
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
An Environment for Testing Concurrent Programs

Based on Rewrite-theory Specifications

Author(s) Do, Minh Canh

Citation

Issue Date 2019-09

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/17563

Rights

Description
Supervisor:緒方　和博, 先端科学技術研究科, 修士（情

報科学）

Master’s Thesis

An Environment for Testing Concurrent Programs Based on Rewrite-theory
Specifications

1710458 Do Minh Canh

Supervisor Kazuhiro Ogata
Main Examiner Kazuhiro Ogata

Examiners Kunihiko Hiraishi
Ryuhei Uehara
Toshiaki Aoki

Graduate School of Advanced Science and Technology
Japan Advanced Institute of Science and Technology

(Information Science)

September, 2019

Abstract

Today, software systems are used in various applications where failure is
unacceptable. Among are airplanes, vehicles, utilities, telephones, banking
& financial systems, commerce, logistics, appliances, houses, and securities.
Very important software systems, such as operating systems and the Internet,
that have been used as infrastructures are typically in the form of concur-
rent programs. Major concepts of programming languages that can be used
to write concurrent programs emerged in the 1980s and since nearly then
studies on testing concurrent programs have been conducted. Arora, et al.
have comprehensively surveyed testing concurrent programs. They catego-
rize it into eight classes: (a) reachability testing, (b) structural testing, (c)
model-based testing, (d) mutation-based testing, (e) slicing-based testing,
(f) formal method-based testing, (g) random testing, and (h) search-based
testing. Model checking concurrent programs has been intensively studied,
which may be classified into (c) and/or (f). Java Pathfinder (JPF) is such
a model checker. Model checking is superior to the other testing techniques
in that the former exhaustively checks all possible execution paths (or com-
putations). However, model checking concurrent programs often encounters
the notorious state explosion, which has not yet been conquered reasonably
well. Therefore, testing techniques for concurrent programs must be worth
studying so that they can be matured enough.

For a formal specification S and a concurrent program P , to test P based
on S, we can basically take each of the following two approaches: (1) P is
tested with test cases generated from S and (2) it is checked that state se-
quences generated from P can be accepted by S. The two approaches would
be complementary to each other. Approach (1) checks if P implements the
functionalities specified in S, while approach (2) checks if P never imple-
ments what is not specified in S. In terms of simulation, approach (1) checks
if P can simulate S, while approach (2) checks if S can simulate P . Ap-
proaches (1) and (2) are often used in the program testing community and
the refinement-based formal methods community, respectively, while both (1)
and (2), namely bi-simulation, are often used in process calculi. This thesis
proposes a new testing technique for concurrent programs based on approach
(2) mainly because P is a concurrent program and then could produce many
different executions due to the inherent nondeterminacy of P .

The proposed technique is basically a specification-based testing one. We
suppose that S is specified in Maude and P is implemented in Java. Java
Pathfinder (JPF) and Maude are then used to generate state sequences from
P and to check if such state sequences are accepted by S, respectively. Even

i

without checking any property violations with JPF, JPF often encounters the
notorious state space explosion while only generating state sequences because
there could be a huge number of different states reachable from the initial
states, there could be a huge number of different state sequences generated
due to the inherent nondeterminacy of concurrent programs and a whole big
heap mainly constitutes one state in a program under test by JPF. Thus,
we propose a technique to parallelize state sequences generation from P and
check if such state sequences are accepted by S in a stratified way. The state
space reachable from each initial state is divided into multiple layers. Let us
suppose that each layer l has depth dl. Let d0 be 0. For each layer l, state
sequences sl0, . . . , sldl whose depth is dl are generated from each state at depth
d0 + . . . + dl−1 from P . Each sli is converted into the state representation
f(sli) used in S, where f is a simulation relation candidate from P to S.
We conjecture that if S is refined enough, f would be an identity function.
There may be adjacent states f(sli) and f(sli+1) such that f(sli) is the same
as f(sli+1). If so, one of them is deleted. We then have state sequences
f(sl0), . . . , f(slN), where the number N + 1 of the states in the sequence is
usually much smaller than dl + 1 because execution units in P are much
finer than those in S. We check if each f(sl0), . . . , f(slN) is accepted by S
with Maude. The proposed technique is called a divide & conquer approach
to testing concurrent programs, which could be naturally parallelized. We
have implemented a tool supporting the proposed technique in Java. Some
experiments demonstrate that the proposed technique mitigates the state
space explosion instances from which otherwise only one JPF instance cannot
suffer.

Keywords: testing concurrent programs; specification-based testing; Java
Pathfinder(JPF); divide & conquer; Maude; meta-programming; simulation
relations.

ii

Acknowledgments

First of all, I would like to express my sincere gratitude to my supervisor,
Professor Kazuhiro Ogata who has supported and kindly guided throughout
my study period at Japan Advanced Institute of Science and Technology.
He has inspired me to become a good scientific researcher, as well as give
me invaluable knowledge of how to deal with problems and critical thinking.
Besides, he provided a high research environment and make me feel freedom
and high motivative for unlimited creativeness in research.

I also wish to express my special thanks to my second supervisor, Profes-
sor Kunihiko Hiraishi as well as my supervisor for minor research, Professor
Ryuhei Uehara. They have given advice and comments for my research in
which helps me a lot to improve my work.

I would like to express my appreciation to my lab mates. Thank all of
you for sharing wonderful moments, interesting ideas, not only in research
but daily life. It is an unforgettable memory in my life. I also want to say
thank to JAIST Football Club where I have enjoyed playing football with
talent players after every tough research time. After every football match, I
feel refresh and more high energy to keep going on research.

Finally, I would like to thank my wife Nguyen Thi Thanh as well as
whole my family who have been hugely throughout supporting with endless
love without any conditions. Without their support, it would be impossible
for me to complete this work.

iii

Contents

Abstract i

Acknowledgments iii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Related Work . 3
1.4 Contributions . 8
1.5 Thesis Structure . 8

2 Preliminaries 10
2.1 State Machine . 10
2.2 Simulation Relations . 10
2.3 Meta Programming in Maude 12
2.4 Concurrent Programming in Java 16

2.4.1 Threads . 17
2.4.2 Synchronization . 18

3 Specification-based Testing with Simulation Relations 22
3.1 State Sequence Generation from Concurrent Programs 23

3.1.1 Java Pathfinder (JPF) 23
3.1.2 Generating State Sequences by JPF 24

3.2 Checking a finite semi-computation 30
3.3 Summary . 32

4 Divide & Conquer Approach to Testing Concurrent Pro-
grams 34
4.1 A Divide & Conquer Approach to Generating State Sequences 34
4.2 Environment Architecture . 37
4.3 Summary . 42

5 Case Studies 44
5.1 Simple Communication Protocol (SCP) 44
5.2 Alternating Bit Protocol (ABP) 48
5.3 Summary . 52

6 Conclusions and Future Work 53
6.1 Conclusions . 53
6.2 Future Work . 54

Bibliography 56

Publications 59

This thesis was prepared according to the curriculum for the Collaborative
Education Program organized by Japan Advanced Institute of Science and
Technology and VNU University of Engineering and Technology, Vietnam
National University.

List of Figures

1.1 Specification-based concurrent program testing with a simula-
tion relation . 3

2.1 A simulation relation from MC to MA 11
2.2 Thread life cycle in Java . 17

3.1 JPF Core . 24
3.2 JPF Listeners . 25
3.3 A way to generate state sequences with JPF 29

4.1 A divide & conquer approach 35
4.2 The architecture of a tool supporting the proposed technique . 37

5.1 A state of SCP . 45
5.2 Time taken when the length of each state sequence is fixed

(100) and the number of state sequences is changed (100, 1000,
10000, 50000, 100000, 500000 & 1000000) 46

5.3 Time taken when the number of state sequences is fixed (1)
and the length of the state sequence is changed (100, 1000,
10000, 50000, 100000, 250000 & 500000) 47

5.4 A state of ABP . 49

List of Tables

5.1 Experimental data . 50

Chapter 1

Introduction

Many things are controlled by computer software systems nowadays. Among
them are airplanes, vehicles, utilities, telephones, banking & financial sys-
tems, commerce, logistics, appliances, houses, and securities. Almost all
things will be controlled by computer software systems in the near future.
Very important software systems, such as operating systems and the Internet,
that have been used as infrastructures are typically in the form of concur-
rent programs. Major concepts of programming languages that can be used
to write concurrent programs emerged in the 1980s and since nearly then
studies on testing concurrent programs have been conducted. Arora, et al.
have comprehensively surveyed testing concurrent programs well because of
their inherent nature of non-determinism, which often leads to overlooking
subtle flaws lurking in the concurrent programs and/or the notorious state
explosion [1]. Therefore, testing techniques for concurrent programs must be
worth studying so that they can be matured enough.

1.1 Motivation
Traditional software testing techniques [8] for sequential programs are not ad-
equate for concurrent programs because the inherent nature of non-determin-
ism, being unable to detect subtle flaws lurking in concurrent programs.
Model checking is superior to the other testing techniques in that the former
exhaustively checks all possible execution paths. However, model checking
concurrent programs often encounters the notorious state explosion, which
has not yet been conquered reasonably well. Some advanced techniques have
proposed by many researchers such as dynamic symbolic execution (DSE)
[2], dynamic partial order reduction(DPOR) [3]. Although these approaches
have greatly increased the size of the complex systems that can be verified,

1

but many realistic systems are still too large to handle. JPF is one of the most
mature software model checkers [4], [5]. It only can detect subtle flaws lurk-
ing in concurrent programs, provided that the flaws are located at shallow
positions. On other hands, traditional model checkers are used to testing
systems in sequential style but not parallelization. Recently, some model
checking techniques with parallelization have studied [6] [7] and the result is
impressive. So it is really significant to make a scalable technique to testing
concurrent programs so as to detect subtle flaws located at deep positions in
large concurrent programs due to many important software systems are in
the form of concurrent programs.

1.2 Problem Statement
Java is the most popular programming languages, is used by many researchers
as well as supports rich features to deal with concurrent programs. Besides,
JPF is one of the most mature software model checkers, is written in Java. On
other hands, Maude is a high-performance specification language, is equipped
reflective that helps us flexibly building meta applications by using meta pro-
gramming. So in this research, we focus on testing Java concurrent programs
by using JPF and Maude facilities. The problem can be stated as follows:

Input: Given a specification S in Maude, a concurrent program P in Java
that is implemented from the specification S and a simulation relation r from
P to S.

Output: Detecting any subtle flaw lurking in the concurrent program P
based on specification S.

Solution Overview: Fig. 1.1 shows an overview of the flow of our method

1. state sequences s0, s1, . . . , sn are generated from P by using JPF.

2. state sequences s′′0, s′′1, . . . , s′′m for S are obtained by converting s0, s1, . . .
, sn with r and

3. it is checked that S can accept s′′0, s′′1, . . . , s′′m by using meta program-
ming in Maude.

Difficulties: JPF usually is used to model checking Java concurrent pro-
grams. In this research, we use JPF to generate state sequences from Java
concurrent programs. It makes challenges to analyze and extract state in-
formation from the designated Heap memory in JPF. Especially, straight-
forward use of JPF immediately encounters the state explosion. Even when

2

A formal specification A concurrent program

𝑠", 𝑠$, … , 𝑠&𝑠′′", 𝑠′′$, … , 𝑠′′(

Converted with 𝑟

𝑟

G
en

er
at

ed
 fr

om
 𝑃

C
he

ck
in

g
if
𝑆

ca
n

ac
ce

pt
 it

where 𝑟 is a simulation relation from 𝑃 to 𝑆

𝑆 𝑃

Figure 1.1: Specification-based concurrent program testing with a simulation
relation

JPF is used to generate state sequences from Java concurrent programs, we
soon encounter the state explosion. It makes more challenges to deal with
the state explosion that is the main challenge sharing by model checking ap-
plications. That is why we come up with a divide & conquer approach to
parallelize state sequence generation, making it possible to generate deeper
or longer state sequences that we do without the use of the approach. A
scalable technique to testing concurrent programs such that mitigates the
state explosion well enough is needed. Besides, the behavior of real current
programs is different a little bit to the behavior of specifications, so making
the exact same behavior is another challenge. Moreover, we need to combine
all parts of our environment to make it work correctly under control is also
a challenge.

1.3 Related Work
This section surveys previous work related to specification-based testing. As
we know, the testing of concurrent programs is very complex due to coherent
non-deterministic threads interleaving that can trigger concurrency errors.
Many researchers have been conducting to figure out an effective method to
deal with testing concurrent programs. Recently, the automated test gener-
ation has emerged to become popular and most relevant to this thesis, many
techniques have been proposed that includes the random test generation as

3

well as non-random techniques.

Random Testing

Exploring all possible non-deterministic threads interleaving that are time-
consuming and very expensive. Especially, it seems unfeasible in reality for
large programs due to the state space explosion. Random-bases testing is one
of the approaches to address this problem. It does not explore all threads
interleaving instead of using a randomized search strategy. It would pick
up a random thread to execute at every execution point or scheduling point
where threads may perform in different behaviors. This approach is simple,
less expensive, get a better result when running again and again. But facing
another problem that often misses concurrency bugs or does not suffice due
to randomized selection. To address this problem, some effective random
testings are proposed to improve reliability or confidence in the tested soft-
ware. One of them is adaptive random testing (ART), an improved random
testing method [8]. They used metamorphic testing (MT) and metamorphic
distance into ART, which is called metamorphic distance based ART (MD-
ART). Metamorphic testing (MT) provides an effective way for mitigating
test oracle problem with metamorphic relation (MRs) and additional test
cases. While ART is basically a random selection technique, this improved
significantly random testing method compared to the traditional random
testing method. RM-MT is an existing traditional random testing method
to generate original test cases. Their experiments pointed out that MD-ART
performs better than RT-MT in this work.

Another technique is CovCon [9] that is a coverage-guided approach to
generating concurrent tests that can detect arbitrary kinds of concurrency
bugs due to independent of any particular bug pattern. They follow the phi-
losophy of coverage-based approaches to guide random-baed test generation
toward uncovered threads interleaving. The new idea is to use concurrent
method pairs that represent the set of interleaving events. They measure how
often method pairs have been executed concurrently and use that coverage
information to generate tests on method pairs that have not been covered or
have been covered less frequently than others. Thereby, it makes it less ran-
dom and explores misbehavior from programs. They have reported that the
use of CovCon to 18 thread-safe Java classes and it detects 17 concurrency
bugs of them while requiring less time. In other words, this approach may
speed up in some cases to find concurrency bugs.

Testing concurrent programs are difficult as well as extremely time-consu-
ming due to model checkers need to exhaustively traverse all possible behav-
iors of concurrent programs in their large state spaces. A big gap between

4

completion and deployment of programs is regarded as another problem.
Metzler, et al. [10] proposed a novel iterative relaxed scheduling (IRS) ap-
proach to verification of concurrent programs that reduces such that time.
IRS introduces a set of admissible schedules and a suitable execution envi-
ronment. It iteratively verifies each trace that is generated by the scheduling.
As soon as a single trace is verified, it will be added to the set of admissible
schedules. While continuously verify individual schedules or sets of sched-
ules, IRS execution environment does not need to wait until the program is
fully verified. It may execute selected schedules from the set of admissible
schedules that make the program be able to be safely used.

Systematic Testing

The automated test generation techniques that do not use randomness, model
checking is a superior method than others due to it systematically explores
all thread interleaving schedules to give a promise in the correctness of the
system. But the most challenge of model checking is the state explosion
problem because of very large state space. We use model checking JPF in
our tool, so we mainly discuss model checking here. Symbolic execution and
Partial Order Reduction are old techniques, and very famous to address state
space explosion problem in model checking.

Symbolic execution is used in many purposes, one of them is to generate
test inputs. The main idea behind symbolic execution is to use symbolic
values, instead of program variables. Inputs are a program, then the outputs
computed by a program are expressed as a function of the symbolic inputs.
The state of symbolically executed programs consists of the values of pro-
grams variables (symbolic), a path condition (PC) and a program counter.
The path condition is a boolean formula over the symbolic inputs, it accu-
mulates constraints which the inputs must satisfy in order for execution to
follow the particular associated path. The program counter defines the next
statement to be executed. A symbolic execution tree characterizes the execu-
tion paths followed during the symbolic execution of a program. The nodes
represent program states and the arcs represent transitions between states.

By using symbolic execution and a model checker, namely JPF, they have
generated automatically test suites at the black-box level and the white-box
level [11]. This work says that the efficient test input generation can be
done for code manipulating complex data, especially the red-black tree in-
stead of simple data types such as integers. They have used an algorithm
for generalizing traditional symbolic execution to handle dynamically allo-
cated structures, primitive data and concurrency. Then build up a symbolic
execution framework on top of JPF model checking tool. From an original

5

program translates to another source that adds nondeterminism and support
for manipulating formulas that represent path conditions. JPF checks the
new program using its state exploration techniques. In other words, explor-
ing the symbolic execution tree of the program. A state includes a heap
configuration, a path condition and thread scheduling. Whenever a path
condition is updated, it is checked satisfaction under some conditions. If
the path condition is unsatisfiable, JPF backtracks. If a path is satisfiable,
concrete test inputs are generated that will obligate execution to follow such
a path.

Based on symbolic execution, another technique has proposed, namely
dynamic symbolic execution (DSE) [2]. DSE generates automatically test
input by executing a program with concrete and symbolic values simultane-
ously. Executing all possible program path is impossible due to exponential
or infinite number of paths. This is the main challenge of DSE problem and
then it presents a method to increase the coverage achieved by the presence
of input-data dependent loops and loop dependent branches. They com-
bine DSE with abstract interpretation to find indirect control dependencies,
including loop and branch indirect dependencies. In other words, using ab-
stract interpretation to solve 2 things in this case: 1) to calculate in advance
how many iterations are needed to enter that subsequent branch and 2) in-
variant generation that relates program inputs to other program variables
in the conditional statement of the branch. Compared to dynamic symbolic
execution without abstract interpretation, this approach is better coverage
and requires less time.

Maximal causality reduction (MCR) [12] is a new technique for stateless
model checking to efficiently reduce state spaces. MCR takes a trace as input
and generates a set of new interleaving events. It exploits the events of thread
execution in a trace to drive new execution that reaches a new distinct state.
Thereby, MCR minimizes redundant interleaving events better than classical
techniques. By using existing MCR with dynamic symbolic execution, a new
technique called Maximal Path Causality is proposed to explore both the
input space and the schedule space at the same time [13].

Partial order reduction (POR) is a general theory to mitigate the state
space explosion by exploiting the independence of concurrently executed
events. If two events p and t are independent of each other, it is sufficient
to analyze only one of them. But if events p and t are in a race, we must
take into account both executions p and t. Early POR algorithms depend
on static over approximations to detect possible future conflicts. The dy-
namic partial order reduction (DPOR) algorithm as a state of the art due
to it does not need to look at the future [3]. The main idea of DPOR is to
dynamically construct two types of sets at each scheduling point: 1) the sleep

6

set that contains processes that should not be selected due to it is explored
to be redundant and 2) the backtrack set that contains the processes that
have not proven independent with previous explored steps. In this paper,
they introduced a new notion of conditional independence, which ensures
the commutativity of the considered events p and t under certain conditions
that can be evaluated in the explored state with a DPOR algorithm to mit-
igate the state space explosion problem [14].

Scalable Testing

Although the symbolic execution and the partial order reduction have greatly
increased the size of the system that can be verified, many realistic systems
are still too large to handle. The use of parallelism is used to attack this
problem by utilizing more hardware resources to solve the model checking
problem. In 2013, Barnat, et al. have proposed DiVinE 3.0, an Explicit-
State Model Checker for Multithreaded C & C++ Programs [6]. 5 years
later, they have proposed a Parallel Model Checking Algorithms for Linear-
Time Temporal Logic [7].

DiVinE 3.0 is an explicit-state model checker for multithreaded C & C++
programs. In version 3.0, this tool can directly verify C/C++ programs based
on newly developed LLVM bitcode interpreter. At the same time, DiVinE
3.0 used partial order reduction and path compression techniques to reduce
the state space, combined with parallel and distributed-memory processing.
Thereby, DinVinE3.0 may verify large systems, when compared to sequential
model checkers as well as traditional techniques.

LTL model checking heavily depend on the search strategy such as Depth-
First Search (DFS) and Breadth-First Search (BFS), it is hard to parallel. In
this paper [7], Barnat, et al. applied parallelism to both two search strate-
gies and give different characteristics. DFS depends on heuristics for good
parallelization, but exhibit a low complexity and good on-the-fly behavior.
And BFS offers good parallel scalability and support distributed parallelism
for both two search strategies.

Another one for scalable testing, FlyMC [15] proposed a fast and scalable
testing approach for datacenter/cloud systems such as Cassandra, Hadoop,
Spark, and ZooKeeper. The approach is able to overcome the state space
explosion problem with complex interleaving of messages and faults. Three
algorithms in FlyMC have proposed: 1) state symmetry, 2) event indepen-
dence and 3) parallel flips that make their approach speed up on average 16x
(up to 78x) faster than other solutions. All were done systematically without
random walks or manual scheduling checking points.

Our approach has used the model checker JPF for state sequences gen-

7

eration, we focus on a scalable testing to mitigate the state space explosion
problem. Those techniques seem related to our proposed technique, espe-
cially scalable testing section. Some of them could be incorporated into our
tool.

1.4 Contributions
The main challenge in model checking for testing concurrent programs is
dealing with the state explosion problem due to their inherent nature of
non-determinism. Our main contributions consist of:

• Firstly, we propose a new testing technique for concurrent programs.
The technique is basically a specification-based testing one. For a for-
mal specification S and a concurrent program P , state sequences are
generated from P and checked to be accepted by S.

• Secondly, we propose a technique to parallelize state sequences gen-
eration from P and check if such state sequences are accepted by S
in a stratified way. Some experiments demonstrate that the proposed
technique mitigates the state space explosion instances from which oth-
erwise only one JPF instance cannot suffer.

• Lastly, we combine all methods above to develop a tool to completely
testing Java concurrent programs.

1.5 Thesis Structure
The thesis is organized into six chapters. Chapter 1 is the introduction, the
main content of the next five chapters are summarized as follows:

• Chapter 2 presents some background knowledge of State Machine,
Simulation Relations, Meta Programming in Maude as well as Concur-
rent Programming in Java that are applied in the scope of this thesis.

• Chapter 3 explains how Specification-based Testing with Simulation
Relations work in-depth. It will show how to generate state sequences
from concurrent programs and then check such state sequences with a
specification, namely checking a finite semi-computation.

• Chapter 4 presents mainly our Divide & Conquer Approach to Test-
ing Concurrent Programs from generating state sequences to fully the
architecture of a tool supporting the proposed technique.

8

• Chapter 5 shows the practical experiments result over 2 case studies
ABP and SCP protocols. Both of them are communication protocol.

• Chapter 6 summarizes the main contributions of the thesis and the
advantages as well as remaining drawbacks. From that, some future
works are mentioned to improve and extend our proposed technique.

9

Chapter 2

Preliminaries

This chapter presents some fundamental existing techniques used in our
method. For specifications, a state machine is used to specify systems as
finite state machines. Simulation relations is to find out a simulation rela-
tion between programs to specifications. Developers are mandatory to have
a profound understanding of programs and specification as well. For concur-
rent programs, we need to use implement by using concurrent programming
mechanism in Java such as threads, synchronizations. Lastly, the meta pro-
gramming in Maude is to check if state sequences are generated from program
P whether are accepted by specification S.

2.1 State Machine
A state machine M , 〈S, I, T 〉 consists of a set S of states, the set I ⊆ S of
initial states and a binary relation T ⊆ S×S over states. (s, s′) ∈ T is called
a state transition and may be written as s→M s′. Let →∗M be the reflexive
and transitive closure of →M . The set RM ⊆ S of reachable states w.r.t. M
is inductively defined as follows: (1) for each s ∈ I, s ∈ R and (2) if s ∈ R
and (s, s′) ∈ T , then s′ ∈ R. A state predicate p is called invariant w.r.t.
M iff p(s) holds for all s ∈ RM . A finite sequence s0, . . . , si, si+1, . . . , sn of
states is called a finite semi-computation of M if s0 ∈ I and si →∗M si+1

for each i = 0, . . . , n − 1. If that is the case, it is called that M can accept
s0, . . . , si, si+1, . . . , sn.

2.2 Simulation Relations
Given two state machines MC and MA, a relation r over RC and RA is
called a simulation relation from MC to MA if r satisfies the following two

10

𝑠" ∈ 𝐼"

𝑠% ∈ 𝐼%

𝑟

𝑠" ∈ 𝑅"

𝑠% ∈ 𝑅%

𝑟

𝑠′" ∈ 𝑅"

𝑠′% ∈ 𝑅%

𝑟

∗

𝑀"

𝑀%

Condition (1) Condition (2)

Figure 2.1: A simulation relation from MC to MA

conditions: (1) for each sC ∈ IC , there exists sA ∈ IA such that r(sC , sA) and
(2) for each sC , s

′
C ∈ RC and sA ∈ RA such that r(sC , sA) and sC →MC

s′C ,
there exists s′A ∈ RA such that r(s′C , s

′
A) and sA →∗MA

s′A [15] (see Fig. 2.1).
If that is the case, we may write that MA simulates MC with r. There is a
theorem on simulation relations from MC to MA and invariants w.r.t MC and
MA: for any state machines MC and MA such that there exists a simulation
relation r from MC to MA, any state predicates pC for MC and pA for MA

such that pA(sA)⇒ pC(sC) for any reachable states sA ∈ RMA
and sC ∈ RMC

with r(sC , sA), if pA(sA) holds for all sA ∈ RMA
, then pC(sC) holds for all

sC ∈ RMC
[15]. The theorem makes it possible to verify that pC is invariant

w.r.t. MC by proving that pA is invariant w.r.t. MA, MA simulates MC with
r and pA(sA) implies pC(sC) for all sA ∈ RMA

and sC ∈ RMC
with r(sC , sA).

States are expressed as braced soups of observable components, where
soups are associative-commutative collections and observable components
are name-value pairs in this paper. The state that consists of observable
components oc1, oc2 and oc3 is expressed as {oc1 oc2 oc3}, which equals
{oc3 oc1 oc2} and some others because of associativity and commutativ-
ity. We use Maude [16], a rewriting logic-based computer language, as a
specification language because Maude makes it possible to use associative-
commutative collections. State transitions are specified in Maude rewrite
rules.

Let us consider as an example a mutual exclusion protocol (the test&set
protocol) in which the atomic instruction test&set is used. The protocol
written in an Algol-like pseudo-code is as follows:

Loop : ”RemainderSection(RS)”
rs : repeat while test&set(lock) = true;

”CriticalSection(CS)”
cs : lock := false;

11

lock is a Boolean variable shared by all processes (or threads) participating in
the protocol. test&set(lock) does the following atomically: it sets lock false
and returns the old value stored in lock. Each process is located at either rs
(remainder section) or cs (critical section). Initially, each process is located
at rs and lock is false. When a process is located at rs, it does something
(which is abstracted away in the pseudo-code) that never requires any shared
resources; if it wants to use some shared resources that must be used in the
critical section, then it performs the repeat while loop. It waits there while
test&set(lock) returns true. When test&set(lock) returns false, the process is
allowed to enter the critical section. The process then does something (which
is also abstracted away in the pseudo-code) that requires to use some shared
resources in the critical section. When the process finishes its task in the
critical section, it leaves there, sets lock false and goes back to the remainder
section.

When there are three processes p1, p2 and p3, each state of the protocol is
formalized as a term {(lock : b) (pc[p1] : l1) (pc[p2] : l2) (pc[p3] : l3)}, where
b is a Boolean value and each li is either rs or cs. Initially, b is false and each
li is rs. The state transitions are formalized as two rewrite rules. One rewrite
rule says that if b is false and li is rs, then b becomes true, li becomes cs and
any other lj (such that j 6= i) does not change. The other rewrite rule says
that if li is cs, then b becomes false, li becomes rs and any other lj (such that
j 6= i) does not change. The two rules are specified in Maude as follows:

rl [enter] : {(lock: false) (pc[I]: rs) OCs}
=> {(lock: true) (pc[I]: cs) OCs} .

rl [leave] : {(lock: B) (pc[I]: cs) OCs}
=> {(lock: false) (pc[I]: rs) OCs} .

where enter and leave are the labels (or names) given to the two rewrite
rules, I is a Maude variable of process IDs, B is a Maude variable of Boolean
values and OCs is a Maude variable of observable component soups. OCs
represents the remaining part (the other processes but process I) of the
system. Both rules never change OCs. Let St&s refer to the specification of
the test&set protocol in Maude.

2.3 Meta Programming in Maude
Maude is a high-level language and a high-performance system [16]. It sup-
ports both equational and rewriting logic computation. Rewriting logic is
logic of concurrent change, therefore a concurrent system can be specified in

12

Maude. Moreover, rewriting logic is reflective. This makes possible many
advanced meta programming and meta language applications.

A meta program is a program that takes programs as inputs and per-
forms some useful computations such as it may transform one program into
another. Or it may analyze such a program with respect to some properties,
or perform other useful programs independent computation. Obviously, it
is very useful and very powerful. In Maude, meta programming has a log-
ical reflective semantics. Essentially, It has 2 possible term representation,
one is the object level and another one is the meta level. The object level
representation can correctly simulate the relevant meta level representation
and vice versa. We can easily write Maude meta programs by importing
META−LEV EL module into a module that defines such key functionality
of meta programs as functions that have Module as one of their arguments. In
META−LEV EL module, this includes the modules META−MODULE
and META−TERM . The following describes shortly overview about three
modules.

• in the module META − TERM , terms are meta represented as ele-
ments of a data type Term of terms.

• in the module META−MODULE, modules are meta represented as
terms in a data type Module of modules.

• in the module META− LEV EL

– operations upModule, upTerm, downTerm and others allow mov-
ing between reflection levels.

– functions metaReduce, metaApply, metaXapply, metaRewrite, m-
etaFrewrite, metaMatch and metaXmatch are called descent func-
tions.

– the process of searching for a term satisfying some conditions
starting from an initial term is built-in functions metaSearch and
metaSearchPath.

In this section, we present three meta functions examples that can be helpful
as a basic guide to start with meta programming tasks.

First of all, we tackle to meta representation Modules. Any meta func-
tions require a Module as one of their arguments. But such a Module must
be represented in meta level, upModule function is a built-in function in
META-LEVEL module that may transform a module in object level to meta
level representation. The upModule function is explicitly declared as follows:

13

op upModule : Qid Bool ~> Module [special (...)]

where

• Qid is the name of a module.

• Bool is a boolean value. If it is called with true as its second argument.
All modules, its equations are shown. Otherwise, only the current
module is shown.

Example, we specify a module PNAT in Maude as in the listing 2.1. To
get meta representation of PNAT module we will feed a command to Maude
interpreter as follows:

red in META-LEVEL : upModule(’PNAT, false) .

The command says that we want to get the meta representation of PNAT
module up to the current module level.

Listing 2.1: Module PNAT in object level representation
fmod PNAT is

sorts Zero PNat .
subsorts Zero < PNat .
op 0 : -> Zero [ctor] .
op s : PNat -> PNat [ctor] .
op _+_ : PNat PNat -> PNat [comm] .
vars N M : PNat .
eq 0 + N = N .
eq s (N) + M = s (N + M) .

endfm

The listing 2.2 shows the corresponding meta level representation of PNAT
in the object level when you use that such command. Although, two kinds
of representation are different, but it is transformed and represented consis-
tently.

Listing 2.2: Module PNAT in meta level representation
fmod ’PNAT is

including ’BOOL .
sorts ’PNat ; ’Zero .
subsort ’Zero < ’PNat .
op ’0 : nil -> ’Zero [ctor] .
op ’_+_ : ’PNat ’PNat -> ’PNat [comm] .
op ’s : ’PNat -> ’PNat [ctor] .
none
eq ’_+_[’0.Zero ,’N:PNat] = ’N:PNat [none] .
eq ’_+_[’M:PNat ,’s[’N:PNat]] = ’s[’_+_[’N:PNat ,’M:PNat]] [

none] .
endfm

14

Secondly, we introduce about meta representation Terms. upTerm and
downTerm are frequently used in meta programming. They are declared
explicitly as follows:

op upTerm : Universal -> Term [poly(1) special (...)] .
op downTerm : Term Universal -> Universal [poly (2 0) special
(...)] .

upTerm function is used to transform a term in object level to its meta
level representation and downTerm function to convert a meta level represen-
tation to its object level representation. It means we can switch between in
the reflective way. Listing 2.3 shows how to use upTerm function, it converts
s(s(s(0))) term in object level to meta level. Using downTerm function if you
want to reconvert to object level representation.

Listing 2.3: Converting a term in object level to its meta representation by
upTerm function
Maude > red in META -LEVEL : upTerm(s(s(s(0)))) .
reduce in META -LEVEL : upTerm (3) .
rewrites: 1 in 0ms cpu (0ms real) (100000 rewrites/second)
result GroundTerm: ’s_^3[’0.Zero]

Lastly, searching is the most important functionality that allows us to
check whether or not programs satisfy some properties. Maude supports
search command. It allows us to explore the reachable state space in different
ways. Its syntax is in the form of the following general scheme.

search [n, m] in <ModId> : <Term-1> <SearchArrow> <Term-2>
such that <Condition>

where

• n is an optional argument providing a bound on the number of the
desired solution.

• m is another optional argument stating the maximum depth of the
search.

• the module < ModId > where the search takes place can be omitted.

• < Term1 > is the starting term.

• < Term2 > is the pattern that has to be reached.

• < SearchArrow > is an arrow indicating the form of the rewriting proof
from < Term− 1 > until < Term− 2 >.

15

– => 1 means a rewriting proof consisting of exactly one step.

– => + means a rewriting proof consisting of one or more steps.

– => ∗ means a proof consisting of none, one, or more steps, and

– =>! indicates that only canonical final states are allowed, that is,
states that cannot be further rewritten.

• < Condition > states an optional property that has to be satisfied by
the reached state.

For example, the search command below checks if s2 is reachable from s1
by depth 2 in given module ABP. In this case, we do not use any condition.

search [1,2] in ABP : s1 =>* s2 .

At meta level, the searching strategy used by metaSearch coincides with
that of the object level search command in Maude. With the above example,
we can use metaSearch function instead of search command as follows:

metaSearch(upModule(’ABP, false), upTerm(s1), upTerm(s2), nil,
’*, 2, 0)

where

• upModule converts a module to its meta-representation.

• upTerm converts a term to its meta-representation.

• nil for a condition.

• 2 for depth.

• 0 for the solution number.

2.4 Concurrent Programming in Java
Java is the most popular programming languages, has been used by many
researchers and then been matured enough. Besides, it supports rich features
to deal with concurrent programs. So we chose Java as a programming
language in our environment. In our document, concurrent programming is
in the form of multithreading in Java that is a process of executing multiple
threads simultaneously.

16

2.4.1 Threads

A thread is a lightweight process, the smallest unit of processing that provides
an execution environment. Threads exist within a process, every process has
at least one. Each process has its own memory space, but threads share the
process’s resources. This makes for efficient, but potentially communication.
A thread goes through various stages in its life cycle. For example, a thread
is created, started, runs, and then terminated. Fig. 2.2 shows the complete
life cycle of a thread.

New Runnable Running Dead

Blocked

start()
exit run() or stop()

sleep(),
suspend(), wait()

unblocking

Figure 2.2: Thread life cycle in Java

Following are the stages of the life cycle.

• new - The thread is in new state if you create an instance of Thread
class but before the invocation of start() method.

• Runnable - The thread is a runnable state after the invocation of
start() method, but the thread scheduler has not selected it to be the
running thread.

• Running - The thread is running state if the thread scheduler has
selected it.

• Non-Runnable(Blocked) - This is the state when the thread still
alive, but is currently not eligible to run.

• Dead - A thread is in terminated or dead state when its run() method
exits.

To create an instance of Thread must define the code that will run in that
thread. There are two ways to do so. The first way is to provide a class that
implements Runnable interface as the listing 2.4 .

17

Listing 2.4: Defining a thread by implementing the Runnable interface
public class HelloRunnable implements Runnable {

public void run() {
System.out.println("Hello from a thread!");

}

public static void main(String args []) {
(new Thread(new HelloRunnable ())).start ();

}

}

The HelloRunnable class must implement the run method from the Runn-
able interface where comprises the code executed in the thread. To create
a new thread from the HelloRunnable class, we need to pass a Runnable
object to Thread constructor and then call the start method. The thread
will execute the code in the run method.

The second way is to define a subclass of Thread as listing 2.5. Basically,
the Thread class itself implements the Runnable interface, though its run
method does nothing. So the subclass Thread needs to provide its imple-
mentation of the run method as the HelloThread class in the listing 2.5. A
bit different when you create a new thread in this way, just create a new
object from the subclass Thread and then call the start method.

Listing 2.5: Defining a subclass of Thread
public class HelloThread extends Thread {

public void run() {
System.out.println("Hello from a thread!");

}

public static void main(String args []) {
(new HelloThread ()).start();

}

}

2.4.2 Synchronization

Multithreading is extremely efficient to multiprocessing by sharing access to
the same resources, but makes two kinds of errors possible: thread interfer-
ence and memory consistency errors. The listing 2.6 shows an error multi-
threading program in Java due to multi-threads accessing and modifying the
same resource simultaneously without any synchronization mechanism.

18

Listing 2.6: Errors in a multi-thread program
class NonatomicCounter {

private int count = 0;

public void inc() {
count ++;

}

public int get() {
return count;

}
}

public class UnsafeInc extends Thread {

private NonatomicCounter counter;
private int times;

public UnsafeInc(NonatomicCounter c, int n) {
this.counter = c;
this.times = n;

}

public void run() {
for (int i = 0; i < times; i ++) {

counter.inc();
}

}

public static void main(String [] args) throws
InterruptedException {

NonatomicCounter c = new NonatomicCounter ();
Thread t1 = new UnsafeInc(c, 1000000);
Thread t2 = new UnsafeInc(c, 1000000);
Thread t3 = new UnsafeInc(c, 1000000);
t1.start (); t2.start(); t3.start();
t1.join(); t2.join(); t3.join()
System.out.println("Counter: " + c.get());

}
}

In the beginning, we initialize 3 threads with a counter time is 1000000
and a NonatomicCounter c object that is shared by 3 threads. Each thread
will count with the designated times and we outcome that the final counter
value will be accumulated from 3 threads. But a launch of the application
(UnsafeInc) does not display the desired result Counter: 3000000 instead it
actually displayed as follows: Counter: 1697864 Counter: 1700446 Counter:

19

2737760. Each time the application is launched, a different result is displayed.
The reason is the code line count + +; in NonatomicCounter class is not

atomic and at least consists of three basic things: (1) read count (fetching the
content v of count), (2) compute (calculate v+1), and (3) write count (store
the result of v + 1 into count). count + +; is processed by three threads
simultaneously without any protection or in an arbitrary way. When each
thread ti(i = 1,2,3) performs readi count, computei and writei count. There
are C9

3xC6
3(1680) possible scenarios. One possible scenario:

read_1 count, read_2 count, read_2 count, compute_1, compute_2,
compute_3, write_1 count, write_2count, write_3 count

After the scenario, what is stored in count is 1, not 3, though each thread
increases count. The effects of two increments are lost. This problem is called
Race condition that is a situation in which objects (or resources) shared by
multiple threads are used without any protection (or in an arbitrary way)
by those threads, which may cause a different outcome each time when the
program is launched.

One possible remedy is to use synchronization mechanisms supported by
Java. It controls threads such that at most one thread is allowed to use
shared objects (or resources) at any given moment. Each object is equipped
with one lock that can be used to synchronize threads such that a thread
that has acquired such a lock is allowed to enter a section in which shared
objects (or resources) can be used. We have 2 ways to use such locks.

Listing 2.7: Synchronized Methods
public class AtomicCounter {

private int counter = 0;

public synchronized void inc() {
counter ++;

}

public synchronized int get() {
return counter;

}
}

1. Synchronized methods: ... synchronized ... m(...) { ... }

When a thread t executes o.m(...), t first tries to acquire the lock l
associated with an object o. If t has acquired l, t is allowed to in-
voke m(...). Otherwise, t waits until t has acquired l. When t finishes

20

executing m(...), t releases l . The listing 2.7 shows how to use syn-
chronized methods to fix the current race condition by replacing class
NonatomicCounter to class AtomicCounter.

2. Synchronized statements: synchronized (o) { ... } When a thread t
executes the statement, t first tries to acquire the lock l associated
with an object o. If t has acquired l, t is allowed to enter the body ...
Otherwise, t waits until t has acquired l. When t leaves the body ... ,
t releases l . The listing 2.8 shows how to use synchronized statements
to fix the current race condition by replacing class UnsafeInc to class
SafeInc.

Listing 2.8: Synchronized Statements
public class SafeInc extends Thread {

private NonatomicCounter counter;
private int times;

public UnsafeInc(NonatomicCounter c, int n) {
this.counter = c;
this.times = n;

}

public void run() {
for (int i = 0; i < times; i ++) {

synchronized(counter) {
counter.inc();

}
}

}

public static void main(String [] args) throws
InterruptedException {

NonatomicCounter c = new NonatomicCounter ();
Thread t1 = new UnsafeInc(c, 1000000);
Thread t2 = new UnsafeInc(c, 1000000);
Thread t3 = new UnsafeInc(c, 1000000);
t1.start (); t2.start(); t3.start();
t1.join(); t2.join(); t3.join()
System.out.println("Counter: " + c.get());

}
}

21

Chapter 3

Specification-based Testing with
Simulation Relations

We have proposed a concurrent program testing technique that is a specificat-
ion-based one and uses a simulation relation candidate from a concurrent
program to a formal specification [1]. The technique is depicted in Fig. 1.1.
Let S be a formal specification of a state machine and P be a concurrent
program. Let us suppose that we know a simulation relation candidate r
from P to S. The proposed technique does the following: (1) finite state
sequences s1, s2, . . . , sn are generated from P , (2) each si of P is converted
to a state s′i of S with r, (3) one of each two consecutive states s′i and s′i+1

such that s′i = s′i+1 is deleted, (4) finite state sequences s′′1, s
′′
2, . . . , s

′′
m are

then obtained, where s′′i 6= s′′i+1 for each i = 1, . . . ,m−1 and (5) it is checked
that s′′1, s′′2, . . . , s′′m can be accepted by S.

We suppose that programmers write concurrent programs based on for-
mal specifications, although it may be possible to generate concurrent pro-
grams (semi-)automatically from formal specifications in some cases. The
FeliCa team has demonstrated that programmers can write programs based
on formal specifications and moreover use of formal specifications can make
programs high-quality [18]. Therefore, our assumption is meaningful as well
as feasible. If so, programmers must have profound enough understand-
ings of both formal specifications and concurrent programs so that they can
come up with simulation relation candidates from the latter to the former.
Even though consecutive equal states except for one are deleted, generating
s′′1, s

′′
2, . . . , s

′′
m such that s′′i 6= s′′i+1 for each i = 1, . . . ,m − 1, there may not

be exactly one transition step but zero or more transition steps so that s′′i
can reach s′′i+1 w.r.t. P . Therefore, we need to know the maximum number
of such transition steps. We suppose that programmers can guess the maxi-
mum number. If programmers cannot, we can start with 1 as the maximum

22

number b and gradually increment b as we find consecutive states s′′i and s′′i+1

such that s′′i cannot reach s′′i+1 in b transition steps unless the unreachability
is caused by some flaws lurking in P .

The paper [1] focuses on the left part of Fig. 1.1 but does not describe the
right part of Fig. 1.1, namely how to generate state sequences from P . This
thesis describes how to generate state sequences from P as well, where P is
a concurrent program written in Java and Java Pathfinder (JPF) is mainly
used to generate state sequences from P .

3.1 State Sequence Generation from Concur-
rent Programs

3.1.1 Java Pathfinder (JPF)

JPF is an extensible software model checking framework for Java bytecode
programs that are generated by a standard Java compiler from programs are
written in Java. JPF has a special Virtual Machine (VM) in it to support
model checking of concurrent Java programs, being able to detect some flaws
lurking in Java concurrent programs, such as race conditions and deadlocks,
when it reports a whole execution leading to the flaw. JPF core is depicted
in Fig. 3.1, given a system under test that is in the form of Java bytecode
along with JPF configuration. JPF will verify follow such that configuration
and return a verification result. Theoretically, JPF explores all potential
executions of a program under test systematically, while an ordinary Java
VM executes the code in only one possible way. JPF is basically able to
identify points that represent execution choices in a program under test from
which the execution could proceed differently.

Although JPF is a powerful model checker for concurrent Java programs,
its straightforward use does not scale well and often encounters the notorious
state space explosion. We anticipated in the paper [1] that we might mitigate
the state space explosion if we do not check anything while JPF explores a
program under test to generate state sequences. It is, however, revealed that
we could not escape the state space explosion just without checking anything
during the exploration conducted by JPF. This is because a whole big heap
mainly constitutes one state in a program under test by JPF, while one state
is typically expressed as a small term in formal specifications. This thesis
then proposes a divide & conquer approach to state sequence generation from
a concurrent program, which generates state sequences in a stratified way.

23

System Under Test

(Java bytecode)

*.class JPF

*.jpf

report

Verification result

JPF Configuration

Properties to Verify

Source: https://github.com/javapathfinder/jpf-core

Figure 3.1: JPF Core

3.1.2 Generating State Sequences by JPF

Two main components of JPF are (1) a VM and (2) a search component. The
VM is a state generator. It generates state representations by interpreting
bytecode instructions. A state is mainly constituted of a heap and threads
plus an execution history (or path) that leads to the state. Each state is given
a unique ID number. The VM implements state management that makes
it possible to do state matching, state storing and execution backtracking
that are useful to explore a state space. Three key methods of the VM are
employed by the search component:

• forward - it generates the next state and reports if the generated state
has a successor; if so, it stores the successor on a backtrack stack for
efficient restoration.

• backtrack - it restores the last state on the backtrack stack.

• restoreState - it restores an arbitrary state.

At any state, the search component is responsible for selecting the next
state from which the VM should proceed, either by directing the VM to
generate the next state (forward) or by telling it to backtrack to a previously
generated one (backtrack). The search component works as a driver for the
VM. We have some strategies used to traverse the state space. By default, the
search component uses depth-first search, we can configure to use different
strategies, such as breadth-first search.

The most important extension mechanism of JPF is listeners that are
depicted in Fig. 3.2. They provide a way to observe, interact with and
extend JPF execution. We can configure JPF with many of our own listener

24

https://github.com/javapathfinder/jpf-core

System under test

VM

Search

<< VMListener >>

<< SearchListener >>

listenerslistenerslisteners Configured: +listener=<listener-class>

search event notifications
- stateStarted (search)
- stateAdvanced (search)
- stateBacktracked (search)
- searchFinished (search)
…

Executed by JPF

Executed by host JVM
Execution event notifications

- executeInstruction (vm)
- instructionExecuted (vm)
…

JPF

Source: https://github.com/javapathfinder/jpf-core

Figure 3.2: JPF Listeners

classes that extend the ListenerAdapter class. The ListenerAdapter class
consists of all event notifications from the VMListener and SearchListener
classes. It allows us to subscribe to VMListener and SearchListener event
notifications by overriding some methods, such as:

• searchStarted - it is invoked when JPF has just entered the search
loop but before the first forward.

• stateAdvanced - it is invoked when JPF has just got the next state.

• stateBacktracked - it is invoked when JPF has just backtracked one
step.

• searchFinished - it is invoked when JPF is just done.

Listing 3.1 shows a piece of code of class SequenceState that extends
from class ListenerAdapter is made to observe and interact with JPF execu-
tion. In class SequenceState, we override the two most important methods
stateAdvanced and stateBacktracked as well as searchStarted, searchFinishe-
d. As described above, the stateAdvanced method is invoked when JPF has
just got the next state. We need to retrieve all the necessary information
about the next state at this step. We use an instance Path of class ArrayList
to keep up with the path on which we are staying. Each element of Path
corresponds to a state in JPF and is encapsulated as an instance of a class
Configuration we prepare. Each element of Path only stores the information
for our testing purpose, which is mainly the values of observable components.

25

https://github.com/javapathfinder/jpf-core

For example, the information for the test&set mutual exclusion protocol is
as follows:

• stateId - the unique id of state.

• depth - the current depth of search path.

• lock - a Lock object that contains the lock observable component value
that is true or false.

• threads - an ArrayList object of threads, each of which consists of the
current location information that is rs or cs.

Listing 3.1: SequenceState class - a JPF listener
public class SequenceState extends ListenerAdapter {

// ...
@Override
public void stateAdvanced(Search search) {

if (STARTUP == 1) {
STARTUP ++;
startup(search.getVM());

}
Configuration <String > config = getConfiguration(search);
if (config == null) {

search.requestBacktrack ();
Logger.log("Finish program at " + search.getDepth ());
COUNT ++;
writeSeqStringToFile ();

} else {
seq.add(config);
if (search.isEndState () || !search.isNewState ()) {

COUNT ++;
writeSeqStringToFile ();

} if (DEPTH_FLAG && search.getDepth () >= DEPTH) {
search.requestBacktrack ();
COUNT ++;
writeSeqStringToFile ();

}
}
if (BOUND_FLAG && COUNT >= BOUND) {

search.terminate ();
}

}
@Override
public void stateBacktracked(Search search) {

while (seq.size() > 0 && seq.get(seq.size() - 1).
getStateId () != search.getStateId ()) {

26

seq.remove(seq.size() - 1);
}

}
}

We need to keep up with the change of observer components in each
state stored in Path. Observer components are implemented as object data
in JPF. So we need to look inside the heap of JPF. The heap contains a
dynamic array of ElementInfo objects where the array indices are used as
object reference values. An ElementInfo object contains a Fields object that
actually stores the values we need. Hereby we can gather the values of
observer components and create a new Configuration object and append it
to Path as the stateAdvanced method is invoked. To accelerate the speed
to access to heap memory, at the beginning of stateAdvanced function we
gather information of object references and store into a hash table, namely
lookupTable with a key is the name of object references and value is the index
of its object references that is allocated in the heap of JPF. lookupTable hash
table is regarded as a cached to speed up our performance. Getting observer
components at each state have done by calling getConfiguration function in
the listing 3.1.

In the listing 3.2 shows concretely how to get the data of a specific ob-
server component in ABP case study. For this example, we get the data
of an observer component, namely packetsReceived. From getConfiguration
function, we look up the Receiver object from the heap of JPF by the index
that is acquired by searching in the lookupTable hash table (cached). An
ElementInfo ei object is returned. Finding FieldInfo list in the ElementInfo
ei object, there exists a FieldInfo with name equal to packetsReceived , we
start proceeding to get object reference value to the observer component
packetsReceived in order by calling getPacketsReceived function. To under-
stand this function, we should know that packetsReceived is maintained by a
queue, each element in such a queue is a String or an array of characters in
other words. Starting with ElementInfo ei_packetsReceived that is regarded
as packetsReceived reference object. We find exactly where packetsReceived
value is by accessing to the field value object with name elementData, reading
JPF core source code to know more in detail. The data of packetsReceived
is a queue, so we get a ReferenceArrayFields by getArrayFields function. We
already known that each element in such a queue is a string or an array of
characters. So with each element in ReferenceArrayFields raf object by get-
Values function, we get its ElementInfo by getFieldValueObject with given
parameter is value, and then calling getArrayFields to get a CharArrayFields
object that absolutely contains the value of an element in such a queue.

27

Lastly, we call getValues function, an array of characters is returned. Even-
tually, we have done to get the value of packetsReceived for ABP case study
by accessing to the heap of JPF.

Listing 3.2: A piece of code to get observer components data
public class SequenceState extends ListenerAdapter {

// ...
private Configuration <String > getConfiguration(Search

search) {
// ...
// Receiver
ElementInfo ei = heap.get(lookupTable.get("main.Receiver"

));
if (ei == null) {

return null;
}
FieldInfo [] fis = ei.getClassInfo ().getInstanceFields ();
for (FieldInfo fi : fis) {

switch (fi.getName ()) {
// ...
case "packetsReceived":

ElementInfo ei_packetsReceived = (ElementInfo)fi.
getValueObject(ei.getFields ());

ArrayList <String > packetsReceived =
getPacketsReceived(search.getVM(),
ei_packetsReceived);

config.setPacketsReceived(packetsReceived);
// ...

}
}

}

// ...
private ArrayList <String > getPacketsReceived(VM vm,

ElementInfo ei_packetsReceived) {
ElementInfo ei_elementData = (ElementInfo)

ei_packetsReceived.getFieldValueObject("elementData");
ArrayList <String > packetsReceived = new ArrayList <String

>();
if (ei_elementData != null) {

ReferenceArrayFields raf = (ReferenceArrayFields)
ei_elementData.getArrayFields ();

for (int i : (int []) raf.getValues ()) {
if (i > 0) {

ElementInfo ei_rf = vm.getHeap ().get(i);
ElementInfo ei_value = (ElementInfo) ei_rf.

getFieldValueObject("value");

28

CharArrayFields caf = (CharArrayFields) ei_value.
getArrayFields ();

packetsReceived.add(String.valueOf ((char [])caf.
getValues ()));

}
}

}
return packetsReceived;

}
// ...

}

Whenever JPF hits an end state, a state that has been already visited or a
depth bound, we write the current path to a file after we already have deleted
consecutive same states except for one. We also check if the current path has
already been stored in some files. If so, we do not write the path into any
files. When writing the current path into a file, we make the formats of each
state and the path (state sequence) conform to those used in rewrite-theory
specifications written in Maude so that Maude can check if the path can be
accepted by such a rewrite-theory specification. Right after, JPF request to
backtrack, we need to update the path up to date by removing elements in
the path from tail until reach to the element such that its node id is the same
with the node id of the backtracked node.

end

seen

bound depth

bound sequence of states

backtrack

forward

Figure 3.3: A way to generate state sequences with JPF

Because the state space could be huge even if it is bounded, we manage two
bound parameters in order to prevent JPF from diverging. The two bound
parameters are as follows:

• DEPTH - the maximum depth from the initial state; once JPF reaches

29

any state whose depth from the initial state is DEPTH, we send a
backtrack message to the search component for backtracking.

• BOUND - the maximum number of paths (or state sequences); we
count the number of paths generated; when the number reaches to
BOUND, we send a terminate message to the search component for
stopping JPF.

Each of DEPTH and BOUND could be set unbounded, meaning that we ask
JPF to generate as deep state sequences as possible and/or as many state
sequences as possible. Every time JPF performs backtracking, we delete the
last state from Path in the stateBacktracked method to keep up with the
change if the last state does not have any more successor states.

The way to generate state sequences from concurrent programs with JPF
is depicted in Fig. 3.3. Yellow nodes with a thick border in red are those
that have been visited by JPF. So are blue ones but they cause backtracking
because the node (or state) does not have any more successor states, the node
has been seen (or visited) before or the depth of the node reaches DEPTH.
The red node means that when JPF arrives at the node, it has just generated
the BOUND number of state sequences and then it does not need to explore
the remaining part of the state space composed of the white nodes with a
thick border in blue.

While gathering the data, we realize that the behavior of Java programs
is a little different from the behavior of specification. Some parts of Java
programs we need to make it atomic. JPF supports Atomicity control that
helps us to execute a piece of code by JPF in only one transition, it is helpful
for us to reduce the number of states as well as make some codes atomic as
the specification.

3.2 Checking a finite semi-computation
In the paper [1], given a finite sequence s0, s1, . . . , sn of states generated from
SC , each state is converted into a state in SA with r, generating s′0, s

′
1, . . . , s

′
n,

where s′i = r(si) for each i and r is used as a function from SC states to SA

states. There may be two consecutive states s′i and s′i+1 such that s′i = s′i+1.
If so, one of them is deleted. We then generate a sequence s′′0, s

′′
1, . . . , s

′′
m of

states in SA such that there does not exists i such that s′′i = s′′i+1. We finally
check if s′′0, s′′1, . . . , s′′m is a finite semi-computation of SA.

Currently, from a concurrent program P , we generate a finite sequence
s0, s1, . . . , sn of states, each state already is converted into a state in S with
r and removed two consecutive states si and si+1 such that si = si+1, we just

30

keep one of them. We check if s0, s1, . . . , sn is a finite semi-computation of S
(see the left part of Fig. 1.1).

Given a module mQid in which a state machine is specified, two states S1
& S2 and the depth B, the function checkSttTrans checks if S2 is reachable
from S1 in B w.r.t. the state machine, which is defined as follows:

ceq checkSttTrans(mQid, S1, S2, B)
= if sttTrans? :: ResultTriple

then true else false fi
if sttTrans? :=

metaSearch(upModule(mQid, false),
upTerm(S1), upTerm(S2), nil, ’*, B, 0) .

metaSearch is used to check if S2 is reachable from S1 in B with respect to the
state machine specified as mQid. If there exists a path from state S1 to state
S2, the checkSttTrans function returns true. Otherwise false is returned.

Given a module mQid in which a state machine is specified, a sequence of
the state machine states and a depth B, the function checkConform checks if
the state sequence is a finite semi-computation of the state machine, which
is defined as follows:

eq checkConform(mQid, S1 | S2 | L, B)
= $checkConform(mQid, S2 | L, S1, 0, B).
eq $checkConform(mQid, nil, S, N, B)
= success .
eq $checkConform(mQid, S2 | L, S1, N, B)
= if checkSttTrans(mQid, S1, S2, B)

then $checkConform(mQid, L, S2, N + 1, B)
else {msg: "Failure",from: S1,to: S2,

index: N, bound: B} fi .

checkSttTrans(mQid, S1, S2, B) checks if S1 →∗mQid S2 in the depth B.
if that such a sequence of state is a finite semi-computation of the state
machine. The checkConform function returns success. Otherwise, it will
return a message in the form of as follows:

{msg: "Failure",from: S1,to: S2, index: N, bound: B}

where msg specifies "Failure" message, from and to indicate that from state
S1 to state S2 there does not exist any path with maximum search depth is
B, index indicates where state S1 is located in such a sequence of states.

Given a module mQid in which a state machine is specified, a list of
sequences of the state machine states and a depth B, the function $tester
checks if all the list of state sequences is finite semi-computations of the state
machine, which is defined as follows:

31

eq $tester(mQid, empty, B, N) = success .
ceq $tester(mQid, (LC , LS), B, N)
= if R4C? :: Result4Conform
then $tester(mQid, LS, B, N + 1)
else {

seq: N,
msg: getMsg(R4C?),
from: getFrom(R4C?),
to: getTo(R4C?),
index: getIndex(R4C?),
bound: getBound(R4C?)

} fi
if R4C? := checkConform(mQid, LC, B) .

The checkConform function is used in the $tester function by iterating
through such a list of sequences of states, each a sequence of states is checked
by checkConform function. If all state sequences pass successfully, it returns
success. Otherwise, there exists a state sequence does not satisfy a finite
semi-computation, the program will terminate and a message is returned in
the form of as follows:

{ seq: N, msg: getMsg(R4C?), from: getFrom(R4C?), to: getTo(R4C?),
index: getIndex(R4C?),bound: getBound(R4C?) }

where seq indicates where such an error sequence of states is located in the
list state sequences where it is located. msg, from, to, index and bound are
the same information as the output of checkConform function.

3.3 Summary
We have presented how to generate state sequences by JPF as well as how
to check a semi-computation by meta programming in Maude. The most
advantage of model checking is to systematically explore entire state space
in theory. We exploit itself functionality in JPF model checker to cover all
possible path execution. To accomplish it we need to observe and interact
with JPF via Listeners that are supported by JPF. Note that JPF often
encounters the state space explosion, so we need to set two bound parameters
to ensure JPF may terminate. Of course, each of DEPTH and BOUND
could be set unbounded if you want to explore entire state space. The meta
programming in Maude is most exciting to build many meta applications, we
have used metaSearch as a core function to check if a state S2 is reachable
from a state S1 in a depth B with respect to the state machine specified

32

as mQid. Thereby, we can check a state sequence whether it is a semi-
computation.

33

Chapter 4

Divide & Conquer Approach to
Testing Concurrent Programs

State sequence generation from concurrent programs by using JPF that of-
ten encounters the notorious state space explosion even without checking
any property violation while searching due to the coherent non-determinism
threads interleaving. This is the main challenge that is shared by model
checking software. From our point of view, the traditional techniques often
use model checkers in sequential testing. Besides, some model checking tech-
niques with parallelization have studied [6] [7] and the result is impressive.
So we come up with a divide & conquer approach to generate state sequences
from concurrent programs and check if such state sequences are accepted by
specifications in a stratified way. The approach aims are to alleviate the state
space explosion problem as well as building up a scalable testing technique.
In this chapter, we explain in order how to implement exactly the approach
in our environment.

4.1 A Divide & Conquer Approach to Gener-
ating State Sequences

A divide & conquer approach is the basis of efficient algorithms for many
kinds of problems in computer sciences. The advantage of the approach is
to break down a problem into two or more sub problems, until these become
simple enough to be solved directly. The solutions of the sub-problem are
combined together to give a final solution. Coming back to state sequence
generation from concurrent programs by using JPF. When you do not set
each of DEPTH and BOUND to a moderately small number and ask JPF
to exhaustively (or almost exhaustively) explore all (or a huge number of)

34

LAYER 1

LAYER 2

Depth D1

Depth D2

An initial state

Figure 4.1: A divide & conquer approach

possible states, JPF may not finish the exploration and may lead to out of
memory. To mitigate the situation, the present thesis proposes a technique
to generate state sequences from concurrent programs in a stratified way,
which is called a divide & conquer approach to generating state sequences.
We firstly generate state sequences from each initial state, where DEPTH
is D1 (see Fig. 4.1). Note that BOUND may be set unbounded. If D1 is
small enough, it is possible to do so. We then generate state sequences from
each of the state at depth D1, where DEPTH is D2 (see Fig. 4.1). If D2 is
small enough, it is also possible to do so. Given one initial state, there is one
sub-state space in the first layer explored by JPF, while there are as many
sub-state spaces in the second layer as the states at depth D1 (see Fig. 4.1).
Combining each state sequence seq1 in layer 1 and each state sequence seq2
in layer 2 such that the last state of seq1 equals the first state of seq2, we are
to generate state sequences, where DEPTH is D1 + D2 (see Fig. 4.1), which
can be done even though D1 + D2 is too large. Although we have described
the divide & conquer approach to generating state sequences such that there
are two layers, the technique could be generalized such that the number of
layers is N ≥ 2. For example, we could generate state sequences from each
of the states at depth D1 + D2, where DEPTH is D3; Combining each state
sequence seq1 in layer 1, each state sequence seq2 in layer 2 and each state
sequence seq2 in layer 3 such that the last state of seq1 equals the first state
of seq2 and the last state of seq2 equals the first state of seq3, we are to
generate state sequences, where DEPTH is D1 + D2 + D3.

Generating state sequences for each sub-state space is independent from
that for any other sub-state space. Especially for sub-state spaces in one

35

layer, generating state sequences for each sub-state space is totally indepen-
dent from that for each other. This characteristic of the proposed technique
makes it possible to generate state sequences from concurrent programs in
parallel. For example, once we have generated state sequences in layer 1, we
can generate state sequences for all sub-state spaces in layer 2 simultaneously.
This is another advantage of the divide & conquer approach to generating
state sequences from concurrent programs.

Let us consider the test&set protocol and suppose that we write a con-
current program (denoted Pt&s) in Java based on the specification St&s of
the protocol. We suppose that there are three processes participating in the
protocol. St&s has one initial state and so does Pt&s. Let each of D1 and D2
be 50 and use the proposed technique to generate state sequences from Pt&s.
One of the state sequences (denoted seq1) generated in layer 1 is as follows:

{(pc[p1]: rs) (pc[p2]: rs) (pc[p3]: rs) (lock: false)} |
{(pc[p1]: rs) (pc[p2]: cs) (pc[p3]: rs) (lock: true)} |
{(pc[p1]: rs) (pc[p2]: rs) (pc[p3]: rs) (lock: false)} | nil

where _|_ is the constructor for non-empty state sequences and nil denotes
the empty state sequence. Note that atomic execution units used in Pt&s

are totally different from those used in St&s. Therefore, the depth of layer 1
is 50 but the length of the state sequence generated is 3. One of the state
sequences (denoted seq2) generated in layer 2 is as follows:

{(pc[p1]: rs) (pc[p2]: rs) (pc[p3]: rs) (lock: false)} |
{(pc[p1]: cs) (pc[p2]: rs) (pc[p3]: rs) (lock: true)} |
{(pc[p1]: rs) (pc[p2]: rs) (pc[p3]: rs) (lock: false)} | nil

Note that the last state in the first state sequence is the same as the first
state in the second state sequence. Combining them the two state sequences,
we get the following state sequence (denoted seq3) :

{(pc[p1]: rs) (pc[p2]: rs) (pc[p3]: rs) (lock: false)} |
{(pc[p1]: rs) (pc[p2]: cs) (pc[p3]: rs) (lock: true)} |
{(pc[p1]: rs) (pc[p2]: rs) (pc[p3]: rs) (lock: false)} |
{(pc[p1]: cs) (pc[p2]: rs) (pc[p3]: rs) (lock: true)} |
{(pc[p1]: rs) (pc[p2]: rs) (pc[p3]: rs) (lock: false)} | nil

This is one state sequence generated from Pt&s, where DEPTH is 100. So
using the divide & conquer approach to generating state sequences, we are
able to generate longer or deeper state sequences that are unfeasible to use
JPF only without our approach.

36

Redis
Cache

RabbitMQ
(master)

worker 1

worker 2

worker 3

worker 4

Seq
file

Seq
file

Seq
file

Seq
file

RMQ
Client JPF

RMQ
Client JPF

RMQ
Client JPF

RMQ
Client JPF

Send messages

Send initial
message

Push messages

Check whether a state
Or a states sequence exist
If yes, skip. Otherwise, store

Write state sequences to
a file system

Starter

RabbitMQ Client

Figure 4.2: The architecture of a tool supporting the proposed technique

4.2 Environment Architecture
Once state sequences are generated from a concurrent program P , we check
if a formal specification S can accept the state sequences with Maude. For
example, we can check if seq3 can be accepted by Pt&s with Maude. Instead
of checking if seq3 can be accepted by Pt&s, however, it suffices to check if
each of seq1 and seq2 can be accepted by Pt&s.

For each layer l, we generate state sequences starting from each state
located at depth D1 + . . .+ D(l− 1) from a concurrent program P with JPF
and check if each state sequence generated in layer l can be accepted by a
formal specification S with Maude. We could first generate all (sub-)state
sequences from P in the stratified way and then could check if each state
sequence can be accepted by S. But, we do not combine multiple (sub-)state
sequences to generate a whole state sequence of P because we do not need to
do so and it suffices to check if each (sub-)state sequence can be accepted by
S in order to check if a whole state sequence can be accepted by S. This way
to generate (sub-)state sequences from P and to check if each (sub-)state
sequence is accepted by S is called a divide & conquer approach to testing
concurrent programs.

Our tool that supports the divide & conquer approach to testing concur-
rent programs has been implemented in Java. The tool architecture is de-
picted in Fig. 4.2. As shown in Fig. 4.2, the architecture is a master-worker
model (or pattern), where there is one master and four workers. We use

37

Redis [19] and RabbitMQ [20] to quickly develop in our tool.

• Redis is an advanced key-value store and supports many different kinds
of data structures such as strings, lists, maps, sets, sorted sets, ... It
holds its database entirely in memory. We can imagine it as a big hash
table in memory. Redis is used as an effective cache to avoid duplicating
states and state sequences when generating state sequences.

• RabbitMQ is used as a message broker. The RabbitMQ master main-
tains a message queue to dispatch messages to RabbitMQ (RMQ)
clients. Each worker consists of a RabbitMQ client and JPF.

Initially, we run a starter program to send an initial message to the Rab-
bitMQ master for kicking off the tool. The listing 4.1 shows how such a
starter program works. Basically, the starter program is a worker in our en-
vironment. But it is just specialized to send an initial message. First of all,
we flush all keys and values from the Redis server cache to clean up data in
memory. Secondly, we make a connection to RabbitMQ master server with
a designated configuration. After making sure that it is connected, then we
prepare initial data to push an initial job to message queue. The data is
encapsulated into a Configuration object, namely config. Before publishing
the data to the master server, we use SerializationUtils to serialize the config
object. It is easy to unserialize to the original object at the receiver side with-
out doing any extra thing and effectively convey messages from the worker
nodes to the master server.

Listing 4.1: A starter program in Java
public class Starter extends RabbitMQ {

public static void main(String [] argv) {
// ...
// Flush all keys and values from redis server
RedisClient.getInstance ().getConnection ().flushAll ();
// Push an initial job to message queue
ConnectionFactory factory = new ConnectionFactory ();
factory.setHost(getHost ());
try (Connection connection = factory.newConnection ();

Channel channel = connection.createChannel ()) {
channel.queueDeclare(QUEUE_NAME , false , false , false ,

null);
// prepare to send a message to queue
Configuration <String > config = new Configuration <String

>();
List <String > sentPackets = Arrays.asList(Env.PACKETS);
List <String > recPackets = new ArrayList <String >();

38

main.Channel <Pair <String ,Boolean >> ch1 = new main.
Channel <Pair <String ,Boolean >>(Env.BOUND);

main.Channel <Boolean > ch2 = new main.Channel <Boolean >(
Env.BOUND);

Cell <Boolean > f = new Cell <Boolean >(false);
// 1st argument: packetsToBeSent
config.setPacketsToBeSent(sentPackets);
// 2nd argument: packetsReceived
config.setPacketsReceived(recPackets);
// 3rd argument: index of packetsToBeSent
config.setIndex (0);
// 4th argument: finish flag
config.setFinish(f);
// 5th argument: flag1
config.setFlag1(true);
// 6th argument: flag2
config.setFlag2(true);
// 7th argument: channel1
config.setChannel1(ch1);
// 8th argument: channel2
config.setChannel2(ch2);
byte[] data = SerializationUtils.serialize(config);
channel.basicPublish("", QUEUE_NAME , null , data);

}
// ...

}
}

As soon as the master server has received a message from a worker, it
will be stored in a queue. By default, RabbitMQ master server will pop a
message from the queue and then dispatch to a worker, in sequence. On
average every worker will get the same number of messages due to using
round-robin scheduling for distributing messages. The listing 4.2 shows us
how it works. Firstly, workers make a connection to the master server. After
having connected, workers are ready for receiving messages from the master
server. Whenever a worker receives a message from the master, the worker
deserializes a message to get the original object by using SerializationUtils.
It says that we have a config object belong to class Configuration. Passing
config object to the constructor of RunJPF and call start function. The
worker internally starts JPF instance with a configuration that is built from
the message. To know how to internally start JPF in our independent Java
program, you may look at in the listing 4.4. A brief description, we get a
configuration and pass to the constructor of JPF, then add our own Listener
class to JPF and then run it.

39

Listing 4.2: A worker program in Java
public class Receiver extends RabbitMQ {

public static void main(String [] argv) throws Exception {
ConnectionFactory factory = new ConnectionFactory ();
factory.setHost(getHost ());
Connection connection = factory.newConnection ();
Channel channel = connection.createChannel ();
channel.queueDeclare(QUEUE_NAME , false , false , false ,

null);
DeliverCallback deliverCallback = (consumerTag , delivery)

-> {
Configuration <String > config = SerializationUtils.

deserialize(delivery.getBody ());
RunJPF runner = new RunJPF(config);
runner.start();
try {

runner.join();
channel.basicAck(delivery.getEnvelope ().

getDeliveryTag (), false);
} catch (InterruptedException e) {

e.printStackTrace ();
}

};
boolean autoAck = false;
channel.basicConsume(QUEUE_NAME , autoAck , deliverCallback

, consumerTag -> { });
}

}

Note that all workers as well as JPF programs are using the same a Redis
instance as a shared cache. JPF program traverses the (sub-)state space
designated in the message. Whenever JPF reaches the designated depth or
finds the current state have no more successor states, our listener class does
the following.

1. Removing all consecutive same states but except one from the state
sequence.

2. Converting the state sequence to a string representation by seqToString
function in the listing 4.3 and using the SHA256 algorithm by getSHA
function support by GFG class to generate a certain unique signature
for the string.

3. Asking the Redis cache whether the state sequence exists by sending
exists message to jedis object; If yes, skipping what follows; Otherwise,
saving the signature as the key and the string as the value into the Redis
cache and writing the string into the file maintained by the worker.

40

4. Obtaining the last state from the state sequence, converting it to a
string representation and using the SHA256 algorithm to hash the
string to a unique signature.

5. Asking the Redis cache whether the state exists; If yes, skipping what
follows; Otherwise, asking Redis to save the signature as the key and
the string as the value into the Redis cache and sending a message that
contains the last state’s information to the RabbitMQ master, which
then prepares a message that asks a worker to generate state sequences
from the state.

The listing 4.3 shows how to avoid the state exists, the state sequence
exists, write state sequences to files as well as sending a new state that is
encapsulated into a message to the RabbitMQ master. We have used SHA256
algorithm, Redis, RabbitMQ to accomplish it as described above.

Listing 4.3: A worker program in Java
public void writeSeqStringToFile () {

try {
if (seq.size() > 0) {

String seqString = seqToString ();
String seqSha256 = GFG.getSHA(seqString);
if (!jedis.exists(seqSha256)) {

jedis.set(seqSha256 , seqString);
graph.write(seqString + " , ");
graph.newLine ();
SEQ_UNIQUE_COUNT ++;

}
Configuration <String > lastElement = seq.get(seq.size()

- 1);
if (lastElement != null) {

String elementSha256 = GFG.getSHA(lastElement.
toString ());

if (!jedis.exists(elementSha256)) {
jedis.set(elementSha256 , lastElement.toString ());
// TODO :: submit job to the queue broker
if (lastElement.getFinish ().get() == false) {

mq.Sender.getInstance ().sendJob(lastElement);
}

}
}

}
} catch (Exception e) {

e.printStackTrace ();
}

}

41

Listing 4.4: How to internally start JPF
public class RunJPF extends Thread {

public void run() {
try {

String [] configString = configList.toArray(new String[
configList.size()]);

Config conf = JPF.createConfig(configString);
conf.setProperty("report.console.finished", "result");
JPF jpf = new JPF(conf);
SequenceState seq = new SequenceState ();
jpf.addListener(seq);
jpf.run();

} catch (Exception e) {
e.printStackTrace ();

}
}

}

The current tool has not yet been integrated to Maude. It requires human
users to feed state sequences generated into Maude. Because each file main-
tained by a worker could be huge, however, it is necessary to split the file
into multiple smaller ones, each of which is fed into Maude, because it would
take much time to feed a huge file into Maude. The tool will be integrated
to Maude, including splitting of huge files into multiple smaller files.

4.3 Summary
We have explained how to apply our divide & conquer approach to testing
concurrent programs. Typically, a divide & conquer approach to generate
state sequences and expose completely our environment architecture. As
mentioned above, If we only use one JPF instance, JPF program cannot
terminate or even reach to out of memory soon due to traverse on a large
state space. To alleviate this problem to apply to our tool, we come up with
the divide & conquer approach. If D1 + . . . + D(l − 1) are small enough,
we can generate all (sub-)state sequences from each state located at depth
D1 + . . . + D(l − 1) from a concurrent program P in the stratified way.
But, we do not combine multiple (sub-)state sequences to generate a whole
state sequence of P because it suffices to check if each (sub-) state sequence
can be accepted by S in order to imply that if a whole state sequence can
be accepted by S. Leveraging the master-worker model, we parallelize state
sequence generation to avoid JPF running out of memory. Each worker will
conquer a sub space in a whole state space, it effectively reduces the burden
for JPF. Besides, we use a Redis instance as a big hash table, it stores distinct

42

states as well as state sequences to eliminate duplication while generating
state sequences.

43

Chapter 5

Case Studies

The Transmission Control Protocol (TCP), one of the most important proto-
cols of the Internet protocol suites, is used widely in almost our application
program nowadays. It is very worth to study this kind of protocol, so in our
experiments, we choose Alternating Bit Protocol (ABP) that is a simplified
version of TCP and another one is Simple Communication Protocol (SCP)
that is a simplified version of ABP. Instead of using a queue as ABP, SCP
uses a cell to specify and maintain data channel and ask channel. Both ABP
and SCP protocols are a communication protocol, they ensure that a sender
may send correct messages in order to a receiver over an unreliable network.
In the paper [1], SCP and ABP are regarded as an abstract specification and
a concrete specification, respectively. In this chapter, we present completely
the experiment results of our proposed method over SCP and ABP proto-
cols. The experiment results indicate that the proposed techinique is able to
mitigate the state space explosion problem from which otherwise only one
JPF instance cannot suffer.

5.1 Simple Communication Protocol (SCP)
Simple Communication Protocol (SCP), a communication protocol, is used as
one running example. SCP consists of a sender, a receiver and two channels
between them. One channel called dc (data channel) is a cell that is used to
transfer pairs 〈d, b〉, where d is a data value and b is a Boolean value, to the
receiver from the sender, and the other channel called ac (ack channel) is a
cell that is used to deliver Boolean values (as ack) to the sender from the
receiver. Both cells are unreliable in that the contents may drop. The sender
maintains two pieces of information that are sb (sender bit) and data. sb is a
Boolean value and data is the data to be delivered next to the receiver. The

44

d(2), true
scp−sb: true

scp−data: d(2)

scp−rb: false

scp−buf: d 0 	|	d(1)
false

d-snd

a-snda-rec

d-rec
d-drp

a-drp

scp−dc (data channel)

scp−ac (ack channel)

Figure 5.1: A state of SCP

receiver maintains two pieces of information that are rb (receiver bit) and
buf. rb is Boolean value and buf is the list of data received so far. Initially,
sb is true, data is d(0), rb is true, buf is empty, dc is empty and cc is empty.
The sender has two actions to do that are d-snd and d-rec. d-snd does the
following: the pair 〈data, sb〉 is put into dc. d-rec does the following: if ac
has a Boolean value b, then b is extracted and if b 6= sb, then data is set to
the next data and sb is negated and otherwise, nothing changes. The receiver
has two actions to do that are a-snd and a-rec. a-snd does the following: rb is
put into ac. a-rec does the following: if dc has 〈d, b〉, then 〈d, b〉 is extracted
and if b = rb, then d is added to buf at the end and rb is negated and
otherwise nothing changes. There are two more actions that are d-drp and
a-drp. d-drp does the following: if dc is not empty, dc becomes empty. a-drp
does the following: if ac is not empty, ac becomes empty. Fig. 5.1 shows a
state of SCP.

A state of SCP is expressed as follows:

{(scp-sb: b1) (scp-data: d(n)) (scp-rb: b2)
(scp-buf: dl) (scp-dc: cell1) (scp-ac: cell2)}

Each of the six actions in SCP is formalized as state transitions, which are
described in Maude (conditional) rewrite rules (or rules) as follows:

rl [d-snd] : {(scp-sb: B)(scp-data: D) (scp-dc: DC) OCs}
=> {(scp-sb: B)(scp-data: D) (scp-dc: (< D,B >)) OCs} .

crl [a-rec1] : {(scp-sb: B)(scp-data: d(N)) (scp-ac: B’) OCs}
=> {(scp-sb: (not B))(scp-data: d(N + 1)) (scp-ac: empc) OCs}
if B =/= B’ .

45

Figure 5.2: Time taken when the length of each state sequence is fixed (100)
and the number of state sequences is changed (100, 1000, 10000, 50000,
100000, 500000 & 1000000)

crl [a-rec2] : {(scp-sb: B)(scp-data: D) (scp-ac: B’) OCs}
=> {(scp-sb: B)(scp-data: D)(scp-ac: empc) OCs}
if B = B’ .

rl [a-snd] : {(scp-rb: B)(scp-ac: AC) OCs}
=> {(scp-rb: B)(scp-ac: B) OCs} .

crl [d-rec1] : {(scp-rb: B)(scp-buf: Ds) (scp-dc: (< D,B’ >)) OCs}
=> {(scp-rb: (not B))(scp-buf: (Ds | D)) (scp-dc: empc) OCs}
if B = B’ .

crl [d-rec2] : {(scp-rb: B)(scp-buf: Ds) (scp-dc: (< D,B’ >)) OCs}
=> {(scp-rb: B)(scp-buf: Ds) (scp-dc: empc) OCs}
if B =/= B’ .

rl [d-drp] : {(scp-dc: P) OCs}
=> {(scp-dc: empc) OCs} .

rl [a-drp] : {(scp-ac: B) OCs}
=> {(scp-ac: empc) OCs} .

SCP is a simplified version of ABP, SCP uses Cells to maintain data
channel and ack channel, but ABP uses Queues instead of. On other words,
ABP is general of SCP. When we set the maximum number of elements may
be in the queue to 1, ABP is SCP.

46

Figure 5.3: Time taken when the number of state sequences is fixed (1) and
the length of the state sequence is changed (100, 1000, 10000, 50000, 100000,
250000 & 500000)

In our paper [1], we used the SCP as a abstract specification and ABP
as a concrete specification in Maude to measure time taken to generate state
sequences from the ABP specification, transform them with the simulation
relation from ABP to SCP to other state sequences, and check if the state
sequences obtained can be accepted by the SCP specification. We used one
node of SGI UV3000 that carries 2.90GH microprocessor and 256GB memory
for the experiments. Two sets of experiments were conducted. One set is to
fix the length of each state sequence, which is 100, and modify the number of
state sequences generated, which is one of 100, 1000, 10000, 50000, 100000,
500000 and 1000000. The other set is to fix the number of state sequences
generated, which is one, and modify the length of the state sequence, which
is one of 100, 1000, 10000, 50000, 100000, 250000 and 500000. For both sets
of experiments, 2 was used as the depth of state transitions. Fig. 5.2 shows
the experimental results for the first set. The time taken increases almost
linearly as the number of state sequences generated increases. Fig. 5.3 shows
the experimental results for the second set. The time taken increases a bit
greater than linearly as the length of the state sequence generated increases.
If we use 1 as the depth instead of 2, we get the following an error result:

{msg: "Failure",from: {scp-sb: true scp-data:
d(0) scp-rb: false scp-buf: d(0) scp-dc:
< d(0),true > scp-ac: false},to: {scp-sb:
false scp-data: d(1) scp-rb: false scp-buf:
d(0) scp-dc: < d(0),true > scp-ac: false},
index: 20,bound: 1}

47

This is because the transition between those two states is impossible with
depth 1. In other words, the state following to: is not reachable from the
state following from: with depth 1 in SCP specification.

5.2 Alternating Bit Protocol (ABP)
We study on another case study in which ABP has been used. ABP is a
communication protocol and can be regarded as a simplified version of TCP.
ABP makes it possible to reliably deliver data from a sender to a receiver
even though two channels between the sender and receiver are unreliable
in that elements in the channels may be dropped and/or duplicated. The
sender maintains two pieces of information: sb that stores a Boolean value
and data that stores the data to be delivered next. The receiver maintains
two pieces of information: rb that stores a Boolean value and buf that stores
the data received. One channel dc from the sender to the receiver carries
pairs of data and Boolean values, while the other one ac from the receiver to
the sender carries Boolean values. There are two actions done by the sender:
(sa1) the sender puts the pair (data, sb) into dc and (sa2) if ac is not empty,
the sender extracts the top Boolean value b from ac and compares b with sb;
if b 6= sb, data becomes the next data and sb is complemented; otherwise
nothing changes. Actions (sa1) and (sa2) done by the sender are denoted
d-snd and a-rec, respectively. There are two actions done by the receiver:
(ra1) the receiver puts rb into ac and (ra2) if dc is not empty, the sender
extracts the top pair (d, b) from dc and compares b with rb; if b = sb, d is
stored in buf and rb is complemented; otherwise nothing changes. Actions
(ra1) and (ra2) done by the receiver are denoted a-snd and d-rec, respectively.
There are four more actions to dc and ac because the channels are unreliable.
If dc is not empty, the top element is dropped (d-drp) or duplicated (d-dup),
and if ac is not empty, the top element is dropped (a-drp) or duplicated
(a-dup). Fig. 5.4 shows a graphical representation of a state of ABP.

Each state of ABP is formalized as a term {(sb : b1) (data : d(n)) (rb : b2)
(buf : dl) (dc : q1) (ac : q2)}, where b1 and b2 are Boolean values, n is a natural
number, dl is a data list, q1 is a queue of pairs of data and Boolean values and
q2 is a queue of Boolean values. d(n) denotes data to be delivered from the
sender to the receiver. Initially, b1 is true, b2 is true, n is 0, dl is the empty
list, q1 is the empty queue and q2 is the empty queue. The state transitions
that formalize the actions are specified in rewrite rules as follows:

rl [d-snd] : {(sb: B)(data: D)(dc: Ps) OCs}
=> {(sb: B)(data: D)(dc:(Ps | < D,B >)) OCs} .

48

d(2), t d(2), t d(1), f
sb: true

data: d(2)

rb: false

buf: d 0 	|	d(1)
false	false	false	false

d-snd

a-snda-rec

d-rec
d-drp

a-drp

d-dup

a-dup

where t & f stands for true & false

dc (data channel)

ac (ack channel)

Figure 5.4: A state of ABP

crl [a-rec1] : {(sb: B)(data: d(N))(ac: (B’ | Bs)) OCs}
=> {(sb:(not B))(data: d(N + 1))(ac: Bs) OCs} if B =/= B’ .

crl [a-rec2] : {(sb: B)(data: D)(ac: (B’ | Bs)) OCs}
=> {(sb: B)(data: D)(ac: Bs) OCs} if B = B’ .

rl [a-snd] : {(rb: B)(ac: Bs) OCs}
=> {(rb: B) (ac: (Bs | B)) OCs} .

crl [d-rec1] : {(rb: B)(buf: Ds)(dc: (< D,B’ > | Ps)) OCs}
=> {(rb: (not B))(buf: (Ds | D))(dc: Ps) OCs} if B = B’ .

crl [d-rec2] : {(rb: B)(buf: Ds)(dc: (< D,B’ > | Ps)) OCs}
=> {(rb: B)(buf: Ds)(dc: Ps) OCs} if B =/= B’ .

rl [d-drp] : {(dc: (Ps1 | P | Ps2)) OCs}
=> {(dc: (Ps1 | Ps2)) OCs} .

rl [d-dup] : {(dc: (Ps1 | P | Ps2)) OCs}
=> {(dc: (Ps1 | P | P | Ps2)) OCs} .

rl [a-drp] : {(ac: (Bs1 | B | Bs2)) OCs}
=> {(ac: (Bs1 | Bs2)) OCs} .

rl [a-dup] : {(ac: (Bs1 | B | Bs2)) OCs}
=> {(ac: (Bs1 | B | B | Bs2)) OCs} .

Words that start with a capital letter, such as B, D, Ps and OCs, are Maude

49

Table 5.1: Experimental data

Channel size Worker Time1 (d:h:m) #seqs #small files Total size (MB) Time2 (s)

1

Worker 1 1:0:57

1,381 2 0.5 13Worker 2 1:0:57
Worker 3 1:0:57
Worker 4 0:18:43

2

Worker 1 2:17:51

8,879 9 4.3 118Worker 2 2:11:45
Worker 3 2:10:52
Worker 4 2:11:51

3

Worker 1 3:23:53

24,416 25 13.5 355Worker 2 3:20:27
Worker 3 3:20:37
Worker 4 3:17:41

• Time1 – time taken to generate state sequences with JPF.

• Time2 – time taken to check if state sequences are accepted by the
formal specification with Maude.

• Total size – the total size of all state sequences generated.

variables. B, D, Ps and OCs are variables of Boolean values, data, queues of
(Data,Bool)-pairs and observable component soups, respectively. The types
(or sorts) of the other variables can be understood from what have been
described. The two rewrite rules a-rec1 and a-rec2 formalize action a-rec.
What rewrite rules formalize what actions can be understood from what
have been described. Let SABP refer to the specification of ABP in Maude. A
concurrent program P ′ABP is written in Java based on SABP, where one thread
performs two actions d-snd and a-rec, one thread performs two actions a-snd
and d-rec, one thread performs two actions d-drp and a-drp and one thread
performs two actions d-dup and a-dup. We intentionally insert one flaw in
P ′ABP such that when the receiver gets the third data, it does not put the
third data into buf but puts the fourth data into buf .

We suppose that the sender is to deliver four data to the receiver, the
maximum state transition bound is 2, DEPTH is 100 for each layer and
BOUND is unbounded for each layer. The simulation relation candidate
from P ′ABP to SABP is essentially the identity function. We change each
channel size as follows: 1, 2 and 3. We do not need to fix the number of
layers in advance, but the number of layers can be determined by the tool
on the fly. For each experiment, however, the number of layers is larger than
2. The experiments were carried out by an Apple iMac Late 2015 that had

50

Processor 4GHz Intel Core i7 and Memory 32 GB 1867 MHz DDR3. The
experimental data are shown in Table 5.1. Each small file contains at most
1,000 state sequences.

When each channel size is 1, it takes about 1 day to generate all state
sequences with four workers. The number of the state sequences generated is
1,381, which is split into two groups (files): one file has 1,000 state sequences
and the other file has 381 sequences. Each file is fed into Maude to check
if each state sequence is accepted by SABP with Maude. It takes 13s to do
all checks. Maude detects that some state sequences have an adjacent states
s and s′ such that s cannot reach s′ by SABP in two state transitions. If
that is the case, a tool component [1] implemented in Maude shows us some
information as follows:

Result4Driver?: {seq: 31,msg: "Failure",
from: {sb: true data: d(2) rb: true buf: (d(0) | d(1))

dc: < d(2),true > ac: nil},
to:{sb: true data: d(2) rb: false buf: (d(0) | d(1) | d(3))

dc: nil ac: nil},index: 3,bound: 2}

This is because although the receiver must put the third data d(2) into buf
when d(2) is delivered to the receiver, the receiver instead puts the fourth
data d(3) into buf , which is the flaw intentionally inserted into P ′ABP. This
demonstrates that our tool can detect the flaw.

When each channel size is 2, it takes about 2.75 days to generate all state
sequences with four workers. The number of the state sequences generated
is 8,879, which is split into nine groups (files): eight files have 1,000 state
sequences and one file has 879 sequences. Each file is fed into Maude to check
if each state sequence is accepted by SABP with Maude. It takes 118s to do
all checks. As is the case in which each channel is 1, Maude detects that some
state sequences have an adjacent states s and s′ such that s cannot reach
s′ by SABP in two state transitions due to the flaw intentionally inserted in
P ′ABP.

When each channel size is 3, it takes about 4 days to generate all state
sequences with four workers. The number of the state sequences generated is
24,416, which is split into 25 groups (files): 24 files have 1,000 state sequences
and one file has 416 sequences. Each file is fed into Maude to check if each
state sequence is accepted by SABP with Maude. It takes 355s to do all the
checks. As is the case in which each channel is 1, Maude detects that some
state sequences have an adjacent states s and s′ such that s cannot reach
s′ by SABP in two state transitions due to the flaw intentionally inserted in
P ′ABP.

51

Note that when each channel is 3, the straightforward use of JPF did not
complete the model checking but caused out of memory after it spent about
4 days to try exploring the reachable state space with almost the same com-
puter as the one used in the experiments reported in the present paper [21].
Therefore, the proposed technique can alleviate the out-of-memory situation
due to the state space explosion.

The experimental results say that it takes a few days to generate state
sequences from a concurrent Java program with our tool in which JPF plays
the main role, while it only takes several minutes to check if state sequences
are accepted by a formal specification with Maude.

5.3 Summary
We have conducted to experiment on 2 case studies SCP and ABP. SCP is a
simplified version of ABP. When the channel size is assigned to 1 in the ABP
case study, ABP may be regarded as SCP. Our experiment results say that
we can generate all state sequences from ABP program with the channel
size from 1 up to 3. When the channel size of ABP is 1, 2 or 3. It took
about 1 day, 2.75 days, 4 days, respectively. The path execution is so large
that one JPF instance cannot terminate and reach to out of memory soon.
One notice that we need to take into account how much the DEPTH value
for each layer should be. A good DEPTH value makes sure that JPF may
explore entire (sub)state sequences and JPF program has to complete in a
reasonable time. In our experiments, we use DEPTH is 100 for each layer by
heuristic, of course, BOUND is unbounded for each layer. The experiment
results have demonstrated that the proposed technique can mitigate the state
space explosion instances from which otherwise only one JPF instance cannot
suffer while generating state sequences.

52

Chapter 6

Conclusions and Future Work

6.1 Conclusions
We have proposed a new testing technique for testing concurrent programs.
The technique is a specification-based testing one. For a formal specification
S and a concurrent program P , state sequences are generated from P and
checked to be accepted by S. We have used S that is specified in Maude and
P that is implemented in Java. Java Pathfinder (JPF) and Maude are then
used to generate state sequences from P and to check if such state sequences
are accepted by S, respectively. Even without checking any property vio-
lations with JPF, JPF often encounters the notorious state space explosion
while only generating state sequences. Thus, we have proposed a technique
to generate state sequences from P and check if such state sequences are
accepted by S in a stratified way. Using only one JPF instance, JPF cannot
terminate and reach to out of memory soon. Leveraging the master-worker
model, we use several JPF instances to parallelize state sequences generation
from P in a stratified way. Our implementation has contributed to three
main modules:

1. Semi-computation Checker: we have used meta programming in Maude
to develop a checker module. Given a specification S, a state sequences
Seq. Simi-computation Checker module automatically detects whether
the state sequences Seq conforms to the specification S to give a report.

2. State Sequences Generation: we have generated state sequences from
concurrent program P by using the advantages of model checker JPF.

3. Divide & Conquer Approach to Generate State Sequences: we have
built up a scalable environment for state sequences generation by our
divide & conquer approach with the master-worker model.

53

Some experiments have demonstrated that the proposed technique mitigates
the state space explosion instances from which otherwise only one JPF in-
stance cannot suffer.

Advantages:

1. Specification-based testing: We may check if a program P never imple-
ments what is not specified in a specification S.

2. Parallelization: Using the divide & conquer approach that helps us to
parallelize state sequences generation in a stratified way.

3. A scalable technique: The proposed approach may mitigate state ex-
plosion problem while generating state sequences.

Drawbacks:

1. Consuming resources and not alleviation well enough: Essentially, ex-
ploring the entire state space by JPF. This is quite expensive, as
some execution may not be relevant to the properties to check. Es-
pecially, the proposed approach does not mitigate the state explosion
well enough when increasing a large number of threads in concurrent
programs.

2. Manually semi-computation checking: As soon as all state sequences
have generated, we manually check it with specifications. It is manual
and time-consuming to wait for checking. But we are confident to
completely conquer these problems in our future work.

3. Understanding specifications as well : Generating state sequences from
program P requires developers need to understand about specifications
to make a correct format that is satisfied by the specification inputs.

6.2 Future Work
Up to now, our implementation can completely be testing a proper number
of threads in concurrent programs with specifications. Because of time limi-
tation, so based on the advantages and drawbacks. In future work, we would
like to conduct more useful case studies to evaluate the performance of our
proposed technique as well as improve our environment more scalability. Our
plan is the following:

54

1. Integrating the current tool implemented in Java to the tool compo-
nent [1] implemented in Maude, it makes our environment that can
detect subtle flaws lurking in the real-time.

2. Accelerating state sequences generation from concurrent programs. For
example, instead of the use of files system (disk) storage, it would be
better to only use in-memory storage, which we anticipate would be
feasible.

3. Finding out a good criterion that can be used to systematically choose
a next state which should be explored at scheduling points for state
sequences generation. It is possible to help us quickly reaching errors
lurking in concurrent programs.

4. Lastly, we would like to conduct more case studies, it is most important
to evaluate the performance of our tool as well as our proposed method.

55

Bibliography

[1] Vinay Arora, Rajesh Kumar Bhatia, and Maninder Singh. A system-
atic review of approaches for testing concurrent programs. Concurrency
Computat.: Pract. Exper., 28(5):1572–1611, 2016.

[2] Eman Alatawi, Harald Søndergaard, and Tim Miller. Leveraging ab-
stract interpretation for efficient dynamic symbolic execution. In Pro-
ceedings of the 32Nd IEEE/ACM International Conference on Auto-
mated Software Engineering, ASE 2017, pages 619–624, Piscataway, NJ,
USA, 2017. IEEE Press.

[3] Cormac Flanagan and Patrice Godefroid. Dynamic partial-order re-
duction for model checking software. SIGPLAN Not., 40(1):110–121,
January 2005.

[4] Willem Visser, Klaus Havelund, Guillaume P. Brat, Seungjoon Park,
and Flavio Lerda. Model checking programs. Autom. Softw. Eng.,
10(2):203–232, 2003.

[5] Klaus Havelund and Thomas Pressburger. Model checking JAVA pro-
grams using JAVA PathFinder. STTT, 2(4):366–381, 2000.

[6] Jiří Barnat, Luboš Brim, Vojtěch Havel, Jan Havlíček, Jan Kriho, Mi-
lan Lenčo, Petr Ročkai, Vladimír Štill, and Jiří Weiser. Divine 3.0 – an
explicit-state model checker for multithreaded c & c++ programs. In
Natasha Sharygina and Helmut Veith, editors, Computer Aided Verifi-
cation, pages 863–868, Berlin, Heidelberg, 2013. Springer Berlin Heidel-
berg.

[7] Jiri Barnat, Vincent Bloemen, Alexandre Duret-Lutz, Alfons Laarman,
Laure Petrucci, Jaco van de Pol, and Etienne Renault. Parallel Model
Checking Algorithms for Linear-Time Temporal Logic, pages 457–507.
Springer International Publishing, Cham, 2018.

56

[8] Zhan-Wei Hui and Song Huang. Md-art: A test case generation method
without test oracle problem. In Proceedings of the 1st International
Workshop on Specification, Comprehension, Testing, and Debugging of
Concurrent Programs, SCTDCP 2016, pages 27–34, New York, NY,
USA, 2016. ACM.

[9] Ankit Choudhary, Shan Lu, and Michael Pradel. Efficient detection
of thread safety violations via coverage-guided generation of concurrent
tests. In 39th ICSE, pages 266–277, 2017.

[10] Patrick Metzler, Habib Saissi, Péter Bokor, and Neeraj Suri. Quick
verification of concurrent programs by iteratively relaxed scheduling. In
32nd ASE, pages 776–781, 2017.

[11] Willem Visser, Corina S. Pǎsǎreanu, and Sarfraz Khurshid. Test input
generation with java pathfinder. SIGSOFT Softw. Eng. Notes, 29(4):97–
107, July 2004.

[12] Jeff Huang. Stateless model checking concurrent programs with maximal
causality reduction. In 36th PLDI, pages 165–174, 2015.

[13] Qiuping Yi and Jeff Huang. Concurrency verification with maximal path
causality. In 26th FSE/17th ESEC, pages 366–376, 2018.

[14] Miguel Isabel. Conditional dynamic partial order reduction and opti-
mality results. In Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2019, pages 433–
437, New York, NY, USA, 2019. ACM.

[15] Kazuiro Ogata and Kokichi Futatsugi. Simulation-based verification
for invariant properties in the OTS/CafeOBJ method. In Refine 2007,
ENTCS 201, pages 127–154. Elsevier, 2007.

[16] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso
Martí-Oliet, José Meseguer, and Carolyn Talcott. All About Maude.
LNCS 4350. Springer, 2007.

[17] Canh Minh Do and Kazuhiro Ogata. Specification-based testing with
simulation relations. In 31st International Conference on Software En-
gineering and Knowledge Engineering (31st SEKE), pages 107–112. KSI
Research Inc., July 2019.

[18] Taro Kurita, Miki Chiba, and Yasumasa Nakatsugawa. Application of a
formal specification language in the development of the "Mobile FeliCa"

57

IC chip firmware for embedding in mobile phone. In FM 2008, LNCS
5014, pages 425–429. Springer, 2008.

[19] Open source. Redis. https://redis.io/, 2009. [Online; accessed 05-
August-2019].

[20] Open source. Rabbitmq. https://www.rabbitmq.com/, 2007. [Online;
accessed 05-August-2019].

[21] Kazuhiro Ogata. Model checking designs with CafeOBJ – a contrast with
a software model checker, Workshop on Formal Method and Internet of
Mobile Things, ECNU, Shanghai, China, 2014.

58

https://redis.io/
https://www.rabbitmq.com/

Publications

[1] Canh Minh Do and Kazuhiro Ogata. Specification-based testing with
simulation relations. In 31st International Conference on Software En-
gineering and Knowledge Engineering (31st SEKE), pages 107–112. KSI
Research Inc., July 2019.

59

	Abstract
	Acknowledgments
	Introduction
	Motivation
	Problem Statement
	Related Work
	Contributions
	Thesis Structure

	Preliminaries
	State Machine
	Simulation Relations
	Meta Programming in Maude
	Concurrent Programming in Java
	Threads
	Synchronization

	Specification-based Testing with Simulation Relations
	State Sequence Generation from Concurrent Programs
	Java Pathfinder (JPF)
	Generating State Sequences by JPF

	Checking a finite semi-computation
	Summary

	Divide & Conquer Approach to Testing Concurrent Programs
	A Divide & Conquer Approach to Generating State Sequences
	Environment Architecture
	Summary

	Case Studies
	Simple Communication Protocol (SCP)
	Alternating Bit Protocol (ABP)
	Summary

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography
	Publications

