctuate in case of hardware RTOS, which contributes to reduc-
ing jitters and making the execution time constant. Table 5.8 shows execution time of
each system call taking the maximum frequency (Fmax) into consideration. The result re-
veals that the performance deterioration which sometimes occurs with non-adapted RTOS
hardware is reduced when the RTOS is adapted to an application even if RTOS hardware
is implemented so that sufficient performance improvement can be obtained.

66

Table 5.4: FPGA resources (Cooker, Pot).

Name Cooker [84] Cooker [84] Pot [84] Pot [84]
No Adaptation No Adaptation

CPU Adaptive Yes No Yes No

RTOS Adaptive Yes No Yes No

of Task 4 4 3 3

of Semaphore 0 0 0 0

of Eventflag 1 1 2 2

of Data Queue 1 1 1 1

LuUT 6,115 (29.40%) | 11,311 (54.38%) | 5,934 (28.53%) | 11,229 (53.99%)
LUTRAM 1,536 (16.00%) | 1,536 (16.00%) | 1,536 (16.00%) | 1,536 (16.00%)
FF 3,249 (7.81%) | 3,460 (8.32%) | 3,173 (7.63%) | 3,424 (8.23%)
BRAM 7.50 (15.00%) 7.50 (15.00%) | 7.50 (15.00%) 7.50 (15.00%)
DSP 4 (4.44%) 8 (8.89%) 4 (4.44%) 8 (8.89%)
WNS (ns) 0.280 -0.074 0.343 0.054
Fmax (MHz) 69.320 67.660 69.624 68.251
Power (W) 0.239 0.365 0.237 0.365

5.4 RTOS Kernel Size

Table 5.9 shows the RTOS kernel sizes (bytes) of a software part of w/ Hardware, the
software-only RTOS with adaptation (Software w/ Adaptive), and the software-only
RTOS without adaptation (Software w/o Adaptative). For each program, the sizes of
representative system calls, utility functions used in system calls (Kernel Soft), and other
kernel parts (Others) are shown. Kernel Soft includes functions for queue management.
Others consist of kernel initialization codes and other system calls. Percentages in paren-
theses indicate the rates to Software w/o Adaptive. For example, the size of the software
part for sig_sem in sem02 is 59.4% of the size of Software w/o Adaptive and the total size
of sem02 is reduced to 69.4%.

Kernel Soft size is 0 for w/ Hardware since the corresponding operation is implemented
in hardware. In the case of dtq, Cooker and Pot, Kernel Soft size is not 100% in Software
w/ Adaptive, the reason of which is the programs use only TA_TFIFO for the attribute
of data queue while both of TA_TPRI and TA_TFIFO are implemented in the original
(Software w/o Adaptive) Kernel Soft, where the code for the attribute of TA_TPRI is
removed by adaptation. In w/ Hardware, the size of a software part of each system call
is reduced to 65.6% at worst (pol_flg in flg02) and to 41.7% (fsnd_dtq in dtq, Cooker and
Pot) at best. Additionally, total size of each program is reduced. The maximum reduction
is 68.7% in Cooker. This large amount of reduction is achieved since most code fragments
except for task switching are eliminated by adaption and Kernel Soft is fully reduced.
In Software w/ Adaptive, we can see that the total size of RTOS kernel is reduced to
88.6% in the case of sem02, and the size of each system call is reduced to 89.8% at worst
(prev_dtq in dtq) and to 63.2% (pol_sem in sem02) at best.

67

Table 5.5: FPGA resources (w/o RTOS, Availability).

Name w/o RTOS Available
Hardware

CPU Adaptive Yes —

RTOS Adaptive — —

of Task — —

of Semaphore — —
of Eventflag — —
of Data Queue — —

LUT 3,829 (18.41%) | 20,300
LUTRAM 1,536 (16.00%) 9,600
FF 1,701 (4.09%) | 41,600
BRAM 750 (15.00%) 50
DSP — 90
WNS (ns) 0.268 —
Fmax (MHz) 69.262 —
Power (W) 0.228 —

5.5 Discussion

Table 5.6 shows the FPGA resource reduction of removing unnecessary codes caused by
fixed attributes and the way of calling. The column “sem02 w/o error Priority only” is the
case that all of attributes of semaphores are TA_TPRI, which specifies the semaphore’s
wait queue is the task priority order. Since the original sem(02 program includes the
fifo order, the configuration file is modified to the priority order. The column “sem(2
w/o error” is referred from Table 5.2 for the case of the adapted RTOS hardware. The
difference of LUT resources shows 1.1% reduction by the caused by fixed attributes. The
last column is the case that all static errors are checked. As the result, LUT resources
increase from 4,905 to 4,970, which means 1.3% of LUT resources can be reduced by the
effect of adaptation for error checking. For Software RTOS (w/o Hardware), Table 5.10
shows the reduction of the software codes. The column “Software w/ Adaptive Priority
only” is the case that all of the semaphores’ wait queues are the task priority order. In this
case, the reduction of Kernel Soft reflects the effect of the adaptation. We can see that
4.8% of Kernel Soft size is reduced. The columns, “Software w/ Adaptive” and “Software
w/o Adaptive”, are cited from Table 5.9. The difference of resources of system calls is
derived from the way of calling. For example, 21.9% (from 512 to 400) of RTOS kernel
size can be reduced for sig_sem system call.

While we can make this adaptation automatically, we show the performance of the
automatic adaptation environment comparing to manual adaptation. Table 5.11 shows
the comparison between automatic and manual adaptation for three application programs,
semflgdtq, sem02 and Cooker, of which the details are explained in Section 5.2. The
time of Manual is the duration of manual adaptation, which was performed by a person
who saw this RTOS source code at the first time and had experience of the pITRON4.0
specification so that the person can read and understand the RTOS source code. The

68

Table 5.6: FPGA resources (sem02).

Name sem02 [83] sem02 [83] sem02 [83]
w/o error w/o error w/o error

Priority only w/ error check

CPU Adaptive Yes Yes Yes

RTOS Adaptive Yes Yes Error check

of Task 5 5)

of Semaphore 4 4 4

of Eventflag 0 0 0

of Data Queue 0 0 0

LUT 4,850 (23.32%) | 4,905 (23.58%) | 4,970 (23.89%)

LUTRAM 1,536 (16.00%) | 1,536 (16.00%) | 1,536 (16.00%)

FF 2318 (5.57%) | 2,330 (5.60%) | 2,354 (5.66%)

BRAM 7.50 (15.00%) | 7.50 (15.00%) | 7.50 (15.00%)

DSP - - —

WNS (ns) 0.178 0.008 0.008

Fmax (MHz) 68.833 68.037 68.037

Power (W) 0.228 0.229 0.227

time of Automatic is the executing time from the beginning of the adaptation process to
the output of the tool, which works with Core i5-3230M 2.60GHz CPU on Ubuntu OS.
The unit of time is seconds. This result reveals that the automatic generation is from
3,209 times (semflgdtq) to 2,458 times (Cooker) faster than manual generation.

5.6 Summary of this Chapter

We showed the effect of the proposed method in this chapter. It can be seen that FPGA
resources, RTOS kernel execution time, and RTOS kernel size are reduced by the effect
of the processor and RTOS adaptation. For example, 44.3% of LUT resources is reduced
in the case that the processor and RTOS are adapted to application with respect to the
case that both are not adapted for an application program of semflgdtq. For system call
execution time, hardware RTOS makes 2.49 times faster in including task switch than
software-only RTOS without adaptation, and 1.39 times faster without task switch. That
is because the execution time of a queue operation and priority search can be reduced
by the hardware RTOS. For the case of software-only RTOS, adaptation makes 1.21
times faster without task switch and 1.05 times faster in including task switch for the
average execution time. The RTOS kernel size of a software part can be also reduced
with hardware RTOS since most of software part in software-only RTOS can be removed
due to hardware RTOS. In the case of adaptation of software-only RTOS, the RTOS
kernel size is reduced owning to elimination of the unused code. The system call size
of software part is also reduced to 41.7% at best with hardware RTOS and 63.2% at
best with software-only RTOS with adaptation. The result of this chapter reveals that
hardware sizes are reduced, the running frequency is improved, RTOS sizes are reduced,

69

and system call execution times are improved, without updating the RTOS specification,
in a fully automatic manner with the proposed method in this dissertation.

70

Table 5.7: RTOS kernel execution time (usec).

Program | System Task w/ Software Software
Call Switch | Hardware w/ w/o

Adaptive | Adaptive

sem(2 sig_sem No | 1.44 (66.2%) | 1.78 (81.8%) 2.18

sig_sem Yes | 3.15 (46.6%) | 6.28 (92.8%) 6.76

pol_sem No | 1.04 (77.7%) | 0.94 (70.3%) 1.34

wai_sem No | 1.26 (87.4%) | 0.94 (65.3%) 1.44

wai_sem Yes | 3.04 (37.4%) | 7.62 (93.8%) 8.12

flg02 set_flg No | 1.57 (66.7%) | 1.97 (83.8%) 2.35

set_flg Yes | 3.35 (40.0%) | 8.00 (95.4%) 8.38

pol_flg No | 1.69 (85.8%) | 1.59 (80.6%) 1.97

wai_flg No | 1.87 (84.8%) | 1.82 (82.7%) 2.21

waiflg | Yes | 3.47 (36.3%) | 9.18 (96.0%) 9.56

dtq fsnddtq | No | 1.54 (56.0%) | 2.38 (36.6%) 275

fsnd-dtq | Yes | 3.21 (43.8%) | 6.96 (95.0%) 7.32

psnd_dtq | No | 1.54 (59.5%) | 2.32 (89.8%) 2.59

psnd_dtq | Yes | 3.19 (43.9%) | 7.00 (96.4%) 7.26

rev.dtq | No | 1.57 (76.8%) | 1.78 (87.1%) 2.04

rev.dtq | Yes | 3.04 (40.9%) | 7.04 (94.7%) 7.44

prevdtq | No | 1.57 (72.6%) | 1.90 (87.8%) 2.16

Cooker | iset_flg Yes | 4.13 (44.3%) | 8.94 (95.9%) 9.32

waifle | Yes |3.49 (36.3%) | 9.10 (94.6%) 9.62

fsnd dtq | Yes | 3.09 (44.1%) | 6.63 (94.7%) 7.00

revdtq | Yes | 2.94 (39.6%) | 7.03 (94.7%) 7.43

Pot set_flg Yes | 3.29 (36.6%) | 8.59 (95.6%) 8.99

waifle | Yes |3.47 (36.2%) | 9.06 (94.6%) 9.57

fsnd_dtq | Yes | 3.10 (42.0%) | 7.01 (95.0%) 7.38

rev.dtq | Yes | 2.96 (39.8%) | 7.04 (94.7%) 7.44

Average | w/o Task Switch | 1.51 (71.8%) | 1.74 (82.9%) 2.10

w/ Task Switch | 3.26 (40.2%) | 7.70 (95.0%) 8.11

71

Table 5.8: RTOS kernel execution time in the maximum frequency.

Program | System Task w/ RTOS w/ RTOS Software Software
Call Switch Hardware Hardware w/ w/o
Adaptive w/o Adaptive Adaptive Adaptive
Exec. | Fmax | Exec. | Fmax | Exec. | Fmax | Exec. | Fmax
Time Time Time Time
(usec) | (MHz) | (usec) | (MHz) | (usec) | (MHz) | (usec) | (MHz)
sem(2 sig_sem No 1.44 | 68.037 1.44 | 67.866 1.75 | 69.262 2.14 | 69.262
sig_sem Yes 3.15 3.16 6.17 6.64
pol_sem No 1.04 1.04 0.92 1.32
wai_sem No 1.26 1.26 0.92 1.41
wal_sem Yes 3.04 3.05 7.48 7.97
flg02 set_flg No 1.54 | 69.517 1.62 | 65.790 1.93 | 69.262 2.31 | 69.262
set_flg Yes 3.28 3.46 7.85 8.23
pol fig No 1.65 1.75 1.56 1.93
wai_flg No 1.83 1.93 1.79 2.17
wai_flg Yes 3.39 3.59 9.01 9.39
dtq fsnd_dtq No 1.52 | 68.762 1.55 | 67.381 2.34 | 69.262 2.70 | 69.262
fsnd_dtq Yes 3.17 3.24 6.83 7.19
psnd_dtq | No 1.52 1.55 2.28 2.54
psnd_dtq | Yes 3.15 3.22 6.87 7.13
rev_dtq No 1.55 1.58 1.75 2.00
rev_dtq Yes 3.01 3.07 6.91 7.30
prev_dtq No 1.55 1.58 1.87 2.12
Cooker | iset_flg Yes 4.05 | 69.320 4.15 | 67.660 8.78 | 69.262 9.15 | 69.262
wai_flg Yes 3.42 3.51 8.93 9.44
fsnd_dtq Yes 3.03 3.11 6.51 6.87
rev_dtq Yes 2.88 2.95 6.90 7.29
Pot set_flg Yes 3.21 | 69.624 3.28 | 68.251 8.43 | 69.262 8.83 | 69.262
wai_flg Yes 3.39 3.46 8.89 9.40
fsnd_dtq Yes 3.03 3.09 6.88 7.25
rev_dtq Yes 2.89 2.95 6.91 7.30
Average | w/o Task Switch 1.49 | 68.771 1.53 | 67.049 1.71 | 69.262 2.06 | 69.262
w/ Task Switch 3.21 | 69.145 3.28 | 67.540 7.56 | 69.262 7.96 | 69.262

72

Table 5.9: RTOS kernel size (bytes).

Program | System w/ Software Software
Call Hardware w/ w/o

Adaptive Adaptive

sem02 sig_sem 304 (59.4%) 400 (78.1%) 512

pol_sem 176 (57.9%) 192 (63.2%) 304

wai_sem 336 (48.8%) | 512 (74.4%) 688

Kernel Soft 0 (0%) | 1,680 (100%) 1,680

Others 0,104 (69.4%) | 9.872 (88.9%) | 11,104

Total 9,920 (69.4%) | 12,656 (88.6%) 14,288

fig02 | sctfig 320 (444%) | 608 (84.4%) 720

pol flg 336 (65.6%) | 400 (78.1%) 512

wai_flg 464 (44.6%) | 928 (89.2%) 1,040

Kernel Soft 0 (0%) | 1,392 (100%) 1,392

Others 10,912 (88.5%) | 11,488 (93.1%) | 12,336

Total 12,032 (75.2%) | 14,316 (92.6%) | 16,000

dtq fsnd_dtq 320 (41.7%) 656 (85.4%) 768

prev_dtq 336 (42.9%) 704 (89.8%) 848

psnd_dtq 320 (51.3%) | 544 (87.2%) 624

rev_dtq 368 (54.8%) | 592 (88.1%) 672

Kernel Soft 0 (0%)| 1.280 (96.4%) 1,328

Others 0,584 (85.4%) | 10,512 (93.7%) | 11,216

Total 10,928 (71.0%) | 14,288 (92.8%) 15,392

Cooker | iset_flg 352 (43.1%) 624 (76.5%) 816

wai_flg 464 (44.6%) | 928 (89.2%) 1,040

fsnd_dtq 320 (AL.7%) | 656 (85.4%) 768

rev_dtq 368 (54.8%) | 592 (88.1%) 672

Kernel Soft 0 (0%) | 1,824 (95.0%) 1,920

Others 10,592 (85.5%) | 11,504 (92.9%) | 12,384

Total 12,006 (63.7%) | 16,128 (91.6%) | _ 17,600

Pot set_fig 320 (44.4%) 608 (84.4%) 720

wai_flg 464 (44.6%) | 928 (89.2%) 1,040

fsnd_dtq 320 (4L.7%) | 656 (85.4%) 768

rev_dtq 368 (54.8%) | 592 (88.1%) 672

Kernel Soft 0 (0%) | 1,824 (95.0%) 1,920

Others 11,968 (88.1%) | 12,768 (94.0%) 13,584

Total 13,072 (72.5%) | 16,784 (93.1%) | 18,032

73

Table 5.10: RTOS kernel size (sem02) (bytes).

Program | System Software Software Software
Call w/ w/ w/o
Adaptive Adaptive Adaptive
Priority only
sem02 sig_sem 400 (78.1%) 400 (78.1%) 512
pol_sem 192 (63.2%) 192 (63.2%) 304
wai_sem 512 (74.4%) 512 (74.4%) 688
Kernel Soft | 1,600 (95.2%) 1,680 (100%) 1,680
Others 9,872 (88.9%) | 9,872 (88.9%) 11,104
Total 12,576 (88.0%) | 12,656 (88.6%) 14,288

Table 5.11: Comparison between automatic and manual adaptation.

Program | Automatic (sec) | Manual (sec)
semflgdtq 2.150 6,900
sem(2 1.796 4,740
Cooker 1.953 4,800

74

Chapter 6

Conclusion

6.1 Summary of the Dissertation

Firstly, we focused on the increase of embedded microprocessors in various appliances
and the importance of decreasing the size of a device. As RTOSs are commonly used for
the embedded systems, we discussed advantages and disadvantages of using an RTOS. To
mitigate the disadvantages, the objectives of this study are described.

As the background of this dissertation, we introduced previous studies, which are
related to processor core adaptation, OS kernel adaptation, software overhead mitigation,
hardware scheduler, hardware RTOS, and adaptation for RTOS functions in Chapter 2.

In Chapter 3, an architecture of the processor core we implemented was explained.
Instruction set of the processor core is MIPS32 instruction set architecture. The mi-
croarchitecture is based on 5-stage pipe line consisting of IF, ID, EX, MEM and WB. To
build an application adapted processor core, we illustrated the method for analyzing an
application program and generating the application adaptive processor core circuit and
we evaluated the number of resources and clock rate with three application programs. In
addition, we implemented two- to eight-core multi core processor on an FPGA and showed
eight-core processor can be implemented on a relatively small FPGA device with appli-
cation adaptive processor cores while not-adaptive processor cores exceeded the number
of the FPGA resources.

In Chapter 4, we proposed a framework to generate an application adapted hard-
ware RTOS and software-only RTOS. First, RTOS features are explained, and then the
methods for generating an application adapted RTOS are shown. One of the methods is
“Removing Unnecessary Codes Caused by Fixed Attributes” and the other is “Removing
Unnecessary Codes Caused by the Way of Calling”. After a code of an application pro-
gram is analyzed, RTOS hardware or software-only RTOS is adapted to the application
program. We explained the structure of the hardware RTOS, which consists of RTOS
Hardware Wrapper and RTOS Hardware Core. Since RTOS Hardware Wrapper works
with a mode transition, the modes and the next states are illustrated. On the other hand,
RTOS Hardware Core consists of TCBs and queue headers for RTOS resources. How
RTOS Hardware Core works the queue operation is described. In addition, we introduced
a GUI tool for generating adapted RTOS hardware and software-only RTOS.

We showed the effect of the proposal in this dissertation with several application
programs in Chapter 5. With the development environment, adaptive hardware RTOS

75

for an application program and adaptive software-only RTOS are evaluated. As the result,
the number of FPGA resources, RTOS kernel execution time and the size of the software
parts are shown. It can be seen that LUT resources in the FPGA are reduced by 44.3%
with the same application program (semflgdtq) comparing both of the CPU and RTOS
adaptive configurations and no adaptive configurations. For average system call execution
time, using hardware RTOS is 2.49 times faster in the case with task switch than the case
of software-only RTOS without adaptation. The RTOS kernel size of a software part can
be reduced with RTOS hardware or software-only RTOS with adaptation. For example,
the application program sem02 can reduce the size of a software part to 69.4% in the case
of RTOS hardware and to 88.6% in the case of software with adaptation.

6.2 Conclusion

In summary, we proposed a method for developing an application adaptive processor core
and generating a hardware RTOS or software-only RTOS kernel in a fully automatic man-
ner with illustrating the effectiveness of the techniques by showing several experimental
results.

Our approach does not need to:

e introduce new compact instruction set,
e develop new compiler, or

e update RTOS specification,

in order to reduce hardware sizes, improve running frequency, reduce RTOS sizes and
improve execution times. All the proposed adaptations are achieved in a fully automatic
manner. While the method we proposed is based on FPGA, the method can be applied
to not only FPGA but also ASIC development.

As shown in Chapter 5, hardware resources can be reduced by around 40% by adap-
tation to an application. In general, the device cost decreases in proportion to the usage
of resources so that the device cost can be reduced by that amount. ~ We conclude this
dissertation by stating that the proposed environment makes it possible to produce low
cost and effective devices in a short period of time.

6.3 Future Work

While we adopted MIPS32 architecture for the processor architecture and pITRON4.0 for
the RTOS specification, which is one of the most popular RTOS specification for embed-
ded RTOS kernel, the proposed method is expected to be applied to another processor
architecture and RTOS specification. As shown in the literature [85], we are studying an-
other processor architecture such as RISC-V processor in Ref.[86] so that we can enhance
the framework to another processor core. RISC-V has been gaining popularity for IoT
devices due to the open architecture and suitable for IoT devices. Regarding an RTOS
specification, for example, a specification of pT-Kernel in Ref.[87] has a similar attribute
described in Section 4.3.1 and error checking described in Section 4.3.2 so that it would be

76

possible to achieve adaptation described in this dissertation. We will expand the proposed
method in other platforms and study generating more fine-grained RTOSs.

Necessity of application specific hardware and software is increasing due to expansion
of ToT devices as described in the introduction. Since embedded processors and RTOS
are fundamental technology, which are commonly used in lots of appliances, application
specific processors and reduction of RTOS overhead are desirable. While application
specific processors are not flexible to be used with another application, that is advantage in
the security point of view as unauthorized software may not work. Functions of embedded
processors and RTOS are the key technology of IoT devices so that the study in this
dissertation will lead to the next study for processor architecture and RTOS which are
suitable for IoT devices.

77

Appendix A

This appendix explains the state transition described in Section 4.4.3 in detail.

A.1 INIT

The state of RTOS hardware begins from the INIT state after the reset. INIT is a state
for initializing RTOS hardware internal registers. The state transition is shown in Table
Al

Table A.1: INIT.
System call Next state | Condition
All system calls | WAIT All system calls transit to WAIT at the next clock.

A.2 WAIT

In the WAIT state, RTOS hardware waits for an issue of a system call. If a system call is
not called, the RTOS Hardware Wrapper stays in the WAIT state. The state transition
is shown in Table A.2.

Table A.2: WAIT.

System call Next state | Condition

All system calls | CHECK When a system call is issued, the state transits to CHECK.

A.3 CHECK

In the CHECK state, RTOS hardware checks system call parameter errors. When a pa-
rameter error is found, the RTOS Hardware Wrapper transits to the END state, otherwise
RTOS Hardware Wrapper transits to a proper state to proceed to a system call operation.
The state transition is shown in Table A.3.

78

Table A.3: CHECK.

System call Next state Condition
All system calls | END When a parameter error is found,
the state transits to the END state.
act_tsk ACTCNT When the task is not DORMANT.
RDYENQUEUE | When the task is DORMANT.
ext_tsk RDYDEQUEUE | When the activation request count is 1 or more.
END When the activation request count is 0.
chg pri TASKSTATUS | When there is no error.
ter_tsk RDYDEQUEUE | When there is no error.
wup_tsk RDYENQUEUE | When there is no error.
can_wup END When there is no error.
slp_tsk RDYDEQUEUE | When the wakeup request count is 1 or more.
END When the wakeup request count is 0.
rel_wai TASKSTATUS | When there is no error.
can_act END When there is no error.
sig_sem SEMSTATUS When there is no error.
wai_sem SEMSTATUS When there is no error.
pol_sem SEMSTATUS When there is no error.
set_flg FLGSTATUS When there is no error.
wai_flg FLGSTATUS When there is no error.
pol_flg FLGSTATUS When there is no error.
clr flg SETATTR When there is no error.
psnd_dtq DTQSTATUS When there is no error.
fsnd _dtq DTQDEQUEUE | When there is a waiting task.
DTQSTATUS When the data queue area is not 0 and there is
no waiting task.
END When the data queue area is 0 and there is no
waiting task.
rev_dtq DTQSTATUS When there is no error.
prev_dtq DTQSTATUS When there is no error.
snd_dtq DTQSTATUS When there is no error.

A.4 SETATTR

In the SETATTR state, an internal attribute of a system call resource is set. The state
transition is shown in Table A .4.

Table A.4: SETATTR.
Condition
The state transits to the END state at the next clock.

Next state
END

System call
clr flg

79

A.5 TASKSTATUS

In the TASKSTATUS state, an operation TASKSTATUS in Table 4.7 is issued to the
RTOS hardware. The state transition is shown in Table A.5.

Table A.5: TASKSTATUS.

System call | Next state Condition
chg pri CHECKTASK | The state transits to the CHECKTASK state at the next clock.
rel_wai CHECKTASK | The state transits to the CHECKTASK state at the next clock.

A.6 SEMSTATUS

In the SEMSTATUS state, an operation SEMHEAD in Table 4.7 is issued to the RTOS
hardware. The state transition is shown in Table A.6.

Table A.6: SEMSTATUS.

System call | Next state Condition

sig_sem CHECKSTATUS | The state transits to the CHECKSTATUS state at the
next clock.

wai_sem CHECKSTATUS | The state transits to the CHECKSTATUS state at the
next clock.

pol_sem CHECKSTATUS | The state transits to the CHECKSTATUS state at the
next clock.

A.7 FLGSTATUS

In the FLGSTATUS state, an operation FLGHEAD in Table 4.7 is issued to the RTOS
hardware. The state transition is shown in Table A.7.

Table A.7: FLGSTATUS.

System call | Next state Condition

set_flg CHECKSTATUS | The state transits to the CHECKSTATUS state at the
next clock.

wai_flg CHECKSTATUS | The state transits to the CHECKSTATUS state at the
next clock.

pol flg CHECKSTATUS | The state transits to the CHECKSTATUS state at the
next clock.

80

A.8 DTQSTATUS

In the DTQSTATUS state, an operation DTQHEAD in Table 4.7 is issued to the RTOS

hardware. The state transition is shown in Table A.S8.

Table A.8: DTQSTATUS.

System call | Next state Condition

psnd_dtq CHECKSTATUS | The state transits to the CHECKSTATUS state at the next
fsnd_dtq CHECKSTATUS CTllol(ejkétate transits to the CHECKSTATUS state at the next
rcv_dtq CHECKSTATUS CTllolzkétate transits to the CHECKSTATUS state at the next
prev_dtq CHECKSTATUS CTl?l(e:kétate transits to the CHECKSTATUS state at the next
snd_dtq CHECKSTATUS CTl?l(ejkétate transits to the CHECKSTATUS state at the next

clock.

A.9 CHECKTASK

In the CHECKTASK state, the result of the previous state, TASKSTATUS, is checked
and the next state is decided by the result. The state transition is shown in Table A.9.

Table A.9: CHECKTASK.

System call

Next state

Condition

chg pri

RDYDEQUEUE

When the target task is in a ready queue.

SEMDEQUEUE

When the target task is in a semaphore
waiting queue.

CHGPRI

When the target task is in in an eventflag waiting queue
or data queue waiting queue.

rel_wai

SEMDEQUEUE

When the target task is in a semaphore waiting queue.

FLGDEQUEUE

When the target task is in an eventflag waiting queue.

DTQDEQUEUE

When the target task is in a data queue waiting queue.

END

When the target task is not waiting.

81

A.10 CHECKSTATUS

In the CHECKSTATUS state, the result of the previous state is checked and the next
state is decided to proceed to the system call operation. The state transition is shown in

Table A.10.
Table A.10: CHECKSTATUS.
System call | Next state Condition
sig_sem SEMCNT When there is a waiting task.
SEMDEQUEUE | When there is no waiting task.
wai_sem SEMCNT When the semaphore is taken.
RDYDEQUEUE | When the semaphore is not taken.
pol_sem SEMCNT When the semaphore is taken.
END When the semaphore is not taken.
set_flg FLGDEQUEUE | When the flag condition is satisfied.
END When there is no waiting task or the flag condition
is not satisfied.
wai_flg RDYDEQUEUE | When the flag condition is not satisfied.
END When the flag condition is satisfied.
pol flg END When the state transits to the END state at the next
clock.
psnd_dtq DTQDEQUEUE | When there is a waiting task.
DTQDATA When there is no waiting task and there is
a buffer to write the data in the data queue.
END When there is no waiting task and no buffer in
the data queue.
fsnd_dtq DTQDEQUEUE | When there is a waiting task to receive data.
DTQDATA When there is no waiting task to receive data.
rcv_dtq DTQDEQUEUE | When there is a waiting task to send data.
RDYDEQUEUE | When there is no data in the buffer.
DTQDATA When there is data to receive in the buffer.
prev_dtq DTQDEQUEUE | When there is a waiting task to send data.
DTQGETDATA | When there is data in the buffer.
END When there is no data in the buffer.
snd_dtq DTQDEQUEUE | When there is a waiting task to receive data.
RDYDEQUEUE | When there is no buffer to send data.

82

A.11 ACTCNT

In the ACTCNT state, the activation count is increased. The state transition is shown

in Table A.11.

Table A.11: ACTCNT.

System call | Next state | Condition
act_tsk END The state transits to the END state at the
next clock.

A.12 SEMCNT

In the SEMCNT state, the semaphore count is increased. The state transition is shown

in Table A.12.

Table A.12: SEMCNT.

System call | Next state | Condition

sig_sem END The state transits to the END state at the next clock.
wai_sem END The state transits to the END state at the next clock.
pol_sem END The state transits to the END state at the next clock.

A.13 RDYDEQUEUE

In the RDYDEQUEUE state, an operation READYENQUEUE in Table 4.7 is issued to
release a task from the ready queue. The state transition is shown in Table A.13.

Table A.13: RDYDEQUEUE.

System call | Next state Condition

ext_tsk HIGHEST The state transits to HIGHEST at the next clock.

chg pri CHGPRI The state transits to CHGPRI at the next clock.

ter_tsk RDYDEQUEUE | The state transits to RDYDEQUEUE at the next clock.
slp_tsk HIGHEST The state transits to HIGHEST at the next clock.
wai_sem SEMENQUEUE | The state transits to SEMENQUEUE at the next clock.
wai_flg FLGENQUEUE | The state transits to FLGENQUEUE at the next clock.
rev_dtq DTQENQUEUE | The state transits to DTQENQUEUE at the next clock.
snd_dtq DTQENQUEUE | The state transits to DTQENQUEUE at the next clock.

83

A.14 SEMDEQUEUE

In the SEMDEQUEUE state, an operation SEMDEQUEUE in Table 4.7 is issued to

release a task from the semaphore waiting queue. The state transition is shown in Table

A.14.

Table A.14: SEMDEQUEUE.

System call | Next state Condition

chg pri HIGHEST The state transits to HIGHEST at the next clock.
rel_wai RDYENQUEUE | The state transits to RDYENQUEUE at the next clock.
sig_sem RDYENQUEUE | The state transits to RDYENQUEUE at the next clock.

A.15 CHGPRI

In the CHGPRI state, an operation PRICHG in Table 4.7 is issued to change the priority
of a task. The state transition is shown in Table A.15.

Table A.15: CHGPRI.

System call | Next state Condition

chg _pri RDYENQUEUE | Target task is queued in the ready queue.
SEMENQUEUE | Target task is queued in the semaphore queue.
END Other cases.

A.16 SEMENQUEUE

In the SEMENQUEUE state, an operation SEMENQUEUE in Table 4.7 is issued to queue
a task to the semaphore waiting queue. The state transition is shown in Table A.16.

Table A.16: SEMENQUEUE.

System call | Next state | Condition

chg pri HIGHEST | The state transits to HIGHEST at the next clock.

wai_sem HIGHEST | The state transits to HIGHEST at the next clock.
END The state transits to END at the next clock.

84

A.17 FLGDEQUEUE

In the FLGDEQUEUE state, an operation FLGDEQUEUE in Table 4.7 is issued to
release a task from the eventflag waiting queue. The state transition is shown in Table

AT

Table A.17: FLGDEQUEUE.

System call | Next state Condition
rel_wai RDYENQUEUE | The state transits to RDYENQUEUE at the next clock.
set_flg RDYENQUEUE | The state transits to RDYENQUEUE at the next clock.

A.18 FLGENQUEUE

In the FLGENQUEUE state, an operation FLGENQUEUE in Table 4.7 is issued to queue
a task to the eventflag waiting queue. The mode transition is shown in Table A.18.

Table A.18: FLGENQUEUE.

System call | Next state | Condition
wai_flg HIGHEST | The state transits to HIGHEST at the next clock.

A.19 DTQDEQUEUE

In the DTQDEQUEUE state, an operation DTQDEQUEUE in Table 4.7 is issued to
release a task from the data queue waiting queue. The state transition is shown in Table
A.19.

Table A.19: DTQDEQUEUE.

System call | Next state Condition

rel_wai RDYENQUEUE | The state transits to RDYENQUEUE at the next clock.

psnd_dtq RDYENQUEUE | The state transits to RDYENQUEUE at the next clock.

fsnd_dtq RDYENQUEUE | When there is a waiting task to receive data.

DTQENQUEUE | When there is no waiting task to receive data.

rcv_dtq RDYENQUEUE | The state transits to RDYENQUEUE at the next clock.

prev_dtq RDYENQUEUE | The state transits to RDYENQUEUE at the next clock.

snd_dtq RDYENQUEUE | The state transits to RDYENQUEUE at the next clock.

85

A.20 DTQRCVENQUEUE

In the DTQRCVENQUEUE state, an operation DTQENQUEUE in Table 4.7 is issued
to queue a task to the data queue waiting queue. This state is entered when rcv_dtq is
invoked and there is no data in the data queue. The state transition is shown in Table
A.20.

Table A.20: DTQRCVENQUEUE.
System call | Next state | Condition
rcv_dtq HIGHEST | The state transits to HIGHEST at the next clock.

A.21 DTQSNDENQUEUE

In the DTQSNDENQUEUE state, an operation DTQENQUEUE in Table 4.7 is issued
to queue a task to the data queue waiting queue. This state is transited when snd_dtq or
fsnd_dtq is invoked and there is no room in the data queue area. The state transition is
shown in Table A.21.

Table A.21: DTQSNDENQUEUE.
System call | Next state | Condition
fsnd_dtq HIGHEST | The state transits to HIGHEST at the next clock.
snd_dtq HIGHEST | The state transits to HIGHEST at the next clock.

A.22 DTQDATA

In the DTQDATA state, a data element is placed to the data queue. The state transition
is shown in Table A.22.

Table A.22: DTQDATA.

System call | Next state | Condition

psnd_dtq END The state transits to END at the next clock.
fsnd_dtq END The state transits to END at the next clock.
rev_dtq END The state transits to END at the next clock.
prev_dtq END The state transits to END at the next clock.

86

A.23 RDYENQUEUE

In the RDYENQUEUE state, an operation READYENQUEUE in Table 4.7 is issued to

queue a task to the ready queue. The mode transition is shown in Table A.23.

Table A.23: RDYENQUEUE.

System call | Next state | Condition

act_tsk HIGHEST | The state transits to HIGHEST at the next clock.
chg_pri HIGHEST | The state transits to HIGHEST at the next clock.
wup_tsk HIGHEST | When a task switch occurs.

END When there is no task switch.

rel_wai HIGHEST | The state transits to HIGHEST at the next clock.
sig_sem HIGHEST | The state transits to HIGHEST at the next clock.
set_flg HIGHEST | The state transits to HIGHEST at the next clock.
psnd_dtq HIGHEST | The state transits to HIGHEST at the next clock.
fsnd_dtq HIGHEST | The state transits to HIGHEST at the next clock.
rcev_dtq HIGHEST | The state transits to HIGHEST at the next clock.
prev_dtq HIGHEST | The state transits to HIGHEST at the next clock.
snd_dtq HIGHEST | The state transits to HIGHEST at the next clock.

A.24 HIGHEST

In the HIGHEST state, an operation PRIHIGHEST in Table 4.7 is issued to get the task
with the highest precedence. The state transition is shown in Table A.24.

Table A.24: HIGHEST.

System call | Next state | Condition

act_tsk END The state transits to END at the next clock.
ext_tsk END The state transits to END at the next clock.
chg_pri END The state transits to END at the next clock.
ter_tsk END The state transits to END at the next clock.
wup_tsk END The state transits to END at the next clock.
slp_tsk END The state transits to END at the next clock.
rel_wai END The state transits to END at the next clock.
sig_sem END The state transits to END at the next clock.
wai_sem END The state transits to END at the next clock.
set_flg END The state transits to END at the next clock.
wai_flg END The state transits to END at the next clock.
psnd_dtq END The state transits to END at the next clock.
fsnd_dtq END The state transits to END at the next clock.
rev_dtq END The state transits to END at the next clock.
prev_dtq END The state transits to END at the next clock.
snd_dtq END The state transits to END at the next clock.

87

A.25 END

In the END state, exiting from RTOS hardware is prepared. The state transition is shown
in Table A.25.

Table A.25: END.

System call Next state Condition

act_tsk ENDSWITCH | The state transits to ENDSWITCH at the next
clock.

ext_tsk ENDSWITCH | The state transits to ENDSWITCH at the next
clock.

chg_pri ENDSWITCH | The state transits to ENDSWITCH at the next
clock.

wup_tsk ENDSWITCH | The state transits to ENDSWITCH at the next
clock.

slp_tsk ENDSWITCH | The state transits to ENDSWITCH at the next
clock.

rel_wai ENDSWITCH | The state transits to ENDSWITCH at the next
clock.

sig_sem ENDSWITCH | The state transits to ENDSWITCH at the next
clock.

wai_sem ENDSWITCH | The state transits to ENDSWITCH at the next
clock.

set_flg ENDSWITCH | The state transits to ENDSWITCH at the next
clock.

wai_flg ENDSWITCH | The state transits to ENDSWITCH at the next
clock.

psnd_dtq ENDSWITCH | The state transits to ENDSWITCH at the next
clock.

fsnd_dtq ENDSWITCH | The state transits to ENDSWITCH at the next
clock.

rcv_dtq ENDSWITCH | The state transits to ENDSWITCH at the next
clock.

prev_dtq ENDSWITCH | The state transits to ENDSWITCH at the next
clock.

snd_dtq ENDSWITCH | The state transits to ENDSWITCH at the next
clock.

All system calls WAIT The state transits to WAIT at the next clock.

except for the above

A.26 ENDSWITCH

As described in section 4.4.2, when the task switch is necessary in invoking a system call, a
task ID of the highest priority task is returned to the software part. In the ENDSWITCH
state, the task ID is set to the return code. The state transition is shown in Table A.26.

88

Table A.26: ENDSWITCH.

System call | Next state | Condition

act_tsk WAIT The state transits to WAIT at the next clock.
ext_tsk WAIT The state transits to WAIT at the next clock.
chg_ pri WAIT The state transits to WAIT at the next clock.
wup_tsk WAIT The state transits to WAIT at the next clock.
slp_tsk WAIT The state transits to WAIT at the next clock.
rel_wai WAIT The state transits to WAIT at the next clock.
sig_sem WAIT The state transits to WAIT at the next clock.
wai_sem WAIT The state transits to WAIT at the next clock.
set_flg WAIT The state transits to WAIT at the next clock.
wai_flg WAIT The state transits to WAIT at the next clock.
psnd_dtq WAIT The state transits to WAIT at the next clock.
fsnd_dtq WAIT The state transits to WAIT at the next clock.
rev_dtq WAIT The state transits to WAIT at the next clock.
prev_dtq WAIT The state transits to WAIT at the next clock.
snd_dtq WAIT The state transits to WAIT at the next clock.

89

Bibliography

1]

2]

Jain, M.K., Balakrishnan, M. and Kumar, A.: ASIP Design Methodologies: Survey
and Issues, Proc. 14th Intl. Conf. on VLSI Design, pp.76-81 (2001).

Imai, M., Takeuchi, Y., Sakanushi, K. and Ishiura, N.: Advantage and Possibility of
Application-domain Specific Instruction-set Processor (ASIP), IPSJ Transactions on
System LSI Design Methodology, Vol.3, pp.161-178 (2010).

Shackleford, B., Yasuda, M., Okushi, E., Koizumi, H., Tomiyama, H. and Ya-
suura, H.: Memory-CPU Size Optimization for Embedded System Designs, Proc.
the 34th annual Design Automation, DAC’97, pp.246-251 (1997).

Takada, H. and Sakamura, K.: pITRON for Small-Scale Embedded Systems, IEEFE
Micro, Vol.15, No.6, pp.46-54 (1995).

Anh, T.N.B. and Tan, S.-L.: Real-Time Operating Systems for Small Microcon-
trollers, IEEE Micro, Vol.29, No.5, pp.30-45 (2009).

Renesas RL78 Family Microcontrollers [Online] Available: https://www.renesas.
com/us/en/products/microcontrollers-microprocessors/rl78.html

pITRON4.0 Specification Ver.4.01.00, ITRON Committee, TRON ASSOCIATION.
Zyng-7000 SoC, Technical Reference Manual, UG585 (v1.12.2), Xilinx, July 1 (2018).

Seely, J., Erusalagandi, S. and Bethurem, J: The MicroBlaze Soft Proces-
sor:Flexibility and Performance for Cost-Sensitive Embedded Designs, Xilinx, WP501
(v1.0) April 13 (2017).

Nios®II Processor Reference Guide, NII-PRG, 2020.10.22 (2020).

Gonzalez, R.E.: XTENSA:A Configurable and Extensible Processor, IEEE Micro,
Vol.20, No.2, pp.60-70 (2000).

Yiannacouras, P., Rose, J., Steffan, J.G.: The Microarchitecture of FPGABased Soft
Processors, Proc. International Conference on Compilers, Architectures and Synthe-
sis for Embedded systems, pp.202-212 (2005).

Yiannacouras, P., Steffan, J.G., Rose, J.: Application-Specific Customization of Soft
Processor Microarchitecture, Proc. ACM/SIGDA 1/4th international symposium on
Field programmable gate arrays, pp.201-210 (2006).

90

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

He, H., Trimble, J., Perianayagam, S., Debray, S. and Andrews, G.: Code Com-
paction of an Operating System Kernel, Proc. the International Symposium on Code
Generation and Optimization, pp.283-298 (2007).

OSEK group, OSEK/VDX Operating System Specification 2.2.3, February 17th
(2005).

Deifel, H.P., Gottlinger, M., Milius, S. and Schroder, L., Dietrich, G. and
Lohmann, D.: Automatic Verification of Application-Tailored OSEK Kernels, Proc.
Formal Methods in Computer Aided Design, pp.196-203 (2017).

Akgul, B.S., Lee, J. and Mooney, V.J.: A System-on-a-Chip Lock Cache with Task
Preemption Support, Proc. the 2001 International Conference on Compilers, Archi-
tecture and Synthesis for Embedded Systems (CASES’01), pp.149-157 (2001).

Saglam, B.E. and Mooney III, V.J.: System-on-a-Chip Processor Synchronization
Support in Hardware, Proc. Design, Automation and Test in Europe (DATE 01),
IEEE CS Press, pp.633-639 (2001).

Mooney III, V.J. and Blough, D.M.: A Hardware-Software Real-Time Operating
System Framework for SoCs, IEEE Design € Test, Vol.19, No.6, pp.44-51 (2002).

Nordstrom, S., Lindh, L., Johansson, L. and Skoglund, T.: Application Specific Real-
Time Microkernel in Hardware, Proc. IEEE-NPSS Real Time Conference (RTC),
pp.79-82 (2005).

Kuacharoen, P., Shalan, M.A. and Mooney III, V.J.: A Configurable Hardware
Scheduler for Real-Time Systems, Proc. the International Conference on Engineering
of Reconfigurable Systems and Algorithms, pp.96-101 (2003).

Vetromille, M., Ost, L., Marcon, C.A.M., Reif, C. and Hessel, F.: RTOS Sched-
uler Implementation in Hardware and Software for Real Time Applications, Proc.
Seventeenth IEEE International Workshop on Rapid System Prototyping (RSP’06),
pp.163-168 (2006).

Ueda, R, Fujii, K., Chishiro, H., Matsutani, M. and Yamasaki, N.: Extension of
ITRON Specification OS for Multithreaded Processors, IEICE Technical Report,
Vol.111, No.397, pp.43-48 (2012). (In Japanese)

Ueda, R, Fujii, K., Chishiro, H., Matsutani, M. and Yamasaki, N.: Implementation
of ITRON Specification OS for RMT Processor, IPSJ Journal, Vol54, No.7, pp.1835—
1848 (2013). (In Japanese)

Tang, Y., Bergmann, N.W.: A Hardware Scheduler Based on Task Queues for FPGA-
Based Embedded Real-Time Systems, IEEE Transactions on Computers, Vol.64,
No.5, pp.1254-1267 (2015).

Gomes, T., Pinto, S., Garcia, P. and Tavares, A.: RT-SHADOWS:Real-Time System
Hardware for Agnostic and Deterministic OSes Within Softcore, Proc. the IEEE 20th
Conference on Emerging Technologies & Factory Automation (ETFA), pp.1-4 (2015).

91

[27]

28]

[29]

[30]

[31]

[32]

[33]

[35]

[36]

[37]

[38]

Gomes, T., Garcia, P., Pinto, S., Monteiro, J. and Tavares, A.: Bringing Hardware
Multithreading to the Real-Time Domain, IEFEE Embedded Systems Letters, Vol.8,
No.1, pp.2-5 (2016).

Deng, Q, Wei, S., Xu, H., Han, Y. and Yu, G.: A Reconfigurable RTOS with HW /SW
Co-scheduling for SOPC, Proc. the Second International Conference on Embedded
Software and Systems (ICESS’05), 6pages (2005).

Fujimoto, K., Takiguchi, H., Nakamura, S., Nankaku, S. and Noborito, H: Proposed
high-speed technique using hardware implementation of the interrupt scheduler, Proc.
2014 Annual Conference on Electronics, Information and Systems, IEEJ, pp.550-555
(2014). (In Japanese)

Fujimoto, K., Takiguchi, H., Nakamura, S., Watanabe, K., Nankaku, S. and No-
borito, H: Proposal and Evaluation High-speed Technique using Hardware Imple-
mentation of the Interrupt Scheduler, IEEJ Transactions on Electronics, Information
and Systems, Vol.135, No.11, pp.1427-1438 (2015). (In Japanese)

Kim, B.K. and Shin, K.G.: Hardware Earliest-Deadline-First Scheduler for ATM
Switching Networks, Proc. the Real-time Systems Symposium, pp.210-218 (1997).

Kobayashi, S. and Mitsui, H.: Implementing embedded OS for sensor node using
Hardware, Proc.73th National Convention of IPSJ, Vol.1, pp.159-160 (2011). (In
Japanese)

Kobayashi, S., Kobayashi, K. and Mitsui, H.: Hardware Implementation of Embed-
ded OS for Sensor Node Using FPGA, Proc. 2011 Annual Conference on Electronics,
Information and Systems, IEEJ pp.692-697 (2011). (In Japanese)

Utama, A., Itabashi, M., Nakano, T., Shiomi, A. and Imai, M: The Evaluation
and Implementation of Silicon TRON, IEICE Technical Report, VLD94-40, pp.9—
16 (1994). (In Japanese)

Nakano, T., Utama, A., Itabashi, M., Shiomi, A. and Imai, M.: Hardware Implemen-
tation of a Real-time Operating System, Proc. the 12th TRON Project International
Symposium, IEEE, pp.34-42 (1995).

Nakano, T., Utama, A., Itabashi, M., Shiomi, A. and Imai, M.: VLSI Implementation
and Evaluation of a Real-Time Operating System, IEICE Trans. Inf.€5yst. Vol.J78-
D1, No.8, pp.679-686 (1995). (In Japanese)

Nakano, T., Komatsudaira, Y., Shiomi, A., Imai, M.: Performance Evaluation of
STRON: A Hardware Implementation of a Real-Time OS, IEICE TRANSACTIONS
on Fundamentals of Electronics, Communications and Computer Sciences, Vol.E82-
A, No.11, pp.2375-2382 (1999).

Itabashi, M., Utama, A., Nakano, T., Shiomi, A. and Imai, M.: Implement Real-
Time OS by Hardware and Evaluation, IPSJ SIG Technical Reports, 1993-ARC-103,
pp-183-190 (1993). (In Japanese)

92

[39]

[40]

[43]

[45]

[46]

[47]

[48]

[49]

[50]

Mori, H., Sakamaki, K. and Shigematsu, H.: Hardware Implementation of a real-
time operating system for embedded control systems, Tokyo Metropolitan Industrial
Technology Bulletin of Study No.8, pp55-58 (2005). (In Japanese)

Murakoshi, H., Takeda, Y. and Katagiri, H.: Extraction of RTOS Kernel Functions
from UML and Implementation by FPGA, Bulletin of Advanced Institute of Industrial
Technology No.1, pp.127-130 (2007). (In Japanese)

Adomat, J., Furunas J., Lindh, L. and Stéarner, J.: Real-Time Kernel in Hardware
RTU: A Step Towards Deterministic and High-performance Real-Time Systems,
Proc. EURWRTS 96, pp.164-168 (1996).

Andrews, D., Peck, W., Agron, J., Preston, K., Komp, E., Finley, M. and Sass,R.:
hthreads: A hardware/software co-designed multithreaded RTOS kernel, Proc. 2005
IEEE Conference on Emerging Technologies and Factory Automation, pp.331-338
(2005).

Lange, A.B., Andersen, K.H., Schultz, U.P. and Sorensen, A.S.: HartOS — a Hard-
ware Implemented RTOS for Hard Real-Time Applications, Proc. 11th IFAC, IEEE

International Conference on Programmable Devices and Embedded Systems, Vol.45,
No.7, pp.207-213 (2012).

Maruyama, N., Ishihara, T. and Yasuura, H.: Exploiting Virtual Queue for Imple-
menting a High Performance RTOS in Hardware, Proc. 9th Forum on Information
Technology, Vol.1, pp.115-120 (2010). (In Japanese)

Maruyama, N., Ishihara, T. and Yasuura, H.: An RTOS in Hardware for Energy Effi-
cient Software-based TCP /IP Processing, Proc. IEEE 8th Symposium on Application
Specific Processors (SASP), pp.58-63 (2010).

Maruyama, N., Ishihara, T. and Yasuura, H.: An Energy Efficient Software-Based
TCP/IP Processing Method Using an RTOS in Hardware, IEICE Transactions on
Information and Systems, A, Vol.J94-A, No.9, pp.692-701 (2011). (In Japanese)

Maruyama, N., Ichiba, T., Honda, S. and Takada, H.: A Hardware RTOS for Multi-
core Systems, I[EICE Transactions on Information and Systems, D, Vol.J96-D, No.10,
pp.2150-2162 (2013). (In Japanese)

Maruyama, N., Ishikawa, T., Honda, S., Takada, H., Suzuki, K.: ARM-based SoC
with Loosely coupled type hardware RTOS for industrial network systems, Proc. The
10th Annual Workshop on Operating Systems Platforms for Embedded Real-Time
Applications, pp.9-16 (2014).

Maruyama, N., Ishikawa, T., Honda, S., Takada, H., Suzuki, K.: A SoC with Loosely
Coupled Type Hardware RTOS for Industrial Network Systems, IEICE Transactions
on Information and Systems, D, Vol.J98-D, No.4, pp.661-673 (2015).

Ong, S.F., Lee, S.C., Ali, N.B.Z., Hussin, F.A.B.: SEOS:Hardware Implementation of
Real-Time Operating System for Adaptability, Proc. 2013 First International Sym-
posium on Computing and Networking, pp.612-616, IEEE (2013).

93

[51] Dietrich, C. and Lohmann, D.: OSEK-V:Application-Specific RTOS Instantiation in
Hardware, Proc. The 18th Annual ACM SIGPLAN / SIGBED Conference on Lan-
guages, Compilers, and Tools for Embedded Systems (LCTES), pp.111-120 (2017).

[52] Oosako, Y., Ishiura, N., Tomiyama, H. and Kanbara, H.: Synthesis of Full Hardware
Implementation of RTOS-Based Systems, Proc. 2018 International Symposium on
Rapid System Prototyping, pp.1-7, IEEE (2018).

[53] Miyauchi, T. and Tanaka, K.: Building a Framework for an Application-Adaptive
Processor System on FPGA-based SoC, Proc. The 21st Workshop on Synthesis And
System Integration of Mized Information technologies, pp.359-364 (2018).

[54] Miyauchi, T. and Tanaka, K.: An Adaptive Approach for Implementing RTOS in
Hardware, Proc. Embedded Systems Symposium, pp.44-50 (2018).

[55] Miyauchi, T. and Tanaka, K.: A Configurator to Optimize Soft Processors for FPGA,
Proc. T7th National Convention of IPSJ, pp.23-24 (2015). (In Japanese)

[56] Miyauchi, T. and Tanaka, K.: A Framework for Automatic Generation of
Application-Specific FPGA-based SoC, Proc. The 20th Workshop on Synthesis And
System Integration of Mized Information technologies pp.305-310 (2016).

[57] Miyauchi, T. and Tanaka, K.: Building Automatic Optimizing Environment for Mul-
ticore Processors, Proc. Embedded Systems Symposium 2015, pp.99-104 (2015). (In
Japanese)

[58] MIPS® Architecture For Programmers, Volume II-A: The MIPS32®) Instruction
Set (2013).

[59] Patterson, D.A. and Hennessy, J.: “Computer Organization & Design, 4th edition,
Japanese edition”, ISBN:978-4-8222-8479-4 (2013).

[60] Basys 3® FPGA Board Reference Manual, Revised April8, 2016 (2016).

[61] Miyauchi, T.: Building a Configurator to Optimize Soft Processors for FPGA, Master
thesis, Japan Advanced Institute of Science and Technology (2015).

[62] Rijndael [Online] Available https://embeddedsw.net/Cipher_Reference_Home.
html#AES

[63] The 2nd ARC/CPSY/RECONF High-Performance Computer System Design Con-
test [Online] Available http://www.is.utsunomiya-u.ac.jp/pearlab/contest/

[64] Artix-7 [Online] Available https://japan.xilinx.com/products/
silicon-devices/fpga/artix-7.html

[65] Xilinx answer record:AR# 57304 [Online] Available https://japan.xilinx.com/
products/silicon-devices/fpga/artix-7.html

[66] Xilinx Vivado [Online] Available https://www.xilinx.com/products/
design-tools/vivado.html

94

[67]

[75]

[76]

[77]

[78]
[79]
[80]
[31]

[82]

[83]

Miyauchi, T. and Tanaka, K.: Configuration Technique for Adaptability of Multicore
Processors on FPGA, Proc. The 27th Annual IEEE International Conference on
Application-specific Systems, Architectures and Processors, 2 pages (2016).

Miyauchi, T. and Tanaka, K.: An Adaptive Approach to Cache Memory for Soft
Processors on FPGA, Proc. 78th National Convention of IPSJ, pp.21-22 (2016). (In
Japanese)

Miyauchi, T. and Tanaka, K.: Implementation of Multicore Processors by Automatic
Optimization for FPGA, Proc. Joint conference of Hokuriku chapters of FElectrical
and information Societies 2015, 1 page, CD-ROM (2015). (In Japanese)

Spartan6 [Online| Available http://www.xilinx.com/products/silicondevices/
fpga/spartan-6.html

Atlys [Online] Available https://reference.digilentinc.com/reference/
programmable-logic/atlys/start

ISE [Online] Available https://www.xilinx.com/products/design-tools/
ise-design-suite.html

Miyauchi, T. and Tanaka, K.: Building Fine-Grained Configurable ITRON Based
RTOS, Journal of Information Processing, Vol.28, pp.395-405 (2020).

Miyauchi, T. and Tanaka, K.: Overview of An Adaptive Approach for Implementing
RTOS in Hardware, Proc. Asia Pacific Conference on Robot IoT System Development
and Platform, 2pages (2018).

Miyauchi, T. and Tanaka, K.: Fine-Grained Configuration of RTOS Adapted to Ap-
plications, Proc. Embedded Systems Symposium 2016, pp.73-81 (2016). (In Japanese)

Miyauchi, T. and Tanaka, K.: A Study of Hardware Acceleration of RTOS using
FPGA, Proc. 79th National Convention of IPSJ, pp.9-10 (2017). (In Japanese)

Xilinx COE File Syntax [Online] Available https://www.xilinx.com/support/
documentation/sw_manuals/xilinx11/cgn_r_coe_file_syntax.htm

Ubuntu [Online] Available https://ubuntu.com/
Python [Online] Available https://www.python.org/
wxPython [Online] Available https://docs.wxpython.org/

fileHunter [Online] Available https://github.com/dsbmac/
ProfessionalDevelopment/blob/master/Python/wxPython/fileHunter.py

7 Series FPGAs Configurable Logic Block User Guide, Xilinx, UG474 (v1.8) Septem-
ber 27 (2016).

TOPPERS Kernel Test Suites [Online] Available https://www.toppers.jp/
testsuites.html

95

[84] Tamura, K.: A Study on a development environment of general user interface for em-
bedded systems, Master thesis, Japan Advanced Institute of Science and Technology
(2014).

[85] Miyauchi, T. and Tanaka, K.: A Proposal of Application Specific Approach with
RISC-V Processor on FPGA, Proc. The 22nd Workshop on Synthesis And System
Integration of Mized Information Technologies, 4pages (2019).

[86] D. A. Patterson, J. L. Hennessy, “Computer Organization and Design, RISC-V Edi-
tion”, Morgan Kaufmann Publishers (2018).

[87] pT-Kernel 3.0 (2019). [Online] Available https://www.tron.org/specifications/

96

Publications

Journal

1]

Miyauchi, T. and Tanaka, K.: Building Fine-Grained Configurable ITRON Based
RTOS, Journal of Information Processing, Vol.28, pp.395-405 (2020). (with review)

International Conference

2]

Miyauchi, T. and Tanaka, K.: A Proposal of Application Specific Approach with RISC-
V Processor on FPGA, Proc. The 22nd Workshop on Synthesis And System Integration
of Mized Information Technologies, pp.270-273 (2019). (with review)

Miyauchi, T. and Tanaka, K.: Overview of An Adaptive Approach for Implementing
RTOS in Hardware, Proc. Asia Pacific Conference on Robot IoT System Development
and Platform, 2pages (2018). (with review)

Miyauchi, T. and Tanaka, K.: Building a Framework for an Application-Adaptive
Processor System on FPGA-based SoC, Proc. The 21st Workshop on Synthesis And
System Integration of Mized Information technologies, pp.359-364 (2018). (with re-
view)

Miyauchi, T. and Tanaka, K.: A Framework for Automatic Generation of Application-
Specific FPGA-based SoC, Proc. The 20th Workshop on Synthesis And System Inte-
gration of Mized Information technologies pp.305-310 (2016). (with review)

Miyauchi, T. and Tanaka, K.: Configuration Technique for Adaptability of Multi-
core Processors on FPGA, Proc. The 27th Annual IEEE International Conference
on Application-specific Systems, Architectures and Processors, 2 pages (2016). (with
review)

Domestic Conference

[7]

8]

Miyauchi, T. and Tanaka, K.: An Adaptive Approach for Implementing RTOS in
Hardware, Proc. Embedded Systems Symposium 2018, pp.44-50 (2018). (with review)

Miyauchi, T. and Tanaka, K.: Fine-Grained Configuration of RTOS Adapted to Ap-
plications, Proc. Embedded Systems Symposium 2016, pp.73-81 (2016). (In Japanese)
(with review)

97

[9]

[10]

[11]

[12]

[13]

Miyauchi, T. and Tanaka, K.: Building Automatic Optimizing Environment for Mul-
ticore Processors, Proc. Embedded Systems Symposium 2015, pp.99-104 (2015). (In
Japanese) (with review)

Miyauchi, T. and Tanaka, K.: A Study of Hardware Acceleration of RTOS using
FPGA, Proc. 79th National Convention of IPSJ, pp.9-10 (2017). (In Japanese)

Miyauchi, T. and Tanaka, K.: An Adaptive Approach to Cache Memory for Soft
Processors on FPGA, Proc. 78th National Convention of IPSJ, pp.21-22 (2016). (In
Japanese)

Miyauchi, T. and Tanaka, K.: Implementation of Multicore Processors by Automatic
Optimization for FPGA, Proc. Joint conference of Hokuriku chapters of Electrical and
information Societies 2015, 1 page, CD-ROM (2015). (In Japanese)

Miyauchi, T. and Tanaka, K.: A Configurator to Optimize Soft Processors for FPGA,
Proc. T7th National Convention of IPSJ, pp.23-24 (2015). (In Japanese)

Other Research Publications

[14]

[15]

[16]

Miyauchi, T. and Tanaka, K.: Solving Slitherlink with FPGA and SMT Solver, Journal
of Information Processing, Vol.28, pp.959-969 (2020). (with review)

Miyauchi, T. and Tanaka, K.: A Solution to Slitherlink Puzzles Using FPGA, Proc.
The 32nd International Conference on Computers and Their Application, pp.77-83
(2017). (with review)

Miyauchi, T. and Tanaka, K.: A Solution to the Slitherlink Puzzle Using SMT Solver,
Proc. The 22nd Game Programming Workshop 2017, pp.111-118 (2017). (In Japanese)
(with review)

98

