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Abstract

Speech signals are adopted in various forms and many social applications in a
cyber-physical system (CPS), such as voice command, voice activation, and
voice recognition. However, high-end speech editing software, such as voice
conversion techniques and speech synthesis software, makes anyone easily fab-
ricate and alter speech signals. These misused of this technology create risk in
the security of speech technology and lead to social problems according to the
increasing of unauthenticated speeches. These unauthenticated speeches can
be used for criminal purposes such as theft or fraud in any systems in CPS.
The attacks of unauthenticated speech signals, such as tampered speech,
spoofed speech, and modified speech are considered an emerging threat.
Thus, it is necessary to provide security of speech signals. Cryptography is
a classical method that provides security by concealing speech signals from
being tampered with and modified. However, cryptography does not detect
tampering and modification in speech signals. Auditory information hiding
(AIH) is one of the solutions to provide speech security by creating a secret
channel and detecting tampering.

This research aims to provide security for speech signals in two objectives.
The first objective is security in terms of protecting the genuineness of the
speech signal. If attackers try to modify or change the speech signal, AIH
can be used to protect its genuineness by tampering detection. One crucial
property of information hiding is that the hidden information should be
difficult to remove from the watermarked signal, and if there are attacks
performed on the watermarked signal, the hidden information should reflect
that change. The second objective is to protect the secret communication
of the speech signal. AIH can be used to build the secret channel, and the
transformation is used to secure the secret data on the secret channel.

Based on literature reviews, several information hiding techniques have
been previously developed, and the singular spectrum analysis (SSA)-based
AIH showed its strength in robustness due to the invariance of the singular
spectrum. Moreover, SSA-based AIH could be designed to gain semi-fragile
property (robust against non-malicious attacks but fragile to malicious at-
tacks) by properly selecting part of the singular spectrum to be modified. The
possibility of semi-fragile in SSA-based AIH motivates to construct a scheme
for tampering detection. In addition, we deployed the convolutional neural
network (CNN) method for parameter estimation instead of the differential
evolution-based method adopted in the original SSA-based AIH.



For the first objective, the experimental results showed that the proposed
scheme could locate tampered areas correctly, and it could also predict the
types and degrees of tampering roughly. CNN-based parameter estimation
could significantly reduce computational time, and the scheme is entirely
blind because the estimation could be used to suggest the parameters in
both embedding and extraction processes. However, the tampering detection
accuracy needs to be improved since the proposed scheme is fragile to MP4
and robust to echo adding.

For the second objective, we cooperate transformation techniques with
our SSA-based AIH to construct the secret and secured channel. The ex-
perimental results show that SSA-based AIH cooperated with Arnold trans-
formation technique can provide the secret and secured channel. Only the
authorized person with the correct key can access data at each level.

Index Terms: Singular spectrum analysis, SSA-based information hiding,
CNN-based parameter estimation, tampering detection, speech security
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Chapter 1

Introduction

This chapter states the problem that we want to solve and why this
problem is worth solving. In this study, we want to solve the security problem
in the speech signal by using the information hiding method. Initially, we
want to clarify the meaning of security we focus on in this study first. The
security in our study considers two aspects. The first aspect is security in
terms of protecting the genuineness of the speech signal. If attackers try to
modify or change the speech signal, we can use our proposed information
hiding method to protect speech genuineness, i.e., to detect tampering in a
speech signal. The second aspect is to protect the secret communication on
the speech signal. We applied our proposed information hiding method with
the transformation technique to build a secret and secured channel.

Note that in this study, we show speech security in two scenarios: first, to
detect tampering, and second, to build the secret and secured channel. These
two scenarios are not related to each other that is no tampering detection on
the second scenario, but both scenarios apply the same core structure of our
proposed information hiding method.

After we state the problem and explain why this problem is worth solving,
we will then explain the motivation why we think the information hiding
can solve this problem. Then, the challenge of solving this problem will be
discussed. Finally, we will show the goal to be achieved in this study.

1.1 State of the problem and research impor-

tance

The rapid growth of the Internet has positively impacted societies and
communities in many ways. There are enormous services and applications
through the Internet that make human life more accessible and convenient.
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Figure 1.1: Application over internet and its the information flow between
cyber space and connected physical devices.

Living in an information society, we cannot avoid the fact that there is
enormous data exchange through the Cyber-physical system. Figure 1.1
showed applications over the Internet and its the information flow between
cyberspace and connected physical devices [1]. The various type of data was
exchanged through the network. Those can be personal data or data sent
from a mobile, a computer, or specific electronic devices. Moreover, those
data can be in various forms such as raw files, digital files, videos, audio, and
images.

In this study, we focus on the data in the form of the speech signal.
Speech signals are adopted in various forms and many social applications in
an information society, such as voice command, voice activation, and voice
recognition. With the fast development of advanced digital technologies,
speech services and speech applications are increasing in number. For exam-
ple, A text-to-speech program and speech synthesis program can be helpful
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for disabled people to communicate in daily life [2, 3, 4]. A program that used
speech synthesis software called “Speech Morphing” can create emotionally
intelligent voices for more natural conversations to respond to customers [5].
A Voice recognition system applied in internet banking makes people access
their accounts using their voice on mobile without facing traffic problems on
the road.

As we know, the increase in usage, the more possibility of being threats,
and the network-based threats have become more sophisticated. Since speech
contains vital and essential information, it attracts the attackers to steal or
modify speech to fault the service system. Therefore, when speech signals
are exchanged or transmitted, they need to be protected from modification,
manipulation, forgery, and theft.

Moreover, high-end speech editing software, such as voice conversion tech-
niques and speech synthesis software, makes anyone easily fabricate and alter
speech signals. For example, speech synthesis software such as STRAIGHT,
WORLD can be used to modify voice on its timbre, pitch, speed, and other at-
tributes flexibly [6, 7]. Figure 1.2 showed synthesis software such as STRAIGHT,
WORLD that used to modified speech signal. These advanced digital tools
and technologies make people can easily modify or alter speech without prior
knowledge. Therefore, these misused of this technology create risk in the
security of speech technology and lead to social problems according to the
increasing of unauthenticated speeches. These unauthenticated speeches can
be used for criminal purposes such as theft or fraud in any system. The
attacks of unauthenticated speech signals, such as tampered speech and
manipulated speech, are considered an emerging threat. Therefore, it is
necessary to provide security for speech signals.

Let start to see the importance of the security problem in the speech signal
from the following example. The first example is considered about speech
recording to be used as evidence in the court. As we mentioned earlier, there
are massive tools to edit or tamper speech. People may modify the content
in the recording by cutting or replacing the conversation to cheat on justice.
Therefore the voice recording used to prove the case must comply with the
following, Firstly, the conversation in the recording is relevant to the case.
Secondly, there is an identification of the voice. Thirdly, the recording is the
genuine one [8]. To solve this problem, we need a tools to check whether the
recording is a genuine one or tampered one.

The second example is concerning speech using in the voice recognition
system or speaker verification system. Since voice contains personal infor-
mation and it is claimed that the voice of each person is unique. Voice
interfaces have become more popular, and many voice service systems inte-
grated recognition capabilities. So the system with recognition capabilities

3



Figure 1.2: Speech synthesis software: (a) WORLD and (b) STRAIGHT.

can understand what has been said (refer to speech recognition) and who
has said it (refer to speaker recognition). Nowadays, this type of service is
available in many commercial products. For example, the well-known one is
Google home, and Siri on Apple [9]. In the financial sector, the well-known
bank like HSBC and Lloyds Bank also deployed the authentication service to
access bank account on mobile phone [10, 11]. However, in the past few years,
there was a big shock that the voice recognition system of HSBC was faulted
from the mimic voice [10]. A mimic or spoofed voice used to fault the system
can obtain from using a voice conversion or voice synthesis program by tuning
some characteristic of voice to close to the target. The attacks on the financial
sector are sensitive since involving money. The accuracy of the speaker
verification system can be improved if there is a countermeasure for pre-
processing the incoming speech before feeding it to the speaker verification
system. This countermeasure determines the genuineness of incoming speech
and eliminates those modified and tampered speech.

The last example concerns the situation that two people want to commu-
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Figure 1.3: Cryptography method for security of speech signals.

nicate secretly, but they do not want others to know that they are privately
communicating. In some companies, they monitor the email, song, recording
that send through the network. Their policy does not allow the employees to
encrypt the message, including a song or sound recording, since they cannot
monitor those encrypted messages.

It seems that to resolve these three examples, we have to propose a
different solution for each problem. If we consider the first and the second
example, the cryptography can be used the solve the first two example.
Cryptography is a classical method that solves the problem by concealing
speech signals to prevent them from being stolen and modified. It solves
the first example by if speech is encrypted then you can not cut, replace
or edit the content. Also its characteristic cannot be stolen to do synthesis
or conversion to fault system in example two. However, once the content
has been decrypted, such that cryptography does not protect speech signals
anymore [12]. The modification and the alter of speech after decrypted
cannot be tracked. When consider on the third example, the cryptography
cannot solve this problem since it can only conceal the message but it cannot
hide the face that two person try to communicate secretly. Some countries
have some restrictions on encryption technologies, such as law enforcement
access to encrypted data [13, 14]. This restriction makes it difficult for
cryptography method usage. Figure 1.3 showed cryptography method for
security of speech signals.

Besides cryptography, some traditional techniques are adopted to solve
the security problem in speech signals, such as scrambling and transforma-
tion. Scrambling is performed by segmenting speech signals into small ele-
ments and shuffle them, while transformation is scrambling speech signals in
another domain such as time, frequency domain, or both domain. Scrambling
and transformation are a method to change the intelligible speech signals
into unintelligible signals. The concept of scrambling and transforming is
similar to cryptography, as well as their disadvantage is similar. One crucial
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disadvantage is that the unintelligible of signals can cause the attention of
attackers because the data stream of an encrypted signal, scrambled signal,
and transformed signal are random and meaningless gibberish. Once the
gibberish is intercepted, then the attackers found the target to attack. All
cryptography, scrambling, and transformation mainly provide the security to
protect speech from being tampered with, but none of them could be used
for tampering detection.

Auditory information hiding (AIH) can be a potential solution to solve
all the mentioned three example [15, 16]. Auditory information hiding is
a method that is embedding hidden information unnoticeable into a speech
signal. In other words, the listeners are not even aware of the existence
of hidden information. Once the speech signal is altered or modified, the
changing of hidden information can track the alter and modification. Thus
if we use AIH for tampering detection it can solve the first and the second
example. To solve the third example, from the property that the listeners
are not even aware of the existence of hidden information so we can use the
hidden information as a secret channel in speech signal.

As we mentioned, we want to solve the security problem for the speech
signal, and our definition for speech security refers to two aspects: firstly,
to detect tampering in a speech signal and secondly, to build a secret and
secured channel. The auditory information hiding will be used to provide
speech security. We will then consider the requirement in order to build the
auditory information hiding system.

Auditory information hiding requirement

Typically, there are five requirements for auditory information hiding [17, 18].
Figure 1.4 illustrated the requirement of information hiding system.

1. Inaudibility. Inaudibility is a principal requirement of auditory in-
formation hiding. The embedding procedure should not make any
degradation in the host signal in terms of sound quality, and the human
auditory system should not hear the watermark embedded into the host
signal.

2. Robustness. The robustness refers to high extraction precision, i.e., the
hidden information should be correctly extracted even when attacks
are performed on the watermarked signal. This property is used to
confirm hidden information has been maintained while being transmit-
ted over the channel communication or stored in the system. Also, the

6



Figure 1.4: Requirement of information hiding system.

hidden message should survive the application of any speech processing
techniques.

3. Blindness. Blindness refers to an ability to extract hidden information
correctly without the host signal required.

4. Confidentiality. A property of concealing hidden information that is
the hidden information must be secured.

5. Capacity. The capacity refers to the maximum quantity of the hidden
information embedded into the host signal.

This work focused on three properties: inaudibility, robustness and blindness.
Since our first objective is to construct the information hiding to detect
tampering, one important property that we are looking for is that the scheme
must be fragile to the attack but robust to normal signal processing. This
property refers as semi-fragile property. Therefore, the scheme not only
satisfy the requirement of basic information hiding but also must satisfy
the semi-fragility.

7



1.2 Challenge

The challenge of to design the information hiding are as follows.

1. Sensitivity of human auditory system. By nature, the human auditory
system is very sensitive, i.e., we can hear a sound wave with tiny
pressure fluctuation [19], and adding hidden information into a host
signal is as same as adding noise to a host signal. Therefore, this fact
leads to the first challenge that making the information hiding to be
imperceptible is a difficult task itself.

2. Requirement balancing. Typically, AIH requirements conflict with each
other. For example, some techniques are good at robustness, but it is
not blind [20]. The high capacity of hidden data comes with the cost
of low speech quality which the listeners may suspect of any hidden
information on the hearing speech [21]. Therefore, in addition to
proposing new techniques, researchers in this field have to focus on
compromising these conflicts, which has proved difficult. Thus, the
second challenge is to solve the problem of conflicting requirements.
To demonstrate the conflicting. Let consider especially the robustness
property. Robustness will ensure that the embedding procedure should
strictly attack the watermark with the host signal that cannot be
easily removed. Thus, this research applies the information hiding for
tampering because if the content or composition of the host signal
changed, the hidden information should reflect that there are some
modifications to the host signal composition. This fact leads to the
challenge of making the embedding algorithm robust against speech
signal operations and meanwhile fragile to reflecting the changing due
to tampering and modification.

3. Attacker creativity. To create the system, we cannot predict about
the motivation of attacker to attacks, remove, or destroy the hidden
information. Thus, it is not easy to handle with possible all attacks.

4. Complexity. Some information hiding schemes can achieve good per-
formance, but it might consume time on computation. Some use low
computational time, but the schemes are large designs. The good AIH
should be practical to implement.
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Figure 1.5: Scope of speech security of interested.

1.3 Motivation and Research Goal

In this work, we want to propose the information hiding method to
solve the security problem in the speech signal. The security in our study
considers two aspects. The first aspect is security in terms of protecting the
genuineness of speech signals. The hidden information will be embedded into
host speech, the hidden information will reflect the changing or modification
of host speech. So it can prove the genuineness of the speech i.e., to detect
tampering in a speech signal. The second aspect is to protect the secret
communication on the speech signal. We applied our proposed information
hiding method with transformation technique to build a secret and secured
channel. Therefore, it can be said that we aim to build information hiding
for two objectives: tampering detection and provide a secret and secured
channel. Figure 1.5 illustrated the scope of speech security of interested.

Since our first objective is to construct the information hiding to detect
tampering, one important property that we are looking for is that the scheme
must be fragile to the attack but robust to normal signal processing. During
reviewing the literature, we found that a method based on the least significant
bit is fragile to attack but not robust to various signal operations [22]. Some
have can fragile to the attacks but robust to only few signal operations [23].

Lastly, the method based on singular spectrum analysis (SSA) is selected
[24]. This method uses the techniques by slightly changing the singular value
of a matrix representing a host signal. This technique derives due to the
invariance of singular values [25]. This SSA-based method has one attrac-
tive property: the different embedded areas have a different fragile degree.
The embedding area on low order singular value increases robustness while
embedding area on high order singular value increases fragility. From this
property, we hypothesis that this method can be made semi-fragile method
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for detecting tampering in a speech signal. This method initially applies to
audio signals, not speech signals, and it works well with an audio signal.
If The original SSA-based method can also apply to the speech signal, the
scheme can have the advantage over the method that can apply only speech
or audio signals. However, we found that the original SSA-based method has
a critical problem since the parameter need in the embedding and extraction
process requires a considerable time to estimate the embedding parameter.
Therefore to achieve the first objectives to construct the information hiding
for tampering detection, we have a few sub-goals step by step as follows.

1. To verify that SSA-based AIH applied on speech signal can keep the
SSA-based technique advantage as it has done on an audio signal.

2. After we verify that the SSA-based method can be applied to speech
signals, the next step we construct the scheme can be used to detect
the tampering in the host speech. From the property of the SSA-based
method: the different embedded areas have a different fragile degree.
We have to select the area to be embedded and achieve semi-fragility
property. Moreover, these embedding parameters can be adjusted to
obtain a better performance.

3. Since the original SSA-based method uses a differential evolution (DE)
to provide embedding parameters and has a problem with computa-
tional time. We offer a novel method to obtain the embedding parame-
ter by suggesting of convolution neural network (CNN). However, CNN
needs supervising to estimate this parameter. Since the DE gave the
promising result, we designed to use parameters suggested by DE to
train CNN. In this step, we must design a DE optimizer and verify that
parameter obtained from the DE-based method give good performance
and reasonable to use for CNN training.

4. Next, to verify that CNN-based parameter estimation can reduce the
computational time and still can keep the requirement balancing as the
original SSA-based AIH.

To reach all mentioned sub-goals, we expect to obtain the SSA-based
information hiding that can be used for tampering detection, and the com-
putational time for parameter estimation is reduced.

The second objective is motivated by the hidden information is not attract
the attention of listeners. Thus, the hidden information can be used as a
secret channel. The purpose of the second objective is to protect the secret
communication on the speech signal. There is only one sub-goal on this stage.
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1. To verify that the SSA-based AIH scheme can cooperate transformation
to provide security of speech signal. Note that achieving this sub-
goal, the concept of SSA-based information hiding for speech signal
and CNN-based parameter estimation is also applied, and note that
tampering ability is not considered in this sub-goal.

1.4 Thesis Outline

The organization of this dissertation is shown in Figure 1.6. Beside this
introduction chapter, the rest of this dissertation consists of five chapters and
is organized as follows.

Chapter 2 introduces the background knowledge of speech informa-
tion hiding, the application that the speech information hiding applied for,
and some conventional and previously advanced techniques. Since the pro-
posed framework is based on singular spectrum analysis; therefore, the sin-
gular spectrum analysis is reviewed and analyzed carefully to recognize their
strength and weakness. In this research, we apply the speech information
for a specific purpose, i.e., tampering detection. Therefore, in this chapter,
the state of the art for tampering and manipulating detection are reviewed
to illustrates how different the classic method and the proposed method are.
Lastly, the information hiding schemes for the purpose of tampering detection
are reviewed.

Chapter 3 proposed the core structure framework that applied singular
spectrum analysis into speech information hiding for tampering detection.
The secret information, called watermark signal, embedded into speech signal
is used for tampering and detection. The parameter finding suggests whether
which part of the singular spectrum to hide the secret information. This
chapter shows how good parameter estimation can help the scheme balance
between inaudibility and robustness as well as be fragility to detect the
modification on speech signal. Lastly, we proposed the SSA-based AIH
method with parameter estimation using CNN.

Chapter 4 reports the evaluation of the core structure with CNN-based
parameter estimation. This chapter explains the measurement and criteria
to evaluate the performance of the scheme. The scheme will be evaluated in
three aspects: the sound quality of the watermarked signal compared with
the original signal, the scheme’s robustness against many signal operations
and attacks, and the ability to detect tampering and tampering detection
accuracy. In addition, the computational time of the scheme that used CNN-
based parameter estimation and the one used DE-based parameter estimation
are compared. Moreover, we also discuss the effectiveness of CNN-based
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parameter estimation and tampering detection.
Chapter 5 describe the SSA-based AIH for the second aspect and its

experimental results. The SSA-based AIH scheme for protecting the secret
communication on the speech signal is described. The SSA-based AIH scheme
cooperates transformation to provide security of speech signal. Arnold trans-
formation is deployed to provide the secret and secured channel. Lastly, the
evaluation and result are provided.

Chapter 6 summarizes this research work and emphasizes the contribu-
tion of this work to the related research field. Since there is nothing entirely
perfect, this chapter also discusses the room for improvement and future
work.

1.5 Summary

The innovative points of this research can be concluded as follows: This
research proposed the SSA-based AIH for tampering detection by incor-
porates CNN for parameters estimation. Moreover, to accommodate the
security of speech signals, our SSA-based AIH is deployed transformation
techniques to afford a secret and secured channel on speech signal.

In summary, this introduction chapter started with the problem state-
ment, the problem we want to solve. Then we show how that problem and
issues are essential for solving and why it is worth solving, including challeng-
ing to solve the problem. Next, the motivation and goal of this dissertation
are identified. Finally, the structure of this dissertation is illustrated.
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Figure 1.6: Dissertation structure.
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Chapter 2

Literature Review

This chapter introduces the background knowledge and literature of au-
ditory information hiding, their applications, and some conventional and
previously advanced techniques. Since the proposed framework is based on
singular spectrum analysis; therefore, the basic principle about singular spec-
trum analysis is reviewed and analyzed carefully to recognize their strength
and weakness. In this research, we apply the speech information for a specific
purpose, i.e., tampering detection. Therefore, in this chapter, the state of the
art for tampering detection is reviewed to illustrates how different between
the classic method and the proposed method.

2.1 Auditory Information Hiding (AIH)

This section provides an overview of auditory information hiding. We
clearly define what auditory information is, what the purpose of informa-
tion hiding. Besides, we also show information hiding schemes have been
constructed with several techniques.

2.1.1 Main concept of auditory information hiding

The principal idea of information hiding originates from old-fashioned
steganography, which aims at hiding essential messages into other infor-
mation, and hidden information should not cause attention. Information
hiding technology can be applied in various fields because both carrier and
hidden information can be any kind of media. For example, hiding digital
signatures as an image into printing image files, hiding an image into audio
or speech signal, or hiding voice into an image file. Therefore information
hiding is a technology that embeds the confidential information, namely
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watermark signal, as a secret message into host information, called pub-
lic information to obtain the carrier contained hidden information, called
watermarked signal. The crucial point for information hiding techniques
is that the hidden information embedded in the carrier should be entirely
transparent. It should not attract attention or cause suspicion. For example,
if an image-one is hidden into an image-two, we consider an image-one
as secret information and consider an image-two as a carrier. After the
embedding process, the audience should see only an image-two and do not
suspect that an image-one exists in what they have seen. This concept is
the same as biological camouflage that the animals try to adapt themself to
look like their environment. Thus, information hiding refers to a method
of concealment by means of disguise. The advantage of information hiding
is that when the hidden information is transparent, then the chance or the
possible risk of being attacked is minimized.

In this work, we focus on hiding the secret information into a speech
signal. The difficulty is that the human perception system is susceptible. It
can easily distinguish in the small changes of sound. Therefore, embedding
the secret information into speech signals and making people unaware of their
existence is a big challenge. We can imply that the changes in a characteristic
of a carrier or host information should be minimizing so the listeners cannot
hear the hidden information. In this circumstance, the watermark or secret
information can be of any kind, and the host signal is a speech signal. The
most significant advantage of information hiding is that only two authorized
parties can access the hidden information while general audiences cannot
sense the existence of a hidden message.

Since information hiding inherited the concept of classical steganography
thus, the question of the difference between information hiding and steganog-
raphy is always asked. In addition, the secret message is called a watermark,
so that sometimes we call the method the watermarking method. Therefore
the terminology: the information hiding, watermarking, and steganography
confuses people. Strictly speaking, the words information hiding, watermark-
ing, and steganography are different but closely related. Both watermarking
and steganography are information hiding but with different aspects. The
classifications of them also vary depending upon which criteria are used to
classify. Figure 2.1 depicts one example of the information hiding classifica-
tion proposed by FA. Peticolas et al. [26]. The information hiding is divided
into several perspectives as described follows.

The first category, covert channel is a secret channel to send or receive
the secret message. It does not use the typical channel to communicate, but
it only deploys the information hiding technology to build the secret channel
on a typical channel and prohibit access from unauthorized parties. The
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Figure 2.1: Information hiding classification proposed by FA. Peticolas et al.

covert channel is difficult to employ in practice because the advanced security
technology can easily find out the covert channel. Once its existence is found,
it cannot be secret anymore, and the entire information hiding design will
be destroyed. The second category, steganography refers to a method that
conceals one information within another information. The concealed one is
called the secret message, and the carrier is the public information or the
cover message. The concealed message should not cause any attention from
observers or listeners. In some classifications, steganography and the covert
channel are defined as the same principle method. Primarily steganogra-
phy is used in one-to-one communication, and its main required property
is that concealed message is challenging to detect. The third category,
Anonymity refers to the anonymous communication mechanism. Since there
are many activities on Internet, so sometimes private information needs to
be protected. Anonymity describes the actions or activities on the Internet
where the personal identity of that acting is unknown. However, attackers
can easily find out personal information and attack that information. The
final category called copyright marking has developed information hiding for
copyright concerns. This category is sometimes called watermarking . It
includes digital watermarks (both robust and fragile methods) and digital
fingerprints. The watermarking method is used in one-to-many communi-
cations. The main difference between steganography is that steganography
focus on concealing its existence, while watermarking gives more importance
to making the hidden message difficult to removed or cannot replace easily.
The steganography method does not provide robustness against removing or
modification as watermarking does. Even information hiding is divided into
four categories, but there are still overlapped depending upon the aspect we
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examined.
Let us consider the scope of this research, and we intend to embed the

hidden into the speech signal for tampering detection. Therefore, we can
say that our hidden information should be fragile to the attacks but robust
against common speech processing. This method is in between fragile and
robust watermarking, so we define the terminology semi-fragile to refer to
the property that is fragile to the attacks but robust against common speech
processing. Besides, the terms information hiding and watermarking are
interchangeable; thus, we also use information hiding and watermarking as
a synonym of each other.

2.1.2 AIH system

An AIH system consists of two main processes: embedding and extrac-
tion, as presented in Fig. 2.2. If we consider in communication viewpoint,
the embedding process will take place on the sender side while the extraction
process is on the receiver side. The embedding process can be considered a
function that a host signal and the confidential information called watermark
as its input and returns a watermarked signal. Given the host signal A
and the hidden information w, the watermarked signal A∗ can be expressed
mathematically by the following equation

A∗ = A+ f(A;w) (2.1)

where, the function f is an embedding function.
The extraction process, sometimes called detection, extracts the hidden

information ŵ from the watermarked signal A∗. The process can be expressed
mathematically by the equation.

ŵ = g(A∗; c(A)) (2.2)

where the function g is an extracting function and c(A) is a function repre-
senting some information that depends on the host signal A. If there is no
such information (c(A)=0), the extraction process is called blind detection;
otherwise, the non-blind detection.

2.1.3 AIH techniques

Since working online or communication through the internet increases
significantly, digital security communication, copyright protection, anti-fake,
and data integrity are more concerned. Information hiding techniques are
being developed and have been more widely used in recent years. There are
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Figure 2.2: AIH system.

many ways to classify AIH techniques since there are several properties that
we can use to define the algorithm. In other words, classification depend upon
a set of criteria used for grouping. Many methods are based on the human
auditory system (HAS), and several commonly used approaches related to
a signal property. Therefore, we easily classify the audio watermarking
techniques into four categories [27].

• Time domain hiding

• Echo hiding

• Transform domain

• Human auditory-based method

However, this classification is inconsistent because many methods fall
into more than one category and mix across more than one technique. For
example, the method based on the low-frequency amplitude modification [28]
embeds information in the time domain and is based on the human auditory
system, so it has both concepts of first and the last categories. There is a
method based on the fast Fourier transform (FFT) amplitude interpolation,
and the human auditory system [29]. Thus it has a concept of the third and
the fourth categories. In this section, we try not to group the existing AIH
techniques to avoid such confusion. The following subsections briefly explain
some AIH techniques.

Time domain method

The time-domain information hiding is easy to implement and straightfor-
ward solution because it directly modifies the speech sample. A well-known
example of time-domain hiding is the least-significant-bit (LSB) replacement-
based method. It usually replaces the least significant bit of the host signal
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with a binary bit of watermark signal [22]. Since the modification part is a
minimum weighting value, the inaudibility can be ensured because the LSB
hardly affects human perception. The advantage of this method can be seen
clearly in two main points: it needs less computational time because it is
not complex, and the second advantage is that it has a large embedding
capacity. The significant disadvantage of the technique is not resistance
to manipulations. In other words, the hidden information can be easily
damaged by various signal-processing attacks. E.Erçelebi et al. attempted
to increase the robustness of this technique using multi-bits generated by
pseudorandom sequences embedded into the host signals [30]. However,
increasing robustness in the time domain watermark is not easy to achieve
due to host signal distortion.

Echo hiding

Echo hiding is sometimes categorized as a sub-domain of the time-domain
method [31]. This method is based on the fact that if the weak signal appears
after the strong signal quickly, then the human auditory system cannot detect
that weak signal [32]. This phenomenon is called masking effects, and it is
utilized to construct an information hiding scheme by introducing an echo
signal to hide the secret information. An attenuated echo is added to the
host signal in the embedding process and performs the watermark extraction
in the extraction process with cepstrum analysis. The advantage of the
echo hiding method is excellent inaudibility. The disadvantage is that the
embedding process is signal-dependent. Consequently, it is difficult to make
a blind information hiding scheme.

Transform domain method

In the third category, the watermark is embedded in a specific transform
domain. The various transforms include frequency transforms such as fast
Fourier transform (FFT) [29, 33], discrete cosine transform (DCT) [34, 35],
and time–frequency transform such as discrete wavelet transform (DWT)
[34, 36]. Transform domain watermarking applies a specific transform to the
data block of the signal and then hiding the watermark into the transformed
data block [37].

For all transform domain methods, they consist of two more steps compare
with the time-domain method. The host signal x(n) is forward transformed
into the selection domain as X(k) before watermark embedding. The signal
Y (k) obtain from embedding the watermark signal to X(k), and then take
an inverse transform of Y (k) to obtain a watermarked signal y(n). It is
important for the transform domain method to ensure that the transform
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domain samples, Y (k), can take the inverse transform with appropriate
forms. To demonstrate this requirement, let us consider the discrete Fourier
transform (DFT) method. DFT should preserve the symmetric property
of frequency domain samples within [−π, π) in order to obtain real-valued
samples of y(n) after the inverse transform.

The spread spectrum (SS) method is one of the well-known transform
domain methods. It spreads the message signal by a pseudorandom noise
(PN) signal and adds it to the host signal [38]. This method can robustly
detect the embedded messages from the watermarked signal against various
signal processing. However, the principle of the spread spectrum method
has a critical problem that is spreading of the spectrum reduces the sound
quality. R.Namikawa and M. Unoki try to solve the sound quality problem
by proposing a method that spectrally spreads a message by using linear
prediction residue and embeds the spread spectrum of the message into the
host signal [20]. Their method can improve the sound quality and maintain
the robustness. However, it is a non-blind method since it requires linear
prediction residue of the host signal.

Human auditory-based method

The information hiding is based on audio content and the human auditory
system. For example, M.Unoki proposed information hiding using the hu-
man auditory system (HAS) by considering cochlear delay characteristics to
embed watermarks. Cochlear delay refers to the non-uniform delays of wave
propagation in the basilar membrane; thus, lower frequency components need
more time to be perceived. [39]. R. Nishimura proposed another example
that is a system to achieve information hiding in the audio signal by exploiting
the properties of spatial masking and ambisonics [40]. Phase coding can also
be considered as a human auditory based-method. Since the human auditory
system is not sensitive to the absolute phase of the speech signal, this fact is
utilized to construct the phase information hiding method. In this method,
the absolute phase of the speech signal is replaced by the reference phase,
which represents the secret information. All subsequent signals must change
the absolute phase simultaneously to ensure the fixed relative phase between
the signal. In the extraction process, the phase detection is done by using
the synchronization mechanism [41, 42].
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2.1.4 AIH applications

Information hiding technology has been raising attention since people
were concerned about copyright and security. Along with advancing digital
tools and technology, it is much easier to duplicate unauthorized digital
products. In general, information hiding applications can be summarized
in the aspects of data confidentiality, copyright protection, nonrepudiation,
anti-fake, and data integrity [17, 26]. Details are as follows.

Data Confidentiality

Data confidentiality aims to prevent the transmitted data in a network from
being captured by unauthorized users and to avoid intrusions by malicious
attackers. Data confidentiality is a critical element of many aspects such
as network security, political, military concerns, commercial, financial, and
personal privacy matters. Sensitive data such as online banking transactions,
personal privacy, and essential documents need to be protected while deliv-
ered through the network. Information hiding technology protects these data
by not arousing any interest from attackers. Besides, some contents that are
unwilling to be known by others can be hidden so that only the authorities
can acquire the secret messages.

Copyright Protection

With the rapid growth of networking and digital technique, many digital
services are provided through networks, and its consequence is that much
important information sends through the network, and these data are easy to
modify and duplicate. Thus this will enormously harm the service providers’
profits, so that information hiding offers copyright protection to solve a
problem as mentioned earlier.

Nonrepudiation

For nonrepudiation, information hiding aims to confirm the achievement on
the Internet because neither side could deny what actions he or she made or
the actions of the other party when utilizing activity on the network. The
two parties of the transaction use information hiding technology to embed
their feature marks into communicated messages. The feature marks can be
considered secret messages, and the encrypted feature marks can be regarded
as watermarks. This watermark must be permanent or not easy to remove.
Thus the purpose of confirming the action can be achieved.
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Anti-fake

Anti-fake marks can be appended through information hiding technology
to confirm the authenticity of confidential files. Confidential files may be
critical documents for the confidential work units or institutions, maps issued
by a publishing house, various forms or contracts in business activities, and
personal information.

Data Integrity

The primary purpose of data integrity verification is to confirm that the
data had not been modified while being transmitted over the communication
channel or in the stored procedure. To distinguish the modified media can be
done using the fragile watermark method. The watermark should be fragile
because it would be destroyed if any modification occurs.

2.2 Singular Spectrum Analysis

The Singular spectrum analysis, a time-series analysis method, was pro-
pose in 1986 by Broomhead and King [43]. SSA aims to decompose the orig-
inal series into the sum of a small number of independent and interpretable
components such as a slowly fluctuating trend, oscillatory components, and
a structureless noise. Consider a signal in time series, F = [f0 f1 ... fN−1]

T

where F is a signal of sufficient length N . The principal goal of SSA is to
decompose the original signal into a sum of series where each component in
this sum can be identified and used to interpret its characteristics. After
finishing an interpretation or analysis of each component, these components
are reconstructed into an original series.

The SSA technique consists of two complementary stages: decomposition
and reconstruction, and each of them includes two separate steps. The em-
bedding step and singular value decomposition step are in the decomposition
stage; meanwhile, the grouping step and diagonal averaging step are in the
reconstruction stage.Figure 2.3 illustrated the basic SSA. The following is a
brief review of the methodology of the basic SSA technique.

2.2.1 Stage 1: Decomposition

First step: Embedding

Embedding can be considered as a mapping that transfers a one-dimensional
time series signal into the multi-dimensional series. Let consider a time series
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Figure 2.3: The basic SSA.

signal F = [f0 f1 ... fN−1]
T where fi for i = 0 to N−1, where N is a total

number of samples of the signal. A signal F is mapped to a trajectory
matrix X of the size of L×K, where L is the parameter of SSA, called a
window length, and 2 ≤ L ≤ N , and K is N−L+1, by the following relation.

X =


f0 f1 · · · fK−1
f1 f2 · · · fK
...

...
. . .

...
fL−1 fL · · · fN−1

 . (2.3)

Vectors xj are called lagged vectors and jth is a column of matrix X i.e.,

xj = [fj fj+1 ... fj+L−1]
T. Thus X = [x0 x1 x2 ... fK−1]. The result of this

step is the trajectory matrix X = [x0, ... , xK−1]. Note that the trajectory
matrix X is a Hankel matrix, which can imply that all the elements throug
the diagonal i + j = const are equal. The procedure the embedding step
is in time series analysis however future analysis depends on the aim of the
investigation.
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Second step: Singular value decomposition(SVD)

The SVD step makes the singular value decomposition of the trajectory
matrix X and represents it as a sum of elementary matrices. Let consider
the trajectory matrix X which SVD factorizes.

X = UΣVT =

p∑
i=1

√
λiUiV

T
i , (2.4)

where Ui and Vi are columns of U and V, respectively. Note that Ui and Vi
for i= 0 to L−1 are eigenvectors of XXT and XTX respectively, and sorted
in descending order. Σ is the diagonal matrix whose element are the square
root of the eigenvalue of XXT, that can present as {

√
λ0,
√
λ1, ...,

√
λp}. we

call λi for i = 1 to p a “singular spectrum”, and p is a number of positive
eigenvalues greater than 0. Note that, in this work, we call a signal form
by each

√
λiUiV

T
i an oscillatory component of the signal F . Finally the

trajectory matrix X can be written as

X = X0 + X1 + X2 + ...+ Xp, (2.5)

where Xi =
√
λiUiV

T
i and p = argmaxi(λi > 0)

2.2.2 Stage 2: Reconstruction

First step: Grouping

The function of grouping step corresponds is to splitting the elementary
matrices Xi into several groups, and then summing the matrices within each
group. The set of indices of Xi obtained from the SVD step is partitioned
into m disjoint subset Il for l = 1 to m. Then the elements X1, X2, ..., Xp are
grouped in to m group, so that the trajectory matrix X can be written as

X = XI1 + XI2 + XI3 + ...+ XIm, (2.6)

Second step: Diagonal averaging

. Diagonal averaging transfers each matrix XIl into a time series. This
step, also called Hankelization, map resultant matrix to a signal of length
N by diagonal averaging (or Hankelization) [44]. The Hankelization of a
matrix Q of size L×K to a signal R=[r0 r1 ... rN−1]

T, which is denoted by
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R = H[Q], is defined by the following equation.

rk =



1
k+1

k+1∑
m=1

q∗m,k−m+2, for 0 ≤ k < L∗−1,

1
L∗

L∗∑
m=1

q∗m,k−m+2, for L∗−1 ≤ k < K∗,

1
N−k

N−K∗+1∑
m=k−K∗+2

q∗m,k−m+2, for K∗ ≤ k < N,

(2.7)

where qij is an element at the row i and column j of the matrix Q, L∗ =
min(L,K), K∗=max(L,K), q∗ij =qij when L<K, and q∗ij =qji when L≥K.

2.3 Tampering Detection: state-of the art

When speech is transmitted through the network, it is possible that
speech may be captured and tampered with by attackers. For example,
changing speech content from the word “Yes” to “No” can mislead listeners,
or conversion technique applied to speech can mislead about who is a speaker.
Thus, tampering detection plays an essential role in many sensitive and
vital cases as in digital forensic or severe problems for judgment in court.
This paper proposes an information hiding method for tampering detection.
Therefore, the definition of speech tampering and the scope of the work will
be clarified in this section. In addition, the previously proposed methods
used to solve the problem of tampering introduces in this section.

2.3.1 Tampering definition

The speech tampering can be classified into three groups [45]. The first
is tampering with speech content, such as adding words, delete words, and
replacing words. The second is tampering with speaker individuality by
changing a characteristic of the speaker such as fundamental frequency (F0)
changing, pitch shifting. Finally, the last is tampering with non-linguistic
information, such as emotional information. Based on this classification,
not all attacks should be viewed as tampering. Thus, two groups of at-
tacks are malicious attacks (intentional modifications) and non-malicious
attacks (unintentional modifications). The non-malicious attacks refer to
normal signal operations such as re-sampling, re-quantization, and speech
coding. The malicious attacks are those that change the speech content
(e.g., replacement with unwatermarked segments), those that change the
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speaker individuality or non-linguistic information of the speech signal (e.g.,
gradually speed changing, and significantly pitch shifting), and those that
change the speaker environment (e.g., echo addition and noise addition to
mislead about where speech is produced). The other operations, such as
speech companding and compression, should not be considered as malicious
attacks [46]. To correctly detect tampering, a watermark embedded into any
host signal should be semi-fragile, i.e., the watermark is fragile to all malicious
attacks but robust against non-malicious attacks or normal signal-processing
operations [46].

There are other words whose meanings are close to the meaning of tamper-
ing. Those words are speech manipulation, speech modification, and speech
spoofing. Let consider the spoofed speech carefully. There are four main
spoofing types: Impersonation, replay, speech synthesis, and voice conversion
[47]. The following gives a brief description of each type. Impersonation is
related to human-altered voices, and it involves mainly mimicking prosodic
or stylistic indications. Replay attacks are the presentation of speech samples
taken from a genuine client in the form of continuous speech recordings or
samples obtaining from the concatenation of shorter segments [48]. Voice con-
version, a sub-domain of voice transformation, aims to convert one speaker’s
voice towards the target one. Voice conversion aims to synthesize a new
speech signal that its features are close or similar to the target speaker. The
last one is speech synthesis which requires large amounts of speaker-specific
data to construct speech models that can produce a human-like voice. From
the spoofing definition, note that there is an overlap between tampering
and spoofing definitions. Voice conversion in spoofing attacks can be viewed
as speaker individuality changing in tampering attacks. Spoofing speech by
adding or replacing a synthesized voice can be viewed as changing speech con-
tent in a tampering attack. Since we want to prove the genuineness of speech
signals, Thus, impersonation and replay attacks are out of this scope, and
voice conversion and voice synthesis in spoofing categories can be included in
tampering attacks. Therefore, if speech signals were manipulated, modified,
or spoofed, it could be said that those speech signals were tampering. We
will refer to those modifications, manipulations, and spoofing as tampering
in speech signals. The tampering detection refers to the method to detect
those tampering.

2.3.2 Tampering detection method

In the first attempt to provide security for speech signals, protecting
signals from being stolen or modified is considered rather than tracing or
detecting the modification. The method of scrambling and encryption is
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Figure 2.4: A tampering detection applied in ASV system.

adopted to protect. However, it can not be used for tampering detection.
In recent years, the spoofed speech, which can be considered as tampered

speech, has gained more interest in the automatic speaker verification (ASV)
system. An attacker attempts to bias the system outcome towards accepting
a false identity claim in a tampering scenario. Thus, tampering detection,
sometimes called countermeasure, gain attention in many systems, especially
in automatic speaker verification system. Countermeasures or tampering
detection have been developed to prevent attacks by deciding whether a
particular trial is a genuine access attempt or a tampered one. Figure 2.4
illustrates a tampering detection applied in an automatic speaker verification
system. Note that the tampering detection should decrease the fault accepted
rate (FAR) in the event of tampering attacks while not increasing the fault
rejected rate (FRR) in the case of genuine access attempts of the ASV system.

Figure 2.5 depicts a tampering detection system. The associated feature
will be extracted from the speech signal and then be classified by a classifier.
Results for the classified will be used to determine whether the speech is
genuine or tampered speech. In this system, feature extraction and modeling
are two key modules for detecting spoofed speech. There are several features
to be used. For example, Chen et al. (2010) employed higher-order Mel-
cepstral coefficients (MCEPs) to detect synthetic speech [49], De Leon et
al. use F0 statistics for synthetic speech detection [50], and Wu et al.
proposed a method to detect voice conversion by using Cosine normalized
phase (cos-phase) and modified group delay phase (MGD-phase) features.
Meanwhile, there are also several classifier models, for example, Gaussian
mixture models (GMM)-based systems, Hidden Markov Model (HMM), and
GMMs combined with a universal background model (UBM) to become
GMM-UBM approach. However, this method requires large data for training
and needs enormous computation time. Besides, there is no feature or
modeling can apply for all kind of attacks.

Another approach to detecting tampering is to use the information hiding
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Figure 2.5: A tampering detection system.

method. Although the idea of information hiding appeared very early, it
received much attention after 1996. Information hiding is a newly emerging
information technology. The main driving is copyright protection. The infor-
mation hiding for tampering detection gain more interest from a researcher
in the past twenty years. The fragile watermarking techniques were used for
tampering detection, for example, those used by Wu and Kuo [51]. For the
purpose of tampering detection, information hiding scheme should be fragile
only against malicious modifications and be robust to essential processing
such as re-sampling and speech coding. Figure 2.6 depicts a tampering
detection using information hiding.

The original speech, A, and embedded watermarks, w, are used on the
sender side to produce the watermarked signal, A∗. The A∗ on the receiver
side can be received from the sender side and then the detection process
blindly detects ŵ from A∗. The tampering detection process verifies ŵ with
the shared w, to decide whether the signal is tampered with or not. Note
that j is a function for making a decision.

Let us consider some information hiding method that use for tampering
detection in speech and audio signals. A fragile speech watermarking scheme
to detect malicious content was proposed by Wu, and Kuo [51]. The scheme
used odd/even modulation with exponential scale quantization to detect
tampering. Their system was able to distinguish tampering from resampling,
white noise addition, G.711, and G.721 speech coding. However, it was not
compatible well with CELP speech coders such as G.723.1. In 2012, M.Unoki
and R.Miyauchi proposed information hiding for tampering detection based
on cochlear delay characteristics [45]. Their method could detect tamper-
ing for content replacement, additive white noise, some malicious attack.
However, their method was incorrect detect for normal signal operation such
as G.711 speech coding. In 2014, Z.Liu and H.Wang proposed tampering
detection in the content of speech signals [52]. Their method was based
on Bessel–Fourier moments and the attacks such as insertion and deletion
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of content were tested. However, in 2021, RCW.Phan reveals that this
method has a weakness because their group can simulate the attacks and
fault this system [16]. S.Wang et al. proposed a tampering detection scheme
for speech signal using formant enhancement based method in 2015 [53].
This scheme modified line spectrum frequency for hiding information. Their
method showed good ability to detect tampering, but there were also too
fragile for some signal processing. The tampering detection using speech
watermarking based on the source-filter model was proposed by S.Wang et
al. in 2019 [54]. The speech was separated into the sound source and vocal
tract information. Both were separately embedding with quantization index
modulation and formant enhancing based technique. This scheme has a
disadvantage to speech codec G.723.1, G.726, and G.729 affected by the
QIM method. CO.Mawalim et al. proposed a watermarking method by
modifying the least significant quantization bit in CELP codec [55]. This
method was robust against CELP speech coding but low embedding capacity
and fragile to some signal operation. The speech tampering detection using
sparse representation and spectral manipulation-based information hiding
was proposed in 2019 by S.Wang et al. [56]. Their method success in
tampering detection and robust to speech coding.
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Figure 2.6: A tampering detection system using information hiding.
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Chapter 3

SSA-based AIH core structure
for tampering detection

3.1 SSA-based AIH for tampering detection

and its issues

SSA-based information hiding was proposed by Karnjana et al. in 2014
[57]. SSA-based information hiding adopts the analysis of the SVD-based
technique as its core structure and considers the relationship between singular
value and human perception [58]. The information hiding scheme used
basic SSA to analyze host signals and extract the singular spectra, and a
watermark was hidden into a host signal by selecting a part of the singular
spectrum of the host signal and then modifying the selected part concerning
the watermark bit. Our studies discovered that the SSA-based information
hiding scheme could be made robust, fragile, or semi-fragile depending on
which part of the singular spectrum we selected to modify. The modification
affects the sound quality of the watermarked signal and the robustness of
the information hiding scheme. Therefore, a part of the singular spectrum
to be modified must be determined appropriately to balance inaudibility and
robustness. The parameter used to identify the specific interval of singular
spectra is called as embedding parameter, or parameter as short.

There are many empirical experiments to finding these parameters. Fig-
ure 3.1 shows the example of a singular spectrum of one frame speech signal.
The window with the dashed line displays the part on the singular spectrum
to be modified. This window is moved along the x-axis to check whether
the sound quality and robustness change when the window moved. In other
words, to check the balance of inaudibility and robustness when embedding
position change. From this experiment, we found that if the watermark
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Figure 3.1: Singular spectrum of one frame.

is embedded in a low index of the singular value, it is easy to extract the
watermark in the extraction process. However, the sound quality is degraded
significantly. Simultaneously, if the watermark is embedded in a high index
of the singular value, the sound quality is excellent, but it is difficult to
extract the watermark in the extraction. Note that the watermark is more
fragile if we hide it in a high singular value index. Therefore, the interval of
the singular spectrum to be modified must be determined appropriately not
only for balancing inaudibility and robustness but also to satisfy the semi-
fragility. Let us consider the characteristics of the singular spectrum of the
different speech segments. Figure 3.2 showed the singular spectrum of the
four different speech segments. It can be seen that the singular spectrum is
different for each speech segment. Consequently, the embedding parameter
of each frame will also be different. Therefore, parameter estimation is
dependent on speech segment.

3.2 Philosophy of this work

In this work, we construct the core structure of the watermarking scheme
for detecting tampering. We get the motivation from Karnjana et al. research
that proposed differential evolution (DE) optimization to determine such a
suitable window for balancing inaudibility and robustness [59]. Therefore,
we hypothesize that DE should be able to find a parameter to satisfy the
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Figure 3.2: Singular spectrum of the four different speech segments.

semi-fragility. However, DE requires huge computation time and cannot be
practically used in real-time or near real-time applications. Therefore, We
deploy a neural network to estimate the deterministic relationship of the
input speech signal and parameters that are used to identify the suitable
part of the singular spectrum of the speech signal. We propose a unique
convolutional neural network (CNN)-based parameter estimation method to
estimate the parameter used for the information hiding scheme. Because the
performance of a neural network depends considerably on the dataset used
to train the neural network, the important ingredient of this work is the
framework we use to create a good dataset. As mentioned earlier, DE has
proved its excellence in the trade-off between inaudibility and robustness.
We presume that it can effectively be used as a foundation for generating a
training dataset.

3.3 The core structure of SSA-based AIH for

tampering detection

The proposed information scheme is based on the framework of singular
spectrum analysis (SSA) and consists of two main processes, an embedding
process, and an extraction process, as depicted in Fig. 3.3. It is a blind
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Figure 3.3: Proposed framework: embedding process (left) and extraction
process with tampering detection (right).

scheme where its extraction process can extract hidden information from
only a watermarked signal i.e., no need host signal on the extraction process.
Also, the extraction process is parameter-free because all parameters can be
estimated from the watermarked signal by using a CNN-based algorithm.
In other words, no need to share parameters between the embedding and
extraction process.

This section summarily gives details on these two processes and how to
use them for detecting tampering.

3.3.1 Embedding Process

The embedding process provides a watermarked signal by taking a host
signal and a watermark as its inputs, and one frame of host signal will be
embedded with one watermark bit. The embedding process consists of six
steps, as shown in Fig. 3.3 (left), which are described as follows.

1. Segmentation. A host signal is segmented into frames of length N ,
where M is equal to the total number of watermark bits. Note that
frame type is non-overlapping frame.Let F indicates a segment of length
N , i.e., F = [f0 f1 ... fN−1]

T, where samples of a segment is fi for i = 0
to N−1 .
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2. Matrix Formation. A segment F is mapped to a matrix X with the
following equation.

X =


f0 f1 f2 · · · fK−1
f1 f2 f3 · · · fK
f2 f3 f4 · · · fK+1
...

...
...

. . .
...

fL−1 fL fL+1 · · · fN−1

 , (3.1)

where L, which is named a “window length” of the matrix transforma-
tion. The lowest value of L is 2 and its value is not greater than N .
The size of X is L×K, where K=N−L+1.

3. Singular Value Decomposition (SVD). We factorize the real matrix X
by using SVD, i.e.,

X = UΣVT, (3.2)

where the columns of U and those of V are the orthonormal eigenvec-
tors of XXT and of XTX, respectively, and Σ is a diagonal matrix that
whose elements are the square roots of the eigenvalues of XTX.

Denote
√
λi for i = 1 to q indicate the elements of Σ in descending

order and
√
λq is the smallest eigen value which is non-zero. The

√
λi

is called a “singular value” and the {
√
λ0,
√
λ1, ...,

√
λq} is called a

“singular spectrum.”

4. Singular Value Modification. The singular spectrum is modified re-
garding the watermark bit to be embedded and requires the properties
of the watermarking scheme. Our previous work shows that modifying
high-order singular values is less distorts the host signal but is sensitive
to noise or attacks. Meanwhile, modifying low-order singular values
can improve robustness but causes sound quality to be poor [59, 60].
Thus, there is a trade-off between the sound quality of the watermarked
signal and the scheme’s robustness. In this work, we aim mainly on
semi-fragility property. Therefore, we introduce the embedding rule as
follows.

A whole singular spectrum is defined by {
√
λ0,
√
λ1, ...,

√
λq}. A spe-

cific part of this singular spectrum, presented as {
√
λp,
√
λp+1, ...,

√
λq},

is modified regarding to the embedded-watermark bit w. The modifi-
cation rule is as follows.

√
λ∗i =


√
λi + αi · (

√
λp −

√
λi), if w = 1,

√
λi (i.e., unchanged), if w = 0,

(3.3)
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where
√
λ∗i is the singular values was modified for i = p to q. The√

λp is the largest singular value that is less than γ·
√
λ0, and αi, which

is called the “embedding strength,” is normally distributed over the
interval [p, q] and the embedding strength has a maximum value of 1.
Note that αi is a positive real value that is less than 1. Specifically, αi
for i=p to q is determined by

αi = e−(i−µ)
2/2σ2

, (3.4)

where µ and σ2 are the mean and the variance of the Gaussian distri-
bution, respectively.

Hence, the embedding rule requires three parameters, which are γ,
µ, and σ. From the empirical experiment, we have shown that by
appropriately adjusting these parameters concerning the host signal,
we can deliver a good balance between watermarked signal ’s sound
quality and robustness of the scheme [60].

The core structure of SSA-based AIH with CNN-based parameter esti-
mation is shown in Fig. 3.3. The left-hand side shows, these parameters
are provided by the CNN-based parameter estimation, which is to
be discussed in detail in the following section. Figure 3.4 showed an
example of the part {

√
λp,
√
λp+1, ...,

√
λq} of a singular spectrum.

5. Hankelization. Let Σ∗ denote a diagonal matrix defined by

Σ∗ =



√
λ0 · · · 0 0 · · · 0
...

. . .
...

...
...

0 · · ·
√
λp−1 0 · · · 0

0 · · · 0
√
λ∗p · · · 0

...
...

...
...

. . .
...

0 0 0 0 · · ·
√
λ∗q


. (3.5)

A watermarked matrix X∗ is the matrix into which the watermark bit
is embedded can be computed from the product UΣ∗VT. Then, a
hankelization is performed on the matrix X∗ to obtain the signal F ∗,
as the watermarked segment. A hankelization is the average of the
anti-diagonal i+j=k+1, where i is the row index and j is the column
index of matrix of an element of X∗, and k ( for k=0 to N−1) is the
index of element F ∗.

6. Segment Reconstruction. We obtain the watermarked segment from
the previous step, and then on final step, all watermark segments is
sequentially concatenated to produce the watermarked signal.
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Figure 3.4: Example of the part of a singular spectrum
{
√
λp,
√
λp+1, ...,

√
λq}: (a) selected part of singular spectrum without

embedding, (b) watermark bit 1 is embedded, and (c) watermark bit 0 is
embedded. The red line shows the threshold level γ ·

√
λ0, and the blue

dashed line connects from
√
λp to

√
λq.
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3.3.2 Extraction Process

The extraction process uses a watermarked signal to extract an embedded
watermark and delivers an extracted watermark signal as its output. There
are four steps in the extraction process, as shown in the dashed box of
Fig. 3.3 (right). Three first steps are the same as those describes the em-
bedding process, which are segmentation, matrix formation, and singular
value decomposition. The fourth step is watermark-bit extraction. Embed-
ded watermark bits are extracted in this step by decoding singular spectra.
How the spectra are decoded is depends on how they are modified in the
embedding process. To explain the idea of decoding, let us consider the two
singular spectra in Fig. 3.5. This figure displays two extracted singular spec-
tra of one watermarked frame when embedded with different watermark bits:
{
√
λ∗00 , ...,

√
λ∗p0 , ...,

√
λ∗q0} and {

√
λ∗01 , ...,

√
λ∗p1 , ...,

√
λ∗q1}. The superscripts

of the indices of singular values, 0 and 1 , indicate the embedded watermark
bits. It can be seen that most singular values (circles) under the red line are
above the blue dashed line connecting

√
λp and

√
λq, when the watermark

bit 1 is embedded, but most of the singular values (asterisks) under the red
line are below the blue dashed line when the watermark bit 0 is embedded.
Therefore, we can use the following state to determine the hidden watermark
bit ŵ.

ŵ =


0, if

q∑
i=p

(√
λ∗i − l(i)

)
< 0,

1, if

q∑
i=p

(√
λ∗i − l(i)

)
≥ 0,

(3.6)

where l(i) is the corresponding values on the blue dashed line, which is defined
by

l(i) =

(√
λ∗p−
√
λ∗q

p−q

)
·(i− q) +

√
λ∗q. (3.7)

The output of the fourth step is the extracted watermark bit ŵ(j) for j= 1
to M .

3.3.3 Tampering Detection

The concept to check whether watermarked signals have been tampered
with or not, we compare extracted-watermark bits ŵ(j) with embedded-
watermark bits w(j) for j = 1 to M to see its matching. For the purpose
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Figure 3.5: Decoding hidden watermark bit: if most of singular values (circle)
that are under threshold level γ ·

√
λ0 are above blue dashed line, extracted

watermark bit is 1, but if most of singular values (asterisks) that are below
threshold level γ·

√
λ0 are under blue dashed line, extracted watermark bit is

0.

of tampering detection, the embedded-watermark bits w(j) are assumed to
be known by the owner or an authorized person. Theoretically, when the
tamper occurs, watermark bits embedded into the tampering location should
be destroyed. Thus, tampering and spoofing could be detected by mismatches
between ŵ(j) and w(j). Because we embed one watermark bit into one frame
of the host signal, then each mismatch position can be used to indicate the
corresponding tampered frame. Therefore, tamper position can be identified.

3.4 CNN-based Parameter Estimation

As mentioned earlier, we previously proposed a watermarking scheme in
which an evolutionary-based optimization algorithm, differential evolution
(DE), was deployed to find input-dependent parameters used in the embed-
ding process of the scheme [59]. In that work, the method of determining
input-dependent parameters is called as “parameter estimation.” We dis-
covered that our DE-based parameter estimation could produce parameters
that result in a good balance between the robustness and inaudibility of that
proposed scheme [59]. However, the computing time of DE-based parameter
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estimation is significant high [61, 62, 63]. To reduce this computational
time, we consequently proposed another approach based on a convolutional
neural network (CNN) [64]. Using this CNN-based parameter estimation,
we hugely reduced the computational time by approximately 10, 000 times
[64]. Although we succeeded in reducing the computational time, we had to
sacrifice robustness in this previous work. We hypothesize that if we use the
high-quality dataset for CNN training, it can yield this problem. Accordingly,
in this work, we develop the CNN-based parameter estimation by improving
the quality of the CNN training dataset. In this section, we explain how we
provide a high-quality dataset and an enhanced CNN-based approach.

There are two crucial steps to implementing the improved CNN-based
parameter estimation: CNN training and generating a high-quality dataset.
The details of these two steps are detailed in the following subsections.

3.4.1 Training CNN

A CNN is a feed forward neural network which had supervised learning
and unsupervised learning. In this work, we implement a supervised learning
scheme that CNN is trained by a training dataset consisting of various
input and target pairs. These pairs of input and target are used to find
a deterministic function that maps an input to obtain an output, and the
trained CNN achieves this function [65].

Simply saying, the CNN is used to find the vital embedding parameters
γ, µ, and σ for each speech segment. We choose the CNN in this work
because we know that there is a relationship between singular values and
speech signal frequencies [61, 63]. For example, high-order singular values
are associated with a high-frequency band; meanwhile, low-order singular
values are associated with a low-frequency band. Thus, we hypothesize
that a CNN trained with inputs represented in both time and frequency
domains should perform better than the one with either a CNN trained with
only time-domain input or with only frequency-domain input. Thus, the
spectrograms of the speech segments are chosen as the inputs in the training
dataset. Considering a spectrogram is two-dimensional (2D), and the CNN
can extract patterns in 2D data more efficiently than other neural networks.
We, therefore, designed our novel parameter estimation based on the CNN.

As mentioned in the earlier section, there are three parameters, γ, µ,
and σ, to be optimized. Two of these parameters, µ and σ, associate
with the embedding strength αi. Thus, they provide the robustness of
the proposed scheme. The parameter γ directly determines the number of
modified singular values. Simply saying, it contributes more to the sound
quality aspect of the proposed scheme. These two groups are different in
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Figure 3.6: Structure of two CNNs: (a) CNN used to estimate embedded
strength parameters and (b) CNN used to estimate parameter of γ.

terms of value, i.e., γ has a small value than another. Consequently, two
CNNs were implemented, one for µ and σ and the other for γ. A spectrogram
of size 13×67 is the input of both CNNs. Our CNNs are composed of two
convolutional layers, two pooling layers, and two normalization layers. A first
convolution layer convolutes an input spectrogram with 128 kernels of size
3×3 and a stride of size 2×2, and the other convolutes with 64 kernels of size
3×3. The activation function for this CNN is a rectified linear unit (ReLU)
function. A kernel size of 2×2 is deployed for all pooling layers. A flattened
output is combined with a fully connected layer with 256 units. The given
outputs of the first CNN and the second CNN are [µ σ]T and the parameter
γ, respectively. The structure of both CNNs is presented in Fig. 3.6.

3.4.2 Generating High-Quality Dataset

We discovered that DE proved its effectiveness in finding the excellent
parameters in our previous work [59], we, therefore, deploy it to create a
dataset for supervising our CNNs. We gives a definition of a high-quality
dataset in this proposed method as a dataset in which a good sample of
input-output pairs used for CNN supervising so that the CNN can map from
the input and particular output with high-precision estimation. DE functions
as follows.

Let x be a D-dimensional vector that we want to find according to a cost
function C(x), i.e., we are searching for x such that C(x) is minimized. The
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algorithm of DE consists of four steps: initialization, mutation, crossover,
and selection [66].

First, we initialize vectors xi,G, for i=1 to NP , where NP is a size of the
population in the generation G. For the initialization step, G=1.

Second, each xi,G is mutated to a vector vi,G+1 by vi,G+1 = xr1,G +
F · (xr2,G − xr3,G), where i, r1, r2, and r3 are distinct and random from
{1, 2, .., NP}. The predefined constant F is in the interval [0, 2] and used
to determines the convergence rate of DE.

Third, each pair of xi,G and vi,G+1 is used to generate another vector
ui,G+1 by using the following formula. Given that

ui,G+1 =
[
u1i,G+1 u2i,G+1 ... uDi,G+1

]T
, (3.8)

uji,G+1 =

{
vji,G+1, if Ξ(j) 6 CR or j = υ,

xji,G, otherwise,
(3.9)

Ξ(j) is a random real number in the interval [0, 1], CR is a predefined constant
in [0, 1], and υ is random from {1, 2, ..., D}.

In the last step, we compare C(xi,G) with C(ui,G+1). If C(xi,G)<C(ui,G+1),
xi,G+1 = xi,G; otherwise, xi,G+1 = ui,G+1. After obtaining all members of the
generation G+ 1, then we iteratively repeat those three steps, mutation,
the crossover, and the selection step, until our specific condition is satisfied.
Then, the DE algorithm gives xi, which yields the lowest cost in the final
generation as the answer.

A DE optimizer used for creating the dataset is shown in Fig. 3.7. Note
that our DE optimizer is included with a few compression algorithms and
coding algorithms because we want to ensure that our proposed scheme is
robust against these operations. The extraction processes in Fig. 3.7 are a
bit different from the extraction process described for the SSA-based AIH
core structure. The difference is all extraction processes in the DE optimizer
know the parameter γ used in the embedding process, while the extraction
process in the SSA-based AIH core structure is completely blind.

We defines the cost function C developed in this work as follows.

C = β1BERNA+β2BERMP3+β3BERMP4

+β4BERG711+β5BERG726,
(3.10)

where βi for i=1 to 5 are constants and
∑
∀i βi=1, and BER is the bit-error

rate. The BER can be used to express the extraction precision and is defined
as

BER = 1
M

M∑
j=1

w(j)⊕ ŵ(j), (3.11)
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Figure 3.7: DE optimizer used to create dataset

where w(j) and ŵ(j) are the embedded-watermark bits and the extracted-
watermark bits, respectively, and the symbol ⊕ presents a bitwise XOR op-
erator. Hence, the terms BERNA, BERMP3, BERMP4, BERG711, and BERG726

denote the average BER values when there is no attack, when MP3 operation
is performed, when MP4 operation is performed, when G.711 speech coding
is performed, and when G.726 speech coding is performed on watermarked
signals, respectively.

Note that, although our selected cost function is a function of only BERs,
we can set the upper bound of the parameter γ in the DE algorithm to control
the sound quality of watermarked signals. Issues regarding the cost function
will be addressed in more detail after we have shown our evaluation results.
The framework used to create the training dataset is shown in Fig. 3.8.

In the embedding process, the host speech signal is segmented into non-
overlapping frames. Each frame will be embedded with one watermark bit.
Thus, the frame length reflects the embedding capacity, and the number of
frames, M , is equal to the number of the watermark bits to be embedded.
Then the trajectory matrix F which represents each frame F is created. Each
trajectory matrix F is performed with Singular value decomposition (SVD) to
obtain each frame’s singular spectra. The singular spectra are then modified
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Figure 3.8: Framework for creating training dataset.

to hide the watermark bit (0 or 1), and the part of the singular spectra to
be modified depends on the necessity of the information hiding application.
The modified trajectory matrix Y is constructed by SVD reversion and then
hankelized. The hankelization of a modified trajectory matrix Y yields a
signal G, where G is a frame of the watermarked signal. The frames are
stacked to reconstruct the watermarked signal.

In the extraction process, the watermarked signal is segmented into non-
overlapping frames, and the trajectory matrix for each frame is constructed in
the same way as was done in the embedding process. Then SVD is performed
on the trajectory matrix to obtain the singular spectra. The singular spectra
of the signal of each frame are typically convex; however, the watermark
bit embedded into a part of the singular spectrum of a host frame results
in a concave on the part of the singular spectrum of the reconstructed,
watermarked frame. The concave and convex caused by the embedding
process can be utilized to extract the watermark bit from each frame.
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Chapter 4

Evaluation and Results

This chapter provides dataset, evaluation condition, and results. We
evaluated the proposed scheme concerning four aspects: the sound quality
of watermarked signals, semi-fragility, tampering detection ability, and com-
putational time. The criteria to evaluate the proposed method has complied
with the requirement of information hiding committees on the paper named
“Information Hiding and Its Criteria for Evaluation” [67]. The performance
from evaluation results is compared with our previously proposed schemes
[46, 60]. Moreover, the proposed scheme also compare with three other
conventional methods: a method based on time-domain information hiding
where embedding information into the least significant bit (LSB) [68], a
cochlear-delay-based (CD-based) method proposed by M.Unoki et al. [45],
and a formant-enhancement based (FE-based) method proposed by S.Wang
et al. [69].

4.1 Dataset and Conditions

Twelve speech stimuli from the ATR database B set (Japanese sentences
uttered by six males and six females) were used as the host signals to evaluate
the SSA-based AIH core structure for tampering detection [70]. We choose
this dataset because we want to make a fair comparison between our previous
methods and this proposed core structure. All signals are one channel with
a sampling rate of 16 kHz, 16-bit quantization. The frame size was 25 ms
or 40 frame in one second. Thus, there were 400 samples for one frame. In
other words, our embedding capacity was 40 bps. Each signal was embedded
with one hundred and twenty bits in total, and the embedding duration of
each signal was three seconds. We used 200 diverse frames from each host
signal to prepare the dataset for training the CNNs. Therefore, there were
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2, 400 segments in our training dataset.
The hyperparameters for the DE algorithm in our simulation were set as

follows. The population size in each generation (NP ) was 30, as suggested by
Storn et al. [66]. A maximum number of generations [max(G)] was 30. The
upper bounds of the parameters γ, µ, and σ were set as 0.0085, 220, and 150,
respectively. The lower bounds were set as 0.001, 80, and 0, respectively. The
two constants F and CR were set as 0.5 and 0.9, respectively, as suggested
by Storn et al [66]. The weights βi in the cost function were set as follows.
β1 = 1

3
, β2 = 4

21
, β3 = 4

21
, β4 = 4

21
, and β5 = 2

21
.

In addition to the frame size N , which is 400, our proposed scheme
requires another hyperparameter, i.e., the window length of the matrix for-
mation (L). We set the window length L to one-half of the frame size in all
simulations, which was 200.

4.2 Sound Quality Evaluation

We used three objective measurements: the log-spectral distance (LSD),
the perceptual evaluation of speech quality (PESQ), and the signal-to-distortion
ratio (SDR) to evaluate the speech quality of watermarked signals. The LSD,
expressed in dB, is a distance between two spectra: the spectra of the original
signal and the watermarked signal. The LSD is defined by

LSD =

√
1
2π

π∫
−π

[
10 log P (ω)

P (ω̂)

]2
dω, (4.1)

where P (ω) is the spectra of the host signal,and and P (ω̂) is the spectra of
watermarking signal.

The PESQ measures the distortion of a watermarked signal compared
with the host signal [71]. The PESQ score ranges from [−0.5-4.5], where
(−0.5) indicate as very annoying and (4.5) indicate imperceptibly. The
PESQ software used in this experiment is recommended by the International
Telecommunication Union (ITU) for measurement in our experiment [72].

The SDR, expressed in dB, is the power ratio between the host signal and
the distortion in watermarked signal, which is defined by

SDR = 10 log

∑
n

[A(n)]2∑
n

[
A(n)− A∗(n)

]2 , (4.2)

where A(n) is the amplitudes of the host signal, and A∗(n) is the amplitudes
of watermarked signals.
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Table 4.1: Sound-quality evaluations: proposed scheme vs. other methods.

PESQ score LSD (dB) SDR (dB)

LSB-based method [68] 4.49 0.19 65.35
CD-based method [45] ∼3.1-4.3 ∼0.6-0.8 -
FE-based method [69] ∼3.9 ∼0.4 -
SSA-based method (fixed parameters) [60] 3.64 0.69 30.96
SSA-based method (with ad-hoc parameters) [46] 3.70 0.65 31.58
Proposed method 4.05 0.45 35.51

The criteria for good sound quality in this work were set as follows. The
LSD should not greater than 1 dB, a PESQ score of 3.0 was set as sufficient
quality, and the SDR should be greater than 30 dB, as recommended in
S.Wang’s experiment. [53].

Table 4.1 showed the results of the sound quality evaluation. All infor-
mation hiding methods satisfied the criteria for good sound quality. Note
that besides the LSB-based method, our proposed one achieves a better
performance than the others. Note that the proposed scheme was improved
considerably in terms of sound quality compared to the previously proposed
one.

4.3 Semi-fragility Evaluation

An information hiding scheme should be robust against non-malicious
speech processing, for example, compression and speech coding, and fragile
to malicious attacks, e.g., pitch shifting and band-pass filtering o detect
tampering. The scheme’s robustness can be indicated by the bit-error-rate
(BER), as defined in (5.6). In this work, we set a threshold of a BER to
be 10% as a robustness indication. A scheme is considered to be a robust
scheme if its BER is less than 10%. If its BER is higher than 20%, the speech
signal is considered as tampered speech. In the case of BER is between 10%
and 20%, the speech signal is probably tampered with at a low degree or
unintentionally modified [46].

The semi-fragility of the proposed scheme was evaluated by performing
ten signal processing operations on the watermarked signals as follows. Four
non-malicious operations: G.711 speech coding, G.726 coding, MP3 opera-
tion with 128 kbps, and MP4 operation with 96 kbps. Six possible malicious
operations: band-pass filtering (BPF) with 100-6000 Hz and −12 dB/octave,
Adding white Gaussian-noise (AWGN) with 15-dB and 40-dB signal-to-noise
ratios (SNR), pitch shifting (PSH) by ±4%, ±10%, and ±20%, single-echo
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Table 4.2: BER (%): proposed scheme vs. other methods.

LSB-based
method

[68]

CD-based
method

[45]

FE-based
method

[69]

SSA-based method
(fixed parameters)

[60]

SSA-based method
(with ad-hoc

parameters) [46]

Proposed
method

No attack 0.00 ∼0-1 0.00 0.49 0.36 0.83

Non-Malicious attacks
G.711 0.00 ∼4 0.00 0.49 0.36 1.90

G.726 51.77 ∼10-25 0.00 27.66 21.07 11.12

MP3 50.49 - - 3.69 5.39 8.67

MP4 49.53 - - 32.79 34.19 32.52

Malicious Attacks
BPF 50.83 - - 50.23 50.46 21.04

AWGN (15, 40 dB) 50.70, 49.53 - ∼54 49.69, 24.53 48.67, 23.28 16.66, 9.38

PSH (−4%, −10%, −20%) 35.64, 35.33, 40.8 - ∼31, -, - 10.58, 22.03, 47.83 14.25, 36.16, 51.47 6.01, 15.57, 20.68

PSH (+4%, +10%, +20%) 34.42, 34.36, 38.03 - - 12.44, 15.33, 20.47 7.78, 10.92, 21.94 3.51, 4.79, 8.22

Echo (20, 100 ms) 50.18, 51.34 -,∼50 -,∼5 15.76, 20.33 9.22, 18.05 4.29, 2.23

Replace (1/3, 1/2) 16.51, 24.97 - ∼57, - 17.08, 25.78 18.57, 26.25 20.07, 29.66

SCH (−4%, +4%) 49.47, 48.72 - ∼20, - 47.00, 47.19 46.58, 46.94 13.64, 13.41

addition with −6 dB, and delay times of 20 and 100 ms, substituting 1/3
and 1/2 of the watermarked signals with an un-watermarked segment, and
±4% speed changing (SCH).

The evaluation results are shown in Table 4.2. The LSB-based method
showed its excellent robustness when there was no attack, but it was fragile
for all other operations (except for G.711). The other methods could be
considered semi-fragile and could be used for detecting tampering. However,
the formant enhancement-based method was too robust when applied echo
addition. It can be implied that the method cannot be used to detect
tampering when a watermarked signal has been tampered with by echo
addition. Our proposed method was robust in the cases of no attack and
the G.711 speech coding and was fragile to other attacks. However, it was
too fragile for MP4 operation. The robustness of the information hiding
scheme against the G.726 speech coding was improved compared with our
previously proposed method. Thus, this proposed method can be used to
detect tampering in speech signals. Also, the bit-error rates of the proposed
scheme can be associated with the degree of tampering,e.g., when the degree
of pitch shifting increases, the BER increases. Hence, the percentage of BER
can be used to indicate the degree of attacks.

4.4 Tampering Detection Ability

As described in Chapter 2 section 2.3.2, tampering can be detected by
checking the mismatch between extracted-watermark bits ŵ(j) and embedded-
watermark bits w(j) for j = 1 to M . In this section, we demonstrate how
tampering detection can be done in two experiments.

First experiment, a 29×131 bitmap image of the word “APSIPA,” as
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shown in Fig. 4.1 (a), was used as the watermark. Consider the image size
of 29×131 bitmap, which equals 3, 799 bits of information.One bit will be
embedded into one frame. Thus, we need a host signal of 3, 799 frames or
95-second in length. The first 320 frames from all 12 speech signals were
connected to construct a new 95-second host signal. Note that the duration
was 95 seconds because our embedding capacity was 40 bps, and one frame
is 25 ms in length. After the image was embedded into the host signal, we
divided it into three parts, and the middle part of the watermarked signal
was tampered with by performing the operations listed in Table 4.2. The
reasons we choose to examine some of these operations to be tampering
are as follows. Adding white noise can be considered as a distortion in the
channel. Substituting watermarked speech with un-watermarked speech can
be counted as a content modification. Speed changing by speeding up or
slowing down a watermarked signal can be viewed as modifying the duration
and tempo of speech. Pitch shifting can manipulate the individuality of the
speaker. Filtering with a low pass filter is considered as removing specific
frequency information of the speech.

The results of the experiment are shown in Fig. 4.1. The hidden infor-
mation in the form of an image could be correctly extracted when there
was no attack on the watermarked signal, as shown in Fig. 4.1 (b). The
extracted hidden images from other tampered-watermarked signals are shown
in Fig. 4.1 (c) to Fig. 4.1 (u). It showed that the watermark bits in the
tampered part were destroyed, and the destroyed area of the extracted image
was correlated with the tampered speech part. The destroyed area, in this
experiment, was the middle two letters of the word “APSIPA.” Moreover,
the degree of tampering could be recognized from the extracted image. For
example, the middle parts of the watermarked speech signals whose extracted
images are shown in Fig. 4.1 (n) and Fig. 4.1 (s) were destroyed by adding
white Gaussian noise (AWGN). It can be recognized that the middle part
of the extracted image of Fig. 4.1 (s) was more severely damaged because
the stronger noise was added to the speech signal of Fig. 4.1 (s). Similarly,
Fig. 4.1 (g), Fig. 4.1 (l), Fig. 4.1 (q), Fig. 4.1 (h), Fig. 4.1 (m), and Fig. 4.1 (r)
where all of them were attacked by pitch shifting with different degrees
showed the same trend. The middle part of the extracted image was more
severely destroyed when the degree of the attack was raised. Therefore, we
can use the destroyed areas and their characteristics to identify the tampered
parts of the watermarked signals and the degree of tampering.

In addition to the tampered position and the tampering degree, we could
approximately predict the tampering type by analyzing the damaged area of
the extracted image. A singular spectrum is maintained when the embedding
watermark bit was 0 regarding our embedding rule. Therefore, if the damaged
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area is dark, such as those in Fig. 4.1 (p) and Fig. 4.1 (u), that area is possible
be extracted from an substituted un-watermarked segment. The reason is
because a singular spectrum is typically convex, and singular values between√
λp and

√
λq are therefore below the straight line that connects

√
λp and√

λq. Hence the extracted bit is 0, represented by the black pixel.
As mentioned in subsection 3.4.1, removing high-frequency components

from a signal can refer to reduce its high-order singular values. There-
fore, removing high-frequency components increasing the chance to obtain
a watermark bit 0 when decoding the watermark bit. Consequently, the de-
stroyed area of the extracted image got darker, as evidenced in Fig. 4.1 (l) and
Fig. 4.1 (g), when the pitches of the middle speech parts were decreased by
10% and 20%, respectively. In contrast, adding high-frequency components
can provoke high-order singular values to increase in value.

The second experiment, the attack was simulated by using a vocoder
named STRAIGHT [6]. For example, we can use STRAIGHT to revise the
sentence “No, I did not” to become“Yes, I did” by replacing “No” with
“Yes” and then removing “not” from the sentence. The simulation steps are
as follows. First, a watermark, which is a 166×23 bitmap image of the word
“STRAIGHT,” was embedded into a host signal of 96-seconds long. Figure
4.2 (a) showed an extracted image with no attack on the watermarked signal.
Second, STRAIGHT read the watermarked signal to get specific features:
the fundamental frequency (F0), aperiodic information, and an F0 adap-
tively smoothed spectrogram. These extracted specific features were used to
synthesize another speech signal in third step, and final step, the synthesized
speech signal was then substituted the watermarked signal in the second
half. It can be seen that a replaced part can change critical information
in the host signal and mislead the listeners. Fourth, the modified signal
obtained from the previous step was inputted into the extraction process
to get the watermark. The extracted watermark is shown in Fig. 4.2 (b).
Note that the extracted watermark of the replaced segment was damaged.
Note that this experiment gives similar results as the first experiment, our
scheme could be used to recognize a tampered segment in a speech signal.
The substituting part of a speech signal with a synthesized signal is different
from substituting it with an un-watermarked part since the synthesized signal
has different distortion. For example, the SDR of the synthesized speech
signal was −27.81 dB, which is considerably low. Therefore, a synthesized
signal can be viewed as a noisy speech signal. Hence, the damaged area in
Fig. 4.2 (b) looks similar to that shown in Fig. 4.1 (s).
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Figure 4.1: Comparison of watermark image between original image (a) and
reconstructed images after performing following signal-processing operations:
(b) no attacks, (c) MP3, (d) G.711, (e) G.726, (f) MP4, (g) PSH −20%, (h)
PSH +20%, (i) SCH +4%, (j) SCH −4%, (k) BPF, (l) PSH −10%, (m) PSH
+10%, (n) AWGN (40 dB), (o) echo (100 ms), (p) replace (1/3), (q) PSH
−4%, (r) PSH +4%, (s) AWGN (15 dB), (t) echo (20 ms, and (u) replace
(1/2).

Figure 4.2: Comparison of extracted watermark-image: (a) no attacks and
(b) second half of speech signal substituted by synthesized speech signal.
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Table 4.3: An accuracy of tampering detection of the proposed method

FRR FAR

Accuracy 5% 25%

4.4.1 Tampering detection accuracy

The SSA-based AIH is designed for tampering detection. The detection
performance was measured by false rejected rate (FRR), i.e., false negative
(FN) and false acceptance rate (FAR), i.e., false positive (FP). Firstly, speech
signals will be judged as tampered or non-tampered using BER. If the BER
of the signal is higher than 10 %, the signal will be judged as tampered
and if lower than 10 % is non-tampered. The incorrect judgment for each
signal belonged to one of the following two categories FRR and FAR. FRR
is defined as the intact signals that were judged as tampered and FRR were
calculated as follow.

FRR = NFRR

N
× 100%, (4.3)

where NFRR is numbers of signal in FRR categories, and N is the total
number of tested signals.

FAR is a tampered signal judged as non-tampered and FAR were calcu-
lated as follow.

FAR = NFAR

N
× 100%, (4.4)

where NFAR is numbers of signal in FAR categories, and N is the total
number of tested signals.

An accuracy of tampering detection of the proposed method is shown in
Table 4.3.

It can be seen that FRR is 5% because our proposed method is not
robust to MP4 operation. The robustness of MP4 of our proposed method
had BER at 32.52%. All speech signals performed MP4 were judged by the
tampering detection system as tampered speech. For FAR rate is 25%, this
false rejected rate come from the low degree attacks. Let consider BER for
each attack in Table 4.2. The low degree attacks have BER lower than 10%
were judged as non-tampered. Actually, this FAR rate does not reflect the
facts because some low degree does not affect the sound quality or robustness.
We should define a threshold of the attacks carefully. Table 4.4 showed the
accuracy of the system after the threshold of attacks is defined. Here we
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Table 4.4: An accuracy of tampering detection after defined threshold of
attacks

FRR FAR

FE-based method [56] 1.71 % 3.65 %
Proposed method 5.00 % 12.50 %

remove the low degree of attacks by referencing the recent paper that detects
tampering in speech signals [56]. The Adding white Gaussian-noise with a
high signal-to-noise ratio and the tampered with a low degree of pitching
shifting were removed. It can be seen that now the FAR rate only causes
by echo adding. The false acceptance was decreased from 25% to be 12.5%.
However, the lower percentage of FRR and FAR, the better in performance of
the detection system. Therefore, robustness to MP4 of the proposed scheme
should be improved as well as the scheme should be more fragile to echo
adding in order to improve tampering detection.

4.5 Computational Time

The DE-based parameter estimation’s computational time is significantly
high because of many simulated processes, i.e., an embedding process, an
extraction process, and many attacks simulation. As a consequence, SVD was
performed many times for each input segment, and SVD is time-consuming.
Also, the search space of DE is enormous to cover all possible value. The
computational time is significantly reduced using CNN-based parameter es-
timation instead of DE-based estimation in the information hiding scheme.
A 10-fold cross-validation was conducted to assure model stability. All of the
simulations have been experimented with a personal computer with Windows
10 (Home Edition). The CPU was a 7th generation Intel® Core™ i5-7360U
with 2.3 GHz clock speed of and 8 GB memory size of a 2,133 MHz speed. A
comparison of computational times of both methods is shown in Table 4.5.
Note that the CNN-based method was approximately 2 million times faster
than that of the DE-based method.

Even the CNN-based parameter estimation is very helpful to reduce
the computational time, but we have to trade-off with the accuracy of the
parameter estimation. We compare parameters obtained from the DE-based
method and the parameters obtained from the CNN-based method with the
root-mean-square error (RMSE). Figure 4.3 showed a comparison of parame-
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Table 4.5: Comparison of computational times for of parameter estimation
of the method based on differential evolution and the method based on CNN.

Computational Time

time/frame time/signal
DE-based method 6 minutes 32 hours
CNN-based method 0.195 millisecond 0.065 second

Table 4.6: Comparison of robustness and inaudibility of scheme when
automatic parameterization is based on differential evolution and when it
is based on CNN.

DE-based Method CNN-based Method
BERNA (%) 0.00 0.83

BERG711 (%) 0.00 1.90

BERG726 (%) 25.00 11.12

BERMP3 (%) 10.00 8.67

BERMP4 (%) 30.00 32.52

LSD (dB) 0.71 0.45

SDR (dB) 30.63 35.51

ters obtained from the DE-based method and the parameters obtained from
the CNN-based method. The RMSE of each parameter estimation are as
follows, RMSE of parameter γ was 0.0022, the RMSE of parameter µ was
32.1956, and the average RMSE of parameter σ was 40.2616. The RMSE
values of the parameters µ and σ seems to be quite large. However, if
we consider on the robustness and inaudibility of the scheme when both
methods were applied were comparable, as shown in Table 4.6. Figure
4.4. showed an example of a singular spectrum of a frame that is em-
bedded with parameters estimated from the DE-based method and those
estimated with the CNN-based method. In this experiment, the error (or
difference) between the two parameter vectors [µDE σDE]T and [µCNN σCNN]T

was
√

(µDE−µCNN)2+(σDE−σCNN)2 = 90.56, may seem to be large compared
with the RMSE, but the modified singular spectra of both estimation do not
look much different.
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Figure 4.3: RMSE of γ, µ, and σ from DE-based parameter estimation and
CNN-based parameter estimation.
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Figure 4.4: Example of singular spectrum of embedded frame. “�” denotes
original singular spectrum, “∗” denotes modified singular spectrum where
parameters are obtained from CNN-based method, and “◦” denotes singular
spectrum where parameters are obtained from DE-based method, red solid
line denotes γ threshold, and dashed line denotes a straight line connected
the first and last singular value to be modified.
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4.6 Discussion

The information hiding scheme for tampering detection is constructed,
and the scheme can be reducing the computational time of parameter es-
timation. Two main points should be discussed: the CNN-based method
effectiveness and the detection accuracy of the system. The first point is
related to the CNN-based method effectiveness. The CNN-based method
effectiveness is discussed in three aspects: the effectiveness of the CNN-based
method, the role of the cost function for DE optimizer, and the computational
time calculation. The second point is related to the detection accuracy of
the system and its effectiveness.

Let us start with the effectiveness of the CNN-based method. The com-
putational time of parameter estimation is significantly reduced. However,
the effectiveness of the CNN-based method cannot go beyond that of the
DE-based method since DE is used as the basis of the framework that we
use to generate the training dataset. The performance of the CNN-based
method is typically poorer than the DE-based method because there is an
error in the learning (or fitting) process during the building of the CNN in
most cases. A crucial factor that is responsible for the effectiveness of the
DE algorithm is the cost function. In this work, the cost function and some
DE hyper-parameters, such as the upper bounds and the lower bounds of the
parameters, play an essential role in balancing robustness and inaudibility.
In other words, the CNN-based method’s effectiveness depends on how well
supervised by the training dataset provides by the DE-based method. The
better cost functions provide a better quality of the training dataset.

Here the role of the cost function is discussed. Defining a good cost
function is not trivial, and it is presumably impossible to explore all possible
cost functions. The basic assumption applied to setting cost function is that
the cost function should include two terms: one representing robustness and
the other representing inaudibility. The eight different settings was used,
as shown in Table 4.7. Evaluations of the robustness and inaudibility when
these cost functions were used in the DE optimizer are shown in Table 4.8.
Note that these functions were evaluated by using only 40 frames due to the
expensive computational cost of DE.

Cost functions C1 and C2 look similar. Both take the LSD into account
and equally weigh the terms representing inaudibility and robustness equally.
Also, they assign the same weight βi for the same BER conditions. The only
difference is the upper bound of γ, i.e., the search space of γ of C2 is smaller
than that of C1. We found that their average BERs were comparable, but
C1 yielded a better sound quality. Therefore, we can safely infer that we can
use the possible range of γ to control the sound quality of a watermarked
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Table 4.7: Eight cost functions studied in our investigation.

Cost function
Hyperparameter

Lower bound of γ Upper bound of γ

C1 =
√

LSD2 + BER
2
,

where BER = 1
3
BERNA+ 4

21
BERMP3+ 4

21
BERMP4+ 4

21
BERG711+ 2

21
BERG726

0.001 0.015

C2 =
√

LSD2 + BER
2
,

where BER = 1
3
BERNA+ 4

21
BERMP3+ 4

21
BERMP4+ 4

21
BERG711+ 2

21
BERG726

0.007 0.015

C3 =
√

2
10
LSD2 + 8

10
BER

2
,

where BER = 1
3
BERNA+ 4

21
BERMP3+ 4

21
BERMP4+ 4

21
BERG711+ 2

21
BERG726

0.007 0.015

C4 =
√

3
10
LSD2 + 7

10
BER

2
,

where BER = 1
3
BERNA+ 4

21
BERMP3+ 4

21
BERMP4+ 4

21
BERG711+ 2

21
BERG726

0.007 0.015

C5 = 1
3
BERNA+ 4

21
BERMP3+ 4

21
BERMP4+ 4

21
BERG711+ 2

21
BERG726 0.001 0.015

C6 = 1
3
BERNA+ 4

21
BERMP3+ 4

21
BERMP4+ 4

21
BERG711+ 2

21
BERG726 0.007 0.015

C7 = 1
3
BERNA+ 4

21
BERMP3+ 4

21
BERMP4+ 4

21
BERG711+ 2

21
BERG726 0.001 0.0085

C8 =BERNA 0.007 0.015

signal.
Let us consider C2 and C3. For this pair of cost functions, we wanted to

investigate the outcome when we adjusted the weights between the robustness
term (BER) and the inaudibility term (LSD). In C3, the robustness was
weighted three times greater than the inaudibility. We expected that DE
with C3 would favor robustness much more than inaudibility. However, the
results showed that the average BER of C3 was about 25% less than that of
C2, whereas the LSD of C3 was about 50% greater than that of C2.

Similarly, when we considered the outcomes of C2, C3, and C4 together,
we found that controlling the balance between robustness and inaudibility
by adjusting the weight between the LSD and the BER was not effective, as
evidenced in Table 4.8. Thus, we tried another strategy, i.e., we used the size
of the search space of γ to control the sound quality.

Let us consider the outcomes of C5, C6, and C7 in comparison with C2, C3,
and C4. It can be seen that, when we set the upper bound of γ appropriately,
we could gain an improvement in sound quality while the BER level was
maintained.

Finding an efficient cost function is not the primary focus of this work,
but it is of importance due to the fact that it will help us to generate a
better training dataset for the CNNs. Therefore, in this work, the robustness
against critical speech signal operations such as G.711, G.726, MP3, and
MP4 should be ensured. DE optimizer can simulate this attack to find the
parameter that makes the scheme robust to these operations. Also, adding
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Table 4.8: Evaluations of robustness and inaudibility when different cost
functions were deployed.

C1 C2 C3 C4 C5 C6 C7 C8

BERNA (%) 10.00 17.50 7.50 12.50 0.00 0.00 0.00 0.00

BERG711 (%) 10.00 17.50 7.50 12.50 0.00 0.00 0.00 0.00

BERG726 (%) 47.50 42.50 37.50 45.00 10.00 20.00 15.00 25.00

BERMP3 (%) 22.50 27.50 17.50 27.50 2.50 2.50 2.50 10.00

BERMP4 (%) 40.00 32.50 30.00 32.50 7.50 7.50 5.00 30.00

LSD (dB) 0.12 0.19 0.30 0.23 0.70 0.79 0.50 0.71

SDR (dB) 58.77 47.99 39.36 47.75 27.73 27.08 35.17 30.63

more signal processing operations into the DE optimizer could provide the
training dataset with high robustness. We will tackle this problem in the
future.

The last issue for CNN-based method effectiveness is the computational
time calculation. A comparison of computational times of both methods is
shown in Table 4.5. Note that the computational time calculation of the
CNN-based method excludes the training phase. The time in the training
phase of CNN is excluded from the computational time of the CNN-based
method because the model was trained only one time, and the model was
used to estimate the parameter multiple times, then the training time can
be discarded. Moreover, if the CNN is well trained, then the CNN can
estimate the embedding parameter of unknown speech without retraining.
This idea was examined by testing the CNN-based parameter with 37.5
% of the untrained speech signal. The result of extraction precision from
the 37.5 untrained testing set was comparable with the extraction precision
of all testing set were trained. This result motivates that the CNN-based
parameter can estimate the embedding parameter of unknown speech without
retraining. However, since the experiment was set up for concept checking
and was not checking with a large dataset, we only imply that the training
time can be excluded from computational time calculation. The estimation
of embedding parameters of unknown speech will be considered in future
work.

The second point we want to discuss is related to the accuracy of tamper-
ing detection. As we have seen, the result of tampering detection accuracy
is shown in Table 4.4. We remove the low degree of attacks, such as adding
white Gaussian noise with a high signal-to-noise ratio and tampered with
a low degree of pitching shifting, but the FRR and FAR are still high as 5
% and 12.5 %, respectively. It isn’t easy to compare our proposed method
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with another method since there are no standards on which type of signal
operation to be tested as non-malicious attacks nor which type and degree of
attacks to be tested as malicious attacks. Some tapering detection focused
only on content tamperings, such as insertion or deletion [52]. The signal
operation and malicious attacks were tested on cochlear delay-based method
[45] and formant enhancement-based method [56], and SSA-based method
[73] are also different. Almost all method regarding tampering detection
showed the result in BER for different type of attacks, but there is only
formant enhancement-based method [56] that show the result on tampering
detection accuracy. Thus, we compare our proposed method with FE-based
method [56]. Note that the embedding capacity of the proposed method is
40 bps while the embedding capacity of the FE-based method is 8 bps.

The lower percentage in FRR and FAR refers to the better performance
of the detection system. The proposed method has FRR at 5 % because the
scheme is not robust to the MP4 operation. The FE-based method has FRR
at 1.71 %, but the MP4 operation does not include the FE-based method
experiment. The reason that the proposed method does not become robust
to MP4 because we hide the secret information in high order singular value
that implies a high-frequency oscillator component of the speech signal, which
hidden information could be lost on MP4 compression. The proposed method
has FAR at 12.5 % because the scheme is not fragile to echo adding. The FE-
based method has FAR at 3.65 %, but the echo adding does not include the
FE-based method experiment. The invariance property of singular value may
cause the proposed method not to become fragile to echo adding. However,
we cannot say that our proposed method successful in tampering detection.
The number 5 % of FRR may be annoying the user that the system does not
accept the MP4 operation as the non-tampered speech. When we consider
the false negative (FN), or FRR, there is less critical than false positive (FP)
or FAR because FAR refers to the system accept the tampered speech as the
non-tamper one. The FAR of our system is 12.5 %. If this system installed to
discard the tampered speech in a sensitive system such as a banking system,
this could lead to a problem. Therefore, robustness to MP4 of the proposed
scheme should be improved as well as the scheme should be more fragile to
echo adding in order to improve the effectiveness of tampering detection.

4.7 Summary

In this chapter, we propose the core structure of SSA-based AIH for
tampering detection. The main require property of the information hiding
scheme for tampering detection is semi-fragile, i.e., the information hiding
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scheme should be robust to non-malicious attacks and fragile to the attacks.
This proposed scheme is base on a singular SSA-based information hiding
method. Hence, a watermark was embedded into a host speech signal with
the same concept in previous: modifying a part of its singular spectra. As
we discover that the modification affects the sound quality and robustness
of the scheme, it can also make the scheme robust, fragile, or semi-fragile.
Therefore, in this work, the part of the singular spectrum to be modified must
be carefully selected to make the scheme semi-fragile for tampering detection.
Previously, we found that a DE algorithm can be deployed to select the
appropriate part for modification, but it was costly in computational time.
In this work, CNN-based parameter estimation is offered to replace DE.
However, DE was used as the basis of a framework for generating a high-
quality dataset for CNN training. The results from the experiment showed
that the scheme deployed CNN-based parameter estimation could correctly
detect whether tampering occurs or not, and it could locate tampered ar-
eas and roughly predict the types and degrees of tampering. When using
CNN-based parameter estimation, the computational time could reduce by
approximately 2 million times and improve the watermarked signal’s sound
quality. In addition, the information hiding scheme is entirely blind because
the estimation can be used to find the parameters in both the embedding and
extraction processes. However, the proposed method needs to be improved
in the tampering detection accuracy because the scheme has FRR at 5 %
and FAR at 12.5 %. This error comes from the scheme is not robust to
MP4 operation, and the scheme is not fragile to echo adding. Therefore,
robustness to MP4 of the proposed scheme should be improved as well as
the scheme should be more fragile to echo adding in order to improve the
effectiveness of tampering detection.
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Chapter 5

Application of Information
Hiding

There are two application shown in this chapter.
The first application is related to the last example in the introduction

chapter. The situation concerns two people who want to communicate se-
cretly, but they do not want others to know that they are privately commu-
nicating. In some companies, they monitor the email, song, recording that
send through the network. Their policy does not allow the employees to
encrypt the message, including a song or sound recording, since they cannot
monitor those encrypted messages. In this application, the singular spectrum
analysis (SSA)-based information hiding method with the transformation
method to provide a secret and secure channel on speech signals. The SSA-
based AIH will provide secret channel and Arnold transformation make the
secret channel to be secured. Here we want to define clearly the difference
between a secret and secure channel. A secret channel focuses on how difficult
to know the existence of the channel, while a secure channel focuses on how
difficult to access data on the channel.

The second application is related to the situation that the company
distributes the message to everyone, but the employees at the different levels
can only access the message related to their authorization. In this application
our information hiding method can be deployed encryption method to provide
the accessing data at the different levels.

In summary, there are two different applications in this chapter. The
first application provides the secret and secure channel, while the second
application provides the accessing data at the different levels. Both methods
deploy SSA-based AIH and Arnold transformation. The concept and detail
of applying Arnold transformation and SSA-based AIH to solve different
problems will be described in this chapter. The evaluation and result also be
provided.
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5.1 Statement of the problem

There are two different problems in this chapter. The first problem is
related to the last example from the introduction chapter. The situation
concerns two people who want to communicate secretly, but they do not want
others to know that they are privately communicating. In some companies,
they monitor the email, song, recording that send through the network. Their
policy does not allow the employees to encrypt the message, including a song
or sound recording, since they cannot monitor those encrypted messages.
The second problem is related to the situation that the company distributes
the message to everyone, but the employees at the different levels can only
access the message related to their authorization. Note that encryption is
not prohibited since the company distributes the message.

Both methods use an SSA-based AIH core structure to solve this problem
and adopt Arnold’s transformation differently to solve each question. From
literature of encryption algorithm, RSA, a widely used public-key cryptog-
raphy system, has been used for speech data encryption and decryption, but
it is limited by the maximum number of signals that can be encrypted at a
single time [74]. The chaotic algorithm had a shorter computation time, but
there was a trade-off with security level [75]. Multiple scrambling was applied
to strengthen information hiding, but the speech contents could be accessed
by anyone [76]. The audio encryption algorithm using an elliptical curve
and Arnold transformation was evaluated to determine its suitability for
information hiding, but it did not include the implementation or evaluation
of an information hiding scheme [77]. The hybrid domain was applied in
audio watermarking with chaotic encryption, but the encryption was only
applied to the watermark signal [78]. The Arnold transformation performs
on a matrix and our SSA-based method and analyze the singular value of
the matrix represent the signal. Thus, Arnold transformation is suitable to
use for SSA-based AIH.

5.2 Background

5.2.1 Singular spectrum analysis-based Information hid-
ing

SSA-based information hiding is the same as the one was introduced in
Chapter 3. The scheme used the concept of basic SSA to analyze host signals
and extract the singular spectra, and the watermark signal was hidden in
a part of the spectra. However, there is a bit of difference between this
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proposed and the one introduced in Chapter 3, i.e., the rule for embedding
the watermark bit and the method to make a secured watermark signal.

Therefore, to recall the SSA-based AIH concept, we provide a short brief
of SSA-based AIH, which has two main processes: embedding and extraction.

In embedding, the host speech signal is segmented into non-overlapping
frames. One watermark bit is embedded into one frame. Thus, the number
of frames is equal to the number of the watermark bits to be embedded.
Then the trajectory matrix F which represents each frame F is constructed.
Singular value decomposition (SVD) is performed on each trajectory matrix
F to obtain each frame’s singular spectra. The singular spectra are modified
to hide the watermark bit (0 or 1), and the part of the singular spectra to be
modified depends on the requirement of the information hiding application.
The modified trajectory matrix Y is constructed by SVD reversion and then
hankelized. The hankelization of a modified trajectory matrix Y yields a
signal G, where G is a frame of the watermarked signal. The frames are
stacked to reconstruct the watermarked signal.

In extraction, the watermarked signal is first segmented into non-overlapping
frames, and the trajectory matrix is constructed in the same way as in the
embedding process. Then SVD is performed on the trajectory matrix to
obtain the singular spectra. The singular spectra of the signal of each frame
are typically convex; however, the watermark bit embedded into an interval
of the singular spectrum of a host frame results in a concave part on the
interval of the singular spectrum of the reconstructed, watermarked frame.
This property can be utilized to extract the watermark bit from each frame.

5.2.2 Arnold scrambling algorithm

The Arnold scrambling algorithm, or Arnold transformation, describes a
discrete mapping from site (xt,yt) to site (xt+1,yt+1) with circumference N ,
where (0 ≤ t < N) and mod is a modulo function.[

xt+1

yt+1

]
=

[
2 1
1 1

][
xt
yt

]
mod N. (5.1)

Arnold transformation is used to alter a matrix X of dimension NxN into
a matrix X

′
to decrease the correlation coefficient between the matrices.

Arnold transformation is cyclical, and iterated. The scrambling key is needed
as a secret key to identify the number of iterations during the transformation
process to bring back the original matrix. In the proposed method, Arnold
transformation is applied to the watermark signal to provide a secured wa-
termark signal, and it is, in turn, applied to the watermarked signal for
encryption.
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Figure 5.1: Secret and secure channel: Emitter (left), and receiver (right).

5.3 Proposed method

This section introduces two systems of information hiding adopted trans-
formation.

5.3.1 The scheme for construct secret and secure chan-
nel

The first scheme is constructed for solving the first situation that two
people want to communicate secretly. The scheme consists of the emitter
side and the receiver side, as illustrated in Figure 5.1. The watermark signal
is transformed using key KA0 to obtain the secure watermark and embedded
into the host signal to produce a watermarked signal. The watermarked sig-
nal is then sent through the communication channel on the emitter side. The
watermarked signal is received and decoded to obtain the secured watermark,
which is later transformed using KA1 to obtain the original watermark on the
receiver side. The watermark or hidden information is made to be secured in
this scheme and sent through the network directly. The hidden information
does not attract listeners’ attention then only an authorized person with the
correct key can access hidden information.

5.3.2 The scheme deployed encryption

The second scheme is constructed to solve the second situation that the
company distributes the message to all, and access is granted depending upon
employees’ level. The scheme consists of the emitter side and the receiver
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Figure 5.2: Scheme deployed encryption: Emitter (left), and receiver (right).

side, as illustrated in Fig. 5.2. The watermark signal is transformed using
key KA0 and embedded into the host signal to produce a watermarked signal,
which is later encrypted using KB0 to be sent through the communication
channel on the emitter side. The watermarked signal is decrypted using
key KB1 and then decoded to obtain the secured watermark, which is later
transformed using KA1 to obtain the original watermark on the receiver side.
Since these two schemes share the same basic structure and only the shade
area in Figure. 5.2 is different, therefore, we will explain in detail of emitter
side and receiver of both schemes and point out the different points.

The details of each side are as follows

5.3.3 Emitter side

A detailed diagram of the emitter side in the proposed scheme is shown in
Figure 5.3. The left-hand side of Figure 5.3 (a) shows the procedure for cre-
ating a secured watermark. The right-hand side (b) shows the procedure for
inserting secured watermarks into the host signal to obtain the watermarked
signal and encrypting the watermarked signal. The watermark signal W is
divided into vectors converted toNxN matrix W, and Arnold transformation
alters the watermark matrix W to obtain altered watermark matrix W

′
using

key KA0, where key KA0 is a pre-defined number of transformation iterations.
Next, the altered watermark matrix W

′
is converted to a secured watermark

signal W
′

to be embedded into the host speech signal. The confidentiality of
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Figure 5.3: Emitter side.
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the watermark signal can be strengthened as a result.
The method of building a secret and secure channel sends the watermark

directly through the network, and it does not apply the encryption step, as
shown in the shaded area of the left-hand side of Figure 5.3. In contrast, the
method to provide different accessing data requires the encryption step, and
finally, the encrypted watermarked signal is sent through the network.

The method of embedding process to obtain a watermarked signal (for
the secret and secure scheme) or obtain an encrypted watermarked signal
(for different granting access) are as follows.

1. Segmentation. The host speech signal is segmented into frames of equal
length M , where M is the total number of samples in each frame.

2. Matrix formation. A signal F of each frame is mapped to a trajectory
matrix F of the size L×K, where F = [f0 f1 ... fM−1]

T where fi for
i= 0 to M−1. The signal F is mapped to matrix F by the following
relation

F =


f0 f1 · · · fK−1
f1 f2 · · · fK
...

...
. . .

...
fL−1 fL · · · fM−1

 . (5.2)

where L is a window length, and 2 ≤ L ≤M , and K is M−L+1.

3. Singular Value Modification. A singular spectrum is modified on the
basis of the secured watermark bit to be embedded. Given a singular
spectrum {

√
λ0,
√
λ1, ...,

√
λq}, a specific part of this singular spectrum,

which is {
√
λp,
√
λp+1, ...,

√
λq}, is modified on the basis of the secured

watermark bit w with

√
λ∗i =


√
λi + αi(

√
λp −

√
λi), if w = 1,

√
λi (i.e., unchanged), if w = 0,

(5.3)

where
√
λ∗i is the modified singular value for i = p to q,

√
λp is the

largest singular value that is less than γ ·
√
λ0, αi is an embedding

strength, as defined in [46]. Note that γ is a pre-defined value to control
the number of singular values to be modified.
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4. Hankelization. A watermarked matrix X∗ is computed as the product
of UΣ∗VT and then hankelized to obtain the signal F ∗, which is the
watermarked segment. The hankelization is the average of the anti-
diagonal i+j=k+1, where i and j are the row index and the column
index, respectively, of an element of X∗, and k ( for k=0 to M−1) is
the index of element F ∗.

5. Segment Reconstruction. The watermarked signal is finally produced
by sequentially concatenating all watermarked segments.

6. Encryption. The watermarked signal from the previous step is trans-
formed into an NxN matrix and encrypted using key KB0 to scramble
its elements. The encrypted matrix is reshaped into one dimension
resulting in an encrypted watermarked signal to be sent through the
communication channel.

Note that the Arnold transformation was applied to secure a watermark
signal and to encrypt the watermarked signal. However, the process was
referred to as a transformation when performed on a watermark signal, and
encryption when performed on the encrypted watermarked signal. This is
to clarify which signal is being transformed as each process differs slightly.
For example, the matrix size NxN of the watermark signal may differ from
that of the encrypted watermarked signal due to the signals’ size difference.
NxN only represents the square matrix, and its value N can be pre-defined.
Since the matrix sizes differ, matrix construction and signal reconstruction
differ as well.

5.3.4 Receiver side

A detailed diagram of the receiver side in the proposed scheme is illus-
trated in Figure 5.4. There are two main procedures on the receiver side, (a)
extracting a secured watermark, and (b) retrieving the original watermark.

There is a difference in the receiver of these two schemes where the method
of building a secret and secure channel receive the watermarked signal directly
from the network, so it does not require the decryption step, as shown in the
shaded area of the left-hand side of Figure 5.4. In contrast, the method
to provide different accessing data requires the decryption step because it
receives the encrypted watermarked signal from the network.

The left-hand side of Figure 5.4 shows the five steps in extracting a secured
watermark. The first step is Decryption. The received signal is reshaped into
NxN matrix and is decrypted using key KB1 to produce the watermarked
signal. Note that key KB1 on the receiver side matches KB0 on the emitter
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side. The decrypted watermarked signal is then passed through the next three
steps, which are Segmentation, Matrix formation, and SVD, as is done on
the emitter side. The last step is Decoding the singular spectra. The secured
watermark bits are extracted by decoding the singular spectra, and how the
spectra are decoded depends on how they are modified in the embedding
process. The embedding rule in equation (5.3) results in the concave part on
the singular spectra if embedding bit 1. Thus, by this property, the secured
watermark bit is extracted.

The right-hand side of Figure 5.4 (b) shows how the secured watermark is
transformed to obtain the original watermark again. The secured watermark
signal is divided and converted to an NxN matrix. The Arnold transforma-
tion transforms the secured watermark matrix using key KA1 to recover the
original watermark. Note that key KA1 on the receiver side matches of KA0

on the emitter side.

Figure 5.4: Receiver side.
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5.4 Evaluations and results

In the experiment, twelve speech signals of Japanese sentences uttered
by six men and six women from the ATR database (B set) were used [70].
The speech signals were one-channel with a 16-kHz sampling rate and 16-bit
quantization. To evaluate the scheme used for building secret and secure
channels, we focus on how the scheme successfully achieves imperceptible
property because this property is related to the attention of listeners and
attackers. Moreover, the accuracy of watermark extraction without the
correct key is considered. To evaluate the scheme deployed encryption, since
the scheme is a hybridization of speech information hiding and encryption,
we evaluated the proposed scheme with respect to information hiding and
encryption. We also evaluated the robustness of the entire system.

5.4.1 Scheme used for building secret and secure chan-
nels evaluation

Our proposed scheme is based on adding secured watermarks to the host
speech signal for building secret and secure channels. The main objective is
to achieve imperceptible hidden information in a watermarked signal. The
attackers will not perceive the hidden information in the contents. Since the
watermark bits were transformed before they were hidden into speech signals,
the key is needed to discover the original watermark.

Three measurements were used to assess the imperceptibility of the wa-
termark signal in a watermarked signal: the log-spectral distance (LSD), the
signal-to-distortion ratio (SDR), and the Perceptual Evaluation of Speech
Quality (PESQ). The LSD is the distance between the spectrum of the host
speech and that of the watermarked signal (in dB). The BER of extract bits
will be used to show the secure of the transformation. SDR is the power
ratio between the signal and the distortion (in dB). The PESQ represents
the sound-quality degradation of the watermarked signal compared with that
of the host signal. The results principally model mean opinion scores (MOS)
ranging from 1 (poor) to 5 (excellent).

The criteria for acceptable imperceptibility is as follows [60]. The LSD
should be less than 1 dB, the SDR should be greater than 25 dB, and the
PESQ should be greater than 3. The proposed method was evaluated on
these measures, the results of which are shown in Table 5.1. The proposed
method satisfies all three measures, which indicates that even though the
speech contents could be heard, the hidden information was imperceptible.
Additionally, the system’s imperceptible properties are well-performing as in
the pure SSA-based information hiding method of [60], and [46]. The BER
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Table 5.1: Comparison of imperceptible properties between proposed and
other methods

Method LSD (dB) SDR (dB) PESQ

Parameterized SSA-based method [60] 0.65 31.58 3.70
SSA-based method [46] 0.69 30.96 3.64

Proposed method 0.65 31.56 3.70

without the correct key is higher than 50% that refer that the channel is
secured.

5.4.2 Scheme deployed encryption evaluation

The correlation coefficient and signal-to-noise ratio (SNR) were measured
to evaluate encryption and decryption. The correlation coefficient measures
the linear relationship between the original speech, the encryption speech,
and the decrypted speech, while SNR measures the noise content in the
encrypted speech signal. The correlation coefficient between the original
signal and the decrypted signal should be close to 1, which indicates no
difference between the two signals, and the SNR should be high. On the other
hand, the correlation coefficient between the original signal and the encrypted
signal should be close to 0, which indicates the difference between the two,
and the SNR should be small. Note that the original speech to be encrypted
in this proposed method is the watermarked signal. Table 5.2 shows that
the encryption and decryption performance of the proposed method was
comparable to that of previously developed speech encryption methods [79]
and [80].

Robustness of proposed scheme

The robustness of the proposed scheme was evaluated by the sensitiv-
ity of the encryption algorithm to changing one or multiple keys and the
watermark-extraction precision of the information hiding. The following
were measured to assess the sensitivity to key changes: the number of sam-
ple change rates (NSCR), the correlation coefficient, and the bit error rate
(BER). The NSCR is defined by

NSCR = 1
L

L∑
i=1

Di, (5.4)
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Table 5.2: Comparison of correlation coefficient and SNR (in dB) between
original speech (ori), encrypted speech (enc), and decrypted speech (dec) for
the proposed method and other encryption methods. Note that NA is not
applicable data

.

Method
Corr-coef
(ori,enc)

SNR
(ori,enc)

Corr-coef
(ori,dec)

SNR
(ori,dec)

Chaotic shift keying method [79] 0.04 NA 0.99 123.57
FFT with chaotic method [80] 0.02 NA 0.99 33.52

Proposed method 0.10 -2.52 0.99 31.74

where L corresponds to the length of the speech signal, and Di is determined
according to the rule

Di =

{
1, if Ai 6= Ai

′
,

0, otherwise ,
(5.5)

where Ai and A
′
i are are the amplitudes of the original speech and those of

the encrypted speech, respectively.
The BER is defined as

BER = 1
M

M∑
j=1

w(j)⊕ ŵ∗(j), (5.6)

where w(j) and ŵ∗(j) are the embedded-watermark bits and the extracted-
watermark bits, respectively.

BER was also used to represent the precision of watermark extraction in
the proposed method. The NSCR and the correlation coefficient show the
degree of variation between two encrypted speech signals when the keys are
modified, and BER indicates the extraction precision when the keys were
changed. Table 5.3 shows the measurements obtained when detecting the
encrypted watermarked signal with a different key series (including the true
key and wrong keys). If the true keys were applied, the ideal values for
NSCR, correlation coefficient, and BER are 0%, 1, and 0%, respectively. The
experiment results show that with the true keys, these three measurements
are almost perfect values. The key changes slightly from the true keys
to demonstrate the value when the wrong key was applied. The NCSR
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Table 5.3: Key sensitivity and BER
.

Keys (KA0, KA1, KB0, KB1)
Corr-coef

(range [0,1])
NSCR

(%)
BER
(%)

True key (5, 7, 11, 19) 1 0 0.13
True key (6, 6, 12, 18) 1 0 0.07
Wrong key(5, 6, 11, 18) 0.0072 99.29 50.72
Wrong key (6, 7, 11, 20) 0.0068 99.28 49.51
Wrong key (6, 9, 12, 19) 0.0069 99.27 50.15
Wrong key (6, 7, 12, 19) 0.0073 99.33 50.12

demonstrates that the two decrypted speech signals with slightly different
keys hold different samples with near 100%, and the correlation coefficient is
close to zero. The BER with the wrong keys is as high as 50%, while a BER
with a true key is less than 1%. The measurement values indicate that the
hidden information is secured.

5.5 Summary

In summary, there are two different applications in this chapter. The
first application provides the secret and secure channel, while the second
application provides the accessing data at the different levels.

The first application, SSA-based AIH is used to build the secret channel,
and the Arnold transformation is performed on the watermark signal to make
it secured. The hidden information was imperceptible so that it is secret
because the listeners do not ware its existence. The BER without the correct
key is higher than 50%, which means the channel is secured.

The second application, Arnold transformation was performed on water-
mark signals to create secured watermarks, which were then embedded into
host speech using SSA-based information hiding, producing a watermarked
signal. The watermarked signal was encrypted before being sent through
the communication channel. The experimental results showed considerable
differences between the correlation coefficient and SNR of the watermarked
signal and those of the encrypted watermarked signal. The key sensitivity
indicated that only authorized persons with the watermarked encryption
key could access the speech contents. The imperceptible watermark and
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significant difference of BER with and without a watermark key indicated
that access to the hidden information was limited. This hybridization system
increased speech security and limited accessibility to the data at varying
levels.
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Chapter 6

Conclusion

This chapter concludes this research work and highlights its contributions
to the auditory information hiding research field and other research fields.
However, no work will be complete at once, and this work can still be
improved. Therefore, we show the possible way to improve our work in
the future as well.

6.1 Summary

In this study, we propose to solve the security problem in the speech signal
by using the information hiding method. The first security is to protect the
genuineness of the speech signal. The hidden information is embedded in
to host signal. If attackers modify or tampered with the speech signals,
the hidden information will reflect the change to check for tampering. The
second security is to protect the secret communication on the speech signal.
In this study, we use our proposed information hiding method to build a
secret and secured channel. Our core structure of SSA-base AIH and CNN-
based parameter estimation are deployed in both scenarios: first, to detect
tampering, and second, to build the secret and secured channel.

Since SSA is used to analyze and investigate the characteristic of a speech
signal and the core structure of SSA-based AIH and CNN-based parameter
estimation are deployed in both scenarios, we will summarize the basic facts
that we find out about SSA to understand the concept of implementation on
our AIH framework.

1. Singular value of speech signals is less sensitive to many signal process-
ing attacks, i.e., its values are not easily changed. Thus, we hypothesis
that if we hide information into singular value, hidden information
should be maintained.
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2. Singular spectrum is naturally convex. We hide the information by
making concave on singular spectrum and we extract by checking the
concave or convex on the modification part.

3. Singular values are sorted in descending order, and the lower-order
singular values have more contributed to the signal than that of the
higher-order and sum of all singular value from speech signal delivered
by SSA can be reconstructed the speech signal.

4. The difference between two adjacent singular values in the lower-order
is more than that of the adjacent two in higher-order.

5. Modification in lower-order singular value is easy to detect since the
difference between two adjacent singulars is high, but this modification
affects more on sound quality (bad imperceptibility).

6. Modification in higher-order singular value is difficult to detect since the
difference between two adjacent singulars is low, and this modification
is a negligible effect on sound quality (good imperceptibility).

These facts are fundamentally used to build SSA-based AIH for both
objective. The followings are sum up to show the unique and novel points of
this work.

1. A novel embedding rule with the embedding strength concept. The
novel embedding rule will consider the character of the singular spec-
trum and apply the embedding strength, which is normal distributed
on a modified part. The embedding strength will take a number of
modified singular values, the mean, and the variance of those values
into account.

2. SSA-based AIH is for tampering detection that requires semi-fragility.
Therefore the selected part to be modified is different from the original
SSA-based AIH. The different parts of the singular spectrum to be
modified give different robustness and fragility. We need to investigate
that the part that satisfied semi-fragile property. Therefore we use DE
optimizer to simulate the cost function to meet the requirement, and
then DE-based parameter estimation suggests a part to be modified
that maintains the semi-fragility.

3. The parameter estimation using CNN to overcome the computational
time for parameter estimation. These CNNs offer the parameter that
suitable for each speech element and keep balancing of AIH require-
ment.

77



4. SSA-based AIH deployed the transformation method to provide a secret
and secure channel and provide scheme for accessing data at different
level. The novel point is that SSA-based AIH analyze the matrix
represent host signal and Arnold transformation perform on a matrix,
this transformation is suitable to cooperate with SSA-based AIH.

The following is sum up regarding each sub-goals to reach the ultimate
goal.

1. SSA-based AIH applied on speech signal can keep the SSA-based tech-
nique advantage as it has done on an audio signal. Therefore, SSA-
based AIH can be applied for both audio and speech signals. SSA-
based AIH can be considered an advantage over the method that can
only apply to audio or speech signals.

2. In order to detect tampering, the SSA-based AIH needs to achieve semi-
fragility property. We found that our scheme is not robust to MP4 and
also not fragile to echo adding attacks. Consequently, we cannot say
that our proposed method successful in tampering detection. The FAR
of our tampering detection system is 12.5 %, and this FAR is caused by
our system cannot detect echo-adding attacks. The FRR is 5 %, and
this FRR is caused by our tampering system judge MP4 operation as
an attack. Therefore, the scheme should be more robust to MP4 while
the scheme should be more fragile to echo-adding to improve tampering
detection effectiveness.

3. Parameter obtained by the DE-based method gives good performance
and reasonable to use for CNN training.

4. CNN-based parameter estimation can reduce the computational time
and keep the requirement balancing as the original SSA-based AIH.

5. SSA-based AIH scheme can cooperate transformation to provide the
secret channel and secret channel on the speech signal.

6.2 Contribution

The proposed information hiding scheme is mainly focused on tampering
detection of speech signals. The contribution can be made to society by
increasing the security of authentication systems by eliminating the tampered
speech before feeding to authentication systems. This scheme can also check
the originality of speech signals, and the scheme can be applied to faked
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information detection in social networks. Moreover, it contributes to science
as a novel analysis tool in digital forensics and checks the originality and
integrity of speech recording in the court. The application we proposed in
the last chapter is one example of our core structure providing the secret and
secure channel on speech signal communication.

6.3 Future Work

The SSA-based AIH proposed in this work still have rooms for futher
enhancements as follow.

1. The core structure that applied CNN-based parameter estimation [73]
has shown a good sign of robustness scheme against speech coding.
Comparison with our previous work [60], robustness against G.726
speech coding is significantly increased (from 21.07 % to be 12.12 %)
while the robustness against G.711 is maintained. In addition, we
succeeded in reducing the computational time of parameter estimation.
Since we deployed DE to generate a dataset for training our CNNs,
the scheme’s effectiveness is correlated with DE performance, and DE
performance depends on its cost function. Therefore, if we want our
scheme to robust against we must set up a good cost function to ensure
the robustness against speech coding. Our DE optimizer considers
only two types of speech coding in this core structure, but the scheme
shows a good sign of robustness improving. We assume the better
cost function will offer better robustness. Moreover, the semi-fragility
that the scheme should be more robust to MP4 and more fragile to
echo-adding can be simulated using DE optimizer.

2. The core structure that applied CNN-based parameter estimation [73]
has a limitation on embedding capacity. The CNNs parameter is
trained with a high-quality dataset generated from the DE optimizer,
and our DE optimizer is simulated with a fixed frame length at 400
samples per one frame. We hypothesis that frame length affects the
estimated parameter because if the frame length changed, the number
of possible modified singular would also change, then the accuracy of
parameter estimation is concerned. Therefore, the problem of different
frame lengths or different embedding capacities should be tackled in
future work.

3. In CNN parameter estimation, there are three parameters, γ, µ, and σ,
to be estimated, and their value is quite small compared to parameter
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γ. Accordingly, we implement two CNNs, one for µ and σ and the
other for γ. We can reduce the CNNs to be only one CNN by using the
weight function. However, its weight function must be design properly
to balance robustness and sound quality because parameters µ and σ
relate to the embedding strength αi, which contribute to the robustness
of the proposed scheme. In contrast, parameter γ directly defines
the number of modified singular values and contributes more to the
sound quality. Therefore, the weight function can help to reduce the
CNNs to be only one CNN. Moreover, now the CNN was used only
for parameter estimation of information hiding schemes, which is used
for tampering detection. If the CNN can co-operate the scheme on
tampering detection function, the scheme’s performance for tampering
detection can be improved.

4. In chapter 5, we applied our SSA-based AIH with the transformation
method to provide a secret and secure channel on the speech signal.
Arnold transformation is performed to provide secured watermarks.
The secured watermarks are embedded into the host signal to obtain
a watermarked signal. Consequently, the channel is secret because
hidden information does not attract the listener, and transformation
makes the hidden information secure. Only the authorized person with
the key can access the hidden information. This SSA-based method
AIH scheme succeeds in building a secret and secure channel to protect
the secret communication. Moreover, by performing a transformation
on watermarked signals, the scheme can limit accessing data at varying
levels. However, the transformation method we used in this proposed
application deployed Arnold transformation, and Arnold transforma-
tion is cyclic and iteration. Arnold’s transformation has a weak point:
it cannot provide high security against brute-force attacks because it
has the limitation of the key searching space. Therefore, there are wide
encryption algorithms that can be deployed for better security.
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