
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title Ptolemaic graphの効率のよい列挙アルゴリズムの研究

Author(s) 銭, 夢澤

Citation

Issue Date 2021-09

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/17547

Rights

Description
Supervisor:金子　峰雄, 先端科学技術研究科, 修士（情

報科学）

Master’s Thesis

Efficient Enumeration of Non-isomorphic Ptolemaic Graphs

Mengze QIAN

Supervisor Mineo KANEKO

Graduate School of Advanced Science and Technology
Japan Advanced Institute of Science and Technology

(Information Science)

09, 2021

Abstract

In Euclidean geometry, Ptolemaic inequality relates six distances by four
points in the plane. For any four points A,B,C,D, Ptolemaic inequality is
represented as AC · BD ≤ AB · CD + BC · DA. By Ptolemaic inequality,
the characterization of Ptolemaic graphs is easy to understand. A Ptole-
maic graph is a connected graph which for any four vertices u, v, w, x of G,
d(u, v)d(w, x) ≤ d(u,w)d(v, x) + d(u, x)d(v, w) holds.

Howorka shows that the class of Ptolemaic graphs is the intersection of
the classes of distance hereditary graphs and chordal graphs. Hence the
Ptolemaic graphs also hold the properties of both the chordal graphs and
the distance hereditary graphs. A graph is said to be chordal if every cy-
cle of length at least 4 has a chord. The class of chordal graphs is well
investigated with related massive research. On the other hand, a graph G
is distance hereditary if it is connected and every induced path is isometric;
that is, if the distance function in every induced subgraph of G is the same
as that in G itself. The vertex incremental description is one of the ways
of the characterizations of a graph class, which means, by applying vertex
incremental rules that add one or several vertices each time, all graphs of
a certain graph class can be obtained. The vertex incremental descriptions
of the classes for both distance hereditary graphs and Ptolemaic graphs are
proposed by Bandelt and Mulder in 1986.

Uehara and Uno give the clique laminar tree (CL-tree) to represent a
Ptolemaic graph as a tree structure. The clique laminar tree represents
laminar structure on cliques in a Ptolemaic graph. Using CL-tree, Tran and
Uehara propose an enumeration algorithm of Ptolemaic graphs in 2020. How-
ever, it only shows the two phases of the algorithm and gives the polynomial
upper bound between the enumeration of two Ptolemaic graphs. In 2009,
the DH-tree is proposed as the tree representation of the distance hereditary
graph by Nakano et al. As the class of Ptolemaic graphs is the subset of the
class of distance hereditary graphs, the DH-tree can also be applied to the
representation of Ptolemaic graphs. By converting the DH-tree to a string
representation, the graph isomorphism of distance hereditary graphs can be
solved efficiently. As one of the applications for the DH-tree, Nakano et al.
also give the theoretical time complexity for enumerating distance hereditary
graphs by using DH-trees, whereas no specific algorithms are given. In 2018,
Yamazaki et al. proposed an enumeration framework for the graph classes,
which uses reverse search as the technique to avoid duplicates and solve
the graph isomorphism of the graph class efficiently. Using the framework,

Yamazaki et al. proposed a new enumeration algorithm for distance hered-
itary graphs, which uses the vertex incremental characterization of distance
hereditary graphs. Since the class of Ptolemaic graphs holds a similar vertex
incremental characterization with the class of distance hereditary graphs, we
can modify the algorithm to enumerate Ptolemaic graphs.

In this paper, we focus on the enumeration algorithm for Ptolemaic
graphs. We first introduce the related work. Next, we give the preliminar-
ies, which include the vertex incremental characterizations of both distance
hereditary graphs and Ptolemaic graphs, then we give the notion of the DH-
tree and reverse search. By proposing the notion of a function, we give an
efficient way to compute if a vertex is simplicial. Then, by modifying the
enumeration algorithm from distance hereditary graphs, we give the enumer-
ation algorithm for Ptolemaic graphs, which enumerates all Ptolemaic graphs
with at most n vertices in O(n3) time for each.

2

Contents

1 Introduction 1
1.1 Previous research . 1
1.2 Motivation and Results . 3

2 Preliminaries 4
2.1 Vertex Incremental Characterizations 5

2.1.1 Distance Hereditary Graphs 6
2.1.2 Ptolemaic Graphs . 6

2.2 The DH-tree . 7
2.2.1 Generation of DH-trees 7
2.2.2 Normalization of DH-trees 9
2.2.3 Three Graph Representations 11

2.3 Reverse Search . 12

3 Simplicial Function 14

4 Enumeration Algorithm 16

5 Conclusion 22

A Experimental Results 24

List of Figures

2.1 Some special graphs in graph theory with 4 vertices 5
2.2 Three operations in a graph. 6
2.3 Generating the DH-tree by compacting vertices in a distance

hereditary graph. 10
2.4 Normalization of the DH-tree in Figure 2.3. 11
2.5 A DH-tree and its string representation 13

Chapter 1

Introduction

Recently, we have to deal with huge amounts of data in data mining and
machine learning. It is common to find the abstract data structure of these
data and enumerate them to test if the model is feasible. For the basic
structures like tree structures, they are widely investigated, whereas for more
complex structures, the related research is not enough yet.

The enumeration problem is a classic problem in various areas. Enumer-
ating all elements in a certain graph class can be useful for the application of
the graph class. Sometimes, we need to enumerate all elements in a specific
set and analyze them. Recent years, there has been much research on the
structures in graphs in the areas of graph algorithms and graph theory. In
graph theory, some graph classes have not been well investigated yet, e.g.,
Ptolemaic graphs. From these background, we give the enumeration algo-
rithm for Ptolemaic graphs in this thesis.

1.1 Previous research

In [10], Howorka proposes the characterizations of distance hereditary graphs
and Ptolemaic graphs. A graph is a distance hereditary graph if the distances
in any connected induced subgraph are the same as that in the original
graph. A Ptolemaic graph is a graph that for every four vertices, the short-
est path distance between vertices obeys Ptolemaic inequality. It is proved
by Howorka that the class of Ptolemaic graphs is the subset of the class of
distance hereditary graphs [7], and Bandelt and Mulder give the similar ver-
tex incremental characterizations for the classes of distance hereditary graphs
and Ptolemaic graphs [8].

In 2020, Tran and Uehara proposed an enumeration algorithm for Ptole-
maic graphs [2], which used CL-tree [3], a tree structure based on the lam-

1

inar structure of intersections of maximal cliques in Ptolemaic graphs, as
the tree structure in enumeration. Their algorithm has two phases. They
first enumerate all CL-tree structures and then assign vertices to construct
corresponding Ptolemaic graphs. After giving the algorithm, they show the
following theorem for Ptolemaic graphs [2].

Theorem 1. Non-isomorphic Ptolemaic graphs with at most n vertices can
be enumerated in polynomial time for each.

However, in this algorithm, they do not give the specific steps for enu-
meration, thus the exact upper bound of the polynomial is not clear, and
also the algorithm is difficult to be implemented.

A DH-tree [6] is a canonical tree structure derived from a distance hered-
itary graph, which is proposed by Nakano et al. As one of the applications
of the DH-tree, Nakano et al. give the outline of the enumeration algorithm
for distance hereditary graphs as follows.

Enumeration for distance hereditary graphs by DH-trees: For given
n, it can efficiently enumerate each distance hereditary graph with at most n
vertices exactly once as follows; (1) enumerate all unordered trees of n leaves
such that each inner node has at least two children, (2) for each tree obtained
in (1), enumerate all possible assignments of labels to all inner nodes, and
(3) for each label assignment in (2), enumerate all possible choices of one
child as a neck for each inner node with label ‘P’.

Based on the phases above, they show the following theorem;

Theorem 2. Distance hereditary graphs with at most n vertices can be enu-
merated in O(n) time for each, with O(n2) space.

Here they use the constant time generation algorithm of trees proposed
by Nakano and Uno [18] to enumerate all unordered trees with n leaf nodes,
and each inner node of which holds at least two child nodes in step (1).
Then, they enumerate all possible assignments of labels to all inner nodes in
step (2) and enumerate all possibilities of the neck-pendant combination in
step (3). However, “possible assignments of labels” in step (2) is not defined
certainly. Furthermore, the algorithm has not been implemented yet.

Recently, a framework of enumeration algorithm has been proposed by
Yamazaki et al [4], which is based on reverse search [1]. The framework
has been applied in the enumeration algorithm for interval graphs and per-
mutation graphs [17]. Upon the framework, Yamazaki et al. also give the
enumeration algorithm for distance hereditary graphs [5] by using the vertex

2

incremental characterization of the class of distance hereditary graphs, and
they show the following theorem for the enumeration of distance hereditary
graphs and give the implementation.

Theorem 3. Distance hereditary graphs with at most n vertices can be enu-
merated in O(n3) time for each.

1.2 Motivation and Results

For the enumeration algorithm for Ptolemaic graphs, there is no implemented
algorithm yet. In this paper, we aim to design the efficient enumeration algo-
rithm for Ptolemaic graphs. Yamazaki has given the enumeration algorithm
for distance hereditary graphs and has implemented the algorithm recently.
As the classes of distance hereditary graphs and Ptolemaic graphs have the
similar vertex incremental characterizations, by modifying the enumeration
algorithm for distance hereditary graphs, I propose the enumeration algo-
rithm for Ptolemaic graphs. The enumeration algorithm for Ptolemaic graphs
can enumerate all Ptolemaic graphs with at most n vertices in O(n3) for each,
which is more efficient than the algorithm proposed by Tran and Uehara [2].
Yamazaki also implemented the enumeration algorithm for Ptolemaic graphs
and published the experimental results on [19]. This year, we presented the
enumeration algorithms for both distance hereditary graphs and Ptolemaic
graphs on WALCOM 2021 [5].

3

Chapter 2

Preliminaries

We consider only simple graphs G = (V,E) with no self-loop and multi-
edges. We assume V = {v0, v1, ..., vn−1} for some n and |E| = m. The open
neighborhood of a vertex v in a graph G = (V,E) is the set N(v) = {u ∈ V |
{u, v} ∈ E}, and the close neighborhood of a vertex v is N(v)

⋃
{v}, denoted

by N [v]. Given a graph G = (V,E), for two vertices u, v ∈ V , we call that
they are a pair of twins if N(u)\{v} = N(v)\{u}. For a pair of twins u
and v, we say that they are strong twins if {u, v} ∈ E and weak twins if
{u, v} /∈ E. For two vertices u and v in a given graph G = (V,E), they are
adjacent if {u, v} ∈ E. A vertex v in G is a pendant only if |N(v)| = 1. Given
an unlabeled unrooted graph G = (V,E), vertices u and v are equivalent in
G if N(u) = N(v) and |N(x)| = |N(y)| ≥ 1.

Given a graph G = (V,E), a sequence of the distinct vertices v0, v1, ..., vl
is a path, denoted by (v0, v1, ..., vl), if {vj, vj+1} ∈ E for each 0 ≤ j < l. The
length of a path is the number l of edges on the path. For two vertices u and
v, the distance of the vertices, denoted by d(u, v), is the minimum length of
the paths joining u and v. A clique is a subset of vertices of an undirected
graph such that every two distinct vertices in the clique are adjacent. The
degree of a vertex v in G is |NG(v)| which is denoted by degG(v).

Given a graph G = (V,E) and a subset U of V , the induced subgraph by
U , denoted by G[U], is the graph (U,E ′), where E ′ = {{u, v} | u, v ∈ U and
{u, v} ∈ E}. Given a graph G = (V,E) and a subset U of V , an induced
connected subgraph G[U] is isometric if the distance of pairs of vertices in
G[U] is the same in G. A connected graph G is distance hereditary if every
induced path in G is isometric. A connected graph G is Ptolemaic if for
any four vertices u, v, w, x of G, we have d(u, v)d(w, x) ≤ d(u,w)d(v, x) +
d(u, x)d(v, w).

Let Kn denote the complete graph of n vertices and Sn denote the star
graph with one neck and n−1 pendants adjacent to the neck. Given a graph

4

G = (V,E), a vertex v is simplicial in G if G[N(v)] is a clique in G. We define
a graph isomorphism between two graphs G0 = (V0, E0) and G1 = (V1, E1) as
follows. The graph G0 is isomorphic to G1 if and only if there is a one-to-one
mapping φ:V0 → V1 such that for any pair of vertices u, v ∈ V0, {u, v} ∈ E0

if and only if {φ(u), φ(v)} ∈ E1. We denote by G0 ∼ G1 for two isomorphic
graphs G0 and G1.

Figure 2.1: Some special graphs in graph theory with 4 vertices

2.1 Vertex Incremental Characterizations

The notion of vertex incremental characterization is proposed by Shi [11]. A
vertex incremental characterization of a class A of graphs is the necessary
and sufficient condition under which adding a vertex v to a graph from A
would obtain another graph in A. For some graph classes, adding a set of
vertices to a graph from A is also a legal condition for the vertex incremental
characterization. For the class A of graphs, the characterization of A is
often written as a set of operations, and when applying either one of the
operations in a specific way or in any order from a starting graph of one
vertex, we would obtain all graphs in A. There are several graph classes
holding vertex incremental characterizations, parity graphs [12], 3-leaf power
graphs [13], (6,2)-chordal bipartite [14], etc.

To introduce the vertices incremental description for the classes of both
distance hereditary graphs and Ptolemaic graphs, we first give the notions
of the following three operations for a given graph G, which are also shown
in Figure 2.2.

For a vertex v in a graph G = (V,E), we obtain strong twin u of v by
adding a new vertex u into V (G) such that N [u] = N [v], in which vertices
u and v are adjacent. Respectively, we obtain weak twin u of v by adding
a new vertex u into V (G) such that N(u) = N(v), and vertices u and v are

5

Figure 2.2: Three operations in a graph.

not adjacent. We add a pendant u on v such that u and v are adjacent and
N(u) = {v}.

2.1.1 Distance Hereditary Graphs

We first give the vertex incremental characterization for the class of dis-
tance hereditary graphs. Distance hereditary graphs are first characterized
by Howorka in [10], and Bandelt and Mulder [8] give the vertex incremental
characterization of the distance hereditary graphs as follows;

Theorem 4 ([8, Theorem 1]). A vertex is a distance hereditary graph. Let
G = (V,E) be a distance hereditary graph, and v be any vertex in G. Then
a graph obtained by either (1) adding a pendant u /∈ V to v, (2) splitting v
into weak twins, or (3) splitting v into strong twins, is a distance hereditary
graph.

2.1.2 Ptolemaic Graphs

For Ptolemaic graphs, we have the following characterization due to Howorka
[7]:

Theorem 5. The following conditions are equivalent: (1) G is Ptolemaic;

6

(2) G is distance hereditary and chordal; (3) for all distinct non-disjoint
maximal cliques P,Q of G, P

⋂
Q separates P\Q and Q\P .

For the vertex incremental characterization of the class of Ptolemaic
graphs, we note that in [2, Corollary 1], the authors give the characteri-
zation of Ptolemaic graphs by only adding strong twins and pendants, which
is incorrect. The correct one of Ptolemaic graphs should be given as follows:

Theorem 6 ([8, Corollary 6]). A vertex is a Ptolemaic graph. Let G = (V,E)
be a Ptolemaic graph, and v be any vertex in G. Then a graph obtained by
either (1) adding a pendant u /∈ V to v, (2) splitting v into weak twins if
vertex v is simplicial, or (3) splitting v into strong twins, is a Ptolemaic
graph.

2.2 The DH-tree

2.2.1 Generation of DH-trees

We use the DH-tree to represent a Ptolemaic graph. A DH-tree is a canonical
tree structure derived from a distance hereditary graph, which is a rooted
ordered tree defined in [6]. In a DH-tree, each inner node holds a label, and
the label of an inner node is one of {‘S’, ‘W’, ‘P’}, which indicates strong
twin, weak twin, or pendant with neck.

We define S-root (and P -root) as the root node of a DH-tree that holds
‘S’ label (‘P’ label, respectively). Similarily, we define S-node (and W -node,
P -node) as the inner node of a DH-tree that holds ‘S’ label (‘W’ label and
‘P’ label, respectively).

There are two kinds of DH-trees; one is directly derived from a distance
hereditary graph, and the other is the normalized DH-tree obtained from
a DH-tree by contracting parent and child node pairs that hold the same
labels.

First we introduce the DH-tree T derived from a distance hereditary
graph G. Since K1 is the distance hereditary graph with only one vertex,
and K2 is the distance hereditary graph that can be obtained from K1 by
either adding a pendant or adding a strong twin, we define K1 and K2 as the
special distance hereditary graphs. Then, we consider the distance hereditary
graphs with at least 3 vertices. For a given distance hereditary graph G, we
define three families of vertex sets in G as follows;

S = {S | x, y ∈ S if N [x] = N [y] and |S| ≥ 2}
W = {W | x, y ∈ W if N(x) = N(y), |S| ≥ 2, and |N(x)| = |N(y)| > 1}
P = {P | x, y ∈ P if x is a pendant and y is its neck }

7

Then, we have the following lemma.

Lemma 7 ([6, Lemma 4]). (1) Each set P ∈ P contains exactly one neck
with associated pendants. (2) Each v ∈ V belongs to either (a) exactly one
set in S∪W∪P, or (b) no set in the families. (3) For any distance hereditary
graph G with at least 3 vertices, S ∪W ∪ P 6= ∅.

The DH-tree is a tree structure derived from a distance hereditary graph,
which is generated from leaf node to root. Here, we first consider three basic
cases of distance hereditary graphs G and their corresponding DH-trees T .

Case 1: G is K1.

In this case, DH-tree T is a single root with no label.

Case 2: G is Kn when n ≥ 2.

In this case, DH-tree T holds a S-root and n leaf nodes with no labels.

Case 3: G is Sn when n ≥ 3.

In this case, DH-tree T holds a P-root and n leaf nodes with no labels.
For a star graph with n vertices, it holds a neck (center) and n − 1
pendants. Here n − 1 pendants are equivalent since we consider the
star graph as an unlabeled graph, and all pendants are adjacent with
the neck. To distinguish the pendants and the neck, we define L(u) as
the set of child nodes of inner node u in T . In the Case 3, u is the
root of T and v ∈ L(u) is the leaf node of T . We also define w as the
leftmost child node of u in T , which corresponds to the neck, and the
remaining x ∈ L(u) \ {w} correspond to the pendants.

Note that here n is the number of vertices in G, and each leaf node in
DH-tree T corresponds to a vertex in G. Also, K2 is defined as a clique not
a star, which belongs to Case 2.

Next, we define the DH-tree T with n vertices in general case, where
n ≥ 3. For the general case of G, we assume that G is neither Kn nor Sn.

Since each leaf node in T corresponds to a vertex in G, and the DH-tree
is a tree structure obtained from leaf node to root node, we can group all leaf
nodes in T by three kinds of vertex set S,W and P . Here S ∪W ∪ P 6= ∅
based on Lemma 6. Here, for any set S ∈ S or set W ∈ W , all vertices in
S or W are equivalent. For any set S ∈ S, we generate an inner node with
label ‘S’ and let inner node be the common parent of these leaf nodes. We do
the same operation on all sets S ∈ S. Also, for any set W ∈ W , we similarily
generate an inner node with label ‘W’ and let inner node be the common

8

parent of these leaf nodes. For any set P ∈ P , we generate an inner node
with label ‘P’ and let inner node be the common parent of these leaf nodes.
However, pendant case includes one neck and several pendants. Therefore,
same as the Case 3 of the basic cases above, we define L(u) as the set of child
nodes of inner node u in T and w as the leftmost child node of u in T . Then,
w corresponds to the neck, and the remaining x ∈ L(u) \ {w} correspond to
the pendants.

After generating S-node in DH-trees, we contract each vertex set of S
into one of the strong twins in S. Similarily, we contract each vertex set of
W into one of the weak twins in W after generating W-node. For each P ,
we generate P-node in T and contract all pendants into neck in G.

An execution of the generation of DH-trees is shown in Figure 2.3.
By repeating the process until the resultant graph becomes one of the

basic cases, we generate the root node of T and obtain T .

2.2.2 Normalization of DH-trees

In this section, we introduce the normalization of DH-trees.
A DH-tree T derived from a distance hereditary graph can be compacted

in some cases. Here, recall that in the vertex incremental characterization
of distance hereditary graphs, we add on vertex in each step to obtain the
distance hereditary graph G with n vertices. For two generation operation
orders of a distance hereditary graph, 1) first splitting vertex u into weak
twins u and v, then splitting vertex v into weak twins v and w; 2) splitting
vertex u into weak twins u, v and w, we obtain the same graph. The same
reduction can also be applied to the S-nodes. For pendant case, we consider
two generation operation orders as follows, 1) first adding a pendant v on
neck u, then adding a pendant w on neck u; 2) adding pendants v and w on
u. Also, we obtain the same graph. From this notion, we here consider the
normalization of DH-trees.

We assume a S-node/W-node v in T holds the same label as its parent
node v′, then for the child nodes of both v and v′, they can be the weak/strong
siblings. Also we assume a P-node v in T holds the same label as its parent
node v′, and v is the leftmost child node of v′ in T , then for the child nodes
of both v and v′, they can be the pendants on the same neck. Here the
only one exception is that the leftmost child node of v is the neck of all
pendants. Hence we keep the leftmost child node of v as the leftmost child
node after normalizing. Figure 2.4 shows an example for the normalization
of the DH-tree given in Figure 2.3.

Here, normalization can be applied in the depth first mannar [16], and
the normalized DH-tree T ′ can be obtained from T in O(n) time and space.

9

Figure 2.3: Generating the DH-tree by compacting vertices in a distance
hereditary graph.

For the normalized DH-tree, the following theorem is given:

Theorem 8 ([6, Theorem 4]). The normalized DH-tree of a connected dis-

10

Figure 2.4: Normalization of the DH-tree in Figure 2.3.

tance hereditary graph is canonical, which means that the normalized DH-tree
T for a connected distance hereditary graph G is uniquely determined, and
the original distance hereditary graph G is uniquely constructed from the nor-
malized DH-tree T .

Based on the definitions above, the DH-tree is almost an ordered tree. We
define the DH-tree T as a right-heavy tree, that is, for the inner node p in
T , its child nodes q are ordered by right-heavy manner. For two child nodes
q and q′ of p, if Tq is greater than Tq′ (here Tq indicates the subtree with root
q in T , Tq′ respectively), we let child node q lay on the right side of q′. We
compare two subtrees by height from right to left (we define the height of a
DH-tree in a natural way. The leaf node has height 0, and the other node has
the maximal height of their subtrees). To give the unique tree representation
of a distance hereditary graph, we need to give an order among inner nodes
in T . Here we define the priority order among inner nodes as: P-node >
W-node > S-node. For the case when two subtrees hold the same structure,
we order two subtrees by the order among inner nodes.

Similar to the isomorphic of graphs, we assume the DH-tree T0 is isomor-
phic to T1 if T0 and T1 hold the same tree structure and the same layout,
denoted by T0 ∼ T1.

2.2.3 Three Graph Representations

We use the adjacency list [16] as the standard graph representation, which
is consisted of finite unordered lists for each vertex. The elements in the list
represent to the vertices that are adjacent to each vertex.

Convert Between Adjacency List and DH-trees

In [6], Nakano et al. use the notion of prefix trees, which are also called tries
[15], of open and closed neighbors. DH-trees can be obtained efficiently by
using the open and closed prefix trees of a distance hereditary graph. By

11

using open and closed prefix trees of a distance hereditary graph, Nakano et
al. give the following theorem for the generation of the DH-tree.

Theorem 9 ([6, Theorem 6]). If G is a distance hereditary graph, the DH-
tree T derived from G can be constructed in O(|V |+ |E|) time and space.

Based on Theorem 9, by using two prefix trees of a G, we can convert G
into DH-tree T in O(n+m) time, where m is the number of edges and n is
the number of vertices in G.

For converting the DH-tree to the adjacency list, since each inner node in
the DH-tree corresponds to an operation for obtaining the distance hereditary
graph, we can obtain the distance hereditary graph by applying each inner
node as an operation in the DH-tree. Both DFS and BFS are acceptable since
it is ordered between parent node and child node in the DH-tree, whereas
among the generation of sibling nodes, any order is available. Since we
consider the distance hereditary graph G = (V,E), the time complexity
should also be O(n+m) time.

Convert Between DH-trees and String Representation

Here we give the notion for string representation of the DH-tree.
By applying the pre-order traversal on the DH-tree, we can convert the

DH-tree into its string representation. Since a distance hereditary graph
corresponds to a unique DH-tree, and a DH-tree also corresponds to a unique
string representation of it. The string representation of the DH-tree can be
used to solve the graph isomorphism between two distance hereditary graphs
and avoid the duplicants when enumerating. The pre-order traversal of a
DH-tree can be applied in the depth first mannar.

Given a DH-tree T , for the visiting inner nodes when traversing T , we
use string ‘S()’(and ‘W()’, ‘P()’) to represent S-node (W-node, P-node, re-
spectively). On the other hand, for the leaf nodes in T with no label, we
use string ‘L’ to represent. Traversing T by depth first mannar, each string
corresponding to a subtree is written between ‘(’ and ‘)’ of the string of their
parent nodes, and the order of all strings of subtrees that hold the same
parent node is obeying the order of all subtrees in T . Therefore, converting
the DH-tree to its string representation takes O(n) time and vice versa.

Figure 2.5 shows an example for a DH-tree and its string representation.

2.3 Reverse Search

Reverse search is an efficient technique when dealing with enumeration prob-
lems, which is proposed by Avis and Fukuda [1]. When enumerating, each

12

Figure 2.5: A DH-tree and its string representation

element should be enumerated only once, which means, as an efficient enu-
meration algorithm, it is necessary to check if the element has been enumer-
ated or not. We define the family tree of reverse search, in which each inner
node corresponds to an element that needs to be enumerated. If we keep all
elements in a family tree in memory, it is easy to enumerate every element in
the family tree by traversing the family tree. However, considering the space
cost and time efficiency, we need the strategy when traversing the family
tree.

In the context of enumeration for Ptolemaic graphs, we define the family
tree T̂ = (V̂ , Ê) as follows. Each element in V̂ is a distance hereditary graph
G, and each arc (G1, G2) in Ê joins G1 and G2 if G1 is the parent of G2. In the
family tree, we define the depth of root node as 0, and the other nodes have
depth d+ 1 where d is the depth of its parent node. Here, let G1 = (V1, E1),
G2 = (V2, E2) with |V1| = |V2| − 1. We denote T1 as the DH-tree of G1 and
T2 as the DH-tree of G2. By applying DFS on T2, we find the first inner node
v having only leaf nodes. Then we remove the vertex which corresponds to
the rightmost child node of v from G2, denoted by G′2. Then in family tree
T̂ , G1 is the (unique) parent of G2 if and only if G1 ∼ G′2. Here, we denote
G′2 as parent(G2). Thus we have G1 ∼ parent(G2). Note that we define each
element in family tree T̂ as a distance hereditary graph, and each distance
hereditary graph also corresponds to a unique DH-tree. Hereafter, we also
use T1 ∼ parent(T2) in some contexts, which holds the same meaning as
G1 ∼ parent(G2).

As we have shown before, each child graph contains one more vertex than
its parent in T̂ . After defining the parent-child relationship, the traversal of
family tree starts from root by breadth first manner. Here we define K2

as the root of family tree since K1 and K2 are output first as the special
graphs. Using the family tree, all distance hereditary graphs with n vertices
are obtained from the distance hereditary graphs with n − 1 vertices, and
we can enumerate all non-isomorphic distance hereditary graphs of up to n
vertices by traversing all elements of depth n− 2 in the family tree.

13

Chapter 3

Simplicial Function

Considering the difference between the vertex incremental characterizations
of the classes of distance hereditary graphs and Ptolemaic graphs, for Ptole-
maic graphs, we are able to generate weak twins only if the vertex is sim-
plicial. Thus, to check if a vertex is simplicial efficiently, we introduce the
notion of a simplicial function.

Given a graph G = (V,E), the input of simplicial function s(v) is a vertex
v ∈ V , and output s(v) = true if the vertex v is simplicial in G, s(v) = false
otherwise.

Based on the vertex incremental characterization of Ptolemaic graphs, we
consider how the simplicial function is updated in the following three cases.
Here, we consider the Ptolemaic graph G = (V,E) with |V | ≥ 2. For K2,
since both two vertices are simplicial, let u and v be the two vertices in K2,
then we initial the simplicial function of u and v as s(u) = s(v) = true.

• Pendant. We consider adding a pendant v on a neck u, then for the
pendant v, s(v) = true, and for the neck u, s(u) = false. Here, for
each pendant v, we have N(v) = {u}, and for the neck u, |N(u)| ≥ 1
and every two neighbors in N(u) are not adjacent. It is easy to see
that for other vertices w ∈ G, s(w) is not changed. One special case
for pendant is when we add a new pendant on K1, whereas both two
vertices in K2 are simplicial. We start our enumeration algorithm from
K2 to avoid this special case. This step requires O(1) time to update.

• Strong twins. We consider splitting a vertex v ∈ V into the strong
twins u and v with N [u] = N [v], which means we also need to add an
edge {u, v} into E. Since here vertices u and v are equivalent, for u
and v, N [v] = N [u], we have s(v) = s(u). For w ∈ V \ {u, v}, same as
the pendant case above, s(w) is not changed in this case. Therefore,
we only need to set s(u) = s(v) in O(1) time.

14

• Weak twins. We consider splitting a vertex v ∈ V into the weak
twins u and v with N(u) = N(v). Since for both strong twins and
weak twins, we have N(u) = N(v), we also have s(u) = s(v). On the
other hand, for w ∈ N(u), since vertices u and v are not adjacent,
and both u and v are the neighbors of w, we have s(w) = false. For
x ∈ V \N [v], s(x) is not changed. Thus we need to set s(u) = s(v), and
for each w ∈ N(v), s(w) = false. This step takes O(degG(v)) time.

Based on the case analysis above, we have the following lemma:

Lemma 10. For each generation rule (1), (2), and (3) in Theorem 6, the
update of the function s(v) of each vertex v can be done in O(n) time, where
n = |V |.

15

Chapter 4

Enumeration Algorithm

In this section, we give the enumeration algorithm of Ptolemaic graphs.
Based on Lemma 10, we can compute the simplicial function of all vertices

in a given normalized DH-tree. Using the same framework of enumeration
algorithm of distance hereditary graphs, we give Algorithm 1 as the outline

16

of the enumeration algorithm for Ptolemaic graphs.

Algorithm 1: Outline of Enumeration Algorithm for Ptolemaic
graphs

1 Input: An integer n
2 Output: All Ptolemaic graphs with at most n vertices
3 output K1;
4 S ← {T (K2)};
5 while S 6= ∅ do
6 get DH-tree T from S;
7 convert T into adjacency list of G;
8 if |V (G)| ≤ n then
9 output G;

10 convert G into T ;
11 generate CH(T) by T ;
12 for T ′ ∈ CH(G) do
13 find the leftmost inner node v having only leaf nodes in T ′

by DFS;
14 convert T ′ into G′;
15 generate parent(G′) by removing the vertex in G′

corresponding to the rightmost leaf node of v;
16 convert parent(G′) into parent(T ′);
17 if T ∼ parent(T ′) then
18 push T ′ into S;
19 end

20 end

21 end

22 end

In Algorithm 1, the input integer n corresponds to the maximum number
of vertices for Ptolemaic graphs, and the outputs are all non-isomorphic
Ptolemaic graphs with at most n vertices.

Here we show the time complexity of Algorithm 1. Comment after line
number in each line indicates the time complexity for each step. M indicates
the number of the graphs with at most n vertices.

• Line 3 (O(1) time) We consider K1 and K2 as the special cases of our
enumeration, hence we output K1 first as one of the Ptolemaic graphs.

• Line 4 (O(1) time) Initialize set S by T (K2), the DH-tree of K2.
Here S is the set of the DH-tree that can be outputted. Note that here
we standardize K2 as the graph obtained from K1 by adding a strong
twin. Initialization of set S takes O(1) time.

17

• Loop 5-22 (O(M) time for iteration, O(n3) time for each loop)
Check if S is empty.

– Line 6 (O(n) time) Pop one element out from S and remove it
from S

– Line 7 (O(n+m) time) Convert the DH-tree T into adjacency
list G, which takes O(n+m) time since G contains n vertices and
m edges.

– Line 8 (O(1) time) Check if the number of vertices of G is less
equal than n. Note that the set S should be a queue, since the
number of vertices for all graphs in S is ordered.

– Line 9 (O(n + m) time) Output G as a Ptolemaic graph, since
G contains n vertices and m edges.

– Line 10 (O(n2) time) Convert G from adjacency list to DH-tree
T .

– Line 11 (O(n3) time) Obtain a set of DH-tree CH(T) that each
T ′ ∈ CH(T) corresponds to a G′. Here G′ is the graph obtained
from G by applying adding one pendant, weak twin or strong twin.
Details of line 11 are shown in Algorithm 2.

– Loop 12-20 (O(n) time for iteration, O(n2) time for each
loop) Loop in CH(T) takes O(n) time, since |CH(T)| = O(n).

= Line 13 (O(n) time) By using DFS, we find the leftmost
inner node v in T ′ that holds only leaf nodes.

= Line 14 (O(n2) time) Convert DH-tree T ′ into adjacency
list G′.

= Line 15 (O(n) time) Remove the corresponding vertex of
the rightmost leaf node of v in the adjacency list of G′ to
obtain parent(G′), since all neighbors of v in G need to be
updated once.

= Line 16 (O(n2) time) Generate parent(T ′) from parent(G′).

= Line 17 (O(n) time) Check if T is isomorphic to parent(T ′).
To figure out if two DH-trees are isomorphic, we traverse two
DH-trees to check if the tree structure and the layout are the
same. Traversing two trees takes O(n) time.

= Line 18 (O(1) time) Push T ′ into S as T ′ is the DH-tree
obtained from T based on the unique parent-child relationship
in family tree we defined.

18

For the generation of the set CH(T) of T in the line 11 of Algorithm 1,
we have:

Algorithm 2: Outline for generating CH(T) of T
1 Input: T . The DH-tree T which corresponds to the Ptolemaic

graph G.
2 Output: CH(T). CH(T) is the DH-tree set of all Ptolemaic

graphs G′ obtained from G by appling one of the vertex
incremental rules.

3 convert T into G;
4 for v ∈ V (G) do
5 obtain Gp from G by adding a pendant u on neck v;
6 compute s(u) in Gp and update s(v);
7 obtain Gs from G by splitting v into strong twins u and v ;
8 set s(u) = s(v) in Gs;
9 if s(v) = true then

10 obtain Gw from G by splitting v into weak twins u and v ;
11 set s(u) = s(v) and update s(w) for w ∈ N(v) in Gw;

12 end
13 convert Gp, Gs and Gw into Tp, Ts and Tw;
14 convert Tp, Ts and Tw into string representations and insert into a

trie;
15 end
16 extract all strings from trie;
17 for all strings extracted from trie do
18 convert into T ′ and insert T ′ into CH(T);
19 end

For Algorithm 2, the input of the algorithm is the DH-tree T which
represents the Ptolemaic graph G. The output is the set CH(T) that each
T ′ ∈ CH(T) corresponds to the Ptolemaic graph G′, which can be obtained
from G by applying one of the vertex incremental rules. Elements in CH(T)
are up to isomorphism.

Here we discuss the time complexity of Algorithm 2. Same as the dis-
cussion of Algorithm 1, comment after line number in each line indicates the
time complexity of the step.

• Line 3 (O(n+m) time) Convert the DH-tree into the adjacency list.

• Loop 4-15 (O(n) time for iteration, O(n2) time for each loop)
Loop in V (G) takes O(n) time, since we have |V (G)| = O(n) for set
V (G).

19

– Line 5 (O(n + m) time) Copying Gp from G takes O(n + m)
time. Here m = |E| and n = |V |. Then adding a new vertex on
Gp takes O(1) time.

– Line 6 (O(1) time) For the pendant u in Gp, we have N(u) =
{v}. Thus we set s(u) = true. As we consider the Ptolemaic
graphs with at least 3 vertices, for the neck v, we have {u,w} /∈
E(Gp) for w ∈ N(v). Therefore, we set s(v) = false. Setting two
simplicial functions takes O(1) time.

– Line 7 (O(n + m) time) Same as line 5, copying Gs from G
takes O(n+m) time. For splitting u and v as strong twins where
u /∈ V (G), copying the edges of v to u and making u adjacent to
v take O(n) time since N [u] = N [v].

– Line 8 (O(1) time) Since N [u] = N [v], we set s(u) = s(v) in Gs,
which takes O(1) time.

– Line 9 (O(1) time) Check the simplicial function of vertex v. As
we update the simplicial function of each vertex in enumeration,
here it only takes O(1) time.

– Line 10 (O(n + m) time) Copying Gw from G takes O(n + m)
time. For splitting u and v as weak twins where u /∈ V (G), copying
the edges of v to u takes O(n) time since N(u) = N(v).

– Line 11 (O(n) time) In Gw, since N(u) = N(v), we set s(u) =
s(v). For w ∈ N(v), we set s(w) = false since {u, v} /∈ E(G′).
Updating all neighbors of v takes O(n) time.

– Line 13 (O(n+m) time) We consider Gp, Gs and Gw obtained
in line 6, 7 and 9. Converting Ptolemaic graph from adjacency
list to DH-trees takes O(n+m) each.

– Line 14 (O(n) time) Converting Tp, Ts and Tw generated in
line 13 from DH-trees to string representations takes O(n) each.
Inserting all string representations into a trie also takes O(n) time
each.

• Line 16 (O(n) time) In the loop 4-15, isomorphic distance hereditary
graphs may be obtained repeatedly. By inserting all strings of new
obtained Gp, Gs or Gw into a trie and extracting them, each string
representation of T ′ can be extracted only once. Namely, we extract
all strings from trie to avoid duplicates. Converting from the adjacency
list to the DH-tree takes O(n+m) each.

• Loop 17-19 (O(n) time for iteration, O(n) time for each loop

20

– Line 16 (O(n) time) For each string extracted from trie in line
14, convert it into a DH-tree. It takes O(n) time. Then push the
generated DH-tree into the set CH(T). It takes O(1) time.

Based on the introduction of the simplicial function in Chapter 3, it takes
O(1) time to update the case when adding a pendant and splitting strong
twins, and O(n) time to update the case when splitting weak twins due to
the update of sibling nodes. Thus we can update the simplicial function for
the new vertices in O(n) time.

For the total algorithm, it enumerates M graphs with at most n vertices
in O(Mn3) time, for each output, it takes O(n3) time, which is shown in the
Loop 5-22 of Algorithm 1. Hence, we have the following theorem.

Theorem 11. Ptolemaic graphs with at most n vertices can be enumerated
in O(n3) time for each.

21

Chapter 5

Conclusion

In Chapter 1, we gave the introduction of the enumeration problem for Ptole-
maic graphs. Since the efficient enumeration algorithm of Ptolemaic graphs
has not been proposed yet. In this paper we gave the enumeration algorithm
for Ptolemaic graphs, which is modified from the enumeration algorithm for
distance hereditary graphs proposed recently. Then we gave the previous
research related to the enumeration of Ptolemaic graphs. In 2020, Tran and
Uehara proposed an enumeration algorithm based on CL-tree, which is a
tree structure based on the laminar structure of the intersections of maximal
cliques in Ptolemaic graphs, whereas their algorithm did not give the specific
time complexity and pseudo-codes. In 2009, Nakano et al. proposed the
tree representation of distance hereditary graphs, the DH-tree, and claimed
distance hereditary graphs can be enumerated in O(n2) time for each as one
of the applications of the DH-tree, whereas the algorithm has not been im-
plemented yet. Recently, an enumeration algorithm for distance hereditary
graphs has been proposed by Yamazaki et al., which is proved to be capable
of enumerating all distance hereditary graphs correctly. Since the class of
Ptolemaic graphs holds similar vertex incremental characterization with the
class of distance hereditary graphs, we consider modifying it into Ptolemaic
graphs by using the same enumeration framework based on reverse search.

Next, in Chapter 2, we gave the preliminaries needed in graph theory, and
introduced the vertex incremental characterizations for both distance hered-
itary graphs and Ptolemaic graphs proposed by Howorka. We also showed
the three kinds of graph representations for Ptolemaic graphs, conversion
among them and the time complexity. Also we gave the notion of DH-trees,
which is used as the tree representation of the Ptolemaic graphs. After that,
we introduced the search technique, reverse search, which is the technique
widely used in enumeration problems.

In Chapter 3, we gave the notion of simplicial function, which can com-

22

pute all vertices in a given Ptolemaic graph efficiently. Then in Chapter 4,
based on the enumeration algorithm of distance hereditary graphs proposed
recently, we modified the enumeration algorithm of Ptolemaic graphs. Since
for Ptolemaic graphs, only simplicial vertices are able to obtain weak twins.
Using amortized analysis, we can reduce time complexity when checking sim-
plicial vertex from O(n2) to O(1), which ensures that all Ptolemaic graphs
with at most n vertices can also be enumerated in O(n3) for each. The
enumeration algorithm for Ptolemaic graphs is given.

For the future work, we consider the following cases:

• Give the specific enumeration algorithm for the distance hereditary
graphs proposed in [6]. More precisely, give the specific labeling rules
for DH-tree. Then, modify the algorithm to Ptolemaic graphs

• Research on the Ptolemaic graphs, and give the properties of the Ptole-
maic graphs.

• Solve the enumeration problem for other discrete structures by using
the same pattern.

23

Appendix A

Experimental Results

Yamazaki has already implemented the enumeration algorithms for distance
hereditary graphs for n = 1, 2, ..., 14 and Ptolemaic graphs for n = 1, 2, ..., 15
[5]. Here I summarize the number of Ptolemaic graphs for n = 1, 2, ..., 15
based on the experimental results. The full experimental results are published
on [19].

Enumeration for Ptolemaic graphs
Number of vertices Number of Ptolemaic graphs

1 1
2 1
3 2
4 5
5 14
6 47
7 170
8 676
9 2834
10 12471
11 56675
12 264906
13 1264851
14 6150187
15 30357300

24

Bibliography

[1] David Avis and Komei Fukuda. Reverse search for enumeration. Discrete
Applied Mathematics, 65:21–46, 1996.

[2] Dat H. Tran and Ryuhei Uehara. Efficient enumeration of non-
isomorphic ptolemaic graphs. In The 14th International Conference and
Workshops on Algorithms and Computation (WALCOM 2020), pages
296–307. Lecture Notes in Computer Science Vol. 12049, 2020.

[3] Ryuhei Uehara and Yushi Uno. Laminar structure of ptolemaic graphs
with applications. Discrete Applied Mathematics, 157(7):1533–1543,
2009.

[4] Kazuaki Yamazaki, Toshiki Saitoh, Masashi Kiyomi, and Ryuhei Ue-
hara. Enumeration of nonisomorphic interval graphs and nonisomorphic
permutation graphs. Theoretical Computer Science, 806:323–331, Jan-
uary 2020.

[5] Kazuaki Yamazaki, Mengze Qian, and Ryuhei Uehara. Efficient enu-
meration of non-isomorphic distance-Hereditary graphs and ptolemaic
graphs, In The 15th International Conference and Workshops on Al-
gorithms and Computation (WALCOM 2021) , pages 285–295. Lecture
Notes in Computer Science Vol. 12635, 2021.

[6] Shin-ichi Nakano, Ryuhei Uehara and Takeaki Uno, A new approach
to graph recognition and applications to distance-hereditary graphs. J.
Comput. Sci. Technol. 24, 517–533, 2009.

[7] Edward Howorka. A characterization of ptolemaic graphs. Journal of
Graph Theory, 5:323–331, 1981.

[8] Hans-Jürgen Bandelt and Henry M. Mulder. Distance-Hereditary
graphs. Journal of Combinatorial Theory, Series B, 41(2):182–208, Oc-
tober 1986.

25

[9] Maryam Bahrani and Jérémie Lumbroso. Enumerations, Forbid-
den Subgraph Characterizations, and the Split-Decomposition. ArXiv
abs/1608.01465, 2018.

[10] Edward Howorka. A characterization of distance-Hereditary graphs.
Quart. J. Math. Oxford (2), 28:417–420, 1977.

[11] Jessica Shi. Enumeration of unlabeled graph classes, manuscript,
2015. (available at [https://www.cs.princeton.edu/sites/default/
files/uploads/jessica_shi.pdf], accessed on July 31, 2021.)

[12] Serafino Cicerone and Gabriele D. Stefano, “On the extension of bi-
partite to parity graphs,” Discrete Applied Mathematics, vol. 95, pp.
181–195, 1999.

[13] Emeric Gioan and Christophe Paul, “Split decomposition and graph-
labelled trees: Characterizations and fully dynamic algorithms for to-
tally decomposable graphs,” Discrete Applied Mathematics, vol. 160, no.
6, pp. 708–733, 2012.

[14] Serafino Cicerone and Gabriele D. Stefano, “Graph classes between par-
ity and distance-hereditary graphs,” Discrete Applied Mathematics, vol.
95, pp. 197–216, 1999.

[15] Donald E. Knuth. Sorting and Searching, volume 3 of The Art of Com-
puter Programming. Addison-Wesley Publishing Company, 2nd edition,
1998.

[16] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford
Stein: Introduction to Algorithms, 3rd Edition. MIT Press 2009.

[17] Kazuaki Yamazaki, Toshiki Saitoh, Masashi Kiyomi, Ryuhei Uehara,
Enumeration of nonisomorphic interval graphs and nonisomorphic per-
mutation graphs. Theoret. Comput. Sci. 806, 323–331, 2020.

[18] Shin-ichi Nakano and Takeaki Uno. Constant time generation of trees
with specified diameter. In Graph-Theoretic Concepts in Computer Sci-
ence (WG 2004), pages 33–45. Lecture Notes in Computer Science Vol.
3353, Springer-Verlag, 2005.

[19] Ryuhei Uehara. Graph Catalogs. 2020. URL:http://www.jaist.ac.
jp/~uehara/graphs.

26

https://www.cs.princeton.edu/sites/default/files/uploads/jessica_shi.pdf
https://www.cs.princeton.edu/sites/default/files/uploads/jessica_shi.pdf
http://www.jaist.ac.jp/~uehara/graphs
http://www.jaist.ac.jp/~uehara/graphs

	Introduction
	Previous research
	Motivation and Results

	Preliminaries
	Vertex Incremental Characterizations
	Distance Hereditary Graphs
	Ptolemaic Graphs

	The DH-tree
	Generation of DH-trees
	Normalization of DH-trees
	Three Graph Representations

	Reverse Search

	Simplicial Function
	Enumeration Algorithm
	Conclusion
	Experimental Results

