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Abstract

Reconfiguration problems are computational problems that explore connec-
tivity between two feasible solutions or arrangements of a given problem.
The general questions that are considered in reconfiguration problems are:
can any arrangement be reconfigured to any other (connectivity); what is the
worst-case number of steps required (diameter); and what is the complexity
of computing the minimum number of steps required to get from one given
configuration to another given configuration (distance).

The famous 15-puzzle inspired the token reconfiguration problem which
is a reconfiguration problem on a graph with initial and target arrangments
of tokens. Different versions of token reconfiguration problems on various
graph structures have been studied widely in computer science. Token Swap-
ping Problem was introduced by Yamanaka et al. . It was shown that 2-
Colored Token Swapping can be solved in polynomial time and 3-Colored
Token Swapping is NP-complete even for planar bipartite graphs of maxi-
mum degree 3. It also showed that c-Colored Token Swapping is O(nc+2)-time
solvable for graphs of maximum degree at most 2, and c-Colored Token Swap-
ping is fixed-parameter tractable for complete graphs if c is the parameter.
In Sequentially Swapping Colored Tokens on graphs, inapproximability of
the Sequential Token Swapping problem was demonstrated and the positive
results for trees, complete graphs, and cycles were presented.

Token Shifting Problem was introduced by Sai et al. and it was shown
that the Labeled Token Shifting Problem is solvable in polynomial time on
a large class of graphs while solving the k-Colored Token Shifting Problem
in the minimum number of moves is NP-hard even for k = 2.

In this thesis, we investigate a new variation of a token reconfiguration
problem on graphs using the cyclic shift operation. A colored or labeled
token is placed on each vertex of a given graph, and a “move” consists of
choosing a cycle in the graph and shifting tokens by one position along its
edges. Given a target arrangement of tokens on the graph, our goal is to find
the shortest sequence of moves that will re-arrange the tokens as in the target
arrangement. The novelty of our model is that tokens are allowed to shift
along any cycle in the graph, as opposed to a given subset of its cycles. We
focus our investigation on graph classes with high connectivity so as to reflect
the potential applications in areas such as logistics and telecommunications.



We first present the efficient algorithms for solving the token shifting
problem on special graph classes and then give the hardness result of the
problem.

• We give linear-time algorithms for the shortest shift sequence for both
the 2-Colored and the Labeled Token Shifting Problem for complete
graphs.

• We also show that the shortest shift sequence for the Labeled Token
Shifting Problem on standard barbell graphs, and then on generalized
barbell graphs with more than one connecting edge can be constructed
in O(n) time.

• We then describe the procedure of solving the 2-Colored Token Shifting
Problem for block graphs in O(n2) time.

• Finally, we prove that, in the 2-Colored Token Shifting Problem, the
shortest sequence of moves is NP-hard to approximate within a factor
of 1/2 + ε, even for planar graphs with a maximum degree of 4 by
reduction from the NP-complete problem of Hamiltonian cycle on grid
graph.
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Chapter 1

Introduction

Reconfiguration is concerned with relationships among solutions to a problem
instance, where the reconfiguration of one solution to another is a sequence
of steps such that each step produces an intermediate feasible solution. The
solution space can be represented as a reconfiguration graph, where two ver-
tices representing solutions are adjacent if one can be formed from the other
in a single step.Reconfiguration arises in countless problems that involve
movement and change, including problems in computational geometry such
as morphing graph drawings and polygons, and problems relating to games
and puzzles, such as the 15-puzzle, a topic of research since 1879 [1].

Reconfiguration problems also model real-life dynamic situations in which
we seek to transform a solution into a more desirable one, maintaining fea-
sibility during the process [2]. For instance, the optimization concept of
token movement on graphs can naturally extend to problems such as motion
planning, network design and vehicle routing.

The 15-puzzle can be considered as a token reconfiguration problem: the
problem of re-configuring tokens around a given graph, where a token can be
moved along an edge to an empty vertex.Previously studied token reconfigu-
ration problems include the Token Swapping Problem, where pairs of tokens
can be swapped along the edges of a graph. The Token Swapping Problem is
proved to be NP-complete, and there are many special classes of graphs on
which the Token Swapping Problem can be solved via exact polynomial-time
algorithms, including cliques [3], paths [4], cycles [5], stars [6, 7, 8], brooms
[9, 10], complete bipartite graphs [11], and complete split graphs [12] (see,
e.g., [13] for comprehensive surveys).

Recently, the Token Shifting Problem was introduced by Sai et al. in [14],
inspired by puzzles based on cyclic shift operations. The input of the prob-
lem is a graph with a distinguished set of cycles C, and an initial and a final
arrangement of colored tokens on the vertices of the graph. The basic oper-
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ation is called “shift” along a cycle C ∈ C, and it moves each token located
on a vertex of C into the next vertex along C. The problem asks for a se-
quence of shift operations that transforms the initial configuration into the
final configuration. We can further distinguish between the Labeled Token
Shifting Problem, where all tokens are distinct, and the k-Colored Token
Shifting Problem, where tokens come in k different colors, and same-colored
tokens are indistinguishable.

It was shown in [14] that the Labeled Token Shifting Problem is solvable
in polynomial time on a large class of graphs while solving the k-Colored
Token Shifting Problem in the minimum number of moves is NP-hard, even
for k = 2.

In this thesis, we study a variation of the Token Shifting Problem where
the set of cycles C consists of all cycles in the graph (as opposed to a subset
of them). On one hand, our choice makes the problem description more
natural and compact; on the other hand, proving hardness results is now
more challenging. Indeed, previous NP-hardness proofs for variations of the
Token Shifting Problem crucially relied on the fact that only shifts along
certain cycles were allowed.

We remark that in [15], Amano et al. proved that a 2-Colored Token
Shifting Problem called Torus Puzzle is NP-hard to solve in the minimum
number of shifts. This puzzle consists of two arrays of horizontal and vertical
cycles arranged in a grid, which yields a planar graph of maximum degree
4. However, in this puzzle the number of moves is measured differently: any
number k > 0 of consecutive shifts along the same cycle is counted as only
one move, while in our model (as well as in [14]) we count them as k moves.
Because of this, the NP-hardness reduction in [15] does not work in our
model. In addition, the majority of cycles in the graph of the Torus Puzzle
are forbidden from shifting (such as, for example, the 4-cycle determined by
any cell in the grid). However, as already remarked, in our model we insist
on allowing shifts along any cycle.

In the following chapters, we will present the topics below:

• Chapter 2 Preliminaries: Introducing the notions that will be used
throughout the thesis.

• Chapter 3 Token Shifting on Complete Graphs: Describing op-
timal algorithms for solving 2-Colored and Labeled Token Shifting on
complete graphs.

• Chapter 4 Token Shifting on Barbell Graphs and Their Gener-
alizations: Describing optimal algorithms for solving Labeled Token
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Shifting on barbell graphs, generalized barbell graphs with 2 bars, and
generalized barbell graphs with k > 2 bars.

• Chapter 5 Token Shifting on Block Graphs: Describing the pro-
cedure and the bounds for solving 2-Colored Token Shifting on block
graphs.

• Chapter 6 Hardness of 2-Colored Token Shifting: Proving the
NP-hardness of 2-Colored Token Shifting.
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Chapter 2

Preliminaries

Let G = (V,E) be an undirected graph, where V is the vertex set and E is the
edge set, and let Col = {1, 2, . . . , c} be the color set for tokens, where c is a
constant. A token arrangement (or configuration) is a function f : V → Col,
where f(v) represents the color of the token located on the vertex v ∈ V .

The token shift operation can be defined as follows. Let C = (v1, v2, . . . , vk)
be a cycle of vertices of G = (V,E), where {vi, vi+1} ∈ E for all 1 ≤ i < k and
{vk, v1} ∈ E. Then, a token shift along C will transform any arrangement
f into the arrangement f ′, which coincides with f on all vertices except the
ones in C. Specifically, for vi ∈ {v1, v2, . . . , vk−1}, we have f ′(vi+1) = f(vi),
and f ′(v1) = f(vk). All cycles in G are eligible for token shift, and the length
of the cycle can range from 2 to |V |. Note that we consider each edge of
G as a cycle of length 2; in this case, the result of the shift operation will
be equivalent to a token swap along that edge. In the following chapters,
we will denote the token shift along cycle C = (v1, v2, . . . , vk) as the shift
(v1, v2, . . . , vk). A simple demonstration of token shift operation is shown in
Figure2.1.

The Token Shifting Problem takes as input a connected graph G = (V,E),
a color set Col, an initial arrangement f0, and a final arrangement ft. The
problem asks to determine the shortest sequence of shift operations OPT
that transforms f0 into ft, assuming that such a sequence exists.

Note that, since swaps along edges are allowed, it is possible to transform
f0 into ft if and only if they have the same number of tokens of each color,
which is checkable in the linear time given f0 and ft. Thus, without loss
of generality, we may assume that there is always a sequence of shift oper-
ations that transforms f0 into ft, and our goal is to find the shortest one.
Furthermore, it is easy to prove that |OPT| ≤ |V |(|V | − 1)/2 (this bound
is obtained by using swap operations only; cf. [11, Theorem 1]). Since we
have a polynomial upper bound of the number of shift operations, the Token
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Figure 2.1: Token Shift (v1, v3, v2) on a simple graph

Shifting Problem is in NP.
We distinguish between the k-Colored Token Shifting Problem, where the

size of Col is a fixed constant k, and the Labeled Token Shifting Problem,
where Col = V , and f0 and ft are permutations of V (that is, all tokens have
distinct labels). In this thesis, we will mostly focus on the 2-Colored Token
Shifting Problem (i.e., where Col = {c1, c2}) and the Labeled Token Shifting
Problem.

We will also introduce the notion of conflict graph [11] constructed from
two token arrangements on a graph which will be used in later chapters. We
define the conflict graph D(fa, fb) = (V ′, E ′) of graph G = (V,E) for two
arrangements fa and fb as follows [11]:

V ′ = {v ∈ V | fa(v) 6= fb(v)} and

E ′ = {e = (vi, vj)| fa(vi) = fb(vj) and vi, vj ∈ V ′}.

D(fa, fb) is a digraph that includes vertices that hold different tokens in the
token arrangements fa and fb and there is an arc from vi to vj if the token
on vi needs to be moved to vj.

5



Chapter 3

Token Shifting on Complete
Graphs

3.1 2-Colored Token Shifting on Complete Graphs

In this section, we show that for the 2-Colored Token Shifting Problem on
complete graphs, an optimal shift sequence can be constructed in linear time.

Theorem 1. The 2-Colored Token Shifting Problem on a complete graph
G = (V,E) can be solved in linear time by a single shift operation.

Proof. Let Col = {c1, c2} be the color set and let f0 and ft be the initial and
target token arrangements, respectively. We can construct two sets V1 and
V2 of vertices as follows:

V1 = {v ∈ V | f0(v) = c1 and ft(v) = c2} and

V2 = {v ∈ V | f0(v) = c2 and ft(v) = c1}.

Given that f0 is re-configurable to ft, |V1| = |V2| = m for a complete graph
with 2m misplaced tokens. Thus, we can construct a cycle of length 2m that
visits each vertex in V1 and V2 alternately. For V1 = {x1, x2, . . . , xm} and
V2 = {y1, y2, . . . , ym}, the shift (x1, y1, x2, y2, . . . , xm, ym) transforms f0 into
ft.

For example, in Figure 3.1, V1 = {v5, v8} and V2 = {v2, v4}. From V1 and
V2 the shift cycle (v2, v5, v4, v8) can be constructed, which transforms f0 into
ft.
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Figure 3.1: 2-colored token shifting on a complete graph: (a) an initial token
arrangement f0, (b) a target token arrangement ft, and (c) an optimal shift
cycle

3.2 Labeled Token Shifting on Complete Graphs

In this section, we show that the Labeled Token Shifting Problem on a com-
plete graph can be solved by at most two shift operations.

Theorem 2. The Labeled Token Shifting Problem on a complete graph G =
(V,E) can be solved with a minimum shift sequence |OPT| ≤ 2 in linear time.

Proof. For a complete graph G = (V,E) with initial token arrangement f0

and target token arrangement ft, construct a conflict graph D(f0, ft). Each
vertex in D(f0, ft) must belong to a directed cycle for f0 to be configurable
to ft. A simple example is given in Figure 3.2. One way to transform f0 to
ft would be to perform a token shift along each directed cycle in D(f0, ft);
if there are only 1 or 2 cycles, this strategy is optimal. However, it is not
optimal when the number of cycles is more than 2.

The disjoint cycles in D(f0, ft) are analogous to the notion of permu-
tation cycles. In Figure 3.2(c) we have the three disjoint cycles (v1, v4),
(v2, v6, v3, v7), and (v5, v8), which collectively correspond to the permutation
(14)(2637)(58).

Suppose there are m disjoint cyclic permutations involving n elements;
the product of these m disjoint cycles and a length-m cycle consisting of one

7



Figure 3.2: Labeled Token Shifting on a complete graph:(a) An initial token
arrangement f0, (b) a target token arrangement ft, (c) the conflict graph
D(f0, ft), and (d) the conflict graph D(f1, ft) of a complete graph

element from each disjoint cycle is a single length-n cycle which includes all
n elements. For example, (14)(2637)(58)(521) = (18563724).

Accordingly, we construct a first shift cycle including one vertex from
each cycle in D(f0, ft). That will result in an arrangement f1 whose conflict
graph D(f1, ft) consists of a single directed cycle (see Figure 3.2(d)). We
can then perform a second shift along this cycle to obtain the target token
arrangement ft.

Corollary 2.1. For the k-Colored Token Shifting Problem on a complete
graph G = (V,E), we have |OPT| ≤ 2.

Proof. Let f0 and ft be the initial and final arrangements, respectively. Let
Col′ = V , and let us define f ′0 as an arbitrary bijection f ′0 : V → Col′. We
then define f ′t : V → Col′ as a bijection that, for all vi, vj ∈ V , satisfies
f ′0(vi) = f ′t(vj) =⇒ f0(vi) = ft(vj). Essentially, we assign unique labels
to tokens in a way that is consistent with their colors. Thus, we obtain
an instance of the Labeled Token Shifting Problem, which we can solve by
Theorem 2. The same sequence of moves also solves the original instance, by
construction.
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Chapter 4

Token Shifting on Barbell
Graphs and Their
Generalizations

In this chapter, we consider the Labeled Token Shifting Problem on barbell
graphs and their generalization. A barbell graph is a simple graph obtained
by connecting two complete graphs by an edge, which is called its bar. Our
goal is to find the minimum shift sequence between initial and final token
arrangements f0 and ft on a barbell graph. Then we extend our result to
generalized barbell graphs that have two or more bars.

4.1 Token Shifting on Barbell Graphs

We first show that we can find the minimum shift sequence on a barbell
graph in linear time. Let G be a barbell graph composed of two cliques A
and B, each of size n, connected by a single edge which is called the bar.

The two cliques A and B of size n containing vertices v1 to vn and from
vn+1 to v2n, respectively. The two vertices joined by the bar will be referred
as gate vertices. Furthermore, we subdivide the tokens into two types, based
on their matching vertices in the target arrangement: local tokens and foreign
tokens, as follows. Tokens on vertices in a clique whose target vertices are in
the other clique are referred to as foreign tokens. Let foreign(A) be the set
of foreign tokens in A in f0 and foreign(B) be the set of foreign tokens in B
in f0 as follows:

foreign(A) = {vi ∈ V | f0(vi) = ft(vj) where vi ∈ A and vj ∈ B},

foreign(B) = {vi ∈ V | f0(vi) = ft(vj) where vi ∈ B and vj ∈ A}.
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Let F = |foreign(A)| = |foreign(B)|. Next, we will prove that 3F − 2 ≤
|OPT| ≤ 3F + 4. Note that |foreign(A)| = |foreign(B)| = F must hold in
order for f0 to be re-configurable to ft. Let SF be an optimal shift sequence
for moving all 2F foreign tokens to their matching vertices (possibly leaving
some non-foreign tokens on incorrect vertices).

Lemma 3. In the Labeled Token Shifting Problem on a barbell graph, we
have 3F − 2 ≤ |SF | ≤ 3F + 2.

Proof. To transform f0 to ft, it is required for every foreign token on A and
B to cross the bar at least once. Note that we can move two foreign tokens
by performing a token exchange across the bar. In the worst case, a foreign
token needs to be moved three times: from the current vertex to the nearest
gate vertex, then across the bar to the gate vertex of the target clique, and
then to the target vertex. Firstly, a foreign token on each clique must be
moved to the gate vertex of that clique, which takes 2 shifts in total. Then,
the actual exchange of tokens on gate vertices in a shift cycle (vn, vn+1) of
length 2 occurs. Next, in each clique, the token on the gate vertex, say vn,
is moved to its target vertex vi, while a new foreign token is moved from
vj to the gate. This is done with the single cycle (vn, vi, vj). After the F th
exchange, we need one more shift in each clique to move the token from
the gate vertex to its target vertex. Therefore, in the worst case, we do F
exchanging shifts and 2F + 2 local shifts, which is 3F + 2 shifts in total.
However, we also need to consider the following special cases.

Condition 1. A gate vertex already holds a foreign token in the initial ar-
rangement f0.

If a gate vertex already holds a foreign token in the initial arrangement,
then the initial shift for moving a foreign token to that gate vertex is not
necessary as in A of Figure 4.1(b). Hence, in the cases where A or B (or
both) satisfy Condition 1, we need one (or two) fewer shifts than 2F + 2.

Condition 2. The target token of a gate vertex (i.e., the token that is on a
gate vertex in ft) is in the opposite clique in f0.

If this condition is satisfied, we can move that gate’s final token across the
bar in the F th exchange. In this way, it is already in place when it enters the
clique, and we can spare the final shift in that clique. In Figure 4.1(b), both
A and B satisfied Condition 2. Thus, in the extreme case where both gate
vertices satisfy Conditions 1 and 2, and only 3F − 2 shifts are necessary.

As for the local tokens, their target vertices are within the same clique.
Hence, by Theorem 2, at most 2 shifts are necessary to solve the problem in
each clique.
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Figure 4.1: An example of Labeled Token Shifting on a barbell graph (a)
initial arrangement f0 (b) conflict graphs DA(f0, ft) and DB(f0, ft)

Theorem 4. The Labeled Token Shifting Problem on a barbell graph G =
(V,E) can be solved with an optimal shift sequence in linear time, satisfying
3F − 2 ≤ |OPT| ≤ 3F + 4.

Proof. We can classify each vertex into one of three types by constructing
conflict graphs for A and B. A vertex either

1. already holds its target token,

2. belongs to a directed cycle such as (vi, vj, . . . , vk) where vk holds token
i, vi holds token j, or

3. belongs to a chain of vertices that cannot form a cycle such as vi, vj, . . . , vk
where vi holds token j, vk holds a foreign token j, and token i belongs
to another clique.

11



Type-1 vertices need no consideration. As for type-3 vertices, they can
be solved while exchanging foreign tokens. Since token i must reach gate
vn after an exchange at some point, we can then perform the cyclic shift
(vi, vj, . . . , vk, vn). This will move the token i to vi, token j to vj, token k
to vk and lastly the foreign token on vk to vn. This not only matches the
vertices vi, vj, . . . , vk with their tokens but also moves a foreign token to vn
for the next exchange. We now consider how to deal with the type-2 vertices.
As they are isolated from the type-3 vertices, they cannot be solved while
exchanging foreign tokens. Hence, to avoid additional shifts, we connect the
directed cycles to a chain of type-3 tokens. We can do that by performing
a shift that includes a type-2 vertex from each directed cycle and a type-
3 vertex while moving a foreign token to the gate vertex. In the example
described in Figure 4.1 with F=4 with Condition 1 on A and Condition 2
on both cliques, we can compute that |OPT | = |SF | = (3F + 2) − 3 = 11.
In Figure 4.2, we can see how the problem is solved in 11 shifts. Since v8

already holds foreign token 16 in f0, we only need 2 shifts before the first
exchange. The directed cycles (v1, v2) and (v3, v5) are connected to type-3
token v4 while moving the foreign token 12 to v8 by the shift (v1, v3, v4, v8).
We get the target arrangement in f11 as the 4th exchange was for tokens 8
and 9 that belong to the gate vertices. In this way, we can handle the local
tokens while exchanging foreign tokens and |OPT| = |SF |. However, this is
true only when |SF | ≥ 5.

Let us now discuss the exceptional case where the minimum shift sequence
required for exchanging foreign tokens satisfies |SF | < 5. In this case, fewer
than two shifts are performed on one of the cliques during the exchange.
When F = 0, the problem becomes two independent token shifting problems
on two complete graphs, which may need 4 shifts in total. Thus, 3F + 2 is
no longer an upper bound.

We can conclude that the shortest shift sequence for token shifting on
a barbell graph is |OPT| = |SF | = 3F + 2 in the general case without
Conditions 1, 2, and excluding the exceptional case discussed above. We
can now compute optimal bounds on the minimum shift sequence from the
extreme cases as follows. For a case with F = 0, we need at most 4 shifts for
solving the problem on two complete graphs independently, and so |OPT| =
3F + 4 holds. For a case with Conditions 1 and 2 on both sides, we have the
minimum sequence of |OPT| = 3F − 2. We can easily determine whether
those conditions hold in linear time.
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Figure 4.2: An example of Labeled Token Shifting on a barbell graph showing
token arrangements after each exchange across the bar
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4.2 Token Shifting on Generalized Barbell Graphs

with Two Bars

In this section, we extend our previous result to generalized barbell graphs.
That is, we join two cliques by two bars instead of one, and this allows us to
more effectively exploit the cyclic shift operation.

Let G be a generalized barbell graph with 2n vertices, with cliques A and
B consisting of vertices from v1 to vn and vn+1 to v2n, respectively. Two bars
e1 and e2 connect A and B such that e1 is incident to vn and vn+1, and e2 is
incident to vn−1 and vn+2. Let F = |foreign(A)| = |foreign(B)|, defined as in
the previous section.

Theorem 5. The Labeled Token Shifting Problem on a generalized barbell
graph G = (V,E) with 2 bars can be solved with an optimal shift sequence in
linear time, satisfying F ≤ |OPT| ≤ F + 4.

Proof. As discussed before, an exchange needs two steps: moving foreign
tokens on each clique to the gate vertices and the actual exchange of tokens
on gate vertices. In a barbell graph with 2 bars, we can combine the two
steps into one by exchanging foreign tokens and bringing the foreign tokens
to the gate vertices for the next exchange in a single shift. Since each clique
now has two gate vertices, one vertex acts as the entry gate vertex where
the incoming tokens pass through and another acts like the exit gate vertex
through which the foreign tokens leave. Between the cliques A and B, the
two bars e1 and e2 act like two lanes going in opposite directions.

Let vn and vn−1 be the gate vertices of A and vn+1 and vn+2 be the gate
vertices of B such that vn and vn+1 are connected by e1 and vn−1 and vn+2

are connected be e2. In a single shift, we can move a foreign token b3 inside
A to vn (exit of A), b2 on vn to vn+1 (entry of B), and b1 on vn+1 to vb1 inside
B. Also, move a foreign token a3 inside B to vn+2 (exit of B), a2 on vn+2 to
vn−1 (entry of A), and a1 on vn−1 to va1 inside A (see Figure 4.5(b)).

Therefore, |SF | is reduced to F + 4 (F exchanging shifts, 2 pre-exchange
shifts, and 2 post-exchange shifts). The generalized barbell graphs with 2
bars also have two exceptional conditions, corresponding to Conditions 1
and 2 in Lemma 3.

In this case of Condition 1, we need one less shift than F + 4. If the gate
vertices va of A and vb of B are not adjacent and both vertices hold foreign
tokens, we can start exchanging tokens immediately and need 2 fewer shifts.

In the case of Condition 2, the target token of a gate vertex lies in the
opposite clique. This token can be exchanged last to save 1 shift. If both A
and B satisfy Conditions 1 and 2, then |SF | = F .
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Figure 4.3: An example of Labeled Token Shifting on a generalized barbell
graph with 2 bars: (a) Initial arrangement f0 (b)conflict graphs DA(f0, ft)
and DB(f0, ft) and direction for token exchange between A and B shown in
dotted arrows

We can deal with the local tokens in a similar way as in Section 4.1, so
that no additional shift is necessary for moving local tokens when |SF | ≥ 2.
Figure 4.4 shows an example with F=3 and without Condition 1 or 2 solved
in |OPT|=|SF |=F+4=7 shifts.

In the exceptional case where the minimum shifts required for exchanging
foreign tokens is |SF | < 2, local tokens cannot be handled by SF .

We can now work out exact bounds on the minimum shift sequence from
the extreme cases as follows. For a case with F = 0, we need at most 4 shifts
for solving the two cliques separately, and |OPT| = F + 4 holds. For a case
with Conditions 1 and 2 on both sides, we have the minimum shift sequence
of |OPT| = F .
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Figure 4.4: An example of Labeled Token Shifting on a generalized barbell
graph with 2 bars

16



4.3 Token Shifting on Generalized Barbell Graphs

with k ≥ 2 Bars

For the next step, we discuss the Labeled Token Shifting Problem on gen-
eralized barbell graphs with k > 2 bars. Here, G is a graph consisting of
two equal cliques A and B connected by k edges, called bars, such that no
two bars are incident to the same vertex. Let F = foreign(A) = foreign(B),
defined as usual.

Theorem 6. The Labeled Token Shifting Problem on a generalized barbell
graph G = (V,E) with k ≥ 2 bars can be solved with an optimal shift sequence
that satisfies F/bk/2c ≤ |OPT| ≤ F/bk/2c+ 4.

Proof. In the previous section, we proved that token shifting on a barbell
graph with 2 connecting edges for 2F foreign tokens uses F + 4 shifts: 2
local shifts for moving foreign tokens on gate vertices at the start, F shifts
for exchanging foreign tokens between cliques, and 2 local shifts to rearrange
tokens within cliques. Now, while the number of local shifts remains the
same, the number of exchanging shifts decreases as k increases.

Half of the k edges can be used to move the foreign tokens from A to B
and another half of the k edges can be used to move foreign tokens from B
to A. In one shift, we can exchange k tokens for even k and k− 1 tokens for
odd k (see Figure 4.5). Thus, for F tokens, we only need F/bk/2c shifts.
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(a)

(b)

(c)

Figure 4.5: Representation of token shifting on (a) a barbell graph (b) a
generalized barbell graph with 2 bars (c) a generalized barbell graph with
k > 2 bars
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Chapter 5

2-Colored Token Shifting on
Block Graphs

In this chapter, we discuss the 2-Colored Token Shifting Problem on block
graphs. A block graph (or a clique tree) is a graph in which every bi-
connected component (block) is a clique (see Figure 5.1).

Definitions. In order to state this section’s result, we need some defini-
tions. Given a block graph G = (V,E), where a block is a maximal clique,
an articulation point is a vertex that belongs to more than one block. Let
P ⊆ V be the set of articulation points of G, and let K be the set of blocks of
G. We define the tree representation of G (see [16]) as the undirected graph
T (G) = (V ′, E ′), where V ′ = P ∪K and

E ′ = {{k, p}| the articulation point p ∈ P lies in the block k ∈ K}.

When referring to T (G), the nodes in P are called articulation nodes, and
the nodes in K are called clique nodes. Figure 5.1(c) shows an example of
a tree representation. For a clique node k ∈ K, we write I(k) to indicate
the vertices of G that are in the block k but are not articulation points, i.e.,
I(k) = k \ P . Note that I(k) induces a (possibly empty) clique in G.

Now, let G = (V,E) be a block graph with n vertices, let Col = {c1, c2} be
the color set, and let f0 and ft be the initial and target token arrangements
on G. We say that an articulation node p ∈ P holds color c ∈ Col if f0(p) = c.
Also, if f is an arbitrary arrangement, we write nc(f(p)) = 1 if f(p) = c, and
nc(f(p)) = 0 otherwise. Similarly, for a clique node k ∈ K, let nc(f(k)) be
the number of c-colored tokens in I(k) ⊆ V in the arrangement f . Then, we
say that a clique node k of T (G) holds color c if nc(f0(k)) > nc(ft(k)).

For each node x in T (G), x has a value of nc1(f0(x)) − nc1(ft(x)). For
each edge e in E ′ connecting two nodes k ∈ K and p ∈ P , we define the

19



number diff(e) as follows (cf. [17]). Let Tk be the subtree including node
k resulted by the removal of e from T (G). nc1(f(T ′)) is the number of c1

tokens on the set of vertices of G represented by T ′ in arrangement f . Then,
diff(e) = nc1(ft(Tk)) − nc1(f0(Tk)), i.e., the difference in the number of c1

tokens on T ′ between f0 and ft. For simplicity, diff(e) can be defined as the
number of c1 tokens (and, symmetrically, also c2 tokens) that we must move
along e to transform f0 into ft. If diff(e) = d > 0, it means we need to move
d tokens of color c1 to k. If diff(e) = −d < 0, it means we need to move d
tokens of color c2 to k.

Finally, we define E ′k ⊆ E ′ to be the set of the edge of T (G) that are
incident to the clique node k.

Theorem 7. For the 2-Colored Token Shifting Problem on a block graph
G = (V,E), we have

∑
k∈K

max
e∈E′

k

{|diff(e)|} ≤ |OPT| ≤
∑
k∈K

max


∑
e∈E′

k
diff(e)>0

diff(e),
∑
e∈E′

k
diff(e)<0

|diff(e)|, 1

 ,

and a shift sequence within these bounds can be computed in O(n2) time.

Proof. For the upper bound, we will give a procedure for finding a shift
sequence. We first construct the tree representation T (G) in O(n2) time.
From T (G), we determine the sequence of shifts by deciding on which clique
the shift must be performed in each step (note that, in a block graph, every
cycle is included in a single clique).

For a clique k with an excess of c1 tokens connected to an articulation
vertex p, some c1 tokens in k must be moved out and some c2 tokens must
be moved in through p. We need to perform a shift that moves the extra c1

token in k to the articulation vertex p and the c2 tokens on p to the target
vertex in k. On T (G), it will be a token exchange between a clique node
k that holds color c1 and the articulation node p that holds color c2 along
the edge e = {k, p} ∈ E ′. This exchange will decrease |diff(e)| and change
the color of p to c1. However, in the case where the p holds the same color
c1 as k, it is pointless to perform a shift between them. The same goes for
a clique with nc2(f0(k)) > nc2(ft(k)). If diff(e) = 0, no token needs to be
moved across e, and e can be removed from T (G). For G to achieve the
target arrangement ft, all the edges in T (G) must be removed. Thus, we
can construct the shift sequence for G from T (G) by determining the clique
nodes for an exchange in each step.

We now discuss how to choose a feasible clique node for token exchange.
There are three types of clique nodes in T (G):
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1. leaf node: a clique node with an articulation node, the removal of which
will disconnect the clique node from the other clique nodes in T (G).
When we look for a clique for token exchange, we start with the leaf
nodes and go up the tree T (G). A leaf node k connected to node p by
edge e is feasible for an exchange if k and p hold different colors and
|diff(e)| > 0.

2. non-leaf node: a clique node with more than one articulation nodes con-
necting it to other clique nodes in T (G). In non-leaf nodes, we can ex-
change one or more pairs of different color tokens in one shift. For a non-
leaf node k with m articulation nodes p1, p2, . . . , pm, k is feasible for an
exchange (1) if there are one or more edges e = (k, p) with |diff(e)| > 0,
and k and p hold different colors, where p ∈ {p1, p2, . . . , pm} and k has
non-zero value or (2) if k is connected to one or more pairs of articu-
lation nodes pi and pj ∈ {p1, p2, . . . , pm} where pi and pj hold different
colors, and diff(ei = {k, pi}) and diff(ej = {k, pj}) have opposite sign
(one positive, one negative).

3. isolated node: a clique node that is disconnected from other clique
nodes in T (G) as the amount of both c1 and c2 tokens in it is the
same for f0 and ft. For each isolated node k with no edge in T (G), if
f0(k) 6= ft(k), then one shift suffices to reach the target arrangement
as nc(f0(k)) = nc(ft(k)), c ∈ {c1, c2}.

Each shift exchanges at least a pair of different color tokens and thus
decreases a pair of +diff(e) and −diff(e) value (if the exchange is between
two p nodes) or decreases a +diff(e) or −diff(e) value (if the exchange is
between the p and k node). Including the possible case of isolated clique
which needs 1 shift, we get the upper bound for the number of shift in a
clique corresponding to k as:

max


∑
e∈E′

k
diff(e)>0

diff(e),
∑
e∈E′

k
diff(e)<0

|diff(e)|, 1


As for the lower bound, we observe that, for each clique node k, we can only
move one token to or from each articulation point in a shift and decrease
the |diff(e)| of each edge by one. Therefore, if k is incident to an edge e
with |diff(e)| = d, then at least d shifts must be performed in the clique
corresponding to k. Thus, to remove all the edges incident to a clique node
k in T (G), at least maxe∈E′

k
{|diff(e)|} shifts are necessary. Figures 5.1 and
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5.2 show a step-by-step example of 2-Colored Token Shifting on a block
graph.
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Figure 5.1: 2-colored Token Shifting on a block graph: (a) Initial arrangement
f0, (b) target arrangement ft, and (c) tree representation T (G) of the block
graph G with positive values over nodes that need black tokens, negative
values over nodes that need white tokens, diff(e) values over each edge e
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(a)

(b)

(c)

Figure 5.2: An example of 2-colored Token Shifting on a block graph G:
T (G) with dashed rectangle marking the feasible cliques for the shift (left)
and the resulting token arrangement after the shifts (right)
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(d)

(e)

(f)

Figure 5.2: An example of 2-colored Token Shifting on a block graph G:
T (G) with dashed rectangle marking the feasible cliques for the shift (left)
and the resulting token arrangement after the shifts (right) (Cont.)
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Chapter 6

Hardness of 2-Colored Token
Shifting

In this chapter, we show that the shortest shift sequence for the 2-Colored
Token Shifting Problem is not only NP-hard to compute but also NP-hard
to approximate within a factor of 1/2 + ε, for any ε > 0. This is true even if
the graph G is a grid graph, hence planar and with maximum degree 4. We
will prove it by a reduction from the NP-complete problem of deciding if a
grid graph has a Hamiltonian cycle, i.e., a cycle involving all vertices [18].

Theorem 8. The optimal shifting sequence for the 2-Colored Token Shifting
Problem is NP-hard to approximate within a factor of 1/2+ε, for any ε > 0,
even for grid graphs.

Proof. Let G = (V,E) be a grid graph (i.e., a vertex-induced finite subgraph
of the infinite grid), and let a checkered arrangement be an arrangement of
two-colored tokens on G such that tokens on any two adjacent vertices have
different colors. Note that, for any given G, there are exactly two different
checkerboard arrangements.

Our reduction maps the grid graph G to the 2-Colored Token Shifting
Problem on the same graph G, where the initial arrangement f0 and the
target arrangement ft are the two distinct checkerboard arrangements (see
Figure 6.1).

Observe that f0(v) 6= ft(v) for all v ∈ V , and thus a sequence of shift
operations that transforms f0 into ft must move every token at least once.
More precisely, ft is reached if and only if every token takes part in an odd
number of shift operations. If G has a Hamiltonian cycle C, then the shift
operation along C immediately transforms f0 into ft, and hence |OPT| = 1.
Conversely, if |OPT| = 1, the single shift operation that transforms f0 into
ft must involve every vertex, and thus it must be a Hamiltonian cycle.
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Figure 6.1: 2-colored Token Shifting on a grid graph: (a) Initial arrangement
f0 and (b) target arrangement ft

We have proved that, if G has a Hamiltonian cycle, then |OPT| = 1,
and that if G does not have a Hamiltonian cycle, then |OPT| ≥ 2. Thus,
if we could compute an approximation of |OPT| within a factor of 1/2 + ε
in polynomial-time, we would also be able to decide if G has a Hamiltonian
cycle. Since the latter problem is NP-hard [18], then so is the former problem.
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Chapter 7

Conclusion

7.1 Summary

In this thesis, we presented linear time algorithms for optimally solving the
2-Colored Token Shifting Problem on complete graphs as well as the Labeled
Token Shifting Problem on complete graphs and variants of barbell graphs.
We also gave the O(n2) procedure for solving and computing upper and lower
bounds of the 2-Colored Token Shifting Problem on block graphs. We then
show that, in the 2-Colored Token Shifting Problem, the shortest sequence
of moves is NP-hard to approximate within a factor of 1/2 + ε, even for grid
graphs. Notably, our NP-hardness result settles a problem left open in [14],
which asked whether the Token Shifting Problem remains NP-hard when
restricted to planar graphs or graphs of constant maximum degree.

7.2 Remaining Work

In Corollary 2.1, we showed that k-Colored Token Shifting Problem on a
complete graph has |OPT| ≤ 2 and can be solved in 2 shifts. However, for
the k-Colored Token Shifting Problem with k > 2, we do not have an efficient
algorithm to determine when |OPT| = 1 and when |OPT| = 2. We leave
this as an open problem. It will also be interesting to extend the problem
of Labeled Token Shifting on a generalized barbell graph with k > 2 bars in
Chapter 4 and investigate the case where not all k bars are independent i.e.
some of the bars may share a common vertex.
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