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“... I was aware also of his thinking, like a force as palpable as heat or light or wind.
This force seemed to consist in an exceptional faculty for seeing ideas as external ob-
jects and for establishing new links between ideas which appeared totally unrelated.
I heard him ... treat human history as a problem in descriptive geometry, then a
moment later speak of the properties of numbers in terms of zoological species. The
fusion and division of cells became a particular instance of logical reasoning, and
language obeyed the same laws as celestial mechanics.”

"Mount Analogue", Rene Daumal (translated by Roger Shattuck)
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JAPAN ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY

Abstract
Department of Knowledge Science

Knowledge Science

Analogy as Model-Building: Exploring Analogical Inference in the
Statistical Semantic Space

by Tatsuhiko KATO

Analogy is an ability to see the similarity between objects, in terms of the
relations they share with each other. The ability has a critical importance for
the study of cognition, because analogy is utilized in the broad spectrum of
human activities, such as scientific discovery, metaphor generation, educa-
tion and so on. However, a critical question of analogy, ”where do the rela-
tions utilized to make analogy come from?”, is largely ignored by the past
studies. In this thesis, we take a first step to answer this question, by first
providing a novel formulation of analogy and testing the formulation on the
simple example. We then applied the formulation to the representative mod-
els of analogy, structure-mapping engine and word2vec, which concluded
that only word2vec partially satisfies the requirements. Based on this obser-
vation, we devised a novel analogical operator for word2vec based on our
formulation, which showed a decent increase in analogy performance of the
model compared to previous operators. From these results, we conclude that
our formulation is a promising one, and is worth further testing.
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Chapter 1

Introduction

1.1 What is analogy, and why it’s important for cog-
nition

There are two rooms depicted in the figure 1.1, one with larger size, and the
specific names of furniture written, the other with smaller and black boxes
in it. Although two rooms are different in terms of its size and whats in
them, most likely we judge that two rooms are actually similar to each other.
How do we judge that the two rooms are similar? A traditional answer from
cognitive science literature might be that we can see that the shapes in the
respective rooms have the same relations with each other, and that sameness
of the relations leads to our judgement of the two rooms being similar. For
example, Table is ”on the left side of” Chair, and in the smaller room, the box
which has the same shape to Table is ”on the left side of” the box which has
the same shape to Chair. Basically, the relation of relative placement of the
boxes being ”same” in the two rooms (inputs) can be thought of as the reason
why people find the two rooms similar.

For us, the task of room analogy seems to be easy and nothing worth
mentioning, but if we think of the task differently, it starts to seem quite dif-
ficult. For instance, think of a task as finding the ”best fit” for each box and
furniture based only on its shape (not on where its located in the rooms). The
7 candidates of the best fit exist for each box, and even if we assume that each
box can only have one fit, there are 7! = 5040 ways to make those fits. Among
these options, we have to select one option which can be thought of as the
best fit. The task only seems easy if we assume what relations we can utilize,
such as ”on the left side of” above. This kind of inference which utilizes ”the
relation of relation” (the ”sameness” of the ”relative placement” of boxes) is
called analogy in a group of past literatures (e.g. Gentner, 1983), and has the
central importance in understanding human intelligence (we call the task of
finding two rooms in figure 1.1 similar ”room analogy” hereafter).

Analogy has been hypothesized to be one of the hallmarks of human in-
telligence (Penn, Holyoak, and Povinelli, 2008), because of other animals and
primates failing to perform the tasks that require the ability. For example,
nonhuman animals may notice that several different apples are still same
”apple” based on different apples sharing the similar color, shape, and size,
i.e. perceptual features. However, only humans may notice that the relation
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FIGURE 1.1: Even children around three years of age can find
the two rooms ”same” or ”similar”, despite the scale of objects
in the rooms being different (modified from (DeLoache, 1989))

of apple and its tree is the same as the relation of child and her mother (in
both cases the latter gives birth to the former).

Not only analogy might be uniquely human, but it is also seen ubiq-
uitously in human activities, including scientific discovery (Gentner, 1983),
making metaphors (Gentner et al., 2001), education, and so on. In the case of
education, we can utilize analogy for connecting previously learned concepts
with newly encountered ones, for example, analogy of the electric ”current”
and ”current” of water is a popular one. The example is considered to be a
good analogy because there are several properties of electrical current which
correspond to properties of current of water. For instance, the difference of
position or height (i.e. slope) moves the water through the pipe, creating the
current. In similar vein, the difference of electrical potential (i.e. voltage)
creates the electrical current.

1.2 Purpose of the sutdy

Given that analogy is important ability for humans, how can humans actu-
ally make an analogy, or in terms of what aspects are compared objects sim-
ilar? As we have briefly mentioned using above, past studies have charac-
terized analogy as the inference based on ”mapping of relations between ob-
jects”(Gentner, 1983), ”similarity in relational structure”(Gentner and Smith,
2013). The focus of these characterizations are clearly in the ”relation”.
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But what is relation? and where does the relation come from? This is the
central question we tackle in this paper. To better understand the significance
of the question, let’s go back to the room analogy example above. When we
first explained the example, we just assumed we can think of the relations,
such as ”on the left side of” without difficulty. However, it is not clear how
we can specify the relations. For example, we can think of other ”relations”
such as the distance in cm between boxes, or whether the colors of two boxes
are same. How can we pick out a specific relation which are common in
two rooms? In fact, the traditional account of analogy does not provide the
answer to the latter question ”Where do the relations come from?”. In this
paper, we present a novel formulation of analogy, which intends to answer
the question above. Our formulation shifts the focus of analogy from finding
same relations in the given inputs, to actually creating the inputs. By doing
so, we answer the question posed above (more on this in Chapter 3).

1.3 Summary of contents

The purpose of the paper is to provide an answer to the question of "how do
humans perform analogy?", especially focusing the question of ”where do
the relations come from?”, which is largely ignored by previous researches.
We tackle this task by first reviewing the relevant researches in the past on
the theorization and modeling of analogy (Chapter 2), so that we can examine
and point out the limitations of current theory, and later compare the theory
to that of ours. Specifically, we mainly review structure-mapping theory of
analogy as of theorization, and structure-mapping engine and word2vec, as
of modeling. Following the review, we provide the computational formu-
lation of analogy (Chapter 3). Then we examine the models introduced in
Chapter 2, in terms of whether those models satisfy the requirements posed
by our formulation. We observe that only word2vec model satisfies the im-
portant part of our formulation, namely creating the input to analogy from an
unstructured data. Based on the observation, we test the formulation utiliz-
ing word2vec model, since it satisfies the important part of our requirements,
by proposing the novel analogy operator for word2vec (Chapter 4).
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Chapter 2

Theories and models of analogy

In this chapter, we review the past theoretical formulation and models of
analogy. Specifically, we review structure-mapping theory and parallelo-
gram theory as of theories, and structure-mapping engine (Falkenhainer, For-
bus, and Gentner, 1989), Learning and Inference by Schemas and Analogy
(LISA) (Hummel and Holyoak, 2003), and word2vec (Mikolov et al., 2013a;
Mikolov et al., 2013b) as of models. The core idea of former two models
is based on the structure-mapping theory, with some modifications on each
model. On the other hand, word2vec is more tightly connected to parallelo-
gram theory. This review lays out the foundation for discussing our defini-
tion of analogy, and we examine the theories and models proposed here in
light of our definition later in Chapter 4.

2.1 Theories of analogy

2.1.1 Structure-mapping theory

Structure-mapping theory proposed by Dedre Gentner (Gentner, 1983; Gen-
tner, 2010) has long been regarded as the most successful theory of anal-
ogy, leading to many experimental and modeling results (Gentner and For-
bus, 2011). Thus, it is important to review the structure-mapping theory to
contrast later with our idea of what analogy is. The core idea of structure-
mapping theory can be summarized as ”analogy is about finding common
relations between structured representations”. The theory specifies relation
as predicate, such as SUPPORT(pillar, roo f ) and structure as the set of pred-
icates which are also connected by second-order predicate (i.e. predicate that
takes the predicates as arguments), such as CAUSE(SHAKE, FALL). As can
be seen from the above characterization, structure-mapping theory empha-
sizes the role of relation and structure of relations in defining analogy.

More formally, Gentner Gentner, 1983 defines analogy, such as ”T is like
B”, as making the ”mapping” M from a base domain B, which makes a
source of knowledge, to a target domain T, which makes a domain being ex-
plained upon. Here they assume the knowledge is represented as networks
of nodes and predicates. Nodes represent concepts and predicates constitute
the propositions between the nodes. Then, base domain is composed of ob-
ject nodes b1, ..., bk, and predicates between nodes A, R, R′. Target domain is
also composed of object nodes t1, ..., tk. Mapping is defined as:
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M : bi → ti (2.1)

The mapping M is supposed to create ”the candidate set of inferences”,
which we would assume means a set of all relations and attributes which can
be mapped from B to T, in the target domain T. This candidate set is further
constrained according to the two rules:

A(bi) 6→ A(ti) (2.2)

R(bi, bj) → R(ti, tj) (2.3)

Here, 6→ means that the left hand side does not map to the right hand side.
Predicate such as A is called ”attribute”, since it takes only one argument (e,g,
BLUE(earth) = ”Earth is blue”), and predicate such as R is called ”relation”,
since it takes two arguments (e.g. SUPPORT(pillar, roo f ) = ”Pillar supports
roof”). The two rules indicate the preference of relational mapping over at-
tributional mapping in analogy, by only mapping relations from B to T 2.3,
discarding the attribute 2.2. In addition, the mapping is constrained by so
called systematicity principle, which dictates that if there preferably map the
relations which are connected by higher-order relations (i.e. relations which
take predicates, not objects, as arguments). This constraint is formally de-
fined as:

R′[R(bi, bj), R(bk, bl)] → R′[R(ti, tj), R(tk, tl)] (2.4)

that This process of creating M and candidate set of inferences from M,
then cutting down the candidate set, constitutes the structure-mapping the-
ory of analogy. To sum up, the theory postulates that analogy is to define a
mapping M from a base B to a target T. To create a mapping, first create the
mapping from base objects to target objects (2.1), then only map the relations,
but not the attributes, from the base (2.2 and 2.3)1. In addition, choose the re-
lations which have the higher-order relation between them (2.4). Next, we
examine a concrete example using the theory, and see how the formulation
can be utilized to understand the process of making an analogy.

1In fact, Gentner is ambiguous on how much attribute should be mapped. In some parts
she writes ”Discard attributes of objects”, and in some other parts ”few or no object at-
tributes” can be mapped.
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(A) Base domain of Rutherfold analogy.

(B) Target domain of Rutherfold analogy, and the mapped rela-
tions between objects.

FIGURE 2.1: Analogy of solar system and atomic structure
(from (Gentner, 1983) with modifications). The solar system
above, and the atomic structure below. S and O each stands

for ”Subject” and ”Object”.

An example analogy is the one which is used by the physicist Ernest
Rutherford, when he came up with his model of atomic structure by finding
a similar structure between solar system and hydrogen atom (Encyclopaedia
Britannica, 2018). Given the kind of "structured representations" shown in
figure 2.1, structure-mapping theory specifies how the mapping and candi-
date set of inferences should be created from the base (solar system) to the
target domain (atomic structure).

Figure 2.1 shows the representations of base and target domains. Refer-
ring to the previous section, according to (Gentner, 1983), making an analogy
is to define a mapping M from base (solar system) to target (atomic structure).
Then from the candidate set of inferences generated from M, we choose the
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one which only maps the relations, but not the object attributes. Thus in this
example, only ATTRCTS(S, O), ATTRCTS(O, S), MORE MASSIVE THAN(S,
O), and REVOLVES AROUND(O, S) are mapped and other object attributes,
such as YELLOW(sun), are discarded. The relation HOTTER THAN(S, O)
is not mapped, because of the systematicity principle 2.4. Specifically, there
is no systematic relation over HOTTER THAN(S, O), unlike other relations.
They argue that other relations than HOTTER THAN(S, O) are systemati-
cally related, because changing one relation among them affects the other
relations. Think of the four relations summarized below:

1. DISTANCE(sun, planet)

2. ATTRACTIVE FORCE(sun, planet)

3. REVOLVES AROUND(planet, sun)

4. MORE MASSIVE THAN(sun, planet)

(Among the four, DISTANCE(sun, planet) is not depicted in the figure 2.1
and ATTRACTIVE FORCE(sun, planet) is divided into two relations AT-
TRACTS(S, O) and ATTRACTS(O, S)). Changing the (1) distance between
sun and planet also changes the (2) attractive force between sun and planet.
Also changing (4) to MORE MASSIVE THAN(planet, sun), changes (3) to
REVOLVES AROUND(sun, planet). Thus these relations are systematically
related, but HOTTER THAN(S, O) is not, which is why HOTTER THAN(S,
O) is not mapped in the target domain. Note that Gentner, 1983 does not
specify how can we make the object mappings M in the example. For in-
stance, why is it the case that planet → electron, but not electron → planet?

Currently, structure-mapping is the representative theory of analogy and
other theories are more or less the variants of it. For instance, multiple-
constraint theory of analogy by (Holyoak and Thagard, 1989), adds several
other constraints for analogy other than systematicity of relations. These in-
clude how similar the words in domains are (i.e. semantic constraint), and
the purpose of the person making analogy (i.e. pragmatic constraint). Thus,
although there are several attempts to theorize analogy and minor modifica-
tions on each of them, the idea of structure-mapping (i.e. the importance of
finding relational correspondences and creation of mapping afterwards) has
been central in almost all of the theoretical formulation (Holyoak, Gentner,
and Kokinov, 2001).

2.2 Models of analogy

In the last section, we have described structure-mapping theory as the repre-
sentative theory of analogy. Other than experimental predictions that the the-
ory has made, the reason that the theory has been widely accepted among the
researches is that they created a working computational model, ”structure-
mapping engine” (SME), based on the idea of the theory. The multitudes of
the models have been created since then (see (Gentner and Forbus, 2011) for



2.2. Models of analogy 9

the overview of the models), and although we can not review all of them
here, we will briefly take a look at the two widely accepted models: SME and
LISA. We review the models here to later judge whether these models satisfy
our definition of analogy.

2.2.1 Structure-Mapping Engine (SME)

Structure-mapping engine was proposed as an implementation model of structure-
mapping theory (Falkenhainer, Forbus, and Gentner, 1989). The model takes
as input the base and target domains which are structured as directed acyclic
graph (DAG) which take predicates as nodes, and argument relations (whether
some predicates are arguments of other predicates) as edges. DAG is a graph
on that there is a path from a node to another node for only one direction,
and if we start following paths from a node, we can not go back to the same
node again (an example of such graph is shown on figure 2.2). SME makes
an analogy by finding a mapping and making inferences over those DAG
inputs.

FIGURE 2.2: Tree representation of solar-system and
Rutherford-atom analogy.

In the mapping process, the model proceeds in four steps:

1. Construct the all potential matchings among entities and relations
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FIGURE 2.3: The architecture of LISA (from (Hummel and
Holyoak, 2003))

2. Construct possible mappings by combining the matchings

3. Compute candidate inferences from mappings

4. Evaluate matches hypotheses based on the evidence

The first part of the process constructs the matchings of relations based on the
node labels. If two relation nodes share the same label, the model creates a
match. After constructed the possible matchings, the model proceeds to con-
struct mappings by combining the structurally consistent matchings. Struc-
turally consistent matchings refer to those matchings that share the same root
node in the tree structure, discarding any possible matchings which are not
connected by relations, such as object attribute. This process reflects the three
rules in SMT (2.2, 2.3). After the mapping construction, the model computes
the possible inferences based on the mapping. Here, inference refers to the
process of complementing target domain with any nodes that are present in
the base mappings but not in target mappings. Then after the three steps, the
model assigns the scores to each matchings based on whether the matchings
share the higher-order predicate, reflecting the rule three 2.4, of SMT.

2.2.2 Learning and Inference by Schemas and Analogy (LISA)

LISA (Hummel and Holyoak, 2003) is a model of analogy-making based on
the idea of multiple constraint theory, and is implemented on neural network
architecture. The basic architecture of LISA is shown on the Figure 2.3. Let
us explain the basic assumptions the modelers take using the figure.
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The basic idea of human analogy-making employed in LISA is that pred-
icates, which are employed in the relational matchings (as in SME), are rep-
resented as a combination of roles, fillers and their bindings with each other.
Roles are characteristics of objects they display in certain situations. In Fig-
ure 2.3, lover, beloved, knower, and known are roles. Fillers are objects that
”fill” the roles as defined above. Bill and Mary are fillers in this sense. Roles
and fillers are bound together to form larger units, as in ”Bill+lover” in the
figure.

The architecture of LISA reflects the above assumption that humans make
relational matchings on roles, fillers and bindings. Figure 2.3 shows the over-
all architecture of LISA. There are four layers, starting from the bottom, the
first layer corresponds to semantic units, which specify the attributes that
an object posses. In the figure, Bill is connected to three semantic units,
”male”, ”adult”, and ”human”, which characterize this object ”Bill”. The sec-
ond layer contains objects and relations, such as ”Bill” or ”lover”. The third
layer dictates the bindings between objects and relations. Bindings in turn
make up the ”sub-proposition” as in ”loves(Bill, Mary)” in the figure. This is
called sub-proposition, because they assume the block A in the figure in the
whole represents the proposition, not ”loves(Bill, Mary)” only. With this ar-
chitecture, analogical mapping is discovered based on what units co-activate
with what other units in the input representation.

Issues with SME and LISA as a model of analogy

In the last two sections, we have reviewed two models, structure-mapping
engine (SME) and Learning and Inference by Schemas and Analogy (LISA).
In this section, we argue that both models suffer from the same problem,
namely the arbitrariness of the making of input domains. Possibly the most
serious criticism towards SMT and SME (and other variants of it, includ-
ing LISA) is the one raised by (Chalmers, French, and Hofstadter, 1992). The
main criticism of (Chalmers, French, and Hofstadter, 1992) is that there seems
to be so much arbitrary choice made by researchers in SME, that it makes the
problem of analogy-making trivial. Take the analogy problem depicted in fig-
ure 2.2 as an example. If you just make correspondences of the nodes sharing
same labels, it is pretty easy to find the mapping from sun to nucleus, and
from planet to electron, even for computer programs. This is because, so they
point out, the representation of the domains is built by researchers to solve
the specific analogy in mind. To quote from (Chalmers, French, and Hofs-
tadter, 1992): ”Since the representations are tailored (perhaps unconsciously)
to the problem at hand, it is hardly surprising that the correct structural cor-
respondences are not difficult to find.”

Another arbitrariness of SME, they argue, is the use of the words ”object”,
”attribute”, and ”relation”. They claim that, although in the input to the SME
it is fixed whether some concept is object, attribute or relation, in human
mind, what things are object, attribute or relation might change flexibly. For
example, ”wealth” can be an object that flows from one agent, or can be an
attribute associated with the agent that changes with each transaction. We
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suppose that the same criticisms as above two can be applied to LISA and
many other models, since the input to those models are already constructed
representations of the domains.

We agree with Chalmers, French, and Hofstadter, 1992 in that the disre-
gard of representation-building by analogy models is problematic, not only
because it makes the process of analogy-making trivial, but also it indicates
that SMT is incomplete as a theory of analogy. This is because, if SMT is com-
plete as a ”theory” of analogy, it must specify the necessary and sufficient
conditions for some inference to be analogy. In other words, the inability of
SME to construct the suitable representation for analogy indicates that SMT,
which SME is based on, is at least not specific enough to give the model an
ability to solve analogy by itself.

In the next section, we see that a group of models, called vector-space
models, proposed in natural language processing partially solves this prob-
lem of inability for analogy models to construct representation by itself.

2.3 Vector-space models of semantics, parallelogram
theory, and word2vec

In this section, we introduce vector-space models of semantics (VSMs) in gen-
eral, and then word2vec model, which is a representative model of VSMs, in
detail, focusing on the the connection between the models and human se-
mantic representation. The significance of VSMs for the modeling of anal-
ogy lies in the fact that, first, recently some VSMs have demonstrated that
the models can solve several types of four-term analogy problems via vector
operations (Mikolov et al., 2013a). Four-term analogy problem is a type of
analogy problem, which presents the solver three words, say ”Man”, ”King”,
and ”Woman”, and then let the solver find the fourth word, which holds the
same relation to ”Woman”, as ”King” to ”Man”. This type of problems is of-
ten presented as ”Man : King :: Woman : ?”. The four-term analogy problem
is widely used in analogy research as well, since being able to solve the prob-
lem is considered to reflect the basic ability of analogy (Holyoak, Holyoak,
and Thagard, 1995, chapter 2 and 3). Second, as we have briefly mentioned
in the previous section, VSMs can overcome the arbitrariness that traditional
analogy models suffer, by constructing the representation of the domains of
analogy ground up from the corpus data. These two are the reasons we re-
view the VSMs as models of analogy.

VSMs (Turney and Pantel, 2010) refer to the models which typically take
the word vectors represented as one-hot vector 2.4a as input, and embed the
one-hot vectors in the continuous space, preserving the relationships among
words, such as term-term cooccurrence 2.4b, present in the corpus. Term-
term cooccurrence refers to the matrix which each row and column is some
word in the corpus, and the values of the matrix correspond to how many
times words in the row and column occurred in some range of words. One-
hot vector is a vector which represents words in the corpus, making the only
value in the vector on which the relative position of the word appearing in
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(A) An example one-hot vector of the word ”king”
(B) An example term-by-term cooccurrence

matrix of the 10 words in figure 2.5

FIGURE 2.4: Examples of one-hot vector and term-by-term ma-
trix

the corpus to 1. For example in figure 2.4a, the word ”king” is represented as
the vector [0, 1, 0, 0, 0], since the word ”king” appears in the second place of
the sentence. The problem with representing words as one-hot vectors is that
it is hard to compute the relationship of words in a meaningful manner. For
instance, if we compute the cosine similarity cos(v, w) = v>w

‖v‖‖w‖ = ∑i viwi√
v2

i

√
w2

i
(v, w are vectors and vi, wi are components of vectors, > is transpose of vec-
tors, and ‖v‖ is norm of a vector) on any different one-hot vectors, it simply
gives the value 0, since ∑i viwi always gives the value 0 on different one-hot
vectors (i.e. vectors are orthogonal). VSMs solves this problem by construct-
ing the vectors which have continuous values on each dimension, unlike one-
hot vector, making the vectors non-orthogonal. This ability of making rela-
tionships of word vectors easily computable, is why VSMs is widely utilized
in natural language processing (NLP) field. Computing the relationships of
word vectors is important for the field, since to conduct any task in NLP,
such as sentiment analysis2 or machine translation, one needs some kind of
similarity measure between linguistic entities, such as words, sentences, or
documents.

VSMs is fundamentally based on the idea that cooccurrence of words in
the corpus provides a good approximation to the meaning of words. The
idea is known as ”distributional hypothesis”. The idea of the hypothesis
can be summarized as "you shall know the meaning of words by the com-
pany it keeps" (Firth, 1957). For example (2.5), the word ”King” may cooc-
cur with the words ”Love”, ”Crown”, or ”Beard”. On the other hand, the
word ”Queen” may cooccur with the words ”Love”, ”Crown”, or ”Cosmet-
ics”. Thus, if you quantify the similarity of the words in terms of what other
words the words cooccur with, ”King” and ”Queen” are pretty similar, al-
though not exactly the same. By gathering this kind of information for other
words as well, you get a measure of how similar the words are. VSMs imple-
ments the idea through, typically, making the distance between word vectors
in the space reflect cooccurrence statistics among words in the corpus.

2The task is to classify the words, sentences or documents based on the primary emo-
tional element, such as happiness or anger, of the content.
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FIGURE 2.5: Sumamry of VSMs learning the representation of
words

Parallelogram model of analogy

The model of analogy which holds a strong connection to VSMs is paral-
lelogram model. SMT emphasized the role of predicates and symbolic rep-
resentations in defining relation and analogy, on the other hand, parallelo-
gram model Rumelhart and Abrahamsen, 1973 formulates analogy in terms
of the vector operations in Euclidean space, as we discuss further soon. Al-
though their theoretical formulation has not been popular in analogy litera-
ture for decades, the formulation is recently revived through the advent of
word embedding models, such as word2vec (Chen, Peterson, and Griffiths,
2016). This is because word embedding models utilize the nearly identical as-
sumptions and vector operations to implement analogy as what Rumelhart
and Abrahamsen proposed. Thus, here we review the parallelogram model
before actually take a look at word2vec model.

In their formulation, Rumelhart and Abrahamsen, 1973 emphasized that
to perform any similarity judgement, the following two questions need to be
answered:

1. what is the nature of the memory structure which underlies similarity
judgements?

2. what is the measure of ”distance” on this psychological space?

Here, memory structure refers to the way our concepts are represented in
the brain. According to them, Henley, 1969 provides a set of answers to the
questions:

1. the memory structure may be represented as a multidimensional Eu-
clidean space.
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FIGURE 2.6: a toy three dimensional Euclidean semantic space
(from (Rumelhart and Abrahamsen, 1973), with modification)

2. judged similarity is inversely related to distance in this multidimen-
sional space.

Rumelhart and Abrahamsen also accept the answers. Based on these as-
sumptions, they proceed to claim that analogical reasoning can also be seen
as a kind of similarity judgement, but the one in which ”not only the mag-
nitude of the distance but also the direction must be indicated” (i.e. vector
distancec). When people perform an analogy like A is to B as C is to D, they
argue, people simply state that A is similar to B in ”exactly the same way
and exactly the same degree” (Rumelhart and Abrahamsen, 1973) as C is
similar to D. More formally, for any analogy problems A:B::C:?, there exists
a concept I corresponding to the answer of ”?”, such that I is located at the
same distance from C as B is from A. The coordinates of I are specified by the
operation on the ordered sequence ,

{cj − aj + bj}j=1:m. (2.5)

Here, cj, aj, bj are the elements of vectors, and m is the dimension of the vec-
tors. As we see later, this vector operation 2.5 which utilizes the addition
and subtraction on the word vectors, is identical to that of used by the paper
which proposed word2vec (Mikolov et al., 2013a).

To illustrate the effectiveness of their formulation, let’s take a look at the
simple example in the paper. Figure 2.6 represents a toy three dimensional
Euclidean space, in which each point corresponds to some concept. Here,
eight concepts related to family are selected as an example. To solve an
analogy problem, for instance Son:Daughter::Father:?, utilizing the algorithm
Rumelhart and Abrahamsen, 1973 proposed, we just need to calculate

{Fatherj − Sonj + Daughterj}j=1:3 = (0− 0+ 1, 1− 0+ 0, 0− 0+ 0) = (1, 1, 0)
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(A) CBOW model architecture (B) Skip-gram model architecturre

FIGURE 2.7: Two models that consist of word2vec

and this corresponds to Mother. Ofcourse, this is highly simplified and ide-
alized example, and parallelogram theory was forgotten in part because it
couldn’t be applied to more complex examples (Chen, Peterson, and Grif-
fiths, 2016). However, later we will see that recent word embedding models
can solve much more varieties of analogy problems through the ”memory
structure” constructed from large amount of corpus, using the similar idea
introduced here.

2.3.1 word2vec model

Currently, one of the most widely used models of VSMs is word2vec (Young
et al., 2017). Word2vec consists of two models, continuous bag-of-words
(CBOW) and skip-gram. Both models are a single-layer (meaning the net-
work has only one hidden layer) neural network, and skip-gram model takes
one N dimensional word vector (represented as one-hot vector) as input and
tries to maximize the prediction accuracy in output layer for the C words
around the input word in the corpus (figure 2.7a). CBOW model does the op-
posite by taking C number of N dimensional word vectors and maximize the
prediction accuracy in output layer for a single target word (figure 2.7b). In
figure 2.8, xik, xk is an input one-hot vector, WV , W′

N are weights of the net-
work corresponding to each input vector. Each input vector is multiplied by
weight matrices to produce an output vector. Since skip-gram generally has
better performance on analogy tasks introduced later (Mikolov et al., 2013a)
and is utilized more commonly, here after we focus on skip-gram model. The
model optimizes vector representation xk so that it maximizes the conditional
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probability of tth + k word given the other words occurring within the time
window of size c:

1
T

T

∑
t=1

∑
−c≤j≤c,j 6=0

log P(vt+j|vt),

where the the probability function P is given by the soft-max function exi
∑i exi

.

2.3.2 Analogy in VSMs

In the last two sections, we have introduced VSMs and skip-gram model. A
reason skip-gram model has gained popularity among general populations,
in addition to researchers, is its ability to solve four-term analogy problems
such as ”Man : Woman :: King : ?”. This section describes how skip-gram
model solves this kind of problems. The four-term analogical inference task
in the context of VSMs, has been introduced by the same paper as the one
which proposed CBOW and skip-gram, which is (Mikolov et al., 2013a), and
has become a standard benchmark test for the word representation models.
In the four-term analogy task, a model is given a triplet of words in the form
(Man : Woman :: King : x), and is asked to answer the missing fourth word
x. The model answers the fourth word by applying some similarity operator
to the given triplet of the three words for each question. We call this pro-
cess solving the four-term analogy problems with VSMs. A straightforward
method for solving the analogical inference task is the one given by (Mikolov
et al., 2013a; Mikolov et al., 2013b).

f (va, vb, vc) = arg max
vd 6∈{va,vb,vc}

(cos(vc − va + vb, vd)) (2.6)

arg max refers to the operation which takes a vector as input and returns
the dimension of the highest value in the vector. The method takes the offset
of given word vectors and find the word vector which has the highest co-
sine similarity to the offset term. Levy and Goldberg, 2014 proposed another
method to solve the four-term analogy task:

f (va, vb, vc) = arg max
vd 6∈{va,vb,vc}

cos(vb, vd) cos(vc, vd)

cos(va, vd)
(2.7)

The method 2.7 has currently the best accuracy in analogy tasks (Linzen,
2016). Both methods are based on the idea that to get the desired result for
four-term analogy task, make the vc vector as far, in terms of the distance,
from va and as near to the vb. Using the same example as above, make the
vking vector as far from vman and as near to vwoman. We can easily see the sim-
ilarity between 2.6 and the one proposed by (Rumelhart and Abrahamsen,
1973), 2.5, except for in 2.6 cosine similarity is used to measure the similar-
ity of the vectors. Both methods try to capture the relationship between four
word vectors, which can be represented as in figure 2.5 (parallelogram rela-
tionship (Chen, Peterson, and Griffiths, 2016; Rumelhart and Abrahamsen,
1973)). This parallelogram relationship can be understood as the two pair of
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word vectors having similar relations (i.e. distance in the vector-space) with
each other, which indicates that the model captures an important aspect of
word relationship in the corpus. This interpretation of the model capturing
consistent relations between the four words is the reason that analogy task is
utilized to test the model’s performance on representing meanings of words
in NLP.

2.3.3 Possibilities and limitations of skip-gram as a model of
human semantic representation

In addition to solving analogy problems, skip-gram model is also shown to
be able to achieve high correlation with semantic similarity judgement of
humans (Baroni, Dinu, and Kruszewski, 2014). In this section, we review the
related literature and present some of our own analysis, regarding how well
the word2vec model can capture human semantic judgement and analogy
ability.

2.3.4 Similarity judgement

Similarity judgement is the task that makes humans or models to decide the
similarity of the pairs of words. Typical experimental procedure for humans
provides the pairs of words to the participants and let them decide the sim-
ilarity scores in the specified range (from 0 (not at all similar)-10 (very sim-
ilar), in the case of WordSim-353 (Finkelstein et al., 2002) and SimLex-999
(Hill, Reichart, and Korhonen, 2014)). In the case of the model, the model
decides the similarity of pairs of words using cosine similarity already men-
tioned. There are several open datasets of similarity judgement, which in-
clude the word pairs and the scores the participants of the experiment as-
signed to the pairs. The well-known datasets are WordSim-353 (Finkelstein
et al., 2002), MEN (Bruni, Tran, and Baroni, 2014), and SimLex-999 (Hill, Re-
ichart, and Korhonen, 2014). By using several similarity datasets, (Baroni,
Dinu, and Kruszewski, 2014) tested the similarity judgement performance of
CBOW model, by taking the Pearson or Spearman correlation of the model
(cosine similarity) and human similarity judgement scores of word pairs. The
model achieved the high correlation scores across datasets, with r = 0.75 for
WordSim-353, r = 0.8 for MEN (r being Spearman correlation).

The above results by (Baroni, Dinu, and Kruszewski, 2014) show the im-
pressive ability of word2vec to imitate human similarity judgement. We
partially replicated the correlation result for WordSim-353 and further com-
pared the correlation results of models to that of each participant’s simi-
larity judgement scores of word pairs (figure 2.8). As the models, besides
word2vec (skip-gram) already introduced, we utilized GloVe (Pennington,
Socher, and Manning, 2014) which is a VSMs model similar to word2vec,
and ConceptNet 5 (Speer and Havasi, 2012), which also is a similar model
to word2vec, but also utilizes the external hand-coded knowledge. As read-
ers can see in figure 2.8, human-human (mean = 0.723) and model-model
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FIGURE 2.8: The correlation matrix of several word embedding
models and human similarity judgement (given by wordsim-

353)
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Category names in the testset Example problem

capital-common-countries Berlin : Germany :: Paris : France

capital-world London : England :: Rome : Italy

currency Japan : yen :: USA : dollar

city-in-state Boston : Massachusetts :: Honolulu : Hawaii

family man : woman :: king : queen

gram1-adjective-to-adverb amazing : amazingly :: calm : calmly

gram2-opposite acceptable : unacceptable :: aware : unaware

gram3-comparative bad : worse :: big : bigger

gram4-superlative bad : worst :: big : biggest

gram5-present-participle code : coding :: dance : dancing

gram6-nationality-adjective France : French :: Germany : German

gram7-past-tense dancing : danced :: decreasing : decreased

gram8-plural banana : bananas :: bird : birds

gram9-plural-verbs decrease : decreases :: describe : describes

TABLE 2.1: Overview of google testset. Category names and an
example problem from the same category

(mean = 0.772) correlation scores are consistently higher than the model-
human (mean = 0.558) correlation scores (scores blocked by yellow lines).
This result of the model-human correlation being pretty lower than human-
human and model-model correlation indicates that, although word2vec can
represent the human similarity judgement pretty well, there still is a gap be-
tween humans and models, even in this kind of relatively simple task of word
pair similarity judgement.

2.3.5 Analogy

As mentioned in the section 2.2.5, four-term analogy problem is introduced
in (Mikolov et al., 2013a), and has become a standard test for semantic rep-
resentation ability. The standard testset for analogical inference, which is
also proposed in the same paper, is known as google test set (Mikolov et al.,
2013c). The test set consists of two large categories, namely semantic and syn-
tactic category, which are further categorized into fourteen categories which
reflect their choice of analogy questions (table 2.1). As can be seen from the
table 2.1, analogy problems utilized in this set are rather simple, in the sense
that at least adult humans should have little trouble coming up with the tar-
get word.
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Using the google test set, (Mikolov et al., 2013a) reports the overall accu-
racy (i.e. the number of correctly answered questions divided by the total
number of questions) of 53.3% using skip-gram, which is 20-30% higher than
other models with same amount of training words, and even higher than the
other model which used 10 times more amount of words for training than
skip-gram. The utilized models solved the problems utilizing the method
2.6. The results show skip-gram’s significant improvement of accuracy on
four-term analogy problem over other models.

We analyzed the performance of skip-gram model on the same google test
set, but focusing on the accuracy of each problem categories on the test set
2.1, not on the overall accuracy, to see the models performance in more detail.
The figure 2.9 shows the result of category-wise accuracy of the model, using
the same google test set, and pre-trained skip-gram vectors Mikolov et al.,
2013d, which is trained on about 100 billion words in the articles of Google
News. As (Mikolov et al., 2013a), we utilized the method 2.6 to solve the
problems on google test set. The figure 2.1 shows that, although skip-gram
can solve the problems fairly well (more than 60% accuracy) in most of the
categories, there is a clear drop of performance (around 20%) on the three cat-
egories, namely currency, gram1-adjective-to-adverb, and gram2-opposite.
As we have noted earlier, the questions in the test set themselves are fairly
easy ones for humans to answer. The result points to the discrepancy of the
humans and models semantic representation ability. To amend the discrep-
ancy, In chapter 4, we propose a new method for analogical inference based
on our definition of analogy, which improves the performance, especially on
the three categories.

To sum up, in this chapter we introduced and reviewed the theory and
models of analogy. Strucure-mapping theory is currently the most important
theory of analogy, which considers analogy as finding the mapping from the
base to the target, making the mapping only on the relations both in the base
and the target. As of models, we have reviewed structure-mapping engine
and word2vec. SME is the model of analogy, which implements the idea of
structure-mapping, and word2vec is the model of semantic representation,
on which some analogy problems can be solved. Most importantly, follow-
ing (Chalmers, French, and Hofstadter, 1992), we have pointed out the limi-
tations of SMT and SME, namely the underspecification of what can be con-
sidered as the input to analogy, and arbitrariness of the input domains of the
model. Word2vec partially overcomes the problem of SME pointed out here,
by creating the representation of domains in analogy from the corpus with-
out man-made input, but can only solve simple four-term analogy problems
compared to SME, which can solve larger scale problems (although its debat-
able whether SME can even be said to solve the simplest of analogy problems,
since it needs a meticulous human intervention).
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FIGURE 2.9: Word category-wise accuracy of analogy problems
of word2vec
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Chapter 3

Analogy as Model-building

In the last chapter, we have looked at past theoretical formulations and mod-
els of analogy. In this chapter, we develop our own formulation of anal-
ogy. First, we hypothesize that analogy is to construct a representation of
”entities” and ”relations” between entities, so that the entities satisfy a cer-
tain condition. Here, entities refer to something that can be considered as a
whole and relations refer to functions. We call this process ”model-building”
as in the chapter title, since the process involves creating a representation
of something to be modeled, in terms of entities and relations under a cer-
tain condition. To formulate the idea, we utilize category theory, because it
provides us with the tools to concisely organize the idea of our hypothesis.
Category theory is a field of mathematics that treats the relations between
mathematical entities. The basic concepts in the theory are defined in terms
of what mathematical relations they hold to other concepts in the theory.

3.1 Analogy revisited

In this section, we describe our hypothesis of analogy, and why we consider
category theory a potentially useful tool to formulate our idea of analogy. As
is discussed in Chapter 1, analogy has been considered to have a deep con-
nection with concept of ”relation” and ”relation of relation”. We align with
previous researches as of the importance of relation in analogy, but contend
that we should also include the definition on the domains in the theory. Thus,
we hypothesize that given a set X of x1, x2, ..., xn, analogy is to:.

1. from X, construct quadruplets of sets < A, B, RA, RB > so that two
functions f : A → B, F : RA → RB satisfy F(g) ◦ f = f ◦ g

2. then select a quadruplet < A, B, RA, RB > which have largest number
of elements

Here, a1 = x1, a2 = x2, ..., xi = ai ∈ A, b1 = xi+1, b2 = xi+2, ..., xi+k =
bi ∈ B are the sets which consist of the elements of X, where A ∩ B = ∅,
and RA, RB are the sets of functions , for any element of ai, aj ∈ A, bi, bj ∈ B,
hA : ai 7→ aj ∈ RA, hB : bi 7→ bj ∈ RB, each consisting of elements of A, B.
Condition 2 is necessary because there can be infinitely many combinations
of quadruplets < A, B, RA, RB >. In this hypothesis, RA, RB correspond to
”relation”, and the constraint of F(g) ◦ f = f ◦ g corresponds to ”relation of
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relation”. Hence, our hypothesis defines analogy as constructing a represen-
tation of entities A, B and sets of relations RA, RB, under the constraint of re-
lation of relation F(g) ◦ f = f ◦ g. To contrast with structure-mapping theory
(SMT), SMT defined analogy as finding a mapping from a given base domain,
which includes entities and relations structured as directed acyclic graph, to
a given target domain, which also includes entities and relations. The em-
phasis of our definition lies in the role of constructing the domains of analogy.
In SMT, the construction part is completely ignored as the focus is largely
put on how the mapping should be created. However, as it is pointed out by
(Chalmers, French, and Hofstadter, 1992), this disregard of ”representation-
building” leads to the underspecification of the theory, which then leads to
the arbitrariness of the model based on the theory. All we assume is an input
of a set X, which only minimally assumes that something can be composed
of its elements, unlike SMT.

In this section, We have taken a first step to define analogy. However, our
definition so far is lacking a formality which is required to judge whether the
model really satisfies the definition. To more concisely formulate our hypoth-
esis, in the next section, we introduce some concepts from category theory,
and then in section 3.3, utilize those concepts to define analogy. The con-
cepts of category theory, such as category or functor, are useful to formulate
our hypothesis because those concepts make it possible to concisely summa-
rize the quadruplets of sets < A, B, RA, RB, or the statement ”two functions
f : A → B, F : RA → RB satisfy F(g) ◦ f = f ◦ g”.

3.2 Basic concepts of category theory

In this section, we introduce the basic concepts of category theory, to specify
our idea of analogy more rigorously. We referred to (Awodey, 2010; Leinster,
2014) to write this section. First, category refers to an entity that consists of
”objects” and ”arrows” such as the ones below.

• objects: A, B, C, ...

• arrows: f , g, h, ...

Every arrow has a ”domain”, written as dom( f ), and ”codomain”, written
as cod( f ). When we write f : A → B, this indicates that dom( f ) = A and
cod( f ) = B. Composition is the operation that can be applied to arrows, and
for f : A → B, g : B → C, the operation is defined as:

g ◦ f : A → C

This means that arrows f and g have the same object B as cod( f ) and dom(g).
The arrow that has the same domain and codomain is called identity ar-

row.
1A : A → A

Every category has to satisfy the following three conditions:
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FIGURE 3.1: Examples of commutative diagram

• for every object A, there is an identity arrow 1A : A → A

• for every f : A → B, g : B → C, h : C → D, the compositions of the
arrows satisfy associative law: h ◦ (g ◦ f ) = (h ◦ g) ◦ f where

• for every f : A → B, 1A : A → A, 1B : B → B, there is an identity arrow:
f ◦ 1A = 1B ◦ f

Here, A, B, C, D are objects. An important concept in category theory is
commutative diagram, which represents the compositions between arrows in
terms of the directed graph. The commutative diagram is important because
it is a useful tool for proving that associativity holds in a category.

Examples of commutative diagram are presented in figure 3.1. Basically,
diagram commutes when there are multiple paths on the graph of arrow
compositions from an object X to an object Y, the output of compositions on
a path is always the same as the output of another path. For example, the
right diagram of figure 3.1 commutes because as of two paths from A to C
the output of compositions f ◦ e = A → C = h ◦ g.

The above definition lays the foundation of category and arrows. One ex-
ample of the category is Sets. As the name indicates, Sets is the category that
has sets X, Y, ... as objects and functions f : X → Y, g : YX → Z, ... between
sets as arrows. Composition of f and g is defined exactly as composition
between functions:

g ◦ f : X → Z
→ g( f (x))

In addition to category, functor is also an important concept from category
theory. Functor is basically an arrow from a category to another category,
that preserves domain and codomain, identity arrow, and composition, of a
category. Concretely, given categories C, D, functor F : C → D consists of
two functions:

• A function C 7→ F(C)
ob(C) 7→ ob(D)
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• A function f 7→ F(f) for A, A′ ∈ C

C(A, A′) → D(F(A), F(A′))

Here, ob(C) denotes a set of objects in a category, and C(A, A’) denotes a
set arrows in a category. These functions correspond to a function that maps
objects to objects, and a function that maps arrows to arrows. Functor also
satisfies the following conditions.

• F( f : A → B) = F( f ) : F(A) → F(B)

• F(1A) = 1F(A)

• F(g ◦ f ) = F(g) ◦ F( f )

This concludes the introduction of category theory. Next, we apply the
concepts from category theory to formulate analogy.

3.3 Our formulation of analogy

In this section, we formulate the computational problem of analogy in terms
of the category theoretic notions introduced above. As stated in the section
3.1, we hypothesized that analogy is to define the sets and the functions, un-
der the constraint of commutativity. Category theory sets the stage perfectly
to formally specify our hypothesis, with the concepts such as category, ar-
rows and functor.

Using the category theoretic notions above, we can more concisely define
analogy as follows, given a set X:

• from X, construct two categories C, D, so that there is a functor F : C →
D

• select the categories C, D which have largest number of objects and ar-
rows

The definition concisely captures what was written in the hypothesis, by
making tuples A, RA and B, RB categories and making a condition ”two func-
tions f : A → B, F : RA → RB satisfy F(g) ◦ f = f ◦ g” an existence of a
functor. Let us explain the definition using the ”room analogy” example.

3.3.1 Explaining room analogy through the formulation

According to our definition, given a set X, analogy is to construct two cat-
egories, so that there is a functor from a category to another category. The
functor consists of two functions, one is for objects and the other is for ar-
rows. Let us apply this to room analogy. Here we assume that a vector-space
R2 consists of the coordinates in two dimensions where there are points in
figure 3.2. Analogy is to:
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FIGURE 3.2: Same figure as figure 1.1

• from X, construct roomA, roomB so that there is a functor G : roomA →
roomB

• then select roomA, roomB which have largest number of elements

Here, roomA, roomB are categories which have points in R2 as objects, and
affine transformations between those points as arrows. Given y ∈ Rn,A ∈
Rn×n, x ∈ Rn, b ∈ Rn affine transformation refers to the following function
f :

y = f (x) = Ax + b

Since we consider the two dimensional case in room analogy, we assume
A ∈ R2×2, x ∈ R2, b ∈ R2 from here on. Crucially for this example,
affine transformation can describe the basic geometric transformations, such
as translation and scaling.

First, we created the set X as in figure 3.3. The figure does not actually
contain all the points of figure 3.2, but it is simplified to be composed of
48 ∈ R points. To construct categories, we need to discover the functor,
since the functor consists of a constraint to construct the categories, which is
supposed to be there from roomA to roomB. As is noted in the previous sec-
tion, functor consists of two functions, one for from object to object, and the
other for from arrow to arrow. The problem, then, is to calculate these func-
tion from the numerical information given in the figure 3.2 alone. Let’s think
about the object function first. To do this, we can solve the linear equations
derived from the two dimensional affine transformation. Two dimensional
affine transformation has six unknown variables, as can be seen below.
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FIGURE 3.3: a set X from the figure 3.2

y =

(
a11 a12
a21 a22

)
x +

(
b1
b2

)
(3.1)

Here, a11, a12, a21, a22, b1, b2 are the unknown variables. To solve for these
variables, we need six equations as well. We can get these equations by us-
ing, for example, the three points of dark blue in figure 3.3. The points are(

3
2

)
,
(

4
1

)
,
(

4
2

)
. By putting each point to the equation 3.1, we get the

equations below.

3a11 + 2a12 + b1 = 10
3a21 + 2a22 + b2 = 0

4a11 + 1a12 + b1 = 15
4a21 + 1a22 + b2 = −5
4a11 + 2a12 + b1 = 15
4a21 + 2a22 + b2 = 0

By solving for the variables, we get the exact affine transformation that
can scale the of points A to the set of points B.

f (x) = y =

(
3 0
0 3

)
x +

(
−2

6

)
Thus, we could compute the object function from the figure 3.2. Next, we
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want to compute the arrow function. To do this, let us remember the com-
mutativity diagram figure 3.1. Since every functor needs to preserve this
commutativity, we can utilize this property to obtain an equation from the
constraint g ◦ f = f ◦ F(g). Here, we can calculate g, for example, as the ex-
actly same way as we calculated f , only changing an used input from three
dark blue points on A,B to three dark blue points and three yellow points.
From the calculation, we get:

g(x) =
(

4 0
0 1.5

)
x +

(
16
6

)
By replacing all the functions in g ◦ f = f ◦ F(g) with affine transforma-

tions, we get
B(Ax + a) + b = A(Cx + c) + a (3.2)

Replacing all the known transformations we get:

(
3 0
0 3

)
(

(
4 0
0 1.5

)
x +

(
16
6

)
) +

(
−2

6

)
=(

c11 c12
c21 c22

)
(

(
3 0
0 3

)
x +

(
−2

6

)
) +

(
c1
c2

)
From this, we can calculate c11 = 4, c12 = 0, c21 = 0, c22 = 1.5, and c1 =

54, c2 = 15. Since F is determined as a function of g, this gives us the arrow
function F.

F(g) =
(

4 0
0 1.5

)
x +

(
54
15

)
This gives us the functor G, which consists of the two functions f , F. Thus,
it is shown that there is a functor in the constructed categories A, B in figure
3.2.

In this chapter, we have proposed our hypothesis and formulation of
analogy, and explained the formulation using a simple example. In the next
chapter, we examine the models introduced in chapter 2, in terms of whether
the models satisfy the requirements posed in this chapter.
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Chapter 4

Do previous models of analogy
satisfy the requirements of our
definition?

In the previous chapter, we presented our definition of analogy and explained
why it might be a candidate as a theory of analogy. In this chapter, we an-
alyze the models of analogy already introduced in Chapter 2, in terms of
whether those models satisfy the requirements of our definition and argue
that although SME does not satisfy our definition, since it lacks the ability to
create it’s own category, word2vec can satisfy the important parts, although
not all, of our requirements. Based on this analysis, we propose a novel vec-
tor operation to solve four-term analogy problems introduced in chapter 2 in
word2vec based on our definition, and show that the operation highly im-
proves the performance of analogy in word2vec.

To reiterate, in the previous chapter we proposed the following definition.
Given a set X:

• from X, construct two categories C, D, so that there is a functor F : C →
D

• select the categories C, D which have largest number of objects and ar-
rows

From the definition, we derive three requirements for the models of anal-
ogy to be said to satisfy our definition.

1. being able to construct a functor F : C → D

2. being able to construct categories C, D from X

(a) being able to utilize a functor as a constraint to construct C, D

First requirement is due to the demand of there being a functor from C to D.
Second requirement is obviously derived from the fact that the definition de-
mands the construction of categories C, D. Requirement 2a is due to the fact
that, not only a model needs to construct a functor, but it must also be able to
utilize it to, in turn, construct the categories. We utilize the requirements to
examine two models SME and word2vec.
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4.1 Examining SME and word2vec on whether the
models satisfy the requirements of our defini-
tion

4.1.1 Structure-mapping engine

In this section, we examine structure-mapping engine and word2vec, as to
whether the models satisfy the requirements of our definition. To reiterate
from Chapter 2, SME is a representative model of analogy first introduced
by Falkenhainer, Forbus, and Gentner, 1989 and being developed even now
(e.g. Forbus et al., 2017). The model is an implementation of the idea of
Gentner, 1983, who states that analogy is to construct the mapping from base
domain to target domain, based on the system of relations. To implement
the idea, the model takes the structured representations (i.e. directed acyclic
graph, where nodes correspond to predicates, as can be seen in (figure 2.3))
as input, and construct the mapping which tries to preserve the higher order
relation (predicate of predicate, such as CAUSE in figure 2.3).

The question we ask here is whether the model satisfies our requirements.
We argue that the model does not satisfy requirement 2 and 2a, only satisfy-
ing 1. SME does satisfy the first requirement, because, first, SME is given
directed acyclic graph (DAG) as input, and DAG can be thought of category
having nodes as objects and edges as arrows, second, SME can create a map-
ping from a DAG A to another DAG B, which maps nodes of A as well as
edges to nodes and edges of B. Thus, SME satisfies the first requirement.
However, the model does not satisfy the requirement 2 and 2a, because it
lacks the ability to define the categories on its own from the input. Instead,
as pointed out by (Chalmers, French, and Hofstadter, 1992), the model relies
on the modelers to supply the inputs already structured as DAG, such as the
one in (2.3). Since the second requirement is not satisfied, requirement 2a is
not satisfied as well.

4.1.2 word2vec

As it is reviewed in 2, vector-space models refer to the models which learn
the distributed (vector-space) representation of words from the corpus, by
compressing the cooccurrence probability. Some models of this class, such as
word2vec (Mikolov et al., 2013a) and GloVe (Pennington, Socher, and Man-
ning, 2014) are highlighted as a potential model of analogy for its ability to
solve a four-term analogy problems introduced in chapter 2, such as Man :
Woman :: King : ?, by adding and subtracting word vectors as in 2.6. We
argue that the model partially satisfies our requirements, but needs a modi-
fication to complete the requirements.

Let us examine the model next. First, given a set X, in this case the set
of one-hot vectors, the model can construct categories (categories of vector-
space), unlike SME, from the set. In addition, you can specify a functor in
the defined categories, in fact, the idea of parallelogram model can be seen
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FIGURE 4.1

as specifying a functor. To see this, think of the four translation functions
f (vx) = vking − vman + vx, g(vx) = vwoman − vman + vx, h(vx) = vqueen −
vwoman + vx, i(vx) = vqueen − vking + vx, also depicted in figure 4.1. The func-
tions constitute a parallelogram relationship among four words, ”man”, ”woman”,
”king”, ”queen”, as specified by parallelogram model. These functions are
commutative, since i ◦ f = vqueen − vman + vx = h ◦ g, and thus constitute a
functor. Therefore, the fact that the model can solve analogy problems utiliz-
ing this kind of relationship shows that the model can at least approximately
captures the functor in the sense of figure 4.1. From this, we can conclude
that word2vec satisfies the requirements 1 and 2.

However, the model does not utilize the functor itself to construct and
select the vector-space. Rather, the model creates the vector-space through
approximating the cooccurrence statistics, and then that created vector-space
captures the functor relations between word vectors. Thus, although word2vec
satisfies the requirements 1 and 2, in that the model can create the represen-
tation on which functor can be defined, it does not satisfy the requirement 2a
in that the model does not utilize the constraint posed by functor in itself.

In this section, we have analyzed the two models of analogy in terms of
whether these models satisfy our requirement of analogy. We have argued
that both SME and word2vec does not dully qualify as a model of analogy on
our requirement, however, word2vec does satisfy conditions (1), (2). Accord-
ing to the analysis of word2vec above, we can consider the parallelogram
relationship in chapter 2 as an example of functor. Based on this observation,
in the next section we devise a new analogy operator for word2vec, which
better captures the parallelogram relationship.

4.2 Deriving the analogical operator from the def-
inition

In the last section, we have suggested that parallelogram relationship can be
seen as an example of functor. In this section, we derive a new analogical
inference operator based on this observation, and test the performance of the
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FIGURE 4.2: Our method changes the scaling of given word
vectors, so that it preserves the parallelogram relation and at
the same time separate the correct word vector from noise vec-

tors.

operator. We find that our operator highly improves the performance of anal-
ogy in the model compared to the previously proposed operators. We first
review the previous methods for performing analogical inference, and then
derive our own method. We presented this result here (Kato and Hidaka,
2018).

4.2.1 Background and Motivation

As it is noted in section 2.2.5, vector-space models utilize an analogical infer-
ence operator, such as 2.6, or 2.7, to solve four-term analogy problems. Here,
both methods are presented again:

f (va, vb, vc) = arg max
vd 6∈{va,vb,vc}

(cos(vc − va + vb, vd)) (4.1)

g(va, vb, vc) = arg max
vd 6∈{va,vb,vc}

cos(vb, vd) cos(vc, vd)

cos(va, vd)
(4.2)

Equation 4.1 is due to (Mikolov et al., 2013a), while equation 4.2 is to
(Levy and Goldberg, 2014). Both methods are based only on the translation of
word vectors in the given space. However, our definition of analogy allows
not only the use of translation, but also the use of any transformation applied
to word vectors to perform analogy. Based on this idea, we generalize the
equation 4.1 so that analogy operator also includes scaling transformation to
the given word vectors. We estimate scaling transformation via supervised-
learning on a given set of words in an analogical relationship.

4.2.2 Method

Our method utilizes the supervised learning to scale a given words in anal-
ogy problems so that analogical inference is more accurate (figure 4.2). We
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define the analogical inference operator as follows:

hM1,M2(va, vb, vc) =

arg max
vd 6∈{va,vb,vc}

(cos(M1vc − M1va + M2vb, M2vd)) (4.3)

Here Mi is a diagonal matrix, and each diagonal value of Mi is composed of
some weight wi. The formulation can be viewed as a generalized version of
method 4.1, since if we take M1 = M2 = I, where I is identity matrix, 4.1
corresponds exactly to 4.1. The important part of our method is the selection
process of wi in Mi, since arbitrarily selecting wi doesn’t make analogical
inference more accurate.

Let us explain the selection process of wi in Mi. First, the elements of a
large number of word vectors learned through skip-gram take values near
zero, and fewer word vectors take large values in the same dimension. As
only one word vector is the ”correct” answer in any analogy problem, the
vast majority of other words is a ”noise” 1. The empirical distribution of
this ”noise” word vectors in a particular dimension follows an exponential
distribution. An example of the values of the first dimension of the noise
word vectors are shown in the figure 4.3. Therefore, considering there are
fewer word vectors which take larger absolute values, it is easier to separate
out the correct word vector from other noise vectors. From this observation,
we gain a rule of thumb that we should choose some dimensions on which
many word vectors in the test set have larger absolute values.

Secondly, we choose some subspace in which the words in the test set
form the ”analogical relationship” which the analogy inference operator 4.3
will identify as the answer. For D dimensional vector space of N words, let
V0 ∈ RK×D be a matrix of K word vectors, in which each row has a word
vector of some class from the google test set. For example a class of word
vectors which (male matrix), and let V1 ∈ RK×D be a matrix paired with V0,
in which ith row has a vector corresponding ith row in V0, such as woman and
queen (”female” matrix). Then, for the model applying the function 4.3, the
dimension j which has smaller error ϵj defined as ϵj = ‖V0,j − V1,j + 1Kc>‖2,
is more preferable, where c ∈ RD is some translation vector minimizing ϵj

with respect to c, and 1K ∈ RK is the vector with its all elements being 1. Tak-
ing a subspace of dimension with ϵj = 0, the analogy inference of equation
4.1 exactly identifies the correct answer for the given triplet of word vectors
in the given analogy problem.

Summarizing two general preferences to have a better vector-space:
1. choose dimensions in which words in test set have larger absolute val-

ues

2. choose the dimension i in which words in test set have lower ϵi

1if we solve an analogy problem utilizing the vector-space of three million word vectors,
299996 word vectors are noise, excluding the given three word vectors in the problem, and
the correct word vector.
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FIGURE 4.3: The empirical distribution of the first dimension of
”noise” word vectors.

Considering the two conditions, as a heuristics, we devised a weight for di-
mension i below:

wi = emax(|V0,i|)+max(|V1.i|)−ϵ (4.4)

In 4.4, max(|V0,i|) + max(|V1.i|) part reflects the preference 1 by taking the
maximum of an absolute value of dimensions for each word, and subtracting
ϵ reflects the preference 2. In the following experiment, we used the pre-
trained word vectors Mikolov et al., 2013d which contain three million of
words with each word having 300 dimensions. As analogy set, we utilized
widely used google test set, which contains 19544 pairs of analogy questions
(8,869 semantic and 10,675 syntactic questions). We calculated weights by 4.4
and applied weights to 300 dimensions of three million word vectors, then
obtained the model answer by 4.3 with weighted vectors.

4.2.3 Result

The analogy performance of three methods, 4.2, 4.1, 4.3, is shown on figure
4.2. Our method outperforms other two methods on all the word categories,
except for capital-world. Specifically, the accuracy of ”currency”, ”gram1-
adjective-to-adverb”, ”gram2-opposite” increased 20-30%, which have got-
ten lowest accuracy on Mikolov method.
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FIGURE 4.4: The result comparing the three methods, 4.2, 4.1,
4.3 with accuracy on google testset.
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4.2.4 Discussion

Using our method, we have gained substantive increase in accuracy on google
testset compared to previously proposed methods. The result may indicate
that our definition of analogy as constructing a functor is on a right track,
since it verifies the prediction of our definition that relations can be better
represented as arrows, not some specific function such as translation.
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Chapter 5

Discussion and Conclusions

In this paper, we have reviewed the previous researches on the theorization
and modeling of analogy (Chapter 2), proposed our hypothesis and defini-
tion of analogy (Chapter 3), and examined the previous models whether they
satisfy the requirements of the definition (Chapter 4).

The critical question we have tried to tackle in this paper is in making an
analogy, ”where does the relation come from?”. The similar critique towards
SME is raised by (Chalmers, French, and Hofstadter, 1992), that the previous
models of analogy has lacked the ability to create the representation utilized
in analogy in itself, allowing modelers to arbitrarily create the representation
leading to the trivialization of solving analogy. To address the question, we
have pointed out that the inability of the models to create the representation
is due to the underspecification of the structure-mapping theory, and pro-
posed the new definition of analogy. Through this definition, we have tried
to capture what was lacking in SMT, which is how the representation used
in analogy should be created, without assuming nothing other than a set.
Our definition gave the requirements to the process of analogy as creating
the categories, which can be thought of as a set of objects with relations, from
a given set, so that there is a functor from a created category to another cre-
ated category. We have tested this idea on a simple example, room analogy,
and demonstrated that we can construct the categories, as required by the
definition. After this, we have analyzed SME and word2vec, and suggested
that although SME does not satisfy our requirements of being the model of
analogy, word2vec can partially satisfy the requirements. Based on this ob-
servation, we tested the prediction of our definition, analogy can be better
captured through the use of an arrow as a relation, by generalizing the ana-
logical operator of (Mikolov et al., 2013a). Our test showed the preliminary
success of the operator over previous ones.

As we have pointed out, word2vec satisfies the two requirements of our
definition. So, what can be done to create the model that completely satis-
fies our theory? Our requirements demand that the model should be able
to create the categories from some set with the constraint of there being a
functor. The researches on knowledge graph embedding (Wang et al., 2017)
show some of the possible directions on this line. Knowledge graph em-
bedding refers to a technique which learns the vector-space representation
of the graph structures, which have entities as nodes and relations between
entities as edges. For example, (Liu, Wu, and Yang, 2017) proposed a model
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for knowledge graph embedding called ANALOGY, which learns the embed-
ding under the constraint of commutativity of edges. These models do not
satisfy our requirements by themselves, because it requires the input struc-
tured as knowledge graph, which is same as what SME does. However, the
way the models build vector representation aligns with what we propose in
our formulation, because it utilizes the constraint such as commutativity.

Overall, our proposed definition has some advantages over SMT, such
as the specification of how to build the representation, and has shown some
promising results on the preliminary testings presented in this paper. Thus,
we believe our definition is worth further testing. To more comprehensively
test our definition, we need to build the model which completely satisfies our
proposed requirements.
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